Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2013 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkMipMap.h"
      9 #include "SkBitmap.h"
     10 #include "SkColorPriv.h"
     11 #include "SkHalf.h"
     12 #include "SkMathPriv.h"
     13 #include "SkNx.h"
     14 #include "SkPM4fPriv.h"
     15 #include "SkSRGB.h"
     16 #include "SkTypes.h"
     17 
     18 //
     19 // ColorTypeFilter is the "Type" we pass to some downsample template functions.
     20 // It controls how we expand a pixel into a large type, with space between each component,
     21 // so we can then perform our simple filter (either box or triangle) and store the intermediates
     22 // in the expanded type.
     23 //
     24 
     25 struct ColorTypeFilter_8888 {
     26     typedef uint32_t Type;
     27     static Sk4h Expand(uint32_t x) {
     28         return SkNx_cast<uint16_t>(Sk4b::Load(&x));
     29     }
     30     static uint32_t Compact(const Sk4h& x) {
     31         uint32_t r;
     32         SkNx_cast<uint8_t>(x).store(&r);
     33         return r;
     34     }
     35 };
     36 
     37 struct ColorTypeFilter_S32 {
     38     typedef uint32_t Type;
     39     static Sk4h Expand(uint32_t x) {
     40         return Sk4h(sk_linear12_from_srgb[(x      ) & 0xFF],
     41                     sk_linear12_from_srgb[(x >>  8) & 0xFF],
     42                     sk_linear12_from_srgb[(x >> 16) & 0xFF],
     43                                           (x >> 24) <<   4);
     44     }
     45     static uint32_t Compact(const Sk4h& x) {
     46         return sk_linear12_to_srgb[x[0]]       |
     47                sk_linear12_to_srgb[x[1]] <<  8 |
     48                sk_linear12_to_srgb[x[2]] << 16 |
     49                (x[3] >> 4)               << 24;
     50     }
     51 };
     52 
     53 struct ColorTypeFilter_565 {
     54     typedef uint16_t Type;
     55     static uint32_t Expand(uint16_t x) {
     56         return (x & ~SK_G16_MASK_IN_PLACE) | ((x & SK_G16_MASK_IN_PLACE) << 16);
     57     }
     58     static uint16_t Compact(uint32_t x) {
     59         return (x & ~SK_G16_MASK_IN_PLACE) | ((x >> 16) & SK_G16_MASK_IN_PLACE);
     60     }
     61 };
     62 
     63 struct ColorTypeFilter_4444 {
     64     typedef uint16_t Type;
     65     static uint32_t Expand(uint16_t x) {
     66         return (x & 0xF0F) | ((x & ~0xF0F) << 12);
     67     }
     68     static uint16_t Compact(uint32_t x) {
     69         return (x & 0xF0F) | ((x >> 12) & ~0xF0F);
     70     }
     71 };
     72 
     73 struct ColorTypeFilter_8 {
     74     typedef uint8_t Type;
     75     static unsigned Expand(unsigned x) {
     76         return x;
     77     }
     78     static uint8_t Compact(unsigned x) {
     79         return (uint8_t)x;
     80     }
     81 };
     82 
     83 struct ColorTypeFilter_F16 {
     84     typedef uint64_t Type; // SkHalf x4
     85     static Sk4f Expand(uint64_t x) {
     86         return SkHalfToFloat_finite_ftz(x);
     87     }
     88     static uint64_t Compact(const Sk4f& x) {
     89         uint64_t r;
     90         SkFloatToHalf_finite_ftz(x).store(&r);
     91         return r;
     92     }
     93 };
     94 
     95 template <typename T> T add_121(const T& a, const T& b, const T& c) {
     96     return a + b + b + c;
     97 }
     98 
     99 template <typename T> T shift_right(const T& x, int bits) {
    100     return x >> bits;
    101 }
    102 
    103 Sk4f shift_right(const Sk4f& x, int bits) {
    104     return x * (1.0f / (1 << bits));
    105 }
    106 
    107 template <typename T> T shift_left(const T& x, int bits) {
    108     return x << bits;
    109 }
    110 
    111 Sk4f shift_left(const Sk4f& x, int bits) {
    112     return x * (1 << bits);
    113 }
    114 
    115 //
    116 //  To produce each mip level, we need to filter down by 1/2 (e.g. 100x100 -> 50,50)
    117 //  If the starting dimension is odd, we floor the size of the lower level (e.g. 101 -> 50)
    118 //  In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings,
    119 //  else for even cases, we just use a 2x box filter.
