1 //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines RangeConstraintManager, a class that tracks simple 11 // equality and inequality constraints on symbolic values of ProgramState. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "SimpleConstraintManager.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 18 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 19 #include "llvm/ADT/FoldingSet.h" 20 #include "llvm/ADT/ImmutableSet.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 24 using namespace clang; 25 using namespace ento; 26 27 /// A Range represents the closed range [from, to]. The caller must 28 /// guarantee that from <= to. Note that Range is immutable, so as not 29 /// to subvert RangeSet's immutability. 30 namespace { 31 class Range : public std::pair<const llvm::APSInt*, 32 const llvm::APSInt*> { 33 public: 34 Range(const llvm::APSInt &from, const llvm::APSInt &to) 35 : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) { 36 assert(from <= to); 37 } 38 bool Includes(const llvm::APSInt &v) const { 39 return *first <= v && v <= *second; 40 } 41 const llvm::APSInt &From() const { 42 return *first; 43 } 44 const llvm::APSInt &To() const { 45 return *second; 46 } 47 const llvm::APSInt *getConcreteValue() const { 48 return &From() == &To() ? &From() : nullptr; 49 } 50 51 void Profile(llvm::FoldingSetNodeID &ID) const { 52 ID.AddPointer(&From()); 53 ID.AddPointer(&To()); 54 } 55 }; 56 57 58 class RangeTrait : public llvm::ImutContainerInfo<Range> { 59 public: 60 // When comparing if one Range is less than another, we should compare 61 // the actual APSInt values instead of their pointers. This keeps the order 62 // consistent (instead of comparing by pointer values) and can potentially 63 // be used to speed up some of the operations in RangeSet. 64 static inline bool isLess(key_type_ref lhs, key_type_ref rhs) { 65 return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) && 66 *lhs.second < *rhs.second); 67 } 68 }; 69 70 /// RangeSet contains a set of ranges. If the set is empty, then 71 /// there the value of a symbol is overly constrained and there are no 72 /// possible values for that symbol. 73 class RangeSet { 74 typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet; 75 PrimRangeSet ranges; // no need to make const, since it is an 76 // ImmutableSet - this allows default operator= 77 // to work. 78 public: 79 typedef PrimRangeSet::Factory Factory; 80 typedef PrimRangeSet::iterator iterator; 81 82 RangeSet(PrimRangeSet RS) : ranges(RS) {} 83 84 /// Create a new set with all ranges of this set and RS. 85 /// Possible intersections are not checked here. 86 RangeSet addRange(Factory &F, const RangeSet &RS) { 87 PrimRangeSet Ranges(RS.ranges); 88 for (const auto &range : ranges) 89 Ranges = F.add(Ranges, range); 90 return RangeSet(Ranges); 91 } 92 93 iterator begin() const { return ranges.begin(); } 94 iterator end() const { return ranges.end(); } 95 96 bool isEmpty() const { return ranges.isEmpty(); } 97 98 /// Construct a new RangeSet representing '{ [from, to] }'. 99 RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to) 100 : ranges(F.add(F.getEmptySet(), Range(from, to))) {} 101 102 /// Profile - Generates a hash profile of this RangeSet for use 103 /// by FoldingSet. 104 void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); } 105 106 /// getConcreteValue - If a symbol is contrained to equal a specific integer 107 /// constant then this method returns that value. Otherwise, it returns 108 /// NULL. 109 const llvm::APSInt* getConcreteValue() const { 110 return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : nullptr; 111 } 112 113 private: 114 void IntersectInRange(BasicValueFactory &BV, Factory &F, 115 const llvm::APSInt &Lower, 116 const llvm::APSInt &Upper, 117 PrimRangeSet &newRanges, 118 PrimRangeSet::iterator &i, 119 PrimRangeSet::iterator &e) const { 120 // There are six cases for each range R in the set: 121 // 1. R is entirely before the intersection range. 122 // 2. R is entirely after the intersection range. 