Home | History | Annotate | Download | only in gold
      1 // output.cc -- manage the output file for gold
      2 
      3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
      4 // Written by Ian Lance Taylor <iant (at) google.com>.
      5 
      6 // This file is part of gold.
      7 
      8 // This program is free software; you can redistribute it and/or modify
      9 // it under the terms of the GNU General Public License as published by
     10 // the Free Software Foundation; either version 3 of the License, or
     11 // (at your option) any later version.
     12 
     13 // This program is distributed in the hope that it will be useful,
     14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16 // GNU General Public License for more details.
     17 
     18 // You should have received a copy of the GNU General Public License
     19 // along with this program; if not, write to the Free Software
     20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     21 // MA 02110-1301, USA.
     22 
     23 #include "gold.h"
     24 
     25 #include <cstdlib>
     26 #include <cstring>
     27 #include <cerrno>
     28 #include <fcntl.h>
     29 #include <unistd.h>
     30 #include <sys/stat.h>
     31 #include <algorithm>
     32 
     33 #ifdef HAVE_SYS_MMAN_H
     34 #include <sys/mman.h>
     35 #endif
     36 
     37 #include "libiberty.h"
     38 
     39 #include "dwarf.h"
     40 #include "parameters.h"
     41 #include "object.h"
     42 #include "symtab.h"
     43 #include "reloc.h"
     44 #include "merge.h"
     45 #include "descriptors.h"
     46 #include "layout.h"
     47 #include "output.h"
     48 
     49 // For systems without mmap support.
     50 #ifndef HAVE_MMAP
     51 # define mmap gold_mmap
     52 # define munmap gold_munmap
     53 # define mremap gold_mremap
     54 # ifndef MAP_FAILED
     55 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
     56 # endif
     57 # ifndef PROT_READ
     58 #  define PROT_READ 0
     59 # endif
     60 # ifndef PROT_WRITE
     61 #  define PROT_WRITE 0
     62 # endif
     63 # ifndef MAP_PRIVATE
     64 #  define MAP_PRIVATE 0
     65 # endif
     66 # ifndef MAP_ANONYMOUS
     67 #  define MAP_ANONYMOUS 0
     68 # endif
     69 # ifndef MAP_SHARED
     70 #  define MAP_SHARED 0
     71 # endif
     72 
     73 # ifndef ENOSYS
     74 #  define ENOSYS EINVAL
     75 # endif
     76 
     77 static void *
     78 gold_mmap(void *, size_t, int, int, int, off_t)
     79 {
     80   errno = ENOSYS;
     81   return MAP_FAILED;
     82 }
     83 
     84 static int
     85 gold_munmap(void *, size_t)
     86 {
     87   errno = ENOSYS;
     88   return -1;
     89 }
     90 
     91 static void *
     92 gold_mremap(void *, size_t, size_t, int)
     93 {
     94   errno = ENOSYS;
     95   return MAP_FAILED;
     96 }
     97 
     98 #endif
     99 
    100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
    101 # define mremap gold_mremap
    102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
    103 #endif
    104 
    105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
    106 #ifndef MAP_ANONYMOUS
    107 # define MAP_ANONYMOUS  MAP_ANON
    108 #endif
    109 
    110 #ifndef MREMAP_MAYMOVE
    111 # define MREMAP_MAYMOVE 1
    112 #endif
    113 
    114 // Mingw does not have S_ISLNK.
    115 #ifndef S_ISLNK
    116 # define S_ISLNK(mode) 0
    117 #endif
    118 
    119 namespace gold
    120 {
    121 
    122 // A wrapper around posix_fallocate.  If we don't have posix_fallocate,
    123 // or the --no-posix-fallocate option is set, we try the fallocate
    124 // system call directly.  If that fails, we use ftruncate to set
    125 // the file size and hope that there is enough disk space.
    126 
    127 static int
    128 gold_fallocate(int o, off_t offset, off_t len)
    129 {
    130 #ifdef HAVE_POSIX_FALLOCATE
    131   if (parameters->options().posix_fallocate())
    132     return ::posix_fallocate(o, offset, len);
    133 #endif // defined(HAVE_POSIX_FALLOCATE)
    134 #ifdef HAVE_FALLOCATE
    135   if (::fallocate(o, 0, offset, len) == 0)
    136     return 0;
    137 #endif // defined(HAVE_FALLOCATE)
    138   if (::ftruncate(o, offset + len) < 0)
    139     return errno;
    140   return 0;
    141 }
    142 
    143 // Output_data variables.
    144 
    145 bool Output_data::allocated_sizes_are_fixed;
    146 
    147 // Output_data methods.
    148 
    149 Output_data::~Output_data()
    150 {
    151 }
    152 
    153 // Return the default alignment for the target size.
    154 
    155 uint64_t
    156 Output_data::default_alignment()
    157 {
    158   return Output_data::default_alignment_for_size(
    159       parameters->target().get_size());
    160 }
    161 
    162 // Return the default alignment for a size--32 or 64.
    163 
    164 uint64_t
    165 Output_data::default_alignment_for_size(int size)
    166 {
    167   if (size == 32)
    168     return 4;
    169   else if (size == 64)
    170     return 8;
    171   else
    172     gold_unreachable();
    173 }
    174 
    175 // Output_section_header methods.  This currently assumes that the
    176 // segment and section lists are complete at construction time.
    177 
    178 Output_section_headers::Output_section_headers(
    179     const Layout* layout,
    180     const Layout::Segment_list* segment_list,
    181     const Layout::Section_list* section_list,
    182     const Layout::Section_list* unattached_section_list,
    183     const Stringpool* secnamepool,
    184     const Output_section* shstrtab_section)
    185   : layout_(layout),
    186     segment_list_(segment_list),
    187     section_list_(section_list),
    188     unattached_section_list_(unattached_section_list),
    189     secnamepool_(secnamepool),
    190     shstrtab_section_(shstrtab_section)
    191 {
    192 }
    193 
    194 // Compute the current data size.
    195 
    196 off_t
    197 Output_section_headers::do_size() const
    198 {
    199   // Count all the sections.  Start with 1 for the null section.
    200   off_t count = 1;
    201   if (!parameters->options().relocatable())
    202     {
    203       for (Layout::Segment_list::const_iterator p =
    204 	     this->segment_list_->begin();
    205 	   p != this->segment_list_->end();
    206 	   ++p)
    207 	if ((*p)->type() == elfcpp::PT_LOAD)
    208 	  count += (*p)->output_section_count();
    209     }
    210   else
    211     {
    212       for (Layout::Section_list::const_iterator p =
    213 	     this->section_list_->begin();
    214 	   p != this->section_list_->end();
    215 	   ++p)
    216 	if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
    217 	  ++count;
    218     }
    219   count += this->unattached_section_list_->size();
    220 
    221   const int size = parameters->target().get_size();
    222   int shdr_size;
    223   if (size == 32)
    224     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
    225   else if (size == 64)
    226     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
    227   else
    228     gold_unreachable();
    229 
    230   return count * shdr_size;
    231 }
    232 
    233 // Write out the section headers.
    234 
    235 void
    236 Output_section_headers::do_write(Output_file* of)
    237 {
    238   switch (parameters->size_and_endianness())
    239     {
    240 #ifdef HAVE_TARGET_32_LITTLE
    241     case Parameters::TARGET_32_LITTLE:
    242       this->do_sized_write<32, false>(of);
    243       break;
    244 #endif
    245 #ifdef HAVE_TARGET_32_BIG
    246     case Parameters::TARGET_32_BIG:
    247       this->do_sized_write<32, true>(of);
    248       break;
    249 #endif
    250 #ifdef HAVE_TARGET_64_LITTLE
    251     case Parameters::TARGET_64_LITTLE:
    252       this->do_sized_write<64, false>(of);
    253       break;
    254 #endif
    255 #ifdef HAVE_TARGET_64_BIG
    256     case Parameters::TARGET_64_BIG:
    257       this->do_sized_write<64, true>(of);
    258       break;
    259 #endif
    260     default:
    261       gold_unreachable();
    262     }
    263 }
    264 
    265 template<int size, bool big_endian>
    266 void
    267 Output_section_headers::do_sized_write(Output_file* of)
    268 {
    269   off_t all_shdrs_size = this->data_size();
    270   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
    271 
    272   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
    273   unsigned char* v = view;
    274 
    275   {
    276     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
    277     oshdr.put_sh_name(0);
    278     oshdr.put_sh_type(elfcpp::SHT_NULL);
    279     oshdr.put_sh_flags(0);
    280     oshdr.put_sh_addr(0);
    281     oshdr.put_sh_offset(0);
    282 
    283     size_t section_count = (this->data_size()
    284 			    / elfcpp::Elf_sizes<size>::shdr_size);
    285     if (section_count < elfcpp::SHN_LORESERVE)
    286       oshdr.put_sh_size(0);
    287     else
    288       oshdr.put_sh_size(section_count);
    289 
    290     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
    291     if (shstrndx < elfcpp::SHN_LORESERVE)
    292       oshdr.put_sh_link(0);
    293     else
    294       oshdr.put_sh_link(shstrndx);
    295 
    296     size_t segment_count = this->segment_list_->size();
    297     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
    298 
    299     oshdr.put_sh_addralign(0);
    300     oshdr.put_sh_entsize(0);
    301   }
    302 
    303   v += shdr_size;
    304 
    305   unsigned int shndx = 1;
    306   if (!parameters->options().relocatable())
    307     {
    308       for (Layout::Segment_list::const_iterator p =
    309 	     this->segment_list_->begin();
    310 	   p != this->segment_list_->end();
    311 	   ++p)
    312 	v = (*p)->write_section_headers<size, big_endian>(this->layout_,
    313 							  this->secnamepool_,
    314 							  v,
    315 							  &shndx);
    316     }
    317   else
    318     {
    319       for (Layout::Section_list::const_iterator p =
    320 	     this->section_list_->begin();
    321 	   p != this->section_list_->end();
    322 	   ++p)
    323 	{
    324 	  // We do unallocated sections below, except that group
    325 	  // sections have to come first.
    326 	  if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
    327 	      && (*p)->type() != elfcpp::SHT_GROUP)
    328 	    continue;
    329 	  gold_assert(shndx == (*p)->out_shndx());
    330 	  elfcpp::Shdr_write<size, big_endian> oshdr(v);
    331 	  (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
    332 	  v += shdr_size;
    333 	  ++shndx;
    334 	}
    335     }
    336 
    337   for (Layout::Section_list::const_iterator p =
    338 	 this->unattached_section_list_->begin();
    339        p != this->unattached_section_list_->end();
    340        ++p)
    341     {
    342       // For a relocatable link, we did unallocated group sections
    343       // above, since they have to come first.