    120 //
    121 //  This produces 4 possible isotropic filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of
    122 //  src pixels we need to sample in each dimension to produce 1 dst pixel.
    123 //
    124 //  OpenGL expects a full mipmap stack to contain anisotropic space as well.
    125 //  This means a 100x1 image would continue down to a 50x1 image, 25x1 image...
    126 //  Because of this, we need 4 more anisotropic filters: 1x2, 1x3, 2x1, 3x1.
    127 
    128 template <typename F> void downsample_1_2(void* dst, const void* src, size_t srcRB, int count) {
    129     SkASSERT(count > 0);
    130     auto p0 = static_cast<const typename F::Type*>(src);
    131     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
    132     auto d = static_cast<typename F::Type*>(dst);
    133 
    134     for (int i = 0; i < count; ++i) {
    135         auto c00 = F::Expand(p0[0]);
    136         auto c10 = F::Expand(p1[0]);
    137 
    138         auto c = c00 + c10;
    139         d[i] = F::Compact(shift_right(c, 1));
    140         p0 += 2;
    141         p1 += 2;
    142     }
    143 }
    144 
    145 template <typename F> void downsample_1_3(void* dst, const void* src, size_t srcRB, int count) {
    146     SkASSERT(count > 0);
    147     auto p0 = static_cast<const typename F::Type*>(src);
    148     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
    149     auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
    150     auto d = static_cast<typename F::Type*>(dst);
    151 
    152     for (int i = 0; i < count; ++i) {
    153         auto c00 = F::Expand(p0[0]);
    154         auto c10 = F::Expand(p1[0]);
    155         auto c20 = F::Expand(p2[0]);
    156 
    157         auto c = add_121(c00, c10, c20);
    158         d[i] = F::Compact(shift_right(c, 2));
    159         p0 += 2;
    160         p1 += 2;
    161         p2 += 2;
    162     }
    163 }
    164 
    165 template <typename F> void downsample_2_1(void* dst, const void* src, size_t srcRB, int count) {
    166     SkASSERT(count > 0);
    167     auto p0 = static_cast<const typename F::Type*>(src);
    168     auto d = static_cast<typename F::Type*>(dst);
    169 
    170     for (int i = 0; i < count; ++i) {
    171         auto c00 = F::Expand(p0[0]);
    172         auto c01 = F::Expand(p0[1]);
    173 
    174         auto c = c00 + c01;
    175         d[i] = F::Compact(shift_right(c, 1));
    176         p0 += 2;
    177     }
    178 }
    179 
    180 template <typename F> void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) {
    181     SkASSERT(count > 0);
    182     auto p0 = static_cast<const typename F::Type*>(src);
    183     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
    184     auto d = static_cast<typename F::Type*>(dst);
    185 
    186     for (int i = 0; i < count; ++i) {
    187         auto c00 = F::Expand(p0[0]);
    188         auto c01 = F::Expand(p0[1]);
    189         auto c10 = F::Expand(p1[0]);
    190         auto c11 = F::Expand(p1[1]);
    191 
    192         auto c = c00 + c10 + c01 + c11;
    193         d[i] = F::Compact(shift_right(c, 2));
    194         p0 += 2;
    195         p1 += 2;
    196     }
    197 }
    198 
    199 template <typename F> void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) {
    200     SkASSERT(count > 0);
    201     auto p0 = static_cast<const typename F::Type*>(src);
    202     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
    203     auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
    204     auto d = static_cast<typename F::Type*>(dst);
    205 
    206     for (int i = 0; i < count; ++i) {
    207         auto c00 = F::Expand(p0[0]);
