Home | History | Annotate | Download | only in decoder
      1 /*
      2  *  Copyright (c) 2011 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <assert.h>
     12 
     13 #include "error_concealment.h"
     14 #include "onyxd_int.h"
     15 #include "decodemv.h"
     16 #include "vpx_mem/vpx_mem.h"
     17 #include "vp8/common/findnearmv.h"
     18 #include "vp8/common/common.h"
     19 #include "vpx_dsp/vpx_dsp_common.h"
     20 
     21 #define FLOOR(x, q) ((x) & -(1 << (q)))
     22 
     23 #define NUM_NEIGHBORS 20
     24 
     25 typedef struct ec_position {
     26   int row;
     27   int col;
     28 } EC_POS;
     29 
     30 /*
     31  * Regenerate the table in Matlab with:
     32  * x = meshgrid((1:4), (1:4));
     33  * y = meshgrid((1:4), (1:4))';
     34  * W = round((1./(sqrt(x.^2 + y.^2))*2^7));
     35  * W(1,1) = 0;
     36  */
     37 static const int weights_q7[5][5] = { { 0, 128, 64, 43, 32 },
     38                                       { 128, 91, 57, 40, 31 },
     39                                       { 64, 57, 45, 36, 29 },
     40                                       { 43, 40, 36, 30, 26 },
     41                                       { 32, 31, 29, 26, 23 } };
     42 
     43 int vp8_alloc_overlap_lists(VP8D_COMP *pbi) {
     44   if (pbi->overlaps != NULL) {
     45     vpx_free(pbi->overlaps);
     46     pbi->overlaps = NULL;
     47   }
     48 
     49   pbi->overlaps =
     50       vpx_calloc(pbi->common.mb_rows * pbi->common.mb_cols, sizeof(MB_OVERLAP));
     51 
     52   if (pbi->overlaps == NULL) return -1;
     53 
     54   return 0;
     55 }
     56 
     57 void vp8_de_alloc_overlap_lists(VP8D_COMP *pbi) {
     58   vpx_free(pbi->overlaps);
     59   pbi->overlaps = NULL;
     60 }
     61 
     62 /* Inserts a new overlap area value to the list of overlaps of a block */
     63 static void assign_overlap(OVERLAP_NODE *overlaps, union b_mode_info *bmi,
     64                            int overlap) {
     65   int i;
     66   if (overlap <= 0) return;
     67   /* Find and assign to the next empty overlap node in the list of overlaps.
     68    * Empty is defined as bmi == NULL */
     69   for (i = 0; i < MAX_OVERLAPS; ++i) {
     70     if (overlaps[i].bmi == NULL) {
     71       overlaps[i].bmi = bmi;
     72       overlaps[i].overlap = overlap;
     73       break;
     74     }
     75   }
     76 }
     77 
     78 /* Calculates the overlap area between two 4x4 squares, where the first
     79  * square has its upper-left corner at (b1_row, b1_col) and the second
     80  * square has its upper-left corner at (b2_row, b2_col). Doesn't
     81  * properly handle squares which do not overlap.
     82  */
     83 static int block_overlap(int b1_row, int b1_col, int b2_row, int b2_col) {
     84   const int int_top = VPXMAX(b1_row, b2_row);   // top
     85   const int int_left = VPXMAX(b1_col, b2_col);  // left
     86   /* Since each block is 4x4 pixels, adding 4 (Q3) to the left/top edge
     87    * gives us the right/bottom edge.
     88    */
     89   const int int_right = VPXMIN(b1_col + (4 << 3), b2_col + (4 << 3));  // right
     90   const int int_bottom =
     91       VPXMIN(b1_row + (4 << 3), b2_row + (4 << 3));  // bottom
     92   return (int_bottom - int_top) * (int_right - int_left);
     93 }
     94 
     95 /* Calculates the overlap area for all blocks in a macroblock at position
     96  * (mb_row, mb_col) in macroblocks, which are being overlapped by a given
     97  * overlapping block at position (new_row, new_col) (in pixels, Q3). The
     98  * first block being overlapped in the macroblock has position (first_blk_row,
     99  * first_blk_col) in blocks relative the upper-left corner of the image.