    344       if ((*p)->type() == elfcpp::SHT_GROUP
    345 	  && parameters->options().relocatable())
    346 	continue;
    347       gold_assert(shndx == (*p)->out_shndx());
    348       elfcpp::Shdr_write<size, big_endian> oshdr(v);
    349       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
    350       v += shdr_size;
    351       ++shndx;
    352     }
    353 
    354   of->write_output_view(this->offset(), all_shdrs_size, view);
    355 }
    356 
    357 // Output_segment_header methods.
    358 
    359 Output_segment_headers::Output_segment_headers(
    360     const Layout::Segment_list& segment_list)
    361   : segment_list_(segment_list)
    362 {
    363   this->set_current_data_size_for_child(this->do_size());
    364 }
    365 
    366 void
    367 Output_segment_headers::do_write(Output_file* of)
    368 {
    369   switch (parameters->size_and_endianness())
    370     {
    371 #ifdef HAVE_TARGET_32_LITTLE
    372     case Parameters::TARGET_32_LITTLE:
    373       this->do_sized_write<32, false>(of);
    374       break;
    375 #endif
    376 #ifdef HAVE_TARGET_32_BIG
    377     case Parameters::TARGET_32_BIG:
    378       this->do_sized_write<32, true>(of);
    379       break;
    380 #endif
    381 #ifdef HAVE_TARGET_64_LITTLE
    382     case Parameters::TARGET_64_LITTLE:
    383       this->do_sized_write<64, false>(of);
    384       break;
    385 #endif
    386 #ifdef HAVE_TARGET_64_BIG
    387     case Parameters::TARGET_64_BIG:
    388       this->do_sized_write<64, true>(of);
    389       break;
    390 #endif
    391     default:
    392       gold_unreachable();
    393     }
    394 }
    395 
    396 template<int size, bool big_endian>
    397 void
    398 Output_segment_headers::do_sized_write(Output_file* of)
    399 {
    400   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
    401   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
    402   gold_assert(all_phdrs_size == this->data_size());
    403   unsigned char* view = of->get_output_view(this->offset(),
    404 					    all_phdrs_size);
    405   unsigned char* v = view;
    406   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
    407        p != this->segment_list_.end();
    408        ++p)
    409     {
    410       elfcpp::Phdr_write<size, big_endian> ophdr(v);
    411       (*p)->write_header(&ophdr);
    412       v += phdr_size;
    413     }
    414 
    415   gold_assert(v - view == all_phdrs_size);
    416 
    417   of->write_output_view(this->offset(), all_phdrs_size, view);
    418 }
    419 
    420 off_t
    421 Output_segment_headers::do_size() const
    422 {
    423   const int size = parameters->target().get_size();
    424   int phdr_size;
    425   if (size == 32)
    426     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
    427   else if (size == 64)
    428     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
    429   else
    430     gold_unreachable();
    431 
    432   return this->segment_list_.size() * phdr_size;
    433 }
    434 
    435 // Output_file_header methods.
    436 
    437 Output_file_header::Output_file_header(Target* target,
    438 				       const Symbol_table* symtab,
    439 				       const Output_segment_headers* osh)
    440   : target_(target),
    441     symtab_(symtab),
    442     segment_header_(osh),
    443     section_header_(NULL),
    444     shstrtab_(NULL)
    445 {
    446   this->set_data_size(this->do_size());
    447 }
    448 
    449 // Set the section table information for a file header.
    450 
    451 void
    452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
    453 				     const Output_section* shstrtab)
    454 {
    455   this->section_header_ = shdrs;
    456   this->shstrtab_ = shstrtab;
    457 }
    458 
    459 // Write out the file header.
    460 
    461 void
    462 Output_file_header::do_write(Output_file* of)
    463 {
    464   gold_assert(this->offset() == 0);
    465 
    466   switch (parameters->size_and_endianness())
    467     {
    468 #ifdef HAVE_TARGET_32_LITTLE
    469     case Parameters::TARGET_32_LITTLE:
    470       this->do_sized_write<32, false>(of);
    471       break;
    472 #endif
    473 #ifdef HAVE_TARGET_32_BIG
    474     case Parameters::TARGET_32_BIG:
    475       this->do_sized_write<32, true>(of);
    476       break;
    477 #endif
    478 #ifdef HAVE_TARGET_64_LITTLE
    479     case Parameters::TARGET_64_LITTLE:
    480       this->do_sized_write<64, false>(of);
    481       break;
    482 #endif
    483 #ifdef HAVE_TARGET_64_BIG
    484     case Parameters::TARGET_64_BIG:
    485       this->do_sized_write<64, true>(of);
    486       break;
    487 #endif
    488     default:
    489       gold_unreachable();
    490     }
    491 }
    492 
    493 // Write out the file header with appropriate size and endianness.
    494 
    495 template<int size, bool big_endian>
    496 void
    497 Output_file_header::do_sized_write(Output_file* of)
    498 {
    499   gold_assert(this->offset() == 0);
    500 
    501   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
    502   unsigned char* view = of->get_output_view(0, ehdr_size);
    503   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
    504 
    505   unsigned char e_ident[elfcpp::EI_NIDENT];
    506   memset(e_ident, 0, elfcpp::EI_NIDENT);
    507   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
    508   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
    509   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
    510   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
    511   if (size == 32)
    512     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
    513   else if (size == 64)
    514     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
    515   else
    516     gold_unreachable();
    517   e_ident[elfcpp::EI_DATA] = (big_endian
    518 			      ? elfcpp::ELFDATA2MSB
    519 			      : elfcpp::ELFDATA2LSB);
    520   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
    521   oehdr.put_e_ident(e_ident);
    522 
    523   elfcpp::ET e_type;
    524   if (parameters->options().relocatable())
    525     e_type = elfcpp::ET_REL;
    526   else if (parameters->options().output_is_position_independent())
    527     e_type = elfcpp::ET_DYN;
    528   else
    529     e_type = elfcpp::ET_EXEC;
    530   oehdr.put_e_type(e_type);
    531 
    532   oehdr.put_e_machine(this->target_->machine_code());
    533   oehdr.put_e_version(elfcpp::EV_CURRENT);
    534 
    535   oehdr.put_e_entry(this->entry<size>());
    536 
    537   if (this->segment_header_ == NULL)
    538     oehdr.put_e_phoff(0);
    539   else
    540     oehdr.put_e_phoff(this->segment_header_->offset());
    541 
    542   oehdr.put_e_shoff(this->section_header_->offset());
    543   oehdr.put_e_flags(this->target_->processor_specific_flags());
    544   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
    545 
    546   if (this->segment_header_ == NULL)
    547     {
    548       oehdr.put_e_phentsize(0);
    549       oehdr.put_e_phnum(0);
    550     }
    551   else
    552     {
    553       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
    554       size_t phnum = (this->segment_header_->data_size()
    555 		      / elfcpp::Elf_sizes<size>::phdr_size);
    556       if (phnum > elfcpp::PN_XNUM)
    557 	phnum = elfcpp::PN_XNUM;
    558       oehdr.put_e_phnum(phnum);
    559     }
    560 
    561   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
    562   size_t section_count = (this->section_header_->data_size()
    563 			  / elfcpp::Elf_sizes<size>::shdr_size);
    564 
    565   if (section_count < elfcpp::SHN_LORESERVE)
    566     oehdr.put_e_shnum(this->section_header_->data_size()
    567 		      / elfcpp::Elf_sizes<size>::shdr_size);
    568   else
    569     oehdr.put_e_shnum(0);
    570 
    571   unsigned int shstrndx = this->shstrtab_->out_shndx();
    572   if (shstrndx < elfcpp::SHN_LORESERVE)
    573     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
    574   else
    575     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
    576 
    577   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
    578   // the e_ident field.
    579   this->target_->adjust_elf_header(view, ehdr_size);
    580 
    581   of->write_output_view(0, ehdr_size, view);
    582 }
    583 
    584 // Return the value to use for the entry address.
    585 
    586 template<int size>
    587 typename elfcpp::Elf_types<size>::Elf_Addr
    588 Output_file_header::entry()
    589 {
    590   const bool should_issue_warning = (parameters->options().entry() != NULL
    591 				     && !parameters->options().relocatable()
    592 				     && !parameters->options().shared());
    593   const char* entry = parameters->entry();
    594   Symbol* sym = this->symtab_->lookup(entry);
    595 
    596   typename Sized_symbol<size>::Value_type v;
    597   if (sym != NULL)
    598     {
    599       Sized_symbol<size>* ssym;
    600       ssym = this->symtab_->get_sized_symbol<size>(sym);
    601       if (!ssym->is_defined() && should_issue_warning)
    602 	gold_warning("entry symbol '%s' exists but is not defined", entry);
    603       v = ssym->value();
    604     }
    605   else
    606     {
    607       // We couldn't find the entry symbol.  See if we can parse it as
    608       // a number.  This supports, e.g., -e 0x1000.
    609       char* endptr;
    610       v = strtoull(entry, &endptr, 0);
    611       if (*endptr != '\0')
    612 	{
    613 	  if (should_issue_warning)
    614 	    gold_warning("cannot find entry symbol '%s'", entry);
    615 	  v = 0;
    616 	}
    617     }
    618 
    619   return v;
    620 }
    621 
    622 // Compute the current data size.
    623 
    624 off_t
    625 Output_file_header::do_size() const
    626 {
    627   const int size = parameters->target().get_size();
    628   if (size == 32)
    629     return elfcpp::Elf_sizes<32>::ehdr_size;
    630   else if (size == 64)
    631     return elfcpp::Elf_sizes<64>::ehdr_size;
    632   else
    633     gold_unreachable();
    634 }
    635 
    636 // Output_data_const methods.
    637 
    638 void
    639 Output_data_const::do_write(Output_file* of)
    640 {
    641   of->write(this->offset(), this->data_.data(), this->data_.size());
    642 }
    643 
    644 // Output_data_const_buffer methods.
    645 
    646 void
    647 Output_data_const_buffer::do_write(Output_file* of)
    648 {
    649   of->write(this->offset(), this->p_, this->data_size());
    650 }
    651 
    652 // Output_section_data methods.
    653 
    654 // Record the output section, and set the entry size and such.