    208         auto c01 = F::Expand(p0[1]);
    209         auto c10 = F::Expand(p1[0]);
    210         auto c11 = F::Expand(p1[1]);
    211         auto c20 = F::Expand(p2[0]);
    212         auto c21 = F::Expand(p2[1]);
    213 
    214         auto c = add_121(c00, c10, c20) + add_121(c01, c11, c21);
    215         d[i] = F::Compact(shift_right(c, 3));
    216         p0 += 2;
    217         p1 += 2;
    218         p2 += 2;
    219     }
    220 }
    221 
    222 template <typename F> void downsample_3_1(void* dst, const void* src, size_t srcRB, int count) {
    223     SkASSERT(count > 0);
    224     auto p0 = static_cast<const typename F::Type*>(src);
    225     auto d = static_cast<typename F::Type*>(dst);
    226 
    227     auto c02 = F::Expand(p0[0]);
    228     for (int i = 0; i < count; ++i) {
    229         auto c00 = c02;
    230         auto c01 = F::Expand(p0[1]);
    231              c02 = F::Expand(p0[2]);
    232 
    233         auto c = add_121(c00, c01, c02);
    234         d[i] = F::Compact(shift_right(c, 2));
    235         p0 += 2;
    236     }
    237 }
    238 
    239 template <typename F> void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) {
    240     SkASSERT(count > 0);
    241     auto p0 = static_cast<const typename F::Type*>(src);
    242     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
    243     auto d = static_cast<typename F::Type*>(dst);
    244 
    245     auto c02 = F::Expand(p0[0]);
    246     auto c12 = F::Expand(p1[0]);
    247     for (int i = 0; i < count; ++i) {
    248         auto c00 = c02;
    249         auto c01 = F::Expand(p0[1]);
    250              c02 = F::Expand(p0[2]);
    251         auto c10 = c12;
    252         auto c11 = F::Expand(p1[1]);
    253              c12 = F::Expand(p1[2]);
    254 
    255         auto c = add_121(c00, c01, c02) + add_121(c10, c11, c12);
    256         d[i] = F::Compact(shift_right(c, 3));
    257         p0 += 2;
    258         p1 += 2;
    259     }
    260 }
    261 
    262 template <typename F> void downsample_3_3(void* dst, const void* src, size_t srcRB, int count) {
    263     SkASSERT(count > 0);
    264     auto p0 = static_cast<const typename F::Type*>(src);
    265     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
    266     auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
    267     auto d = static_cast<typename F::Type*>(dst);
    268 
    269     // Given pixels:
    270     // a0 b0 c0 d0 e0 ...
    271     // a1 b1 c1 d1 e1 ...
    272     // a2 b2 c2 d2 e2 ...
    273     // We want:
    274     // (a0 + 2*b0 + c0 + 2*a1 + 4*b1 + 2*c1 + a2 + 2*b2 + c2) / 16
    275     // (c0 + 2*d0 + e0 + 2*c1 + 4*d1 + 2*e1 + c2 + 2*d2 + e2) / 16
    276     // ...
    277 
    278     auto c0 = F::Expand(p0[0]);
    279     auto c1 = F::Expand(p1[0]);
    280     auto c2 = F::Expand(p2[0]);
    281     auto c = add_121(c0, c1, c2);
    282     for (int i = 0; i < count; ++i) {
    283         auto a = c;
    284 
    285         auto b0 = F::Expand(p0[1]);
    286         auto b1 = F::Expand(p1[1]);
    287         auto b2 = F::Expand(p2[1]);
    288         auto b = shift_left(add_121(b0, b1, b2), 1);
    289 
    290         c0 = F::Expand(p0[2]);
    291         c1 = F::Expand(p1[2]);
    292         c2 = F::Expand(p2[2]);
    293         c = add_121(c0, c1, c2);
    294 
    295         auto sum = a + b + c;
    296         d[i] = F::Compact(shift_right(sum, 4));
    297         p0 += 2;
    298         p1 += 2;
    299         p2 += 2;
    300     }
    301 }
    302 
    303 ///////////////////////////////////////////////////////////////////////////////////////////////////
    304 
    305 // Some sRGB specific performance optimizations.