123 // 3. R contains the entire intersection range. 124 // 4. R starts before the intersection range and ends in the middle. 125 // 5. R starts in the middle of the intersection range and ends after it. 126 // 6. R is entirely contained in the intersection range. 127 // These correspond to each of the conditions below. 128 for (/* i = begin(), e = end() */; i != e; ++i) { 129 if (i->To() < Lower) { 130 continue; 131 } 132 if (i->From() > Upper) { 133 break; 134 } 135 136 if (i->Includes(Lower)) { 137 if (i->Includes(Upper)) { 138 newRanges = F.add(newRanges, Range(BV.getValue(Lower), 139 BV.getValue(Upper))); 140 break; 141 } else 142 newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To())); 143 } else { 144 if (i->Includes(Upper)) { 145 newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper))); 146 break; 147 } else 148 newRanges = F.add(newRanges, *i); 149 } 150 } 151 } 152 153 const llvm::APSInt &getMinValue() const { 154 assert(!isEmpty()); 155 return ranges.begin()->From(); 156 } 157 158 bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const { 159 // This function has nine cases, the cartesian product of range-testing 160 // both the upper and lower bounds against the symbol's type. 161 // Each case requires a different pinning operation. 162 // The function returns false if the described range is entirely outside 163 // the range of values for the associated symbol. 164 APSIntType Type(getMinValue()); 165 APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true); 166 APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true); 167 168 switch (LowerTest) { 169 case APSIntType::RTR_Below: 170 switch (UpperTest) { 171 case APSIntType::RTR_Below: 172 // The entire range is outside the symbol's set of possible values. 173 // If this is a conventionally-ordered range, the state is infeasible. 174 if (Lower <= Upper) 175 return false; 176 177 // However, if the range wraps around, it spans all possible values. 178 Lower = Type.getMinValue(); 179 Upper = Type.getMaxValue(); 180 break; 181 case APSIntType::RTR_Within: 182 // The range starts below what's possible but ends within it. Pin. 183 Lower = Type.getMinValue(); 184 Type.apply(Upper); 185 break; 186 case APSIntType::RTR_Above: 187 // The range spans all possible values for the symbol. Pin. 188 Lower = Type.getMinValue(); 189 Upper = Type.getMaxValue(); 190 break; 191 } 192 break; 193 case APSIntType::RTR_Within: 194 switch (UpperTest) { 195 case APSIntType::RTR_Below: 196 // The range wraps around, but all lower values are not possible. 197 Type.apply(Lower); 198 Upper = Type.getMaxValue(); 199 break; 200 case APSIntType::RTR_Within: 201 // The range may or may not wrap around, but both limits are valid. 202 Type.apply(Lower); 203 Type.apply(Upper); 204 break; 205 case APSIntType::RTR_Above: 206 // The range starts within what's possible but ends above it. Pin. 207 Type.apply(Lower); 208 Upper = Type.getMaxValue(); 209 break; 210 } 211 break; 212 case APSIntType::RTR_Above: 213 switch (UpperTest) { 214 case APSIntType::RTR_Below: 215 // The range wraps but is outside the symbol's set of possible values. 216 return false; 217 case APSIntType::RTR_Within: 218 // The range starts above what's possible but ends within it (wrap). 219 Lower = Type.getMinValue(); 220 Type.apply(Upper); 221 break; 222 case APSIntType::RTR_Above: 223 // The entire range is outside the symbol's set of possible values. 224 // If this is a conventionally-ordered range, the state is infeasible. 225 if (Lower <= Upper) 226 return false; 227 228 // However, if the range wraps around, it spans all possible values. 229 Lower = Type.getMinValue(); 230 Upper = Type.getMaxValue(); 231 break; 232 } 233 break; 234 } 235 236 return true; 237 } 238 239 public: 240 // Returns a set containing the values in the receiving set, intersected with 241 // the closed range [Lower, Upper]. Unlike the Range type, this range uses 242 // modular arithmetic, corresponding to the common treatment of C integer 243 // overflow. Thus, if the Lower bound is greater than the Upper bound, the 244 // range is taken to wrap around. This is equivalent to taking the 245 // intersection with the two ranges [Min, Upper] and [Lower, Max], 246 // or, alternatively, /removing/ all integers between Upper and Lower. 