Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_COMPILER_UTILS_ASSEMBLER_H_
     18 #define ART_COMPILER_UTILS_ASSEMBLER_H_
     19 
     20 #include <vector>
     21 
     22 #include "arch/instruction_set.h"
     23 #include "arch/instruction_set_features.h"
     24 #include "arm/constants_arm.h"
     25 #include "base/arena_allocator.h"
     26 #include "base/arena_object.h"
     27 #include "base/array_ref.h"
     28 #include "base/enums.h"
     29 #include "base/logging.h"
     30 #include "base/macros.h"
     31 #include "debug/dwarf/debug_frame_opcode_writer.h"
     32 #include "label.h"
     33 #include "managed_register.h"
     34 #include "memory_region.h"
     35 #include "mips/constants_mips.h"
     36 #include "offsets.h"
     37 #include "x86/constants_x86.h"
     38 #include "x86_64/constants_x86_64.h"
     39 
     40 namespace art {
     41 
     42 class Assembler;
     43 class AssemblerBuffer;
     44 
     45 // Assembler fixups are positions in generated code that require processing
     46 // after the code has been copied to executable memory. This includes building
     47 // relocation information.
     48 class AssemblerFixup {
     49  public:
     50   virtual void Process(const MemoryRegion& region, int position) = 0;
     51   virtual ~AssemblerFixup() {}
     52 
     53  private:
     54   AssemblerFixup* previous_;
     55   int position_;
     56 
     57   AssemblerFixup* previous() const { return previous_; }
     58   void set_previous(AssemblerFixup* previous_in) { previous_ = previous_in; }
     59 
     60   int position() const { return position_; }
     61   void set_position(int position_in) { position_ = position_in; }
     62 
     63   friend class AssemblerBuffer;
     64 };
     65 
     66 // Parent of all queued slow paths, emitted during finalization
     67 class SlowPath : public DeletableArenaObject<kArenaAllocAssembler> {
     68  public:
     69   SlowPath() : next_(nullptr) {}
     70   virtual ~SlowPath() {}
     71 
     72   Label* Continuation() { return &continuation_; }
     73   Label* Entry() { return &entry_; }
     74   // Generate code for slow path
     75   virtual void Emit(Assembler *sp_asm) = 0;
     76 
     77  protected:
     78   // Entry branched to by fast path
     79   Label entry_;
     80   // Optional continuation that is branched to at the end of the slow path
     81   Label continuation_;
     82   // Next in linked list of slow paths
     83   SlowPath *next_;
     84 
     85  private:
     86   friend class AssemblerBuffer;
     87   DISALLOW_COPY_AND_ASSIGN(SlowPath);
     88 };
     89 
     90 class AssemblerBuffer {
     91  public:
     92   explicit AssemblerBuffer(ArenaAllocator* arena);
     93   ~AssemblerBuffer();
     94 
     95   ArenaAllocator* GetArena() {
     96     return arena_;
     97   }
     98 
     99   // Basic support for emitting, loading, and storing.
    100   template<typename T> void Emit(T value) {
    101     CHECK(HasEnsuredCapacity());
    102     *reinterpret_cast<T*>(cursor_) = value;
    103     cursor_ += sizeof(T);
    104   }
    105 
    106   template<typename T> T Load(size_t position) {
    107     CHECK_LE(position, Size() - static_cast<int>(sizeof(T)));
    108     return *reinterpret_cast<T*>(contents_ + position);
    109   }
    110 
    111   template<typename T> void Store(size_t position, T value) {
    112     CHECK_LE(position, Size() - static_cast<int>(sizeof(T)));
    113     *reinterpret_cast<T*>(contents_ + position) = value;
    114   }
    115 
    116   void Resize(size_t new_size) {
    117     if (new_size > Capacity()) {
    118       ExtendCapacity(new_size);
    119     }
    120     cursor_ = contents_ + new_size;
    121   }
    122 
    123   void Move(size_t newposition, size_t oldposition, size_t size) {
    124     // Move a chunk of the buffer from oldposition to newposition.