    306 
    307 void downsample_2_2_srgb(void* dst, const void* src, size_t srcRB, int count) {
    308     const uint8_t* p0 = ((const uint8_t*) src);
    309     const uint8_t* p1 = ((const uint8_t*) src) + srcRB;
    310     uint8_t* d = (uint8_t*) dst;
    311 
    312     // Given pixels:
    313     // a0 b0 c0 d0 ...
    314     // a1 b1 c1 d1 ...
    315     // We want:
    316     // (a0 + b0 + a1 + b1) / 4
    317     // (c0 + d0 + c1 + d1) / 4
    318     // ...
    319     while (count >= 2) {
    320         Sk8h a0c0 = Sk8h(sk_linear12_from_srgb[p0[ 0]],
    321                          sk_linear12_from_srgb[p0[ 1]],
    322                          sk_linear12_from_srgb[p0[ 2]],
    323                          p0[ 3] << 4                  ,
    324                          sk_linear12_from_srgb[p0[ 8]],
    325                          sk_linear12_from_srgb[p0[ 9]],
    326                          sk_linear12_from_srgb[p0[10]],
    327                          p0[11] << 4               );
    328         Sk8h b0d0 = Sk8h(sk_linear12_from_srgb[p0[ 4]],
    329                          sk_linear12_from_srgb[p0[ 5]],
    330                          sk_linear12_from_srgb[p0[ 6]],
    331                          p0[ 7] << 4                  ,
    332                          sk_linear12_from_srgb[p0[12]],
    333                          sk_linear12_from_srgb[p0[13]],
    334                          sk_linear12_from_srgb[p0[14]],
    335                          p0[15] << 4                 );
    336         Sk8h a1c1 = Sk8h(sk_linear12_from_srgb[p1[ 0]],
    337                          sk_linear12_from_srgb[p1[ 1]],
    338                          sk_linear12_from_srgb[p1[ 2]],
    339                          p1[ 3] << 4                  ,
    340                          sk_linear12_from_srgb[p1[ 8]],
    341                          sk_linear12_from_srgb[p1[ 9]],
    342                          sk_linear12_from_srgb[p1[10]],
    343                          p1[11] << 4                 );
    344         Sk8h b1d1 = Sk8h(sk_linear12_from_srgb[p1[ 4]],
    345                          sk_linear12_from_srgb[p1[ 5]],
    346                          sk_linear12_from_srgb[p1[ 6]],
    347                          p1[ 7] << 4                  ,
    348                          sk_linear12_from_srgb[p1[12]],
    349                          sk_linear12_from_srgb[p1[13]],
    350                          sk_linear12_from_srgb[p1[14]],
    351                          p1[15] << 4                 );
    352 
    353         Sk8h avg = (a0c0 + b0d0 + a1c1 + b1d1) >> 2;
    354         d[0] = sk_linear12_to_srgb[avg[0]];
    355         d[1] = sk_linear12_to_srgb[avg[1]];
    356         d[2] = sk_linear12_to_srgb[avg[2]];
    357         d[3] = avg[3] >> 4;
    358         d[4] = sk_linear12_to_srgb[avg[4]];
    359         d[5] = sk_linear12_to_srgb[avg[5]];
    360         d[6] = sk_linear12_to_srgb[avg[6]];
    361         d[7] = avg[7] >> 4;
    362 
    363         p0 += 16;
    364         p1 += 16;
    365         d += 8;
    366         count -= 2;
    367     }
    368 
    369     if (count) {
    370         downsample_2_2<ColorTypeFilter_S32>(d, p0, srcRB, count);
    371     }
    372 }
    373 
    374 ///////////////////////////////////////////////////////////////////////////////////////////////////
    375 
    376 size_t SkMipMap::AllocLevelsSize(int levelCount, size_t pixelSize) {
    377     if (levelCount < 0) {
    378         return 0;
    379     }
    380     int64_t size = sk_64_mul(levelCount + 1, sizeof(Level)) + pixelSize;
    381     if (!sk_64_isS32(size)) {
    382         return 0;
    383     }
    384     return sk_64_asS32(size);
    385 }
    386 
    387 SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDestinationSurfaceColorMode colorMode,
    388                           SkDiscardableFactoryProc fact) {
    389     typedef void FilterProc(void*, const void* srcPtr, size_t srcRB, int count);
    390 
    391     FilterProc* proc_1_2 = nullptr;
    392     FilterProc* proc_1_3 = nullptr;