247 RangeSet Intersect(BasicValueFactory &BV, Factory &F, 248 llvm::APSInt Lower, llvm::APSInt Upper) const { 249 if (!pin(Lower, Upper)) 250 return F.getEmptySet(); 251 252 PrimRangeSet newRanges = F.getEmptySet(); 253 254 PrimRangeSet::iterator i = begin(), e = end(); 255 if (Lower <= Upper) 256 IntersectInRange(BV, F, Lower, Upper, newRanges, i, e); 257 else { 258 // The order of the next two statements is important! 259 // IntersectInRange() does not reset the iteration state for i and e. 260 // Therefore, the lower range most be handled first. 261 IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e); 262 IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e); 263 } 264 265 return newRanges; 266 } 267 268 void print(raw_ostream &os) const { 269 bool isFirst = true; 270 os << "{ "; 271 for (iterator i = begin(), e = end(); i != e; ++i) { 272 if (isFirst) 273 isFirst = false; 274 else 275 os << ", "; 276 277 os << '[' << i->From().toString(10) << ", " << i->To().toString(10) 278 << ']'; 279 } 280 os << " }"; 281 } 282 283 bool operator==(const RangeSet &other) const { 284 return ranges == other.ranges; 285 } 286 }; 287 } // end anonymous namespace 288 289 REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange, 290 CLANG_ENTO_PROGRAMSTATE_MAP(SymbolRef, 291 RangeSet)) 292 293 namespace { 294 class RangeConstraintManager : public SimpleConstraintManager{ 295 RangeSet GetRange(ProgramStateRef state, SymbolRef sym); 296 public: 297 RangeConstraintManager(SubEngine *subengine, SValBuilder &SVB) 298 : SimpleConstraintManager(subengine, SVB) {} 299 300 ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym, 301 const llvm::APSInt& Int, 302 const llvm::APSInt& Adjustment) override; 303 304 ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym, 305 const llvm::APSInt& Int, 306 const llvm::APSInt& Adjustment) override; 307 308 ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym, 309 const llvm::APSInt& Int, 310 const llvm::APSInt& Adjustment) override; 311 312 ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym, 313 const llvm::APSInt& Int, 314 const llvm::APSInt& Adjustment) override; 315 316 ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym, 317 const llvm::APSInt& Int, 318 const llvm::APSInt& Adjustment) override; 319 320 ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym, 321 const llvm::APSInt& Int, 322 const llvm::APSInt& Adjustment) override; 323 324 ProgramStateRef assumeSymbolWithinInclusiveRange( 325 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 326 const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; 327 328 ProgramStateRef assumeSymbolOutOfInclusiveRange( 329 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 330 const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; 331 332 const llvm::APSInt* getSymVal(ProgramStateRef St, 333 SymbolRef sym) const override; 334 ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override; 335 336 ProgramStateRef removeDeadBindings(ProgramStateRef St, 337 SymbolReaper& SymReaper) override; 338 339 void print(ProgramStateRef St, raw_ostream &Out, 340 const char* nl, const char *sep) override; 341 342 private: 343 RangeSet::Factory F; 344 RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym, 345 const llvm::APSInt &Int, 346 const llvm::APSInt &Adjustment); 347 RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym, 348 const llvm::APSInt &Int, 349 const llvm::APSInt &Adjustment); 350 RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym, 351 const llvm::APSInt &Int, 352 const llvm::APSInt &Adjustment); 353 RangeSet getSymLERange(const RangeSet &RS, const llvm::APSInt &Int, 354 const llvm::APSInt &Adjustment); 355 RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym, 