    655 
    656 void
    657 Output_section_data::set_output_section(Output_section* os)
    658 {
    659   gold_assert(this->output_section_ == NULL);
    660   this->output_section_ = os;
    661   this->do_adjust_output_section(os);
    662 }
    663 
    664 // Return the section index of the output section.
    665 
    666 unsigned int
    667 Output_section_data::do_out_shndx() const
    668 {
    669   gold_assert(this->output_section_ != NULL);
    670   return this->output_section_->out_shndx();
    671 }
    672 
    673 // Set the alignment, which means we may need to update the alignment
    674 // of the output section.
    675 
    676 void
    677 Output_section_data::set_addralign(uint64_t addralign)
    678 {
    679   this->addralign_ = addralign;
    680   if (this->output_section_ != NULL
    681       && this->output_section_->addralign() < addralign)
    682     this->output_section_->set_addralign(addralign);
    683 }
    684 
    685 // Output_data_strtab methods.
    686 
    687 // Set the final data size.
    688 
    689 void
    690 Output_data_strtab::set_final_data_size()
    691 {
    692   this->strtab_->set_string_offsets();
    693   this->set_data_size(this->strtab_->get_strtab_size());
    694 }
    695 
    696 // Write out a string table.
    697 
    698 void
    699 Output_data_strtab::do_write(Output_file* of)
    700 {
    701   this->strtab_->write(of, this->offset());
    702 }
    703 
    704 // Output_reloc methods.
    705 
    706 // A reloc against a global symbol.
    707 
    708 template<bool dynamic, int size, bool big_endian>
    709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    710     Symbol* gsym,
    711     unsigned int type,
    712     Output_data* od,
    713     Address address,
    714     bool is_relative,
    715     bool is_symbolless,
    716     bool use_plt_offset)
    717   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
    718     is_relative_(is_relative), is_symbolless_(is_symbolless),
    719     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
    720 {
    721   // this->type_ is a bitfield; make sure TYPE fits.
    722   gold_assert(this->type_ == type);
    723   this->u1_.gsym = gsym;
    724   this->u2_.od = od;
    725   if (dynamic)
    726     this->set_needs_dynsym_index();
    727 }
    728 
    729 template<bool dynamic, int size, bool big_endian>
    730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    731     Symbol* gsym,
    732     unsigned int type,
    733     Sized_relobj<size, big_endian>* relobj,
    734     unsigned int shndx,
    735     Address address,
    736     bool is_relative,
    737     bool is_symbolless,
    738     bool use_plt_offset)
    739   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
    740     is_relative_(is_relative), is_symbolless_(is_symbolless),
    741     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
    742 {
    743   gold_assert(shndx != INVALID_CODE);
    744   // this->type_ is a bitfield; make sure TYPE fits.
    745   gold_assert(this->type_ == type);
    746   this->u1_.gsym = gsym;
    747   this->u2_.relobj = relobj;
    748   if (dynamic)
    749     this->set_needs_dynsym_index();
    750 }
    751 
    752 // A reloc against a local symbol.
    753 
    754 template<bool dynamic, int size, bool big_endian>
    755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    756     Sized_relobj<size, big_endian>* relobj,
    757     unsigned int local_sym_index,
    758     unsigned int type,
    759     Output_data* od,
    760     Address address,
    761     bool is_relative,
    762     bool is_symbolless,
    763     bool is_section_symbol,
    764     bool use_plt_offset)
    765   : address_(address), local_sym_index_(local_sym_index), type_(type),
    766     is_relative_(is_relative), is_symbolless_(is_symbolless),
    767     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
    768     shndx_(INVALID_CODE)
    769 {
    770   gold_assert(local_sym_index != GSYM_CODE
    771 	      && local_sym_index != INVALID_CODE);
    772   // this->type_ is a bitfield; make sure TYPE fits.
    773   gold_assert(this->type_ == type);
    774   this->u1_.relobj = relobj;
    775   this->u2_.od = od;
    776   if (dynamic)
    777     this->set_needs_dynsym_index();
    778 }
    779 
    780 template<bool dynamic, int size, bool big_endian>
    781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    782     Sized_relobj<size, big_endian>* relobj,
    783     unsigned int local_sym_index,
    784     unsigned int type,
    785     unsigned int shndx,
    786     Address address,
    787     bool is_relative,
    788     bool is_symbolless,
    789     bool is_section_symbol,
    790     bool use_plt_offset)
    791   : address_(address), local_sym_index_(local_sym_index), type_(type),
    792     is_relative_(is_relative), is_symbolless_(is_symbolless),
    793     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
    794     shndx_(shndx)
    795 {
    796   gold_assert(local_sym_index != GSYM_CODE
    797 	      && local_sym_index != INVALID_CODE);
    798   gold_assert(shndx != INVALID_CODE);
    799   // this->type_ is a bitfield; make sure TYPE fits.
    800   gold_assert(this->type_ == type);
    801   this->u1_.relobj = relobj;
    802   this->u2_.relobj = relobj;
    803   if (dynamic)
    804     this->set_needs_dynsym_index();
    805 }
    806 
    807 // A reloc against the STT_SECTION symbol of an output section.
    808 
    809 template<bool dynamic, int size, bool big_endian>
    810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    811     Output_section* os,
    812     unsigned int type,
    813     Output_data* od,
    814     Address address,
    815     bool is_relative)
    816   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
    817     is_relative_(is_relative), is_symbolless_(is_relative),
    818     is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
    819 {
    820   // this->type_ is a bitfield; make sure TYPE fits.
    821   gold_assert(this->type_ == type);
    822   this->u1_.os = os;
    823   this->u2_.od = od;
    824   if (dynamic)
    825     this->set_needs_dynsym_index();
    826   else
    827     os->set_needs_symtab_index();
    828 }
    829 
    830 template<bool dynamic, int size, bool big_endian>
    831 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    832     Output_section* os,
    833     unsigned int type,
    834     Sized_relobj<size, big_endian>* relobj,
    835     unsigned int shndx,
    836     Address address,
    837     bool is_relative)
    838   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
    839     is_relative_(is_relative), is_symbolless_(is_relative),
    840     is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
    841 {
    842   gold_assert(shndx != INVALID_CODE);
    843   // this->type_ is a bitfield; make sure TYPE fits.
    844   gold_assert(this->type_ == type);
    845   this->u1_.os = os;
    846   this->u2_.relobj = relobj;
    847   if (dynamic)
    848     this->set_needs_dynsym_index();
    849   else
    850     os->set_needs_symtab_index();
    851 }
    852 
    853 // An absolute or relative relocation.
    854 
    855 template<bool dynamic, int size, bool big_endian>
    856 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    857     unsigned int type,
    858     Output_data* od,
    859     Address address,
    860     bool is_relative)
    861   : address_(address), local_sym_index_(0), type_(type),
    862     is_relative_(is_relative), is_symbolless_(false),
    863     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
    864 {
    865   // this->type_ is a bitfield; make sure TYPE fits.
    866   gold_assert(this->type_ == type);
    867   this->u1_.relobj = NULL;
    868   this->u2_.od = od;
    869 }
    870 
    871 template<bool dynamic, int size, bool big_endian>
    872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    873     unsigned int type,
    874     Sized_relobj<size, big_endian>* relobj,
    875     unsigned int shndx,
    876     Address address,
    877     bool is_relative)
    878   : address_(address), local_sym_index_(0), type_(type),
    879     is_relative_(is_relative), is_symbolless_(false),
    880     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
    881 {
    882   gold_assert(shndx != INVALID_CODE);
    883   // this->type_ is a bitfield; make sure TYPE fits.
    884   gold_assert(this->type_ == type);
    885   this->u1_.relobj = NULL;
    886   this->u2_.relobj = relobj;
    887 }
    888 
    889 // A target specific relocation.
    890 
    891 template<bool dynamic, int size, bool big_endian>
    892 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    893     unsigned int type,
    894     void* arg,
    895     Output_data* od,
    896     Address address)
    897   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
    898     is_relative_(false), is_symbolless_(false),
    899     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
    900 {
    901   // this->type_ is a bitfield; make sure TYPE fits.
    902   gold_assert(this->type_ == type);
    903   this->u1_.arg = arg;
    904   this->u2_.od = od;
    905 }
    906 
    907 template<bool dynamic, int size, bool big_endian>
    908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
    909     unsigned int type,
    910     void* arg,
    911     Sized_relobj<size, big_endian>* relobj,
    912     unsigned int shndx,
    913     Address address)
    914   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
    915     is_relative_(false), is_symbolless_(false),
    916     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
    917 {
    918   gold_assert(shndx != INVALID_CODE);
    919   // this->type_ is a bitfield; make sure TYPE fits.
    920   gold_assert(this->type_ == type);
    921   this->u1_.arg = arg;
    922   this->u2_.relobj = relobj;
    923 }
    924 
    925 // Record that we need a dynamic symbol index for this relocation.
    926 
    927 template<bool dynamic, int size, bool big_endian>
    928 void
    929 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
    930 set_needs_dynsym_index()
    931 {
    932   if (this->is_symbolless_)
    933     return;
    934   switch (this->local_sym_index_)
    935     {
    936     case INVALID_CODE:
    937       gold_unreachable();
    938 
    939     case GSYM_CODE:
    940       this->u1_.gsym->set_needs_dynsym_entry();
    941       break;
    942 
    943     case SECTION_CODE:
    944       this->u1_.os->set_needs_dynsym_index();
    945       break;
    946 
    947     case TARGET_CODE:
    948       // The target must take care of this if necessary.
    949       break;
    950 
    951     case 0:
    952       break;
    953 
    954     default:
    955       {
    956 	const unsigned int lsi = this->local_sym_index_;
    957 	Sized_relobj_file<size, big_endian>* relobj =
    958 	    this->u1_.relobj->sized_relobj();
    959 	gold_assert(relobj != NULL);
    960 	if (!this->is_section_symbol_)
    961 	  relobj->set_needs_output_dynsym_entry(lsi);
    962 	else
    963 	  relobj->output_section(lsi)->set_needs_dynsym_index();
    964       }
    965       break;
    966     }
    967 }
    968 
    969 // Get the symbol index of a relocation.