    100  */
    101 static void calculate_overlaps_mb(B_OVERLAP *b_overlaps, union b_mode_info *bmi,
    102                                   int new_row, int new_col, int mb_row,
    103                                   int mb_col, int first_blk_row,
    104                                   int first_blk_col) {
    105   /* Find the blocks within this MB (defined by mb_row, mb_col) which are
    106    * overlapped by bmi and calculate and assign overlap for each of those
    107    * blocks. */
    108 
    109   /* Block coordinates relative the upper-left block */
    110   const int rel_ol_blk_row = first_blk_row - mb_row * 4;
    111   const int rel_ol_blk_col = first_blk_col - mb_col * 4;
    112   /* If the block partly overlaps any previous MB, these coordinates
    113    * can be < 0. We don't want to access blocks in previous MBs.
    114    */
    115   const int blk_idx = VPXMAX(rel_ol_blk_row, 0) * 4 + VPXMAX(rel_ol_blk_col, 0);
    116   /* Upper left overlapping block */
    117   B_OVERLAP *b_ol_ul = &(b_overlaps[blk_idx]);
    118 
    119   /* Calculate and assign overlaps for all blocks in this MB
    120    * which the motion compensated block overlaps
    121    */
    122   /* Avoid calculating overlaps for blocks in later MBs */
    123   int end_row = VPXMIN(4 + mb_row * 4 - first_blk_row, 2);
    124   int end_col = VPXMIN(4 + mb_col * 4 - first_blk_col, 2);
    125   int row, col;
    126 
    127   /* Check if new_row and new_col are evenly divisible by 4 (Q3),
    128    * and if so we shouldn't check neighboring blocks
    129    */
    130   if (new_row >= 0 && (new_row & 0x1F) == 0) end_row = 1;
    131   if (new_col >= 0 && (new_col & 0x1F) == 0) end_col = 1;
    132 
    133   /* Check if the overlapping block partly overlaps a previous MB
    134    * and if so, we're overlapping fewer blocks in this MB.
    135    */
    136   if (new_row < (mb_row * 16) << 3) end_row = 1;
    137   if (new_col < (mb_col * 16) << 3) end_col = 1;
    138 
    139   for (row = 0; row < end_row; ++row) {
    140     for (col = 0; col < end_col; ++col) {
    141       /* input in Q3, result in Q6 */
    142       const int overlap =
    143           block_overlap(new_row, new_col, (((first_blk_row + row) * 4) << 3),
    144                         (((first_blk_col + col) * 4) << 3));
    145       assign_overlap(b_ol_ul[row * 4 + col].overlaps, bmi, overlap);
    146     }
    147   }
    148 }
    149 
    150 void vp8_calculate_overlaps(MB_OVERLAP *overlap_ul, int mb_rows, int mb_cols,
    151                             union b_mode_info *bmi, int b_row, int b_col) {
    152   MB_OVERLAP *mb_overlap;
    153   int row, col, rel_row, rel_col;
    154   int new_row, new_col;
    155   int end_row, end_col;
    156   int overlap_b_row, overlap_b_col;
    157   int overlap_mb_row, overlap_mb_col;
    158 
    159   /* mb subpixel position */
    160   row = (4 * b_row) << 3; /* Q3 */
    161   col = (4 * b_col) << 3; /* Q3 */
    162 
    163   /* reverse compensate for motion */
    164   new_row = row - bmi->mv.as_mv.row;
    165   new_col = col - bmi->mv.as_mv.col;
    166 
