Home | History | Annotate | Download | only in gprof
      1 /*
      2  * Copyright (c) 1983, 1993, 2001
      3  *      The Regents of the University of California.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. Neither the name of the University nor the names of its contributors
     14  *    may be used to endorse or promote products derived from this software
     15  *    without specific prior written permission.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include "gprof.h"
     30 #include "libiberty.h"
     31 #include "search_list.h"
     32 #include "source.h"
     33 #include "symtab.h"
     34 #include "call_graph.h"
     35 #include "cg_arcs.h"
     36 #include "cg_dfn.h"
     37 #include "cg_print.h"
     38 #include "utils.h"
     39 #include "sym_ids.h"
     40 
     41 static int cmp_topo (const PTR, const PTR);
     42 static void propagate_time (Sym *);
     43 static void cycle_time (void);
     44 static void cycle_link (void);
     45 static void inherit_flags (Sym *);
     46 static void propagate_flags (Sym **);
     47 static int cmp_total (const PTR, const PTR);
     48 
     49 Sym *cycle_header;
     50 unsigned int num_cycles;
     51 Arc **arcs;
     52 unsigned int numarcs;
     53 
     54 /*
     55  * Return TRUE iff PARENT has an arc to covers the address
     56  * range covered by CHILD.
     57  */
     58 Arc *
     59 arc_lookup (Sym *parent, Sym *child)
     60 {
     61   Arc *arc;
     62 
     63   if (!parent || !child)
     64     {
     65       printf ("[arc_lookup] parent == 0 || child == 0\n");
     66       return 0;
     67     }
     68   DBG (LOOKUPDEBUG, printf ("[arc_lookup] parent %s child %s\n",
     69 			    parent->name, child->name));
     70   for (arc = parent->cg.children; arc; arc = arc->next_child)
     71     {
     72       DBG (LOOKUPDEBUG, printf ("[arc_lookup]\t parent %s child %s\n",
     73 				arc->parent->name, arc->child->name));
     74       if (child->addr >= arc->child->addr
     75 	  && child->end_addr <= arc->child->end_addr)
     76 	{
     77 	  return arc;
     78 	}
     79     }
     80   return 0;
     81 }
     82 
     83 
     84 /*
     85  * Add (or just increment) an arc:
     86  */
     87 void
     88 arc_add (Sym *parent, Sym *child, unsigned long count)
     89 {
     90   static unsigned int maxarcs = 0;
     91   Arc *arc, **newarcs;
     92 
     93   DBG (TALLYDEBUG, printf ("[arc_add] %lu arcs from %s to %s\n",
     94 			   count, parent->name, child->name));
     95   arc = arc_lookup (parent, child);
     96   if (arc)
     97     {
     98       /*
     99        * A hit: just increment the count.
    100        */
    101       DBG (TALLYDEBUG, printf ("[tally] hit %lu += %lu\n",
    102 			       arc->count, count));
    103       arc->count += count;
    104       return;
    105     }
    106   arc = (Arc *) xmalloc (sizeof (*arc));
    107   memset (arc, 0, sizeof (*arc));
    108   arc->parent = parent;
    109   arc->child = child;
    110   arc->count = count;
    111 
    112   /* If this isn't an arc for a recursive call to parent, then add it
    113      to the array of arcs.  */
    114   if (parent != child)
    115     {
    116       /* If we've exhausted space in our current array, get a new one
    117 	 and copy the contents.   We might want to throttle the doubling
    118 	 factor one day.  */
    119       if (numarcs == maxarcs)
    120 	{
    121 	  /* Determine how much space we want to allocate.  */
    122 	  if (maxarcs == 0)
    123 	    maxarcs = 1;
    124 	  maxarcs *= 2;
    125 
    126 	  /* Allocate the new array.  */
    127 	  newarcs = (Arc **)xmalloc(sizeof (Arc *) * maxarcs);
    128 
    129 	  /* Copy the old array's contents into the new array.  */
    130 	  memcpy (newarcs, arcs, numarcs * sizeof (Arc *));
    131 
    132 	  /* Free up the old array.  */
    133 	  free (arcs);
    134 
    135 	  /* And make the new array be the current array.  */