356 const llvm::APSInt &Int, 357 const llvm::APSInt &Adjustment); 358 }; 359 360 } // end anonymous namespace 361 362 std::unique_ptr<ConstraintManager> 363 ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) { 364 return llvm::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder()); 365 } 366 367 const llvm::APSInt* RangeConstraintManager::getSymVal(ProgramStateRef St, 368 SymbolRef sym) const { 369 const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym); 370 return T ? T->getConcreteValue() : nullptr; 371 } 372 373 ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State, 374 SymbolRef Sym) { 375 const RangeSet *Ranges = State->get<ConstraintRange>(Sym); 376 377 // If we don't have any information about this symbol, it's underconstrained. 378 if (!Ranges) 379 return ConditionTruthVal(); 380 381 // If we have a concrete value, see if it's zero. 382 if (const llvm::APSInt *Value = Ranges->getConcreteValue()) 383 return *Value == 0; 384 385 BasicValueFactory &BV = getBasicVals(); 386 APSIntType IntType = BV.getAPSIntType(Sym->getType()); 387 llvm::APSInt Zero = IntType.getZeroValue(); 388 389 // Check if zero is in the set of possible values. 390 if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty()) 391 return false; 392 393 // Zero is a possible value, but it is not the /only/ possible value. 394 return ConditionTruthVal(); 395 } 396 397 /// Scan all symbols referenced by the constraints. If the symbol is not alive 398 /// as marked in LSymbols, mark it as dead in DSymbols. 399 ProgramStateRef 400 RangeConstraintManager::removeDeadBindings(ProgramStateRef state, 401 SymbolReaper& SymReaper) { 402 403 ConstraintRangeTy CR = state->get<ConstraintRange>(); 404 ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>(); 405 406 for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) { 407 SymbolRef sym = I.getKey(); 408 if (SymReaper.maybeDead(sym)) 409 CR = CRFactory.remove(CR, sym); 410 } 411 412 return state->set<ConstraintRange>(CR); 413 } 414 415 RangeSet 416 RangeConstraintManager::GetRange(ProgramStateRef state, SymbolRef sym) { 417 if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym)) 418 return *V; 419 420 // Lazily generate a new RangeSet representing all possible values for the 421 // given symbol type. 422 BasicValueFactory &BV = getBasicVals(); 423 QualType T = sym->getType(); 424 425 RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T)); 426 427 // Special case: references are known to be non-zero. 428 if (T->isReferenceType()) { 429 APSIntType IntType = BV.getAPSIntType(T); 430 Result = Result.Intersect(BV, F, ++IntType.getZeroValue(), 431 --IntType.getZeroValue()); 432 } 433 434 return Result; 435 } 436 437 //===------------------------------------------------------------------------=== 438 // assumeSymX methods: public interface for RangeConstraintManager. 439 //===------------------------------------------------------------------------===/ 440 441 // The syntax for ranges below is mathematical, using [x, y] for closed ranges 442 // and (x, y) for open ranges. These ranges are modular, corresponding with 443 // a common treatment of C integer overflow. This means that these methods 444 // do not have to worry about overflow; RangeSet::Intersect can handle such a 445 // "wraparound" range. 446 // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1, 447 // UINT_MAX, 0, 1, and 2. 448 449 ProgramStateRef 450 RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym, 451 const llvm::APSInt &Int, 452 const llvm::APSInt &Adjustment) { 453 // Before we do any real work, see if the value can even show up. 454 APSIntType AdjustmentType(Adjustment); 455 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) 456 return St; 457 458 llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment; 459 llvm::APSInt Upper = Lower; 460 --Lower; 461 ++Upper; 462 463 // [Int-Adjustment+1, Int-Adjustment-1] 464 // Notice that the lower bound is greater than the upper bound. 