    393     FilterProc* proc_2_1 = nullptr;
    394     FilterProc* proc_2_2 = nullptr;
    395     FilterProc* proc_2_3 = nullptr;
    396     FilterProc* proc_3_1 = nullptr;
    397     FilterProc* proc_3_2 = nullptr;
    398     FilterProc* proc_3_3 = nullptr;
    399 
    400     const SkColorType ct = src.colorType();
    401     const SkAlphaType at = src.alphaType();
    402     const bool srgbGamma = (SkDestinationSurfaceColorMode::kGammaAndColorSpaceAware == colorMode)
    403                             && src.info().gammaCloseToSRGB();
    404 
    405     switch (ct) {
    406         case kRGBA_8888_SkColorType:
    407         case kBGRA_8888_SkColorType:
    408             if (srgbGamma) {
    409                 proc_1_2 = downsample_1_2<ColorTypeFilter_S32>;
    410                 proc_1_3 = downsample_1_3<ColorTypeFilter_S32>;
    411                 proc_2_1 = downsample_2_1<ColorTypeFilter_S32>;
    412                 proc_2_2 = downsample_2_2_srgb;
    413                 proc_2_3 = downsample_2_3<ColorTypeFilter_S32>;
    414                 proc_3_1 = downsample_3_1<ColorTypeFilter_S32>;
    415                 proc_3_2 = downsample_3_2<ColorTypeFilter_S32>;
    416                 proc_3_3 = downsample_3_3<ColorTypeFilter_S32>;
    417             } else {
    418                 proc_1_2 = downsample_1_2<ColorTypeFilter_8888>;
    419                 proc_1_3 = downsample_1_3<ColorTypeFilter_8888>;
    420                 proc_2_1 = downsample_2_1<ColorTypeFilter_8888>;
    421                 proc_2_2 = downsample_2_2<ColorTypeFilter_8888>;
    422                 proc_2_3 = downsample_2_3<ColorTypeFilter_8888>;
    423                 proc_3_1 = downsample_3_1<ColorTypeFilter_8888>;
    424                 proc_3_2 = downsample_3_2<ColorTypeFilter_8888>;
    425                 proc_3_3 = downsample_3_3<ColorTypeFilter_8888>;
    426             }
    427             break;
    428         case kRGB_565_SkColorType:
    429             proc_1_2 = downsample_1_2<ColorTypeFilter_565>;
    430             proc_1_3 = downsample_1_3<ColorTypeFilter_565>;
    431             proc_2_1 = downsample_2_1<ColorTypeFilter_565>;
    432             proc_2_2 = downsample_2_2<ColorTypeFilter_565>;
    433             proc_2_3 = downsample_2_3<ColorTypeFilter_565>;
    434             proc_3_1 = downsample_3_1<ColorTypeFilter_565>;
    435             proc_3_2 = downsample_3_2<ColorTypeFilter_565>;
    436             proc_3_3 = downsample_3_3<ColorTypeFilter_565>;
    437             break;
    438         case kARGB_4444_SkColorType:
    439             proc_1_2 = downsample_1_2<ColorTypeFilter_4444>;
    440             proc_1_3 = downsample_1_3<ColorTypeFilter_4444>;
    441             proc_2_1 = downsample_2_1<ColorTypeFilter_4444>;
    442             proc_2_2 = downsample_2_2<ColorTypeFilter_4444>;
    443             proc_2_3 = downsample_2_3<ColorTypeFilter_4444>;
    444             proc_3_1 = downsample_3_1<ColorTypeFilter_4444>;
    445             proc_3_2 = downsample_3_2<ColorTypeFilter_4444>;
    446             proc_3_3 = downsample_3_3<ColorTypeFilter_4444>;
    447             break;
    448         case kAlpha_8_SkColorType:
    449         case kGray_8_SkColorType:
    450             proc_1_2 = downsample_1_2<ColorTypeFilter_8>;
    451             proc_1_3 = downsample_1_3<ColorTypeFilter_8>;
    452             proc_2_1 = downsample_2_1<ColorTypeFilter_8>;
    453             proc_2_2 = downsample_2_2<ColorTypeFilter_8>;
    454             proc_2_3 = downsample_2_3<ColorTypeFilter_8>;
    455             proc_3_1 = downsample_3_1<ColorTypeFilter_8>;
    456             proc_3_2 = downsample_3_2<ColorTypeFilter_8>;
    457             proc_3_3 = downsample_3_3<ColorTypeFilter_8>;
    458             break;
    459         case kRGBA_F16_SkColorType:
    460             proc_1_2 = downsample_1_2<ColorTypeFilter_F16>;
    461             proc_1_3 = downsample_1_3<ColorTypeFilter_F16>;
    462             proc_2_1 = downsample_2_1<ColorTypeFilter_F16>;
    463             proc_2_2 = downsample_2_2<ColorTypeFilter_F16>;