    136 	  arcs = newarcs;
    137 	}
    138 
    139       /* Place this arc in the arc array.  */
    140       arcs[numarcs++] = arc;
    141     }
    142 
    143   /* prepend this child to the children of this parent: */
    144   arc->next_child = parent->cg.children;
    145   parent->cg.children = arc;
    146 
    147   /* prepend this parent to the parents of this child: */
    148   arc->next_parent = child->cg.parents;
    149   child->cg.parents = arc;
    150 }
    151 
    152 
    153 static int
    154 cmp_topo (const PTR lp, const PTR rp)
    155 {
    156   const Sym *left = *(const Sym **) lp;
    157   const Sym *right = *(const Sym **) rp;
    158 
    159   return left->cg.top_order - right->cg.top_order;
    160 }
    161 
    162 
    163 static void
    164 propagate_time (Sym *parent)
    165 {
    166   Arc *arc;
    167   Sym *child;
    168   double share, prop_share;
    169 
    170   if (parent->cg.prop.fract == 0.0)
    171     {
    172       return;
    173     }
    174 
    175   /* gather time from children of this parent: */
    176 
    177   for (arc = parent->cg.children; arc; arc = arc->next_child)
    178     {
    179       child = arc->child;
    180       if (arc->count == 0 || child == parent || child->cg.prop.fract == 0)
    181 	{
    182 	  continue;
    183 	}
    184       if (child->cg.cyc.head != child)
    185 	{
    186 	  if (parent->cg.cyc.num == child->cg.cyc.num)
    187 	    {
    188 	      continue;
    189 	    }
    190 	  if (parent->cg.top_order <= child->cg.top_order)
    191 	    {
    192 	      fprintf (stderr, "[propagate] toporder botches\n");
    193 	    }
    194 	  child = child->cg.cyc.head;
    195 	}
    196       else
    197 	{
    198 	  if (parent->cg.top_order <= child->cg.top_order)
    199 	    {
    200 	      fprintf (stderr, "[propagate] toporder botches\n");
    201 	      continue;
    202 	    }
    203 	}
    204       if (child->ncalls == 0)
    205 	{
    206 	  continue;
    207 	}
    208 
    209       /* distribute time for this arc: */
    210       arc->time = child->hist.time * (((double) arc->count)
    211 				      / ((double) child->ncalls));
    212       arc->child_time = child->cg.child_time
    213 	* (((double) arc->count) / ((double) child->ncalls));
    214       share = arc->time + arc->child_time;
    215       parent->cg.child_time += share;
    216 
    217       /* (1 - cg.prop.fract) gets lost along the way: */
    218       prop_share = parent->cg.prop.fract * share;
    219 
    220       /* fix things for printing: */
    221       parent->cg.prop.child += prop_share;
    222       arc->time *= parent->cg.prop.fract;
    223       arc->child_time *= parent->cg.prop.fract;
    224 
    225       /* add this share to the parent's cycle header, if any: */
    226       if (parent->cg.cyc.head != parent)
    227 	{
    228 	  parent->cg.cyc.head->cg.child_time += share;
    229 	  parent->cg.cyc.head->cg.prop.child += prop_share;
    230 	}
    231       DBG (PROPDEBUG,
    232 	   printf ("[prop_time] child \t");
    233 	   print_name (child);
    234 	   printf (" with %f %f %lu/%lu\n", child->hist.time,
    235 		   child->cg.child_time, arc->count, child->ncalls);
    236 	   printf ("[prop_time] parent\t");
    237 	   print_name (parent);
    238 	   printf ("\n[prop_time] share %f\n", share));
    239     }
    240 }
    241 
    242 
    243 /*
    244  * Compute the time of a cycle as the sum of the times of all
    245  * its members.
    246  */
    247 static void
    248 cycle_time ()
    249 {
    250   Sym *member, *cyc;
    251 
    252   for (cyc = &cycle_header[1]; cyc <= &cycle_header[num_cycles]; ++cyc)
    253     {
    254       for (member = cyc->cg.cyc.next; member; member = member->cg.cyc.next)
    255 	{
    256 	  if (member->cg.prop.fract == 0.0)
    257 	    {
    258 	      /*
    259 	       * All members have the same propfraction except those
    260 	       * that were excluded with -E.