    970 
    971 template<bool dynamic, int size, bool big_endian>
    972 unsigned int
    973 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
    974   const
    975 {
    976   unsigned int index;
    977   if (this->is_symbolless_)
    978     return 0;
    979   switch (this->local_sym_index_)
    980     {
    981     case INVALID_CODE:
    982       gold_unreachable();
    983 
    984     case GSYM_CODE:
    985       if (this->u1_.gsym == NULL)
    986 	index = 0;
    987       else if (dynamic)
    988 	index = this->u1_.gsym->dynsym_index();
    989       else
    990 	index = this->u1_.gsym->symtab_index();
    991       break;
    992 
    993     case SECTION_CODE:
    994       if (dynamic)
    995 	index = this->u1_.os->dynsym_index();
    996       else
    997 	index = this->u1_.os->symtab_index();
    998       break;
    999 
   1000     case TARGET_CODE:
   1001       index = parameters->target().reloc_symbol_index(this->u1_.arg,
   1002 						      this->type_);
   1003       break;
   1004 
   1005     case 0:
   1006       // Relocations without symbols use a symbol index of 0.
   1007       index = 0;
   1008       break;
   1009 
   1010     default:
   1011       {
   1012 	const unsigned int lsi = this->local_sym_index_;
   1013 	Sized_relobj_file<size, big_endian>* relobj =
   1014 	    this->u1_.relobj->sized_relobj();
   1015 	gold_assert(relobj != NULL);
   1016 	if (!this->is_section_symbol_)
   1017 	  {
   1018 	    if (dynamic)
   1019 	      index = relobj->dynsym_index(lsi);
   1020 	    else
   1021 	      index = relobj->symtab_index(lsi);
   1022 	  }
   1023 	else
   1024 	  {
   1025 	    Output_section* os = relobj->output_section(lsi);
   1026 	    gold_assert(os != NULL);
   1027 	    if (dynamic)
   1028 	      index = os->dynsym_index();
   1029 	    else
   1030 	      index = os->symtab_index();
   1031 	  }
   1032       }
   1033       break;
   1034     }
   1035   gold_assert(index != -1U);
   1036   return index;
   1037 }
   1038 
   1039 // For a local section symbol, get the address of the offset ADDEND
   1040 // within the input section.
   1041 
   1042 template<bool dynamic, int size, bool big_endian>
   1043 typename elfcpp::Elf_types<size>::Elf_Addr
   1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
   1045   local_section_offset(Addend addend) const
   1046 {
   1047   gold_assert(this->local_sym_index_ != GSYM_CODE
   1048 	      && this->local_sym_index_ != SECTION_CODE
   1049 	      && this->local_sym_index_ != TARGET_CODE
   1050 	      && this->local_sym_index_ != INVALID_CODE
   1051 	      && this->local_sym_index_ != 0
   1052 	      && this->is_section_symbol_);
   1053   const unsigned int lsi = this->local_sym_index_;
   1054   Output_section* os = this->u1_.relobj->output_section(lsi);
   1055   gold_assert(os != NULL);
   1056   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
   1057   if (offset != invalid_address)
   1058     return offset + addend;
   1059   // This is a merge section.
   1060   Sized_relobj_file<size, big_endian>* relobj =
   1061       this->u1_.relobj->sized_relobj();
   1062   gold_assert(relobj != NULL);
   1063   offset = os->output_address(relobj, lsi, addend);
   1064   gold_assert(offset != invalid_address);
   1065   return offset;
   1066 }
   1067 
   1068 // Get the output address of a relocation.
   1069 
   1070 template<bool dynamic, int size, bool big_endian>
   1071 typename elfcpp::Elf_types<size>::Elf_Addr
   1072 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
   1073 {
   1074   Address address = this->address_;
   1075   if (this->shndx_ != INVALID_CODE)
   1076     {
   1077       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
   1078       gold_assert(os != NULL);
   1079       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
   1080       if (off != invalid_address)
   1081 	address += os->address() + off;
   1082       else
   1083 	{
   1084 	  Sized_relobj_file<size, big_endian>* relobj =
   1085 	      this->u2_.relobj->sized_relobj();
   1086 	  gold_assert(relobj != NULL);
   1087 	  address = os->output_address(relobj, this->shndx_, address);
   1088 	  gold_assert(address != invalid_address);
   1089 	}
   1090     }
   1091   else if (this->u2_.od != NULL)
   1092     address += this->u2_.od->address();
   1093   return address;
   1094 }
   1095 
   1096 // Write out the offset and info fields of a Rel or Rela relocation
   1097 // entry.
   1098 
   1099 template<bool dynamic, int size, bool big_endian>
   1100 template<typename Write_rel>
   1101 void
   1102 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
   1103     Write_rel* wr) const
   1104 {
   1105   wr->put_r_offset(this->get_address());
   1106   unsigned int sym_index = this->get_symbol_index();
   1107   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
   1108 }
   1109 
   1110 // Write out a Rel relocation.
   1111 
   1112 template<bool dynamic, int size, bool big_endian>
   1113 void
   1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
   1115     unsigned char* pov) const
   1116 {
   1117   elfcpp::Rel_write<size, big_endian> orel(pov);
   1118   this->write_rel(&orel);
   1119 }
   1120 
   1121 // Get the value of the symbol referred to by a Rel relocation.
   1122 
   1123 template<bool dynamic, int size, bool big_endian>
   1124 typename elfcpp::Elf_types<size>::Elf_Addr
   1125 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
   1126     Addend addend) const
   1127 {
   1128   if (this->local_sym_index_ == GSYM_CODE)
   1129     {
   1130       const Sized_symbol<size>* sym;
   1131       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
   1132       if (this->use_plt_offset_ && sym->has_plt_offset())
   1133 	return parameters->target().plt_address_for_global(sym);
   1134       else
   1135 	return sym->value() + addend;
   1136     }
   1137   if (this->local_sym_index_ == SECTION_CODE)
   1138     {
   1139       gold_assert(!this->use_plt_offset_);
   1140       return this->u1_.os->address() + addend;
   1141     }
   1142   gold_assert(this->local_sym_index_ != TARGET_CODE
   1143 	      && this->local_sym_index_ != INVALID_CODE
   1144 	      && this->local_sym_index_ != 0
   1145 	      && !this->is_section_symbol_);
   1146   const unsigned int lsi = this->local_sym_index_;
   1147   Sized_relobj_file<size, big_endian>* relobj =
   1148       this->u1_.relobj->sized_relobj();
   1149   gold_assert(relobj != NULL);
   1150   if (this->use_plt_offset_)
   1151     return parameters->target().plt_address_for_local(relobj, lsi);
   1152   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
   1153   return symval->value(relobj, addend);
   1154 }
   1155 
   1156 // Reloc comparison.  This function sorts the dynamic relocs for the
   1157 // benefit of the dynamic linker.  First we sort all relative relocs
   1158 // to the front.  Among relative relocs, we sort by output address.
   1159 // Among non-relative relocs, we sort by symbol index, then by output
   1160 // address.
   1161 
   1162 template<bool dynamic, int size, bool big_endian>
   1163 int
   1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
   1165   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
   1166     const
   1167 {
   1168   if (this->is_relative_)
   1169     {
   1170       if (!r2.is_relative_)
   1171 	return -1;
   1172       // Otherwise sort by reloc address below.
   1173     }
   1174   else if (r2.is_relative_)
   1175     return 1;
   1176   else
   1177     {
   1178       unsigned int sym1 = this->get_symbol_index();
   1179       unsigned int sym2 = r2.get_symbol_index();
   1180       if (sym1 < sym2)
   1181 	return -1;
   1182       else if (sym1 > sym2)
   1183 	return 1;
   1184       // Otherwise sort by reloc address.
   1185     }
   1186 
   1187   section_offset_type addr1 = this->get_address();
   1188   section_offset_type addr2 = r2.get_address();
   1189   if (addr1 < addr2)
   1190     return -1;
   1191   else if (addr1 > addr2)
   1192     return 1;
   1193 
   1194   // Final tie breaker, in order to generate the same output on any
   1195   // host: reloc type.
   1196   unsigned int type1 = this->type_;
   1197   unsigned int type2 = r2.type_;
   1198   if (type1 < type2)
   1199     return -1;
   1200   else if (type1 > type2)
   1201     return 1;
   1202 
   1203   // These relocs appear to be exactly the same.
   1204   return 0;
   1205 }
   1206 
   1207 // Write out a Rela relocation.
   1208 
   1209 template<bool dynamic, int size, bool big_endian>
   1210 void
   1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
   1212     unsigned char* pov) const
   1213 {
   1214   elfcpp::Rela_write<size, big_endian> orel(pov);
   1215   this->rel_.write_rel(&orel);
   1216   Addend addend = this->addend_;
   1217   if (this->rel_.is_target_specific())
   1218     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
   1219 					       this->rel_.type(), addend);
   1220   else if (this->rel_.is_symbolless())
   1221     addend = this->rel_.symbol_value(addend);
   1222   else if (this->rel_.is_local_section_symbol())
   1223     addend = this->rel_.local_section_offset(addend);
   1224   orel.put_r_addend(addend);
   1225 }
   1226 
   1227 // Output_data_reloc_base methods.
   1228 
   1229 // Adjust the output section.
   1230 
   1231 template<int sh_type, bool dynamic, int size, bool big_endian>
   1232 void
   1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
   1234     ::do_adjust_output_section(Output_section* os)
   1235 {
   1236   if (sh_type == elfcpp::SHT_REL)
   1237     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
   1238   else if (sh_type == elfcpp::SHT_RELA)
   1239     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
   1240   else
   1241     gold_unreachable();
   1242 
   1243   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
   1244   // static link.  The backends will generate a dynamic reloc section
   1245   // to hold this.  In that case we don't want to link to the dynsym
   1246   // section, because there isn't one.
   1247   if (!dynamic)
   1248     os->set_should_link_to_symtab();
   1249   else if (parameters->doing_static_link())
   1250     ;
   1251   else
   1252     os->set_should_link_to_dynsym();
   1253 }
   1254 
   1255 // Write out relocation data.
   1256 
   1257 template<int sh_type, bool dynamic, int size, bool big_endian>
   1258 void
   1259 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
   1260     Output_file* of)
   1261 {
   1262   const off_t off = this->offset();
   1263   const off_t oview_size = this->data_size();
   1264   unsigned char* const oview = of->get_output_view(off, oview_size);
   1265 
   1266   if (this->sort_relocs())
   1267     {
   1268       gold_assert(dynamic);
   1269       std::sort(this->relocs_.begin(), this->relocs_.end(),
   1270 		Sort_relocs_comparison());
   1271     }
   1272 
   1273   unsigned char* pov = oview;
   1274   for (typename Relocs::const_iterator p = this->relocs_.begin();
   1275        p != this->relocs_.end();
   1276        ++p)
   1277     {
   1278       p->write(pov);
   1279       pov += reloc_size;
   1280     }
   1281 
   1282   gold_assert(pov - oview == oview_size);
   1283 
   1284   of->write_output_view(off, oview_size, oview);
   1285 
   1286   // We no longer need the relocation entries.