    167   if (new_row >= ((16 * mb_rows) << 3) || new_col >= ((16 * mb_cols) << 3)) {
    168     /* the new block ended up outside the frame */
    169     return;
    170   }
    171 
    172   if (new_row <= -32 || new_col <= -32) {
    173     /* outside the frame */
    174     return;
    175   }
    176   /* overlapping block's position in blocks */
    177   overlap_b_row = FLOOR(new_row / 4, 3) >> 3;
    178   overlap_b_col = FLOOR(new_col / 4, 3) >> 3;
    179 
    180   /* overlapping block's MB position in MBs
    181    * operations are done in Q3
    182    */
    183   overlap_mb_row = FLOOR((overlap_b_row << 3) / 4, 3) >> 3;
    184   overlap_mb_col = FLOOR((overlap_b_col << 3) / 4, 3) >> 3;
    185 
    186   end_row = VPXMIN(mb_rows - overlap_mb_row, 2);
    187   end_col = VPXMIN(mb_cols - overlap_mb_col, 2);
    188 
    189   /* Don't calculate overlap for MBs we don't overlap */
    190   /* Check if the new block row starts at the last block row of the MB */
    191   if (abs(new_row - ((16 * overlap_mb_row) << 3)) < ((3 * 4) << 3)) end_row = 1;
    192   /* Check if the new block col starts at the last block col of the MB */
    193   if (abs(new_col - ((16 * overlap_mb_col) << 3)) < ((3 * 4) << 3)) end_col = 1;
    194 
    195   /* find the MB(s) this block is overlapping */
    196   for (rel_row = 0; rel_row < end_row; ++rel_row) {
    197     for (rel_col = 0; rel_col < end_col; ++rel_col) {
    198       if (overlap_mb_row + rel_row < 0 || overlap_mb_col + rel_col < 0)
    199         continue;
    200       mb_overlap = overlap_ul + (overlap_mb_row + rel_row) * mb_cols +
    201                    overlap_mb_col + rel_col;
    202 
    203       calculate_overlaps_mb(mb_overlap->overlaps, bmi, new_row, new_col,
    204                             overlap_mb_row + rel_row, overlap_mb_col + rel_col,
    205                             overlap_b_row + rel_row, overlap_b_col + rel_col);
    206     }
    207   }
    208 }
    209 
    210 /* Estimates a motion vector given the overlapping blocks' motion vectors.
    211  * Filters out all overlapping blocks which do not refer to the correct
    212  * reference frame type.
    213  */
    214 static void estimate_mv(const OVERLAP_NODE *overlaps, union b_mode_info *bmi) {
    215   int i;
    216   int overlap_sum = 0;
    217   int row_acc = 0;
    218   int col_acc = 0;
    219 
    220   bmi->mv.as_int = 0;
    221   for (i = 0; i < MAX_OVERLAPS; ++i) {
    222     if (overlaps[i].bmi == NULL) break;
    223     col_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.col;
    224     row_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.row;
    225     overlap_sum += overlaps[i].overlap;
    226   }
    227   if (overlap_sum > 0) {
    228     /* Q9 / Q6 = Q3 */
    229     bmi->mv.as_mv.col = col_acc / overlap_sum;
    230     bmi->mv.as_mv.row = row_acc / overlap_sum;
    231   } else {
    232     bmi->mv.as_mv.col = 0;
    233     bmi->mv.as_mv.row = 0;
    234   }
    235 }
    236 
    237 /* Estimates all motion vectors for a macroblock given the lists of
    238  * overlaps for each block. Decides whether or not the MVs must be clamped.