    261 	       */
    262 	      continue;
    263 	    }
    264 	  cyc->hist.time += member->hist.time;
    265 	}
    266       cyc->cg.prop.self = cyc->cg.prop.fract * cyc->hist.time;
    267     }
    268 }
    269 
    270 
    271 static void
    272 cycle_link ()
    273 {
    274   Sym *sym, *cyc, *member;
    275   Arc *arc;
    276   int num;
    277 
    278   /* count the number of cycles, and initialize the cycle lists: */
    279 
    280   num_cycles = 0;
    281   for (sym = symtab.base; sym < symtab.limit; ++sym)
    282     {
    283       /* this is how you find unattached cycles: */
    284       if (sym->cg.cyc.head == sym && sym->cg.cyc.next)
    285 	{
    286 	  ++num_cycles;
    287 	}
    288     }
    289 
    290   /*
    291    * cycle_header is indexed by cycle number: i.e. it is origin 1,
    292    * not origin 0.
    293    */
    294   cycle_header = (Sym *) xmalloc ((num_cycles + 1) * sizeof (Sym));
    295 
    296   /*
    297    * Now link cycles to true cycle-heads, number them, accumulate
    298    * the data for the cycle.
    299    */
    300   num = 0;
    301   cyc = cycle_header;
    302   for (sym = symtab.base; sym < symtab.limit; ++sym)
    303     {
    304       if (!(sym->cg.cyc.head == sym && sym->cg.cyc.next != 0))
    305 	{
    306 	  continue;
    307 	}
    308       ++num;
    309       ++cyc;
    310       sym_init (cyc);
    311       cyc->cg.print_flag = TRUE;	/* should this be printed? */
    312       cyc->cg.top_order = DFN_NAN;	/* graph call chain top-sort order */
    313       cyc->cg.cyc.num = num;	/* internal number of cycle on */
    314       cyc->cg.cyc.head = cyc;	/* pointer to head of cycle */
    315       cyc->cg.cyc.next = sym;	/* pointer to next member of cycle */
    316       DBG (CYCLEDEBUG, printf ("[cycle_link] ");
    317 	   print_name (sym);
    318 	   printf (" is the head of cycle %d\n", num));
    319 
    320       /* link members to cycle header: */
    321       for (member = sym; member; member = member->cg.cyc.next)
    322 	{
    323 	  member->cg.cyc.num = num;
    324 	  member->cg.cyc.head = cyc;
    325 	}
    326 
    327       /*
    328        * Count calls from outside the cycle and those among cycle
    329        * members:
    330        */
    331       for (member = sym; member; member = member->cg.cyc.next)
    332 	{
    333 	  for (arc = member->cg.parents; arc; arc = arc->next_parent)
    334 	    {
    335 	      if (arc->parent == member)
    336 		{
    337 		  continue;
    338 		}
    339 	      if (arc->parent->cg.cyc.num == num)
    340 		{
    341 		  cyc->cg.self_calls += arc->count;
    342 		}
    343 	      else
    344 		{
    345 		  cyc->ncalls += arc->count;
    346 		}
    347 	    }
    348 	}
    349     }
    350 }
    351 
    352 
    353 /*
    354  * Check if any parent of this child (or outside parents of this
    355  * cycle) have their print flags on and set the print flag of the
    356  * child (cycle) appropriately.  Similarly, deal with propagation
    357  * fractions from parents.
    358  */
    359 static void
    360 inherit_flags (Sym *child)
    361 {
    362   Sym *head, *parent, *member;
    363   Arc *arc;
    364 
    365   head = child->cg.cyc.head;
    366   if (child == head)
    367     {
    368       /* just a regular child, check its parents: */
    369       child->cg.print_flag = FALSE;
    370       child->cg.prop.fract = 0.0;
    371       for (arc = child->cg.parents; arc; arc = arc->next_parent)
    372 	{
    373 	  parent = arc->parent;
    374 	  if (child == parent)
    375 	    {
    376 	      continue;
    377 	    }
    378 	  child->cg.print_flag |= parent->cg.print_flag;
    379 	  /*
    380 	   * If the child was never actually called (e.g., this arc
    381 	   * is static (and all others are, too)) no time propagates
    382 	   * along this arc.