   1287   this->relocs_.clear();
   1288 }
   1289 
   1290 // Class Output_relocatable_relocs.
   1291 
   1292 template<int sh_type, int size, bool big_endian>
   1293 void
   1294 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
   1295 {
   1296   this->set_data_size(this->rr_->output_reloc_count()
   1297 		      * Reloc_types<sh_type, size, big_endian>::reloc_size);
   1298 }
   1299 
   1300 // class Output_data_group.
   1301 
   1302 template<int size, bool big_endian>
   1303 Output_data_group<size, big_endian>::Output_data_group(
   1304     Sized_relobj_file<size, big_endian>* relobj,
   1305     section_size_type entry_count,
   1306     elfcpp::Elf_Word flags,
   1307     std::vector<unsigned int>* input_shndxes)
   1308   : Output_section_data(entry_count * 4, 4, false),
   1309     relobj_(relobj),
   1310     flags_(flags)
   1311 {
   1312   this->input_shndxes_.swap(*input_shndxes);
   1313 }
   1314 
   1315 // Write out the section group, which means translating the section
   1316 // indexes to apply to the output file.
   1317 
   1318 template<int size, bool big_endian>
   1319 void
   1320 Output_data_group<size, big_endian>::do_write(Output_file* of)
   1321 {
   1322   const off_t off = this->offset();
   1323   const section_size_type oview_size =
   1324     convert_to_section_size_type(this->data_size());
   1325   unsigned char* const oview = of->get_output_view(off, oview_size);
   1326 
   1327   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
   1328   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
   1329   ++contents;
   1330 
   1331   for (std::vector<unsigned int>::const_iterator p =
   1332 	 this->input_shndxes_.begin();
   1333        p != this->input_shndxes_.end();
   1334        ++p, ++contents)
   1335     {
   1336       Output_section* os = this->relobj_->output_section(*p);
   1337 
   1338       unsigned int output_shndx;
   1339       if (os != NULL)
   1340 	output_shndx = os->out_shndx();
   1341       else
   1342 	{
   1343 	  this->relobj_->error(_("section group retained but "
   1344 				 "group element discarded"));
   1345 	  output_shndx = 0;
   1346 	}
   1347 
   1348       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
   1349     }
   1350 
   1351   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
   1352   gold_assert(wrote == oview_size);
   1353 
   1354   of->write_output_view(off, oview_size, oview);
   1355 
   1356   // We no longer need this information.
   1357   this->input_shndxes_.clear();
   1358 }
   1359 
   1360 // Output_data_got::Got_entry methods.
   1361 
   1362 // Write out the entry.
   1363 
   1364 template<int got_size, bool big_endian>
   1365 void
   1366 Output_data_got<got_size, big_endian>::Got_entry::write(
   1367     unsigned int got_indx,
   1368     unsigned char* pov) const
   1369 {
   1370   Valtype val = 0;
   1371 
   1372   switch (this->local_sym_index_)
   1373     {
   1374     case GSYM_CODE:
   1375       {
   1376 	// If the symbol is resolved locally, we need to write out the
   1377 	// link-time value, which will be relocated dynamically by a
   1378 	// RELATIVE relocation.
   1379 	Symbol* gsym = this->u_.gsym;
   1380 	if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
   1381 	  val = parameters->target().plt_address_for_global(gsym);
   1382 	else
   1383 	  {
   1384 	    switch (parameters->size_and_endianness())
   1385 	      {
   1386 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
   1387 	      case Parameters::TARGET_32_LITTLE:
   1388 	      case Parameters::TARGET_32_BIG:
   1389 		{
   1390 		  // This cast is ugly.  We don't want to put a
   1391 		  // virtual method in Symbol, because we want Symbol
   1392 		  // to be as small as possible.
   1393 		  Sized_symbol<32>::Value_type v;
   1394 		  v = static_cast<Sized_symbol<32>*>(gsym)->value();
   1395 		  val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
   1396 		}
   1397 		break;
   1398 #endif
   1399 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
   1400 	      case Parameters::TARGET_64_LITTLE:
   1401 	      case Parameters::TARGET_64_BIG:
   1402 		{
   1403 		  Sized_symbol<64>::Value_type v;
   1404 		  v = static_cast<Sized_symbol<64>*>(gsym)->value();
   1405 		  val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
   1406 		}
   1407 		break;
   1408 #endif
   1409 	      default:
   1410 		gold_unreachable();
   1411 	      }
   1412 	    if (this->use_plt_or_tls_offset_
   1413 		&& gsym->type() == elfcpp::STT_TLS)
   1414 	      val += parameters->target().tls_offset_for_global(gsym,
   1415 								got_indx);
   1416 	  }
   1417       }
   1418       break;
   1419 
   1420     case CONSTANT_CODE:
   1421       val = this->u_.constant;
   1422       break;
   1423 
   1424     case RESERVED_CODE:
   1425       // If we're doing an incremental update, don't touch this GOT entry.
   1426       if (parameters->incremental_update())
   1427 	return;
   1428       val = this->u_.constant;
   1429       break;
   1430 
   1431     default:
   1432       {
   1433 	const Relobj* object = this->u_.object;
   1434 	const unsigned int lsi = this->local_sym_index_;
   1435 	bool is_tls = object->local_is_tls(lsi);
   1436 	if (this->use_plt_or_tls_offset_ && !is_tls)
   1437 	  val = parameters->target().plt_address_for_local(object, lsi);
   1438 	else
   1439 	  {
   1440 	    uint64_t lval = object->local_symbol_value(lsi, 0);
   1441 	    val = convert_types<Valtype, uint64_t>(lval);
   1442 	    if (this->use_plt_or_tls_offset_ && is_tls)
   1443 	      val += parameters->target().tls_offset_for_local(object, lsi,
   1444 							       got_indx);
   1445 	  }
   1446       }
   1447       break;
   1448     }
   1449 
   1450   elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
   1451 }
   1452 
   1453 // Output_data_got methods.
   1454 
   1455 // Add an entry for a global symbol to the GOT.  This returns true if
   1456 // this is a new GOT entry, false if the symbol already had a GOT
   1457 // entry.
   1458 
   1459 template<int got_size, bool big_endian>
   1460 bool
   1461 Output_data_got<got_size, big_endian>::add_global(
   1462     Symbol* gsym,
   1463     unsigned int got_type)
   1464 {
   1465   if (gsym->has_got_offset(got_type))
   1466     return false;
   1467 
   1468   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
   1469   gsym->set_got_offset(got_type, got_offset);
   1470   return true;
   1471 }
   1472 
   1473 // Like add_global, but use the PLT offset.
   1474 
   1475 template<int got_size, bool big_endian>
   1476 bool
   1477 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
   1478 						      unsigned int got_type)
   1479 {
   1480   if (gsym->has_got_offset(got_type))
   1481     return false;
   1482 
   1483   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
   1484   gsym->set_got_offset(got_type, got_offset);
   1485   return true;
   1486 }
   1487 
   1488 // Add an entry for a global symbol to the GOT, and add a dynamic
   1489 // relocation of type R_TYPE for the GOT entry.
   1490 
   1491 template<int got_size, bool big_endian>
   1492 void
   1493 Output_data_got<got_size, big_endian>::add_global_with_rel(
   1494     Symbol* gsym,
   1495     unsigned int got_type,
   1496     Output_data_reloc_generic* rel_dyn,
   1497     unsigned int r_type)
   1498 {
   1499   if (gsym->has_got_offset(got_type))
   1500     return;
   1501 
   1502   unsigned int got_offset = this->add_got_entry(Got_entry());
   1503   gsym->set_got_offset(got_type, got_offset);
   1504   rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
   1505 }
   1506 
   1507 // Add a pair of entries for a global symbol to the GOT, and add
   1508 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
   1509 // If R_TYPE_2 == 0, add the second entry with no relocation.
   1510 template<int got_size, bool big_endian>
   1511 void
   1512 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
   1513     Symbol* gsym,
   1514     unsigned int got_type,
   1515     Output_data_reloc_generic* rel_dyn,
   1516     unsigned int r_type_1,
   1517     unsigned int r_type_2)
   1518 {
   1519   if (gsym->has_got_offset(got_type))
   1520     return;
   1521 
   1522   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
   1523   gsym->set_got_offset(got_type, got_offset);
   1524   rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
   1525 
   1526   if (r_type_2 != 0)
   1527     rel_dyn->add_global_generic(gsym, r_type_2, this,
   1528 				got_offset + got_size / 8, 0);
   1529 }
   1530 
   1531 // Add an entry for a local symbol to the GOT.  This returns true if
   1532 // this is a new GOT entry, false if the symbol already has a GOT
   1533 // entry.
   1534 
   1535 template<int got_size, bool big_endian>
   1536 bool
   1537 Output_data_got<got_size, big_endian>::add_local(
   1538     Relobj* object,
   1539     unsigned int symndx,
   1540     unsigned int got_type)
   1541 {
   1542   if (object->local_has_got_offset(symndx, got_type))
   1543     return false;
   1544 
   1545   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
   1546 							  false));
   1547   object->set_local_got_offset(symndx, got_type, got_offset);
   1548   return true;
   1549 }
   1550 
   1551 // Like add_local, but use the PLT offset.
   1552 
   1553 template<int got_size, bool big_endian>
   1554 bool
   1555 Output_data_got<got_size, big_endian>::add_local_plt(
   1556     Relobj* object,
   1557     unsigned int symndx,
   1558     unsigned int got_type)
   1559 {
   1560   if (object->local_has_got_offset(symndx, got_type))
   1561     return false;
   1562 
   1563   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
   1564 							  true));
   1565   object->set_local_got_offset(symndx, got_type, got_offset);
   1566   return true;
   1567 }
   1568 
   1569 // Add an entry for a local symbol to the GOT, and add a dynamic
   1570 // relocation of type R_TYPE for the GOT entry.