465 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower); 466 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 467 } 468 469 ProgramStateRef 470 RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym, 471 const llvm::APSInt &Int, 472 const llvm::APSInt &Adjustment) { 473 // Before we do any real work, see if the value can even show up. 474 APSIntType AdjustmentType(Adjustment); 475 if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) 476 return nullptr; 477 478 // [Int-Adjustment, Int-Adjustment] 479 llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment; 480 RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt); 481 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 482 } 483 484 RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St, 485 SymbolRef Sym, 486 const llvm::APSInt &Int, 487 const llvm::APSInt &Adjustment) { 488 // Before we do any real work, see if the value can even show up. 489 APSIntType AdjustmentType(Adjustment); 490 switch (AdjustmentType.testInRange(Int, true)) { 491 case APSIntType::RTR_Below: 492 return F.getEmptySet(); 493 case APSIntType::RTR_Within: 494 break; 495 case APSIntType::RTR_Above: 496 return GetRange(St, Sym); 497 } 498 499 // Special case for Int == Min. This is always false. 500 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 501 llvm::APSInt Min = AdjustmentType.getMinValue(); 502 if (ComparisonVal == Min) 503 return F.getEmptySet(); 504 505 llvm::APSInt Lower = Min - Adjustment; 506 llvm::APSInt Upper = ComparisonVal - Adjustment; 507 --Upper; 508 509 return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper); 510 } 511 512 ProgramStateRef 513 RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym, 514 const llvm::APSInt &Int, 515 const llvm::APSInt &Adjustment) { 516 RangeSet New = getSymLTRange(St, Sym, Int, Adjustment); 517 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 518 } 519 520 RangeSet 521 RangeConstraintManager::getSymGTRange(ProgramStateRef St, SymbolRef Sym, 522 const llvm::APSInt &Int, 523 const llvm::APSInt &Adjustment) { 524 // Before we do any real work, see if the value can even show up. 525 APSIntType AdjustmentType(Adjustment); 526 switch (AdjustmentType.testInRange(Int, true)) { 527 case APSIntType::RTR_Below: 528 return GetRange(St, Sym); 529 case APSIntType::RTR_Within: 530 break; 531 case APSIntType::RTR_Above: 532 return F.getEmptySet(); 533 } 534 535 // Special case for Int == Max. This is always false. 536 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 537 llvm::APSInt Max = AdjustmentType.getMaxValue(); 538 if (ComparisonVal == Max) 539 return F.getEmptySet(); 540 541 llvm::APSInt Lower = ComparisonVal - Adjustment; 542 llvm::APSInt Upper = Max - Adjustment; 543 ++Lower; 544 545 return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper); 546 } 547 548 ProgramStateRef 549 RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym, 550 const llvm::APSInt &Int, 551 const llvm::APSInt &Adjustment) { 552 RangeSet New = getSymGTRange(St, Sym, Int, Adjustment); 553 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 554 } 555 556 RangeSet 557 RangeConstraintManager::getSymGERange(ProgramStateRef St, SymbolRef Sym, 558 const llvm::APSInt &Int, 559 const llvm::APSInt &Adjustment) { 560 // Before we do any real work, see if the value can even show up. 561 APSIntType AdjustmentType(Adjustment); 562 switch (AdjustmentType.testInRange(Int, true)) { 563 case APSIntType::RTR_Below: 564 return GetRange(St, Sym); 565 case APSIntType::RTR_Within: 566 break; 567 case APSIntType::RTR_Above: 568 return F.getEmptySet(); 569 } 570 571 // Special case for Int == Min. This is always feasible. 