    464             proc_2_3 = downsample_2_3<ColorTypeFilter_F16>;
    465             proc_3_1 = downsample_3_1<ColorTypeFilter_F16>;
    466             proc_3_2 = downsample_3_2<ColorTypeFilter_F16>;
    467             proc_3_3 = downsample_3_3<ColorTypeFilter_F16>;
    468             break;
    469         default:
    470             // TODO: We could build miplevels for kIndex8 if the levels were in 8888.
    471             //       Means using more ram, but the quality would be fine.
    472             return nullptr;
    473     }
    474 
    475     if (src.width() <= 1 && src.height() <= 1) {
    476         return nullptr;
    477     }
    478     // whip through our loop to compute the exact size needed
    479     size_t size = 0;
    480     int countLevels = ComputeLevelCount(src.width(), src.height());
    481     for (int currentMipLevel = countLevels; currentMipLevel >= 0; currentMipLevel--) {
    482         SkISize mipSize = ComputeLevelSize(src.width(), src.height(), currentMipLevel);
    483         size += SkColorTypeMinRowBytes(ct, mipSize.fWidth) * mipSize.fHeight;
    484     }
    485 
    486     size_t storageSize = SkMipMap::AllocLevelsSize(countLevels, size);
    487     if (0 == storageSize) {
    488         return nullptr;
    489     }
    490 
    491     SkMipMap* mipmap;
    492     if (fact) {
    493         SkDiscardableMemory* dm = fact(storageSize);
    494         if (nullptr == dm) {
    495             return nullptr;
    496         }
    497         mipmap = new SkMipMap(storageSize, dm);
    498     } else {
    499         mipmap = new SkMipMap(sk_malloc_throw(storageSize), storageSize);
    500     }
    501 
    502     // init
    503     mipmap->fCS = sk_ref_sp(src.info().colorSpace());
    504     mipmap->fCount = countLevels;
    505     mipmap->fLevels = (Level*)mipmap->writable_data();
    506     SkASSERT(mipmap->fLevels);
    507 
    508     Level* levels = mipmap->fLevels;
    509     uint8_t*    baseAddr = (uint8_t*)&levels[countLevels];
    510     uint8_t*    addr = baseAddr;
    511     int         width = src.width();
    512     int         height = src.height();
    513     uint32_t    rowBytes;
    514     SkPixmap    srcPM(src);
    515 
    516     for (int i = 0; i < countLevels; ++i) {
    517         FilterProc* proc;
    518         if (height & 1) {
    519             if (height == 1) {        // src-height is 1
    520                 if (width & 1) {      // src-width is 3
    521                     proc = proc_3_1;
    522                 } else {              // src-width is 2
    523                     proc = proc_2_1;
    524                 }
    525             } else {                  // src-height is 3
    526                 if (width & 1) {
    527                     if (width == 1) { // src-width is 1
    528                         proc = proc_1_3;
    529                     } else {          // src-width is 3
    530                         proc = proc_3_3;
    531                     }
    532                 } else {              // src-width is 2
    533                     proc = proc_2_3;
    534                 }
    535             }
    536         } else {                      // src-height is 2
    537             if (width & 1) {
    538                 if (width == 1) {     // src-width is 1
    539                     proc = proc_1_2;
    540                 } else {              // src-width is 3
    541                     proc = proc_3_2;
    542                 }
    543             } else {                  // src-width is 2
    544                 proc = proc_2_2;
    545             }
    546         }
    547         width = SkTMax(1, width >> 1);
    548         height = SkTMax(1, height >> 1);
    549         rowBytes = SkToU32(SkColorTypeMinRowBytes(ct, width));
    550 
    551         // We make the Info w/o any colorspace, since that storage is not under our control, and
    552         // will not be deleted in a controlled fashion. When the caller is given the pixmap for
    553         // a given level, we augment this pixmap with fCS (which we do manage).