    239  */
    240 static void estimate_mb_mvs(const B_OVERLAP *block_overlaps, MODE_INFO *mi,
    241                             int mb_to_left_edge, int mb_to_right_edge,
    242                             int mb_to_top_edge, int mb_to_bottom_edge) {
    243   int row, col;
    244   int non_zero_count = 0;
    245   MV *const filtered_mv = &(mi->mbmi.mv.as_mv);
    246   union b_mode_info *const bmi = mi->bmi;
    247   filtered_mv->col = 0;
    248   filtered_mv->row = 0;
    249   mi->mbmi.need_to_clamp_mvs = 0;
    250   for (row = 0; row < 4; ++row) {
    251     int this_b_to_top_edge = mb_to_top_edge + ((row * 4) << 3);
    252     int this_b_to_bottom_edge = mb_to_bottom_edge - ((row * 4) << 3);
    253     for (col = 0; col < 4; ++col) {
    254       int i = row * 4 + col;
    255       int this_b_to_left_edge = mb_to_left_edge + ((col * 4) << 3);
    256       int this_b_to_right_edge = mb_to_right_edge - ((col * 4) << 3);
    257       /* Estimate vectors for all blocks which are overlapped by this */
    258       /* type. Interpolate/extrapolate the rest of the block's MVs */
    259       estimate_mv(block_overlaps[i].overlaps, &(bmi[i]));
    260       mi->mbmi.need_to_clamp_mvs |= vp8_check_mv_bounds(
    261           &bmi[i].mv, this_b_to_left_edge, this_b_to_right_edge,
    262           this_b_to_top_edge, this_b_to_bottom_edge);
    263       if (bmi[i].mv.as_int != 0) {
    264         ++non_zero_count;
    265         filtered_mv->col += bmi[i].mv.as_mv.col;
    266         filtered_mv->row += bmi[i].mv.as_mv.row;
    267       }
    268     }
    269   }
    270   if (non_zero_count > 0) {
    271     filtered_mv->col /= non_zero_count;
    272     filtered_mv->row /= non_zero_count;
    273   }
    274 }
    275 
    276 static void calc_prev_mb_overlaps(MB_OVERLAP *overlaps, MODE_INFO *prev_mi,
    277                                   int mb_row, int mb_col, int mb_rows,
    278                                   int mb_cols) {
    279   int sub_row;
    280   int sub_col;
    281   for (sub_row = 0; sub_row < 4; ++sub_row) {
    282     for (sub_col = 0; sub_col < 4; ++sub_col) {
    283       vp8_calculate_overlaps(overlaps, mb_rows, mb_cols,
    284                              &(prev_mi->bmi[sub_row * 4 + sub_col]),
    285                              4 * mb_row + sub_row, 4 * mb_col + sub_col);
    286     }
    287   }
    288 }
    289 
    290 /* Estimate all missing motion vectors. This function does the same as the one
    291  * above, but has different input arguments. */
    292 static void estimate_missing_mvs(MB_OVERLAP *overlaps, MODE_INFO *mi,
    293                                  MODE_INFO *prev_mi, int mb_rows, int mb_cols,
    294                                  unsigned int first_corrupt) {
    295   int mb_row, mb_col;
    296   memset(overlaps, 0, sizeof(MB_OVERLAP) * mb_rows * mb_cols);
    297   /* First calculate the overlaps for all blocks */
    298   for (mb_row = 0; mb_row < mb_rows; ++mb_row) {
    299     for (mb_col = 0; mb_col < mb_cols; ++mb_col) {
    300       /* We're only able to use blocks referring to the last frame
    301        * when extrapolating new vectors.
    302        */
    303       if (prev_mi->mbmi.ref_frame == LAST_FRAME) {
    304         calc_prev_mb_overlaps(overlaps, prev_mi, mb_row, mb_col, mb_rows,
    305                               mb_cols);
    306       }
    307       ++prev_mi;
    308     }
    309     ++prev_mi;
    310   }
    311 
    312   mb_row = first_corrupt / mb_cols;
    313   mb_col = first_corrupt - mb_row * mb_cols;
    314   mi += mb_row * (mb_cols + 1) + mb_col;
    315   /* Go through all macroblocks in the current image with missing MVs
    316    * and calculate new MVs using the overlaps.