    383 	   */
    384 	  if (child->ncalls != 0)
    385 	    {
    386 	      child->cg.prop.fract += parent->cg.prop.fract
    387 		* (((double) arc->count) / ((double) child->ncalls));
    388 	    }
    389 	}
    390     }
    391   else
    392     {
    393       /*
    394        * Its a member of a cycle, look at all parents from outside
    395        * the cycle.
    396        */
    397       head->cg.print_flag = FALSE;
    398       head->cg.prop.fract = 0.0;
    399       for (member = head->cg.cyc.next; member; member = member->cg.cyc.next)
    400 	{
    401 	  for (arc = member->cg.parents; arc; arc = arc->next_parent)
    402 	    {
    403 	      if (arc->parent->cg.cyc.head == head)
    404 		{
    405 		  continue;
    406 		}
    407 	      parent = arc->parent;
    408 	      head->cg.print_flag |= parent->cg.print_flag;
    409 	      /*
    410 	       * If the cycle was never actually called (e.g. this
    411 	       * arc is static (and all others are, too)) no time
    412 	       * propagates along this arc.
    413 	       */
    414 	      if (head->ncalls != 0)
    415 		{
    416 		  head->cg.prop.fract += parent->cg.prop.fract
    417 		    * (((double) arc->count) / ((double) head->ncalls));
    418 		}
    419 	    }
    420 	}
    421       for (member = head; member; member = member->cg.cyc.next)
    422 	{
    423 	  member->cg.print_flag = head->cg.print_flag;
    424 	  member->cg.prop.fract = head->cg.prop.fract;
    425 	}
    426     }
    427 }
    428 
    429 
    430 /*
    431  * In one top-to-bottom pass over the topologically sorted symbols
    432  * propagate:
    433  *      cg.print_flag as the union of parents' print_flags
    434  *      propfraction as the sum of fractional parents' propfractions
    435  * and while we're here, sum time for functions.
    436  */
    437 static void
    438 propagate_flags (Sym **symbols)
    439 {
    440   int sym_index;
    441   Sym *old_head, *child;
    442 
    443   old_head = 0;
    444   for (sym_index = symtab.len - 1; sym_index >= 0; --sym_index)
    445     {
    446       child = symbols[sym_index];
    447       /*
    448        * If we haven't done this function or cycle, inherit things
    449        * from parent.  This way, we are linear in the number of arcs
    450        * since we do all members of a cycle (and the cycle itself)
    451        * as we hit the first member of the cycle.
    452        */
    453       if (child->cg.cyc.head != old_head)
    454 	{
    455 	  old_head = child->cg.cyc.head;
    456 	  inherit_flags (child);
    457 	}
    458       DBG (PROPDEBUG,
    459 	   printf ("[prop_flags] ");
    460 	   print_name (child);
    461 	   printf ("inherits print-flag %d and prop-fract %f\n",
    462 		   child->cg.print_flag, child->cg.prop.fract));
    463       if (!child->cg.print_flag)
    464 	{
    465 	  /*
    466 	   * Printflag is off. It gets turned on by being in the
    467 	   * INCL_GRAPH table, or there being an empty INCL_GRAPH
    468 	   * table and not being in the EXCL_GRAPH table.
    469 	   */
    470 	  if (sym_lookup (&syms[INCL_GRAPH], child->addr)
    471 	      || (syms[INCL_GRAPH].len == 0
    472 		  && !sym_lookup (&syms[EXCL_GRAPH], child->addr)))
    473 	    {
    474 	      child->cg.print_flag = TRUE;
    475 	    }
    476 	}
    477       else
    478 	{
    479 	  /*
    480 	   * This function has printing parents: maybe someone wants
    481 	   * to shut it up by putting it in the EXCL_GRAPH table.