    125     DCHECK_LE(oldposition + size, Size());
    126     DCHECK_LE(newposition + size, Size());
    127     memmove(contents_ + newposition, contents_ + oldposition, size);
    128   }
    129 
    130   // Emit a fixup at the current location.
    131   void EmitFixup(AssemblerFixup* fixup) {
    132     fixup->set_previous(fixup_);
    133     fixup->set_position(Size());
    134     fixup_ = fixup;
    135   }
    136 
    137   void EnqueueSlowPath(SlowPath* slowpath) {
    138     if (slow_path_ == nullptr) {
    139       slow_path_ = slowpath;
    140     } else {
    141       SlowPath* cur = slow_path_;
    142       for ( ; cur->next_ != nullptr ; cur = cur->next_) {}
    143       cur->next_ = slowpath;
    144     }
    145   }
    146 
    147   void EmitSlowPaths(Assembler* sp_asm) {
    148     SlowPath* cur = slow_path_;
    149     SlowPath* next = nullptr;
    150     slow_path_ = nullptr;
    151     for ( ; cur != nullptr ; cur = next) {
    152       cur->Emit(sp_asm);
    153       next = cur->next_;
    154       delete cur;
    155     }
    156   }
    157 
    158   // Get the size of the emitted code.
    159   size_t Size() const {
    160     CHECK_GE(cursor_, contents_);
    161     return cursor_ - contents_;
    162   }
    163 
    164   uint8_t* contents() const { return contents_; }
    165 
    166   // Copy the assembled instructions into the specified memory block
    167   // and apply all fixups.
    168   void FinalizeInstructions(const MemoryRegion& region);
    169 
    170   // To emit an instruction to the assembler buffer, the EnsureCapacity helper
    171   // must be used to guarantee that the underlying data area is big enough to
    172   // hold the emitted instruction. Usage:
    173   //
    174   //     AssemblerBuffer buffer;
    175   //     AssemblerBuffer::EnsureCapacity ensured(&buffer);
    176   //     ... emit bytes for single instruction ...
    177 
    178 #ifndef NDEBUG
    179 
    180   class EnsureCapacity {
    181    public:
    182     explicit EnsureCapacity(AssemblerBuffer* buffer) {
    183       if (buffer->cursor() > buffer->limit()) {
    184         buffer->ExtendCapacity(buffer->Size() + kMinimumGap);
    185       }
    186       // In debug mode, we save the assembler buffer along with the gap
    187       // size before we start emitting to the buffer. This allows us to
    188       // check that any single generated instruction doesn't overflow the
    189       // limit implied by the minimum gap size.
    190       buffer_ = buffer;
    191       gap_ = ComputeGap();
    192       // Make sure that extending the capacity leaves a big enough gap
    193       // for any kind of instruction.
    194       CHECK_GE(gap_, kMinimumGap);
    195       // Mark the buffer as having ensured the capacity.
    196       CHECK(!buffer->HasEnsuredCapacity());  // Cannot nest.
    197       buffer->has_ensured_capacity_ = true;
    198     }
    199 
    200     ~EnsureCapacity() {
    201       // Unmark the buffer, so we cannot emit after this.
    202       buffer_->has_ensured_capacity_ = false;
    203       // Make sure the generated instruction doesn't take up more
    204       // space than the minimum gap.
    205       int delta = gap_ - ComputeGap();
    206       CHECK_LE(delta, kMinimumGap);
    207     }
    208 
    209    private:
    210     AssemblerBuffer* buffer_;
    211     int gap_;
    212 
    213     int ComputeGap() { return buffer_->Capacity() - buffer_->Size(); }
    214   };
    215 
    216   bool has_ensured_capacity_;
    217   bool HasEnsuredCapacity() const { return has_ensured_capacity_; }
    218 
    219 #else
    220 
    221   class EnsureCapacity {
    222    public:
    223     explicit EnsureCapacity(AssemblerBuffer* buffer) {
    224       if (buffer->cursor() > buffer->limit()) {
    225         buffer->ExtendCapacity(buffer->Size() + kMinimumGap);
    226       }
    227     }
    228   };
    229 
    230   // When building the C++ tests, assertion code is enabled. To allow
    231   // asserting that the user of the assembler buffer has ensured the
    232   // capacity needed for emitting, we add a dummy method in non-debug mode.