   1571 
   1572 template<int got_size, bool big_endian>
   1573 void
   1574 Output_data_got<got_size, big_endian>::add_local_with_rel(
   1575     Relobj* object,
   1576     unsigned int symndx,
   1577     unsigned int got_type,
   1578     Output_data_reloc_generic* rel_dyn,
   1579     unsigned int r_type)
   1580 {
   1581   if (object->local_has_got_offset(symndx, got_type))
   1582     return;
   1583 
   1584   unsigned int got_offset = this->add_got_entry(Got_entry());
   1585   object->set_local_got_offset(symndx, got_type, got_offset);
   1586   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
   1587 }
   1588 
   1589 // Add a pair of entries for a local symbol to the GOT, and add
   1590 // a dynamic relocation of type R_TYPE using the section symbol of
   1591 // the output section to which input section SHNDX maps, on the first.
   1592 // The first got entry will have a value of zero, the second the
   1593 // value of the local symbol.
   1594 template<int got_size, bool big_endian>
   1595 void
   1596 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
   1597     Relobj* object,
   1598     unsigned int symndx,
   1599     unsigned int shndx,
   1600     unsigned int got_type,
   1601     Output_data_reloc_generic* rel_dyn,
   1602     unsigned int r_type)
   1603 {
   1604   if (object->local_has_got_offset(symndx, got_type))
   1605     return;
   1606 
   1607   unsigned int got_offset =
   1608       this->add_got_entry_pair(Got_entry(),
   1609 			       Got_entry(object, symndx, false));
   1610   object->set_local_got_offset(symndx, got_type, got_offset);
   1611   Output_section* os = object->output_section(shndx);
   1612   rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
   1613 }
   1614 
   1615 // Add a pair of entries for a local symbol to the GOT, and add
   1616 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
   1617 // The first got entry will have a value of zero, the second the
   1618 // value of the local symbol offset by Target::tls_offset_for_local.
   1619 template<int got_size, bool big_endian>
   1620 void
   1621 Output_data_got<got_size, big_endian>::add_local_tls_pair(
   1622     Relobj* object,
   1623     unsigned int symndx,
   1624     unsigned int got_type,
   1625     Output_data_reloc_generic* rel_dyn,
   1626     unsigned int r_type)
   1627 {
   1628   if (object->local_has_got_offset(symndx, got_type))
   1629     return;
   1630 
   1631   unsigned int got_offset
   1632     = this->add_got_entry_pair(Got_entry(),
   1633 			       Got_entry(object, symndx, true));
   1634   object->set_local_got_offset(symndx, got_type, got_offset);
   1635   rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
   1636 }
   1637 
   1638 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
   1639 
   1640 template<int got_size, bool big_endian>
   1641 void
   1642 Output_data_got<got_size, big_endian>::reserve_local(
   1643     unsigned int i,
   1644     Relobj* object,
   1645     unsigned int sym_index,
   1646     unsigned int got_type)
   1647 {
   1648   this->do_reserve_slot(i);
   1649   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
   1650 }
   1651 
   1652 // Reserve a slot in the GOT for a global symbol.
   1653 
   1654 template<int got_size, bool big_endian>
   1655 void
   1656 Output_data_got<got_size, big_endian>::reserve_global(
   1657     unsigned int i,
   1658     Symbol* gsym,
   1659     unsigned int got_type)
   1660 {
   1661   this->do_reserve_slot(i);
   1662   gsym->set_got_offset(got_type, this->got_offset(i));
   1663 }
   1664 
   1665 // Write out the GOT.
   1666 
   1667 template<int got_size, bool big_endian>
   1668 void
   1669 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
   1670 {
   1671   const int add = got_size / 8;
   1672 
   1673   const off_t off = this->offset();
   1674   const off_t oview_size = this->data_size();
   1675   unsigned char* const oview = of->get_output_view(off, oview_size);
   1676 
   1677   unsigned char* pov = oview;
   1678   for (unsigned int i = 0; i < this->entries_.size(); ++i)
   1679     {
   1680       this->entries_[i].write(i, pov);
   1681       pov += add;
   1682     }
   1683 
   1684   gold_assert(pov - oview == oview_size);
   1685 
   1686   of->write_output_view(off, oview_size, oview);
   1687 
   1688   // We no longer need the GOT entries.
   1689   this->entries_.clear();
   1690 }
   1691 
   1692 // Create a new GOT entry and return its offset.
   1693 
   1694 template<int got_size, bool big_endian>
   1695 unsigned int
   1696 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
   1697 {
   1698   if (!this->is_data_size_valid())
   1699     {
   1700       this->entries_.push_back(got_entry);
   1701       this->set_got_size();
   1702       return this->last_got_offset();
   1703     }
   1704   else
   1705     {
   1706       // For an incremental update, find an available slot.
   1707       off_t got_offset = this->free_list_.allocate(got_size / 8,
   1708 						   got_size / 8, 0);
   1709       if (got_offset == -1)
   1710 	gold_fallback(_("out of patch space (GOT);"
   1711 			" relink with --incremental-full"));
   1712       unsigned int got_index = got_offset / (got_size / 8);
   1713       gold_assert(got_index < this->entries_.size());
   1714       this->entries_[got_index] = got_entry;
   1715       return static_cast<unsigned int>(got_offset);
   1716     }
   1717 }
   1718 
   1719 // Create a pair of new GOT entries and return the offset of the first.
   1720 
   1721 template<int got_size, bool big_endian>
   1722 unsigned int
   1723 Output_data_got<got_size, big_endian>::add_got_entry_pair(
   1724     Got_entry got_entry_1,
   1725     Got_entry got_entry_2)
   1726 {
   1727   if (!this->is_data_size_valid())
   1728     {
   1729       unsigned int got_offset;
   1730       this->entries_.push_back(got_entry_1);
   1731       got_offset = this->last_got_offset();
   1732       this->entries_.push_back(got_entry_2);
   1733       this->set_got_size();
   1734       return got_offset;
   1735     }
   1736   else
   1737     {
   1738       // For an incremental update, find an available pair of slots.
   1739       off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
   1740 						   got_size / 8, 0);
   1741       if (got_offset == -1)
   1742 	gold_fallback(_("out of patch space (GOT);"
   1743 			" relink with --incremental-full"));
   1744       unsigned int got_index = got_offset / (got_size / 8);
   1745       gold_assert(got_index < this->entries_.size());
   1746       this->entries_[got_index] = got_entry_1;
   1747       this->entries_[got_index + 1] = got_entry_2;
   1748       return static_cast<unsigned int>(got_offset);
   1749     }
   1750 }
   1751 
   1752 // Replace GOT entry I with a new value.
   1753 
   1754 template<int got_size, bool big_endian>
   1755 void
   1756 Output_data_got<got_size, big_endian>::replace_got_entry(
   1757     unsigned int i,
   1758     Got_entry got_entry)
   1759 {
   1760   gold_assert(i < this->entries_.size());
   1761   this->entries_[i] = got_entry;
   1762 }
   1763 
   1764 // Output_data_dynamic::Dynamic_entry methods.
   1765 
   1766 // Write out the entry.
   1767 
   1768 template<int size, bool big_endian>
   1769 void
   1770 Output_data_dynamic::Dynamic_entry::write(
   1771     unsigned char* pov,
   1772     const Stringpool* pool) const
   1773 {
   1774   typename elfcpp::Elf_types<size>::Elf_WXword val;
   1775   switch (this->offset_)
   1776     {
   1777     case DYNAMIC_NUMBER:
   1778       val = this->u_.val;
   1779       break;
   1780 
   1781     case DYNAMIC_SECTION_SIZE:
   1782       val = this->u_.od->data_size();
   1783       if (this->od2 != NULL)
   1784 	val += this->od2->data_size();
   1785       break;
   1786 
   1787     case DYNAMIC_SYMBOL:
   1788       {
   1789 	const Sized_symbol<size>* s =
   1790 	  static_cast<const Sized_symbol<size>*>(this->u_.sym);
   1791 	val = s->value();
   1792       }
   1793       break;
   1794 
   1795     case DYNAMIC_STRING:
   1796       val = pool->get_offset(this->u_.str);
   1797       break;
   1798 
   1799     case DYNAMIC_CUSTOM:
   1800       val = parameters->target().dynamic_tag_custom_value(this->tag_);
   1801       break;
   1802 
   1803     default:
   1804       val = this->u_.od->address() + this->offset_;
   1805       break;
   1806     }
   1807 
   1808   elfcpp::Dyn_write<size, big_endian> dw(pov);
   1809   dw.put_d_tag(this->tag_);
   1810   dw.put_d_val(val);
   1811 }
   1812 
   1813 // Output_data_dynamic methods.
   1814 
   1815 // Adjust the output section to set the entry size.
   1816 
   1817 void
   1818 Output_data_dynamic::do_adjust_output_section(Output_section* os)
   1819 {
   1820   if (parameters->target().get_size() == 32)
   1821     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
   1822   else if (parameters->target().get_size() == 64)
   1823     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
   1824   else
   1825     gold_unreachable();
   1826 }
   1827 
   1828 // Set the final data size.
   1829 
   1830 void
   1831 Output_data_dynamic::set_final_data_size()
   1832 {
   1833   // Add the terminating entry if it hasn't been added.
   1834   // Because of relaxation, we can run this multiple times.
   1835   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
   1836     {
   1837       int extra = parameters->options().spare_dynamic_tags();
   1838       for (int i = 0; i < extra; ++i)
   1839 	this->add_constant(elfcpp::DT_NULL, 0);
   1840       this->add_constant(elfcpp::DT_NULL, 0);
   1841     }
   1842 
   1843   int dyn_size;
   1844   if (parameters->target().get_size() == 32)
   1845     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
   1846   else if (parameters->target().get_size() == 64)
   1847     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
   1848   else
   1849     gold_unreachable();
   1850   this->set_data_size(this->entries_.size() * dyn_size);
   1851 }
   1852 
   1853 // Write out the dynamic entries.