    317    */
    318   for (; mb_row < mb_rows; ++mb_row) {
    319     int mb_to_top_edge = -((mb_row * 16)) << 3;
    320     int mb_to_bottom_edge = ((mb_rows - 1 - mb_row) * 16) << 3;
    321     for (; mb_col < mb_cols; ++mb_col) {
    322       int mb_to_left_edge = -((mb_col * 16) << 3);
    323       int mb_to_right_edge = ((mb_cols - 1 - mb_col) * 16) << 3;
    324       const B_OVERLAP *block_overlaps =
    325           overlaps[mb_row * mb_cols + mb_col].overlaps;
    326       mi->mbmi.ref_frame = LAST_FRAME;
    327       mi->mbmi.mode = SPLITMV;
    328       mi->mbmi.uv_mode = DC_PRED;
    329       mi->mbmi.partitioning = 3;
    330       mi->mbmi.segment_id = 0;
    331       estimate_mb_mvs(block_overlaps, mi, mb_to_left_edge, mb_to_right_edge,
    332                       mb_to_top_edge, mb_to_bottom_edge);
    333       ++mi;
    334     }
    335     mb_col = 0;
    336     ++mi;
    337   }
    338 }
    339 
    340 void vp8_estimate_missing_mvs(VP8D_COMP *pbi) {
    341   VP8_COMMON *const pc = &pbi->common;
    342   estimate_missing_mvs(pbi->overlaps, pc->mi, pc->prev_mi, pc->mb_rows,
    343                        pc->mb_cols, pbi->mvs_corrupt_from_mb);
    344 }
    345 
    346 static void assign_neighbor(EC_BLOCK *neighbor, MODE_INFO *mi, int block_idx) {
    347   assert(mi->mbmi.ref_frame < MAX_REF_FRAMES);
    348   neighbor->ref_frame = mi->mbmi.ref_frame;
    349   neighbor->mv = mi->bmi[block_idx].mv.as_mv;
    350 }
    351 
    352 /* Finds the neighboring blocks of a macroblocks. In the general case
    353  * 20 blocks are found. If a fewer number of blocks are found due to
    354  * image boundaries, those positions in the EC_BLOCK array are left "empty".
    355  * The neighbors are enumerated with the upper-left neighbor as the first
    356  * element, the second element refers to the neighbor to right of the previous
    357  * neighbor, and so on. The last element refers to the neighbor below the first
    358  * neighbor.
    359  */
    360 static void find_neighboring_blocks(MODE_INFO *mi, EC_BLOCK *neighbors,
    361                                     int mb_row, int mb_col, int mb_rows,
    362                                     int mb_cols, int mi_stride) {
    363   int i = 0;
    364   int j;
    365   if (mb_row > 0) {
    366     /* upper left */
    367     if (mb_col > 0) assign_neighbor(&neighbors[i], mi - mi_stride - 1, 15);
    368     ++i;
    369     /* above */
    370     for (j = 12; j < 16; ++j, ++i)
    371       assign_neighbor(&neighbors[i], mi - mi_stride, j);
    372   } else
    373     i += 5;
    374   if (mb_col < mb_cols - 1) {
    375     /* upper right */
    376     if (mb_row > 0) assign_neighbor(&neighbors[i], mi - mi_stride + 1, 12);
    377     ++i;
    378     /* right */
    379     for (j = 0; j <= 12; j += 4, ++i) assign_neighbor(&neighbors[i], mi + 1, j);
    380   } else
    381     i += 5;
    382   if (mb_row < mb_rows - 1) {
    383     /* lower right */
    384     if (mb_col < mb_cols - 1)
    385       assign_neighbor(&neighbors[i], mi + mi_stride + 1, 0);
    386     ++i;
    387     /* below */
    388     for (j = 0; j < 4; ++j, ++i)
    389       assign_neighbor(&neighbors[i], mi + mi_stride, j);
    390   } else
    391     i += 5;
    392   if (mb_col > 0) {
    393     /* lower left */
    394     if (mb_row < mb_rows - 1)
    395       assign_neighbor(&neighbors[i], mi + mi_stride - 1, 4);
    396     ++i;
    397     /* left */
    398     for (j = 3; j < 16; j += 4, ++i) {
    399       assign_neighbor(&neighbors[i], mi - 1, j);
    400     }
    401   } else
    402     i += 5;
    403   assert(i == 20);
    404 }
    405 
    406 /* Interpolates all motion vectors for a macroblock from the neighboring blocks'
    407  * motion vectors.
    408  */
    409 static void interpolate_mvs(MACROBLOCKD *mb, EC_BLOCK *neighbors,
    410                             MV_REFERENCE_FRAME dom_ref_frame) {
    411   int row, col, i;
    412   MODE_INFO *const mi = mb->mode_info_context;
    413   /* Table with the position of the neighboring blocks relative the position
    414    * of the upper left block of the current MB. Starting with the upper left
    415    * neighbor and going to the right.