    554         new (&levels[i].fPixmap) SkPixmap(SkImageInfo::Make(width, height, ct, at), addr, rowBytes);
    555         levels[i].fScale  = SkSize::Make(SkIntToScalar(width)  / src.width(),
    556                                          SkIntToScalar(height) / src.height());
    557 
    558         const SkPixmap& dstPM = levels[i].fPixmap;
    559         const void* srcBasePtr = srcPM.addr();
    560         void* dstBasePtr = dstPM.writable_addr();
    561 
    562         const size_t srcRB = srcPM.rowBytes();
    563         for (int y = 0; y < height; y++) {
    564             proc(dstBasePtr, srcBasePtr, srcRB, width);
    565             srcBasePtr = (char*)srcBasePtr + srcRB * 2; // jump two rows
    566             dstBasePtr = (char*)dstBasePtr + dstPM.rowBytes();
    567         }
    568         srcPM = dstPM;
    569         addr += height * rowBytes;
    570     }
    571     SkASSERT(addr == baseAddr + size);
    572 
    573     SkASSERT(mipmap->fLevels);
    574     return mipmap;
    575 }
    576 
    577 int SkMipMap::ComputeLevelCount(int baseWidth, int baseHeight) {
    578     if (baseWidth < 1 || baseHeight < 1) {
    579         return 0;
    580     }
    581 
    582     // OpenGL's spec requires that each mipmap level have height/width equal to
    583     // max(1, floor(original_height / 2^i)
    584     // (or original_width) where i is the mipmap level.
    585     // Continue scaling down until both axes are size 1.
    586 
    587     const int largestAxis = SkTMax(baseWidth, baseHeight);
    588     if (largestAxis < 2) {
    589         // SkMipMap::Build requires a minimum size of 2.
    590         return 0;
    591     }
    592     const int leadingZeros = SkCLZ(static_cast<uint32_t>(largestAxis));
    593     // If the value 00011010 has 3 leading 0s then it has 5 significant bits
    594     // (the bits which are not leading zeros)
    595     const int significantBits = (sizeof(uint32_t) * 8) - leadingZeros;
    596     // This is making the assumption that the size of a byte is 8 bits
    597     // and that sizeof(uint32_t)'s implementation-defined behavior is 4.
    598     int mipLevelCount = significantBits;
    599 
    600     // SkMipMap does not include the base mip level.
    601     // For example, it contains levels 1-x instead of 0-x.
    602     // This is because the image used to create SkMipMap is the base level.
    603     // So subtract 1 from the mip level count.