    233   bool HasEnsuredCapacity() const { return true; }
    234 
    235 #endif
    236 
    237   // Returns the position in the instruction stream.
    238   int GetPosition() { return  cursor_ - contents_; }
    239 
    240   size_t Capacity() const {
    241     CHECK_GE(limit_, contents_);
    242     return (limit_ - contents_) + kMinimumGap;
    243   }
    244 
    245   // Unconditionally increase the capacity.
    246   // The provided `min_capacity` must be higher than current `Capacity()`.
    247   void ExtendCapacity(size_t min_capacity);
    248 
    249  private:
    250   // The limit is set to kMinimumGap bytes before the end of the data area.
    251   // This leaves enough space for the longest possible instruction and allows
    252   // for a single, fast space check per instruction.
    253   static const int kMinimumGap = 32;
    254 
    255   ArenaAllocator* arena_;
    256   uint8_t* contents_;
    257   uint8_t* cursor_;
    258   uint8_t* limit_;
    259   AssemblerFixup* fixup_;
    260 #ifndef NDEBUG
    261   bool fixups_processed_;
    262 #endif
    263 
    264   // Head of linked list of slow paths
    265   SlowPath* slow_path_;
    266 
    267   uint8_t* cursor() const { return cursor_; }
    268   uint8_t* limit() const { return limit_; }
    269 
    270   // Process the fixup chain starting at the given fixup. The offset is
    271   // non-zero for fixups in the body if the preamble is non-empty.
    272   void ProcessFixups(const MemoryRegion& region);
    273 
    274   // Compute the limit based on the data area and the capacity. See
    275   // description of kMinimumGap for the reasoning behind the value.
    276   static uint8_t* ComputeLimit(uint8_t* data, size_t capacity) {
    277     return data + capacity - kMinimumGap;
    278   }
    279 
    280   friend class AssemblerFixup;
    281 };
    282 
    283 // The purpose of this class is to ensure that we do not have to explicitly
    284 // call the AdvancePC method (which is good for convenience and correctness).
    285 class DebugFrameOpCodeWriterForAssembler FINAL
    286     : public dwarf::DebugFrameOpCodeWriter<> {
    287  public:
    288   struct DelayedAdvancePC {
    289     uint32_t stream_pos;
    290     uint32_t pc;
    291   };
    292 
    293   // This method is called the by the opcode writers.
    294   virtual void ImplicitlyAdvancePC() FINAL;
    295 
    296   explicit DebugFrameOpCodeWriterForAssembler(Assembler* buffer)
    297       : dwarf::DebugFrameOpCodeWriter<>(false /* enabled */),
    298         assembler_(buffer),
    299         delay_emitting_advance_pc_(false),
    300         delayed_advance_pcs_() {
    301   }
    302 
    303   ~DebugFrameOpCodeWriterForAssembler() {
    304     DCHECK(delayed_advance_pcs_.empty());
    305   }
    306 
    307   // Tell the writer to delay emitting advance PC info.
    308   // The assembler must explicitly process all the delayed advances.
    309   void DelayEmittingAdvancePCs() {
    310     delay_emitting_advance_pc_ = true;
    311   }
    312 
    313   // Override the last delayed PC. The new PC can be out of order.
    314   void OverrideDelayedPC(size_t pc) {
    315     DCHECK(delay_emitting_advance_pc_);
    316     if (enabled_) {
    317       DCHECK(!delayed_advance_pcs_.empty());
    318       delayed_advance_pcs_.back().pc = pc;
    319     }
    320   }
    321 
    322   // Return the number of delayed advance PC entries.