    416    */
    417   const EC_POS neigh_pos[NUM_NEIGHBORS] = {
    418     { -1, -1 }, { -1, 0 }, { -1, 1 }, { -1, 2 }, { -1, 3 }, { -1, 4 }, { 0, 4 },
    419     { 1, 4 },   { 2, 4 },  { 3, 4 },  { 4, 4 },  { 4, 3 },  { 4, 2 },  { 4, 1 },
    420     { 4, 0 },   { 4, -1 }, { 3, -1 }, { 2, -1 }, { 1, -1 }, { 0, -1 }
    421   };
    422   mi->mbmi.need_to_clamp_mvs = 0;
    423   for (row = 0; row < 4; ++row) {
    424     int mb_to_top_edge = mb->mb_to_top_edge + ((row * 4) << 3);
    425     int mb_to_bottom_edge = mb->mb_to_bottom_edge - ((row * 4) << 3);
    426     for (col = 0; col < 4; ++col) {
    427       int mb_to_left_edge = mb->mb_to_left_edge + ((col * 4) << 3);
    428       int mb_to_right_edge = mb->mb_to_right_edge - ((col * 4) << 3);
    429       int w_sum = 0;
    430       int mv_row_sum = 0;
    431       int mv_col_sum = 0;
    432       int_mv *const mv = &(mi->bmi[row * 4 + col].mv);
    433       mv->as_int = 0;
    434       for (i = 0; i < NUM_NEIGHBORS; ++i) {
    435         /* Calculate the weighted sum of neighboring MVs referring
    436          * to the dominant frame type.
    437          */
    438         const int w = weights_q7[abs(row - neigh_pos[i].row)]
    439                                 [abs(col - neigh_pos[i].col)];
    440         if (neighbors[i].ref_frame != dom_ref_frame) continue;
    441         w_sum += w;
    442         /* Q7 * Q3 = Q10 */
    443         mv_row_sum += w * neighbors[i].mv.row;
    444         mv_col_sum += w * neighbors[i].mv.col;
    445       }
    446       if (w_sum > 0) {
    447         /* Avoid division by zero.
    448          * Normalize with the sum of the coefficients
    449          * Q3 = Q10 / Q7
    450          */
    451         mv->as_mv.row = mv_row_sum / w_sum;
    452         mv->as_mv.col = mv_col_sum / w_sum;
    453         mi->mbmi.need_to_clamp_mvs |=
    454             vp8_check_mv_bounds(mv, mb_to_left_edge, mb_to_right_edge,
    455                                 mb_to_top_edge, mb_to_bottom_edge);
    456       }
    457     }
    458   }
    459 }
    460 
    461 void vp8_interpolate_motion(MACROBLOCKD *mb, int mb_row, int mb_col,
    462                             int mb_rows, int mb_cols) {
    463   /* Find relevant neighboring blocks */
    464   EC_BLOCK neighbors[NUM_NEIGHBORS];
    465   int i;
    466   /* Initialize the array. MAX_REF_FRAMES is interpreted as "doesn't exist" */
    467   for (i = 0; i < NUM_NEIGHBORS; ++i) {
    468     neighbors[i].ref_frame = MAX_REF_FRAMES;
    469     neighbors[i].mv.row = neighbors[i].mv.col = 0;
    470   }
    471   find_neighboring_blocks(mb->mode_info_context, neighbors, mb_row, mb_col,
    472                           mb_rows, mb_cols, mb->mode_info_stride);
    473   /* Interpolate MVs for the missing blocks from the surrounding
    474    * blocks which refer to the last frame. */
    475   interpolate_mvs(mb, neighbors, LAST_FRAME);
    476 
    477   mb->mode_info_context->mbmi.ref_frame = LAST_FRAME;
    478   mb->mode_info_context->mbmi.mode = SPLITMV;
    479   mb->mode_info_context->mbmi.uv_mode = DC_PRED;
    480   mb->mode_info_context->mbmi.partitioning = 3;
    481   mb->mode_info_context->mbmi.segment_id = 0;
    482 }
    483