    604     if (mipLevelCount > 0) {
    605         --mipLevelCount;
    606     }
    607 
    608     return mipLevelCount;
    609 }
    610 
    611 SkISize SkMipMap::ComputeLevelSize(int baseWidth, int baseHeight, int level) {
    612     if (baseWidth < 1 || baseHeight < 1) {
    613         return SkISize::Make(0, 0);
    614     }
    615 
    616     int maxLevelCount = ComputeLevelCount(baseWidth, baseHeight);
    617     if (level >= maxLevelCount || level < 0) {
    618         return SkISize::Make(0, 0);
    619     }
    620     // OpenGL's spec requires that each mipmap level have height/width equal to
    621     // max(1, floor(original_height / 2^i)
    622     // (or original_width) where i is the mipmap level.
    623 
    624     // SkMipMap does not include the base mip level.
    625     // For example, it contains levels 1-x instead of 0-x.
    626     // This is because the image used to create SkMipMap is the base level.
    627     // So subtract 1 from the mip level to get the index stored by SkMipMap.
    628     int width = SkTMax(1, baseWidth >> (level + 1));
    629     int height = SkTMax(1, baseHeight >> (level + 1));
    630 
    631     return SkISize::Make(width, height);
    632 }
    633 
    634 ///////////////////////////////////////////////////////////////////////////////
    635 
    636 bool SkMipMap::extractLevel(const SkSize& scaleSize, Level* levelPtr) const {
    637     if (nullptr == fLevels) {
    638         return false;
    639     }
    640 
    641     SkASSERT(scaleSize.width() >= 0 && scaleSize.height() >= 0);
    642 
    643 #ifndef SK_SUPPORT_LEGACY_ANISOTROPIC_MIPMAP_SCALE
    644     // Use the smallest scale to match the GPU impl.
    645     const SkScalar scale = SkTMin(scaleSize.width(), scaleSize.height());
    646 #else
    647     // Ideally we'd pick the smaller scale, to match Ganesh.  But ignoring one of the
    648     // scales can produce some atrocious results, so for now we use the geometric mean.
    649     // (https://bugs.chromium.org/p/skia/issues/detail?id=4863)
    650     const SkScalar scale = SkScalarSqrt(scaleSize.width() * scaleSize.height());
    651 #endif
    652 
    653     if (scale >= SK_Scalar1 || scale <= 0 || !SkScalarIsFinite(scale)) {
    654         return false;
    655     }
    656 
    657     SkScalar L = -SkScalarLog2(scale);
    658     if (!SkScalarIsFinite(L)) {
    659         return false;
    660     }
    661     SkASSERT(L >= 0);
    662     int level = SkScalarFloorToInt(L);
    663 
    664     SkASSERT(level >= 0);
    665     if (level <= 0) {
    666         return false;
    667     }
    668 
    669     if (level > fCount) {
    670         level = fCount;
    671     }
    672     if (levelPtr) {
    673         *levelPtr = fLevels[level - 1];
    674         // need to augment with our colorspace
    675         levelPtr->fPixmap.setColorSpace(fCS);
    676     }
    677     return true;
    678 }
    679 
    680 // Helper which extracts a pixmap from the src bitmap
    681 //
    682 SkMipMap* SkMipMap::Build(const SkBitmap& src, SkDestinationSurfaceColorMode colorMode,
    683                           SkDiscardableFactoryProc fact) {
    684     SkAutoPixmapUnlock srcUnlocker;
    685     if (!src.requestLock(&srcUnlocker)) {
    686         return nullptr;
    687     }
    688     const SkPixmap& srcPixmap = srcUnlocker.pixmap();
    689     // Try to catch where we might have returned nullptr for src crbug.com/492818
    690     if (nullptr == srcPixmap.addr()) {
    691         sk_throw();
    692     }
    693     return Build(srcPixmap, colorMode, fact);
    694 }
    695 
    696 int SkMipMap::countLevels() const {
    697     return fCount;
    698 }
    699 
    700 bool SkMipMap::getLevel(int index, Level* levelPtr) const {
    701     if (NULL == fLevels) {
    702         return false;
    703     }
    704     if (index < 0) {
    705         return false;
    706     }
    707     if (index > fCount - 1) {
    708         return false;
    709     }
    710     if (levelPtr) {
    711         *levelPtr = fLevels[index];
    712     }
    713     return true;
    714 }
    715