   1854 
   1855 void
   1856 Output_data_dynamic::do_write(Output_file* of)
   1857 {
   1858   switch (parameters->size_and_endianness())
   1859     {
   1860 #ifdef HAVE_TARGET_32_LITTLE
   1861     case Parameters::TARGET_32_LITTLE:
   1862       this->sized_write<32, false>(of);
   1863       break;
   1864 #endif
   1865 #ifdef HAVE_TARGET_32_BIG
   1866     case Parameters::TARGET_32_BIG:
   1867       this->sized_write<32, true>(of);
   1868       break;
   1869 #endif
   1870 #ifdef HAVE_TARGET_64_LITTLE
   1871     case Parameters::TARGET_64_LITTLE:
   1872       this->sized_write<64, false>(of);
   1873       break;
   1874 #endif
   1875 #ifdef HAVE_TARGET_64_BIG
   1876     case Parameters::TARGET_64_BIG:
   1877       this->sized_write<64, true>(of);
   1878       break;
   1879 #endif
   1880     default:
   1881       gold_unreachable();
   1882     }
   1883 }
   1884 
   1885 template<int size, bool big_endian>
   1886 void
   1887 Output_data_dynamic::sized_write(Output_file* of)
   1888 {
   1889   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
   1890 
   1891   const off_t offset = this->offset();
   1892   const off_t oview_size = this->data_size();
   1893   unsigned char* const oview = of->get_output_view(offset, oview_size);
   1894 
   1895   unsigned char* pov = oview;
   1896   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
   1897        p != this->entries_.end();
   1898        ++p)
   1899     {
   1900       p->write<size, big_endian>(pov, this->pool_);
   1901       pov += dyn_size;
   1902     }
   1903 
   1904   gold_assert(pov - oview == oview_size);
   1905 
   1906   of->write_output_view(offset, oview_size, oview);
   1907 
   1908   // We no longer need the dynamic entries.
   1909   this->entries_.clear();
   1910 }
   1911 
   1912 // Class Output_symtab_xindex.
   1913 
   1914 void
   1915 Output_symtab_xindex::do_write(Output_file* of)
   1916 {
   1917   const off_t offset = this->offset();
   1918   const off_t oview_size = this->data_size();
   1919   unsigned char* const oview = of->get_output_view(offset, oview_size);
   1920 
   1921   memset(oview, 0, oview_size);
   1922 
   1923   if (parameters->target().is_big_endian())
   1924     this->endian_do_write<true>(oview);
   1925   else
   1926     this->endian_do_write<false>(oview);
   1927 
   1928   of->write_output_view(offset, oview_size, oview);
   1929 
   1930   // We no longer need the data.
   1931   this->entries_.clear();
   1932 }
   1933 
   1934 template<bool big_endian>
   1935 void
   1936 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
   1937 {
   1938   for (Xindex_entries::const_iterator p = this->entries_.begin();
   1939        p != this->entries_.end();
   1940        ++p)
   1941     {
   1942       unsigned int symndx = p->first;
   1943       gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
   1944       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
   1945     }
   1946 }
   1947 
   1948 // Output_fill_debug_info methods.
   1949 
   1950 // Return the minimum size needed for a dummy compilation unit header.
   1951 
   1952 size_t
   1953 Output_fill_debug_info::do_minimum_hole_size() const
   1954 {
   1955   // Compile unit header fields: unit_length, version, debug_abbrev_offset,
   1956   // address_size.
   1957   const size_t len = 4 + 2 + 4 + 1;
   1958   // For type units, add type_signature, type_offset.
   1959   if (this->is_debug_types_)
   1960     return len + 8 + 4;
   1961   return len;
   1962 }
   1963 
   1964 // Write a dummy compilation unit header to fill a hole in the
   1965 // .debug_info or .debug_types section.
   1966 
   1967 void
   1968 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
   1969 {
   1970   gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
   1971 	     static_cast<long>(off), static_cast<long>(len));
   1972 
   1973   gold_assert(len >= this->do_minimum_hole_size());
   1974 
   1975   unsigned char* const oview = of->get_output_view(off, len);
   1976   unsigned char* pov = oview;
   1977 
   1978   // Write header fields: unit_length, version, debug_abbrev_offset,
   1979   // address_size.
   1980   if (this->is_big_endian())
   1981     {
   1982       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
   1983       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
   1984       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
   1985     }
   1986   else
   1987     {
   1988       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
   1989       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
   1990       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
   1991     }
   1992   pov += 4 + 2 + 4;
   1993   *pov++ = 4;
   1994 
   1995   // For type units, the additional header fields -- type_signature,
   1996   // type_offset -- can be filled with zeroes.
   1997 
   1998   // Fill the remainder of the free space with zeroes.  The first
   1999   // zero should tell the consumer there are no DIEs to read in this
   2000   // compilation unit.
   2001   if (pov < oview + len)
   2002     memset(pov, 0, oview + len - pov);
   2003 
   2004   of->write_output_view(off, len, oview);
   2005 }
   2006 
   2007 // Output_fill_debug_line methods.
   2008 
   2009 // Return the minimum size needed for a dummy line number program header.
   2010 
   2011 size_t
   2012 Output_fill_debug_line::do_minimum_hole_size() const
   2013 {
   2014   // Line number program header fields: unit_length, version, header_length,
   2015   // minimum_instruction_length, default_is_stmt, line_base, line_range,
   2016   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
   2017   const size_t len = 4 + 2 + 4 + this->header_length;
   2018   return len;
   2019 }
   2020 
   2021 // Write a dummy line number program header to fill a hole in the
   2022 // .debug_line section.
   2023 
   2024 void
   2025 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
   2026 {
   2027   gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
   2028 	     static_cast<long>(off), static_cast<long>(len));
   2029 
   2030   gold_assert(len >= this->do_minimum_hole_size());
   2031 
   2032   unsigned char* const oview = of->get_output_view(off, len);
   2033   unsigned char* pov = oview;
   2034 
   2035   // Write header fields: unit_length, version, header_length,
   2036   // minimum_instruction_length, default_is_stmt, line_base, line_range,
   2037   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
   2038   // We set the header_length field to cover the entire hole, so the
   2039   // line number program is empty.
   2040   if (this->is_big_endian())
   2041     {
   2042       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
   2043       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
   2044       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
   2045     }
   2046   else
   2047     {
   2048       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
   2049       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
   2050       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
   2051     }
   2052   pov += 4 + 2 + 4;
   2053   *pov++ = 1;	// minimum_instruction_length
   2054   *pov++ = 0;	// default_is_stmt
   2055   *pov++ = 0;	// line_base
   2056   *pov++ = 5;	// line_range
   2057   *pov++ = 13;	// opcode_base
   2058   *pov++ = 0;	// standard_opcode_lengths[1]
   2059   *pov++ = 1;	// standard_opcode_lengths[2]
   2060   *pov++ = 1;	// standard_opcode_lengths[3]
   2061   *pov++ = 1;	// standard_opcode_lengths[4]
   2062   *pov++ = 1;	// standard_opcode_lengths[5]
   2063   *pov++ = 0;	// standard_opcode_lengths[6]
   2064   *pov++ = 0;	// standard_opcode_lengths[7]
   2065   *pov++ = 0;	// standard_opcode_lengths[8]
   2066   *pov++ = 1;	// standard_opcode_lengths[9]
   2067   *pov++ = 0;	// standard_opcode_lengths[10]
   2068   *pov++ = 0;	// standard_opcode_lengths[11]
   2069   *pov++ = 1;	// standard_opcode_lengths[12]
   2070   *pov++ = 0;	// include_directories (empty)
   2071   *pov++ = 0;	// filenames (empty)
   2072 
   2073   // Some consumers don't check the header_length field, and simply
   2074   // start reading the line number program immediately following the
   2075   // header.  For those consumers, we fill the remainder of the free
   2076   // space with DW_LNS_set_basic_block opcodes.  These are effectively
   2077   // no-ops: the resulting line table program will not create any rows.
   2078   if (pov < oview + len)
   2079     memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
   2080 
   2081   of->write_output_view(off, len, oview);
   2082 }
   2083 
   2084 // Output_section::Input_section methods.
   2085 
   2086 // Return the current data size.  For an input section we store the size here.
   2087 // For an Output_section_data, we have to ask it for the size.
   2088 
   2089 off_t
   2090 Output_section::Input_section::current_data_size() const
   2091 {
   2092   if (this->is_input_section())
   2093     return this->u1_.data_size;
   2094   else
   2095     {
   2096       this->u2_.posd->pre_finalize_data_size();
   2097       return this->u2_.posd->current_data_size();
   2098     }
   2099 }
   2100 
   2101 // Return the data size.  For an input section we store the size here.
   2102 // For an Output_section_data, we have to ask it for the size.
   2103 
   2104 off_t
   2105 Output_section::Input_section::data_size() const
   2106 {
   2107   if (this->is_input_section())
   2108     return this->u1_.data_size;
   2109   else
   2110     return this->u2_.posd->data_size();
   2111 }
   2112 
   2113 // Return the object for an input section.
   2114 
   2115 Relobj*
   2116 Output_section::Input_section::relobj() const
   2117 {
   2118   if (this->is_input_section())
   2119     return this->u2_.object;
   2120   else if (this->is_merge_section())
   2121     {
   2122       gold_assert(this->u2_.pomb->first_relobj() != NULL);
   2123       return this->u2_.pomb->first_relobj();
   2124     }
   2125   else if (this->is_relaxed_input_section())
   2126     return this->u2_.poris->relobj();
   2127   else
   2128     gold_unreachable();
   2129 }
   2130 
   2131 // Return the input section index for an input section.
   2132 
   2133 unsigned int
   2134 Output_section::Input_section::shndx() const
   2135 {
   2136   if (this->is_input_section())
   2137     return this->shndx_;
   2138   else if (this->is_merge_section())
   2139     {
   2140       gold_assert(this->u2_.pomb->first_relobj() != NULL);
   2141       return this->u2_.pomb->first_shndx();
   2142     }
   2143   else if (this->is_relaxed_input_section())
   2144     return this->u2_.poris->shndx();
   2145   else
   2146     gold_unreachable();
   2147 }
   2148 
   2149 // Set the address and file offset.
   2150 
   2151 void
   2152 Output_section::Input_section::set_address_and_file_offset(
   2153     uint64_t address,
   2154     off_t file_offset,
   2155     off_t section_file_offset)
   2156 {
   2157   if (this->is_input_section())
   2158     this->u2_.object->set_section_offset(this->shndx_,
   2159 					 file_offset - section_file_offset);
   2160   else
   2161     this->u2_.posd->set_address_and_file_offset(address, file_offset);
   2162 }
   2163 
   2164 // Reset the address and file offset.
   2165 
   2166 void
   2167 Output_section::Input_section::reset_address_and_file_offset()
   2168 {
   2169   if (!this->is_input_section())
   2170     this->u2_.posd->reset_address_and_file_offset();
   2171 }
   2172 
   2173 // Finalize the data size.
   2174 
   2175 void
   2176 Output_section::Input_section::finalize_data_size()
   2177 {
   2178   if (!this->is_input_section())
   2179     this->u2_.posd->finalize_data_size();
   2180 }
   2181 
   2182 // Try to turn an input offset into an output offset.  We want to
   2183 // return the output offset relative to the start of this
   2184 // Input_section in the output section.