    482 	   * (But favor INCL_GRAPH over EXCL_GRAPH.)
    483 	   */
    484 	  if (!sym_lookup (&syms[INCL_GRAPH], child->addr)
    485 	      && sym_lookup (&syms[EXCL_GRAPH], child->addr))
    486 	    {
    487 	      child->cg.print_flag = FALSE;
    488 	    }
    489 	}
    490       if (child->cg.prop.fract == 0.0)
    491 	{
    492 	  /*
    493 	   * No parents to pass time to.  Collect time from children
    494 	   * if its in the INCL_TIME table, or there is an empty
    495 	   * INCL_TIME table and its not in the EXCL_TIME table.
    496 	   */
    497 	  if (sym_lookup (&syms[INCL_TIME], child->addr)
    498 	      || (syms[INCL_TIME].len == 0
    499 		  && !sym_lookup (&syms[EXCL_TIME], child->addr)))
    500 	    {
    501 	      child->cg.prop.fract = 1.0;
    502 	    }
    503 	}
    504       else
    505 	{
    506 	  /*
    507 	   * It has parents to pass time to, but maybe someone wants
    508 	   * to shut it up by puttting it in the EXCL_TIME table.
    509 	   * (But favor being in INCL_TIME tabe over being in
    510 	   * EXCL_TIME table.)
    511 	   */
    512 	  if (!sym_lookup (&syms[INCL_TIME], child->addr)
    513 	      && sym_lookup (&syms[EXCL_TIME], child->addr))
    514 	    {
    515 	      child->cg.prop.fract = 0.0;
    516 	    }
    517 	}
    518       child->cg.prop.self = child->hist.time * child->cg.prop.fract;
    519       print_time += child->cg.prop.self;
    520       DBG (PROPDEBUG,
    521 	   printf ("[prop_flags] ");
    522 	   print_name (child);
    523 	   printf (" ends up with printflag %d and prop-fract %f\n",
    524 		   child->cg.print_flag, child->cg.prop.fract);
    525 	   printf ("[prop_flags] time %f propself %f print_time %f\n",
    526 		   child->hist.time, child->cg.prop.self, print_time));
    527     }
    528 }
    529 
    530 
    531 /*
    532  * Compare by decreasing propagated time.  If times are equal, but one
    533  * is a cycle header, say that's first (e.g. less, i.e. -1).  If one's
    534  * name doesn't have an underscore and the other does, say that one is
    535  * first.  All else being equal, compare by names.
    536  */
    537 static int
    538 cmp_total (const PTR lp, const PTR rp)
    539 {
    540   const Sym *left = *(const Sym **) lp;
    541   const Sym *right = *(const Sym **) rp;
    542   double diff;
    543 
    544   diff = (left->cg.prop.self + left->cg.prop.child)
    545     - (right->cg.prop.self + right->cg.prop.child);
    546   if (diff < 0.0)
    547     {
    548       return 1;
    549     }
    550   if (diff > 0.0)
    551     {
    552       return -1;
    553     }
    554   if (!left->name && left->cg.cyc.num != 0)
    555     {
    556       return -1;
    557     }
    558   if (!right->name && right->cg.cyc.num != 0)
    559     {
    560       return 1;
    561     }
    562   if (!left->name)
    563     {
    564       return -1;
    565     }
    566   if (!right->name)
    567     {
    568       return 1;
    569     }
    570   if (left->name[0] != '_' && right->name[0] == '_')
    571     {
    572       return -1;
    573     }
    574   if (left->name[0] == '_' && right->name[0] != '_')
    575     {
    576       return 1;
    577     }
    578   if (left->ncalls > right->ncalls)
    579     {
    580       return -1;
    581     }
    582   if (left->ncalls < right->ncalls)
    583     {
    584       return 1;
    585     }
    586   return strcmp (left->name, right->name);
    587 }
    588 
    589 
    590 /* Topologically sort the graph (collapsing cycles), and propagates
    591    time bottom up and flags top down.  */
    592 
    593 Sym **
    594 cg_assemble (void)
    595 {
    596   Sym *parent, **time_sorted_syms, **top_sorted_syms;
    597   unsigned int sym_index;
    598   Arc *arc;
    599 
    600   /* Initialize various things:
    601        Zero out child times.
    602        Count self-recursive calls.
    603        Indicate that nothing is on cycles.  */
    604   for (parent = symtab.base; parent < symtab.limit; parent++)
    605     {
    606       parent->cg.child_time = 0.0;
    607       arc = arc_lookup (parent, parent);
    608       if (arc && parent == arc->child)
    609 	{
    610 	  parent->ncalls -= arc->count;
    611 	  parent->cg.self_calls = arc->count;
    612 	}
    613       else
    614 	{
    615 	  parent->cg.self_calls = 0;
    616 	}
    617       parent->cg.prop.fract = 0.0;
    618       parent->cg.prop.self = 0.0;
    619       parent->cg.prop.child = 0.0;
    620       parent->cg.print_flag = FALSE;
    621       parent->cg.top_order = DFN_NAN;
    622       parent->cg.cyc.num = 0;
    623       parent->cg.cyc.head = parent;
    624       parent->cg.cyc.next = 0;
    625       if (ignore_direct_calls)
    626 	find_call (parent, parent->addr, (parent + 1)->addr);
    627     }
    628 
    629   /* Topologically order things.  If any node is unnumbered, number
    630      it and any of its descendents.  */
    631   for (parent = symtab.base; parent < symtab.limit; parent++)
    632     {
    633       if (parent->cg.top_order == DFN_NAN)
    634 	cg_dfn (parent);
    635     }
    636 
    637   /* Link together nodes on the same cycle.  */
    638   cycle_link ();
    639 
    640   /* Sort the symbol table in reverse topological order.  */
    641   top_sorted_syms = (Sym **) xmalloc (symtab.len * sizeof (Sym *));
    642   for (sym_index = 0; sym_index < symtab.len; ++sym_index)
    643     top_sorted_syms[sym_index] = &symtab.base[sym_index];
    644 
    645   qsort (top_sorted_syms, symtab.len, sizeof (Sym *), cmp_topo);
    646   DBG (DFNDEBUG,
    647        printf ("[cg_assemble] topological sort listing\n");
    648        for (sym_index = 0; sym_index < symtab.len; ++sym_index)
    649 	 {
    650 	   printf ("[cg_assemble] ");
    651 	   printf ("%d:", top_sorted_syms[sym_index]->cg.top_order);
    652 	   print_name (top_sorted_syms[sym_index]);
    653 	   printf ("\n");
    654 	 }
    655   );
    656 
    657   /* Starting from the topological top, propagate print flags to
    658      children.  also, calculate propagation fractions.  this happens
    659      before time propagation since time propagation uses the
    660      fractions.  */
    661   propagate_flags (top_sorted_syms);
    662 
    663   /* Starting from the topological bottom, propogate children times
    664      up to parents.  */
    665   cycle_time ();
    666   for (sym_index = 0; sym_index < symtab.len; ++sym_index)
    667     propagate_time (top_sorted_syms[sym_index]);
    668 
    669   free (top_sorted_syms);
    670 
    671   /* Now, sort by CG.PROP.SELF + CG.PROP.CHILD.  Sorting both the regular
    672      function names and cycle headers.  */
    673   time_sorted_syms = (Sym **) xmalloc ((symtab.len + num_cycles) * sizeof (Sym *));
    674   for (sym_index = 0; sym_index < symtab.len; sym_index++)
    675     time_sorted_syms[sym_index] = &symtab.base[sym_index];
    676 
    677   for (sym_index = 1; sym_index <= num_cycles; sym_index++)
    678     time_sorted_syms[symtab.len + sym_index - 1] = &cycle_header[sym_index];
    679 
    680   qsort (time_sorted_syms, symtab.len + num_cycles, sizeof (Sym *),
    681 	 cmp_total);
    682 
    683   for (sym_index = 0; sym_index < symtab.len + num_cycles; sym_index++)
    684     time_sorted_syms[sym_index]->cg.index = sym_index + 1;
    685 
    686   return time_sorted_syms;
    687 }
    688