572 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 573 llvm::APSInt Min = AdjustmentType.getMinValue(); 574 if (ComparisonVal == Min) 575 return GetRange(St, Sym); 576 577 llvm::APSInt Max = AdjustmentType.getMaxValue(); 578 llvm::APSInt Lower = ComparisonVal - Adjustment; 579 llvm::APSInt Upper = Max - Adjustment; 580 581 return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper); 582 } 583 584 ProgramStateRef 585 RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym, 586 const llvm::APSInt &Int, 587 const llvm::APSInt &Adjustment) { 588 RangeSet New = getSymGERange(St, Sym, Int, Adjustment); 589 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 590 } 591 592 RangeSet 593 RangeConstraintManager::getSymLERange(const RangeSet &RS, 594 const llvm::APSInt &Int, 595 const llvm::APSInt &Adjustment) { 596 // Before we do any real work, see if the value can even show up. 597 APSIntType AdjustmentType(Adjustment); 598 switch (AdjustmentType.testInRange(Int, true)) { 599 case APSIntType::RTR_Below: 600 return F.getEmptySet(); 601 case APSIntType::RTR_Within: 602 break; 603 case APSIntType::RTR_Above: 604 return RS; 605 } 606 607 // Special case for Int == Max. This is always feasible. 608 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 609 llvm::APSInt Max = AdjustmentType.getMaxValue(); 610 if (ComparisonVal == Max) 611 return RS; 612 613 llvm::APSInt Min = AdjustmentType.getMinValue(); 614 llvm::APSInt Lower = Min - Adjustment; 615 llvm::APSInt Upper = ComparisonVal - Adjustment; 616 617 return RS.Intersect(getBasicVals(), F, Lower, Upper); 618 } 619 620 RangeSet 621 RangeConstraintManager::getSymLERange(ProgramStateRef St, SymbolRef Sym, 622 const llvm::APSInt &Int, 623 const llvm::APSInt &Adjustment) { 624 // Before we do any real work, see if the value can even show up. 625 APSIntType AdjustmentType(Adjustment); 626 switch (AdjustmentType.testInRange(Int, true)) { 627 case APSIntType::RTR_Below: 628 return F.getEmptySet(); 629 case APSIntType::RTR_Within: 630 break; 631 case APSIntType::RTR_Above: 632 return GetRange(St, Sym); 633 } 634 635 // Special case for Int == Max. This is always feasible. 636 llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); 637 llvm::APSInt Max = AdjustmentType.getMaxValue(); 638 if (ComparisonVal == Max) 639 return GetRange(St, Sym); 640 641 llvm::APSInt Min = AdjustmentType.getMinValue(); 642 llvm::APSInt Lower = Min - Adjustment; 643 llvm::APSInt Upper = ComparisonVal - Adjustment; 644 645 return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper); 646 } 647 648 ProgramStateRef 649 RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym, 650 const llvm::APSInt &Int, 651 const llvm::APSInt &Adjustment) { 652 RangeSet New = getSymLERange(St, Sym, Int, Adjustment); 653 return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New); 654 } 655 656 ProgramStateRef 657 RangeConstraintManager::assumeSymbolWithinInclusiveRange( 658 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 659 const llvm::APSInt &To, const llvm::APSInt &Adjustment) { 660 RangeSet New = getSymGERange(State, Sym, From, Adjustment); 661 if (New.isEmpty()) 662 return nullptr; 663 New = getSymLERange(New, To, Adjustment); 664 return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New); 665 } 666 667 ProgramStateRef 668 RangeConstraintManager::assumeSymbolOutOfInclusiveRange( 669 ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, 670 const llvm::APSInt &To, const llvm::APSInt &Adjustment) { 671 RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment); 672 RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment); 673 RangeSet New(RangeLT.addRange(F, RangeGT)); 674 return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New); 675 } 676 677 //===------------------------------------------------------------------------=== 678 // Pretty-printing. 679 //===------------------------------------------------------------------------===/ 680 681 void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out, 682 const char* nl, const char *sep) { 683 684 ConstraintRangeTy Ranges = St->get<ConstraintRange>(); 685 686 if (Ranges.isEmpty()) { 687 Out << nl << sep << "Ranges are empty." << nl; 688 return; 689 } 690 691 Out << nl << sep << "Ranges of symbol values:"; 692 for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){ 693 Out << nl << ' ' << I.getKey() << " : "; 694 I.getData().print(Out); 695 } 696 Out << nl; 697 } 698