    323   size_t NumberOfDelayedAdvancePCs() const {
    324     return delayed_advance_pcs_.size();
    325   }
    326 
    327   // Release the CFI stream and advance PC infos so that the assembler can patch it.
    328   std::pair<std::vector<uint8_t>, std::vector<DelayedAdvancePC>>
    329   ReleaseStreamAndPrepareForDelayedAdvancePC() {
    330     DCHECK(delay_emitting_advance_pc_);
    331     delay_emitting_advance_pc_ = false;
    332     std::pair<std::vector<uint8_t>, std::vector<DelayedAdvancePC>> result;
    333     result.first.swap(opcodes_);
    334     result.second.swap(delayed_advance_pcs_);
    335     return result;
    336   }
    337 
    338   // Reserve space for the CFI stream.
    339   void ReserveCFIStream(size_t capacity) {
    340     opcodes_.reserve(capacity);
    341   }
    342 
    343   // Append raw data to the CFI stream.
    344   void AppendRawData(const std::vector<uint8_t>& raw_data, size_t first, size_t last) {
    345     DCHECK_LE(0u, first);
    346     DCHECK_LE(first, last);
    347     DCHECK_LE(last, raw_data.size());
    348     opcodes_.insert(opcodes_.end(), raw_data.begin() + first, raw_data.begin() + last);
    349   }
    350 
    351  private:
    352   Assembler* assembler_;
    353   bool delay_emitting_advance_pc_;
    354   std::vector<DelayedAdvancePC> delayed_advance_pcs_;
    355 };
    356 
    357 class Assembler : public DeletableArenaObject<kArenaAllocAssembler> {
    358  public:
    359   // Finalize the code; emit slow paths, fixup branches, add literal pool, etc.
    360   virtual void FinalizeCode() { buffer_.EmitSlowPaths(this); }
    361 
    362   // Size of generated code
    363   virtual size_t CodeSize() const { return buffer_.Size(); }
    364   virtual const uint8_t* CodeBufferBaseAddress() const { return buffer_.contents(); }
    365   // CodePosition() is a non-const method similar to CodeSize(), which is used to
    366   // record positions within the code buffer for the purpose of signal handling
    367   // (stack overflow checks and implicit null checks may trigger signals and the
    368   // signal handlers expect them right before the recorded positions).
    369   // On most architectures CodePosition() should be equivalent to CodeSize(), but
    370   // the MIPS assembler needs to be aware of this recording, so it doesn't put
    371   // the instructions that can trigger signals into branch delay slots. Handling
    372   // signals from instructions in delay slots is a bit problematic and should be
    373   // avoided.
    374   virtual size_t CodePosition() { return CodeSize(); }
    375 
    376   // Copy instructions out of assembly buffer into the given region of memory
    377   virtual void FinalizeInstructions(const MemoryRegion& region) {
    378     buffer_.FinalizeInstructions(region);
    379   }
    380 
    381   // TODO: Implement with disassembler.
    382   virtual void Comment(const char* format ATTRIBUTE_UNUSED, ...) {}
    383 
    384   virtual void Bind(Label* label) = 0;
    385   virtual void Jump(Label* label) = 0;
    386 
    387   virtual ~Assembler() {}
    388 
    389   /**
    390    * @brief Buffer of DWARF's Call Frame Information opcodes.
    391    * @details It is used by debuggers and other tools to unwind the call stack.
    392    */
    393   DebugFrameOpCodeWriterForAssembler& cfi() { return cfi_; }
    394 
    395   ArenaAllocator* GetArena() {
    396     return buffer_.GetArena();
    397   }
    398 
    399   AssemblerBuffer* GetBuffer() {
    400     return &buffer_;
    401   }
    402 
    403  protected:
    404   explicit Assembler(ArenaAllocator* arena) : buffer_(arena), cfi_(this) {}
    405 
    406   AssemblerBuffer buffer_;
    407 
    408   DebugFrameOpCodeWriterForAssembler cfi_;
    409 };
    410 
    411 }  // namespace art
    412 
    413 #endif  // ART_COMPILER_UTILS_ASSEMBLER_H_
    414