   2185 
   2186 inline bool
   2187 Output_section::Input_section::output_offset(
   2188     const Relobj* object,
   2189     unsigned int shndx,
   2190     section_offset_type offset,
   2191     section_offset_type* poutput) const
   2192 {
   2193   if (!this->is_input_section())
   2194     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
   2195   else
   2196     {
   2197       if (this->shndx_ != shndx || this->u2_.object != object)
   2198 	return false;
   2199       *poutput = offset;
   2200       return true;
   2201     }
   2202 }
   2203 
   2204 // Return whether this is the merge section for the input section
   2205 // SHNDX in OBJECT.
   2206 
   2207 inline bool
   2208 Output_section::Input_section::is_merge_section_for(const Relobj* object,
   2209 						    unsigned int shndx) const
   2210 {
   2211   if (this->is_input_section())
   2212     return false;
   2213   return this->u2_.posd->is_merge_section_for(object, shndx);
   2214 }
   2215 
   2216 // Write out the data.  We don't have to do anything for an input
   2217 // section--they are handled via Object::relocate--but this is where
   2218 // we write out the data for an Output_section_data.
   2219 
   2220 void
   2221 Output_section::Input_section::write(Output_file* of)
   2222 {
   2223   if (!this->is_input_section())
   2224     this->u2_.posd->write(of);
   2225 }
   2226 
   2227 // Write the data to a buffer.  As for write(), we don't have to do
   2228 // anything for an input section.
   2229 
   2230 void
   2231 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
   2232 {
   2233   if (!this->is_input_section())
   2234     this->u2_.posd->write_to_buffer(buffer);
   2235 }
   2236 
   2237 // Print to a map file.
   2238 
   2239 void
   2240 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
   2241 {
   2242   switch (this->shndx_)
   2243     {
   2244     case OUTPUT_SECTION_CODE:
   2245     case MERGE_DATA_SECTION_CODE:
   2246     case MERGE_STRING_SECTION_CODE:
   2247       this->u2_.posd->print_to_mapfile(mapfile);
   2248       break;
   2249 
   2250     case RELAXED_INPUT_SECTION_CODE:
   2251       {
   2252 	Output_relaxed_input_section* relaxed_section =
   2253 	  this->relaxed_input_section();
   2254 	mapfile->print_input_section(relaxed_section->relobj(),
   2255 				     relaxed_section->shndx());
   2256       }
   2257       break;
   2258     default:
   2259       mapfile->print_input_section(this->u2_.object, this->shndx_);
   2260       break;
   2261     }
   2262 }
   2263 
   2264 // Output_section methods.
   2265 
   2266 // Construct an Output_section.  NAME will point into a Stringpool.
   2267 
   2268 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
   2269 			       elfcpp::Elf_Xword flags)
   2270   : name_(name),
   2271     addralign_(0),
   2272     entsize_(0),
   2273     load_address_(0),
   2274     link_section_(NULL),
   2275     link_(0),
   2276     info_section_(NULL),
   2277     info_symndx_(NULL),
   2278     info_(0),
   2279     type_(type),
   2280     flags_(flags),
   2281     order_(ORDER_INVALID),
   2282     out_shndx_(-1U),
   2283     symtab_index_(0),
   2284     dynsym_index_(0),
   2285     input_sections_(),
   2286     first_input_offset_(0),
   2287     fills_(),
   2288     postprocessing_buffer_(NULL),
   2289     needs_symtab_index_(false),
   2290     needs_dynsym_index_(false),
   2291     should_link_to_symtab_(false),
   2292     should_link_to_dynsym_(false),
   2293     after_input_sections_(false),
   2294     requires_postprocessing_(false),
   2295     found_in_sections_clause_(false),
   2296     has_load_address_(false),
   2297     info_uses_section_index_(false),
   2298     input_section_order_specified_(false),
   2299     may_sort_attached_input_sections_(false),
   2300     must_sort_attached_input_sections_(false),
   2301     attached_input_sections_are_sorted_(false),
   2302     is_relro_(false),
   2303     is_small_section_(false),
   2304     is_large_section_(false),
   2305     generate_code_fills_at_write_(false),
   2306     is_entsize_zero_(false),
   2307     section_offsets_need_adjustment_(false),
   2308     is_noload_(false),
   2309     always_keeps_input_sections_(false),
   2310     has_fixed_layout_(false),
   2311     is_patch_space_allowed_(false),
   2312     is_unique_segment_(false),
   2313     tls_offset_(0),
   2314     extra_segment_flags_(0),
   2315     segment_alignment_(0),
   2316     checkpoint_(NULL),
   2317     lookup_maps_(new Output_section_lookup_maps),
   2318     free_list_(),
   2319     free_space_fill_(NULL),
   2320     patch_space_(0)
   2321 {
   2322   // An unallocated section has no address.  Forcing this means that
   2323   // we don't need special treatment for symbols defined in debug
   2324   // sections.
   2325   if ((flags & elfcpp::SHF_ALLOC) == 0)
   2326     this->set_address(0);
   2327 }
   2328 
   2329 Output_section::~Output_section()
   2330 {
   2331   delete this->checkpoint_;
   2332 }
   2333 
   2334 // Set the entry size.
   2335 
   2336 void
   2337 Output_section::set_entsize(uint64_t v)
   2338 {
   2339   if (this->is_entsize_zero_)
   2340     ;
   2341   else if (this->entsize_ == 0)
   2342     this->entsize_ = v;
   2343   else if (this->entsize_ != v)
   2344     {
   2345       this->entsize_ = 0;
   2346       this->is_entsize_zero_ = 1;
   2347     }
   2348 }
   2349 
   2350 // Add the input section SHNDX, with header SHDR, named SECNAME, in
   2351 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
   2352 // relocation section which applies to this section, or 0 if none, or
   2353 // -1U if more than one.  Return the offset of the input section
   2354 // within the output section.  Return -1 if the input section will
   2355 // receive special handling.  In the normal case we don't always keep
   2356 // track of input sections for an Output_section.  Instead, each
   2357 // Object keeps track of the Output_section for each of its input
   2358 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
   2359 // track of input sections here; this is used when SECTIONS appears in
   2360 // a linker script.
   2361 
   2362 template<int size, bool big_endian>
   2363 off_t
   2364 Output_section::add_input_section(Layout* layout,
   2365 				  Sized_relobj_file<size, big_endian>* object,
   2366 				  unsigned int shndx,
   2367 				  const char* secname,
   2368 				  const elfcpp::Shdr<size, big_endian>& shdr,
   2369 				  unsigned int reloc_shndx,
   2370 				  bool have_sections_script)
   2371 {
   2372   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
   2373   if ((addralign & (addralign - 1)) != 0)
   2374     {
   2375       object->error(_("invalid alignment %lu for section \"%s\""),
   2376 		    static_cast<unsigned long>(addralign), secname);
   2377       addralign = 1;
   2378     }
   2379 
   2380   if (addralign > this->addralign_)
   2381     this->addralign_ = addralign;
   2382 
   2383   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
   2384   uint64_t entsize = shdr.get_sh_entsize();
   2385 
   2386   // .debug_str is a mergeable string section, but is not always so
   2387   // marked by compilers.  Mark manually here so we can optimize.
   2388   if (strcmp(secname, ".debug_str") == 0)
   2389     {
   2390       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
   2391       entsize = 1;
   2392     }
   2393 
   2394   this->update_flags_for_input_section(sh_flags);
   2395   this->set_entsize(entsize);
   2396 
   2397   // If this is a SHF_MERGE section, we pass all the input sections to
   2398   // a Output_data_merge.  We don't try to handle relocations for such
   2399   // a section.  We don't try to handle empty merge sections--they
   2400   // mess up the mappings, and are useless anyhow.
   2401   // FIXME: Need to handle merge sections during incremental update.
   2402   if ((sh_flags & elfcpp::SHF_MERGE) != 0
   2403       && reloc_shndx == 0
   2404       && shdr.get_sh_size() > 0
   2405       && !parameters->incremental())
   2406     {
   2407       // Keep information about merged input sections for rebuilding fast
   2408       // lookup maps if we have sections-script or we do relaxation.
   2409       bool keeps_input_sections = (this->always_keeps_input_sections_
   2410 				   || have_sections_script
   2411 				   || parameters->target().may_relax());
   2412 
   2413       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
   2414 					addralign, keeps_input_sections))
   2415 	{
   2416 	  // Tell the relocation routines that they need to call the
   2417 	  // output_offset method to determine the final address.
   2418 	  return -1;
   2419 	}
   2420     }
   2421 
   2422   section_size_type input_section_size = shdr.get_sh_size();
   2423   section_size_type uncompressed_size;
   2424   if (object->section_is_compressed(shndx, &uncompressed_size))
   2425     input_section_size = uncompressed_size;
   2426 
   2427   off_t offset_in_section;
   2428 
   2429   if (this->has_fixed_layout())
   2430     {
   2431       // For incremental updates, find a chunk of unused space in the section.
   2432       offset_in_section = this->free_list_.allocate(input_section_size,
   2433 						    addralign, 0);
   2434       if (offset_in_section == -1)
   2435 	gold_fallback(_("out of patch space in section %s; "
   2436 			"relink with --incremental-full"),
   2437 		      this->name());
   2438       return offset_in_section;
   2439     }
   2440 
   2441   offset_in_section = this->current_data_size_for_child();
   2442   off_t aligned_offset_in_section = align_address(offset_in_section,
   2443 						  addralign);
   2444   this->set_current_data_size_for_child(aligned_offset_in_section
   2445 					+ input_section_size);
   2446 
   2447   // Determine if we want to delay code-fill generation until the output
   2448   // section is written.  When the target is relaxing, we want to delay fill
   2449   // generating to avoid adjusting them during relaxation.  Also, if we are
   2450   // sorting input sections we must delay fill generation.
   2451   if (!this->generate_code_fills_at_write_
   2452       && !have_sections_script
   2453       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
   2454       && parameters->target().has_code_fill()
   2455       && (parameters->target().may_relax()
   2456 	  || layout->is_section_ordering_specified()))
   2457     {
   2458       gold_assert(this->fills_.empty());
   2459       this->generate_code_fills_at_write_ = true;
   2460     }
   2461 
   2462   if (aligned_offset_in_section > offset_in_section
   2463       && !this->generate_code_fills_at_write_
   2464       && !have_sections_script
   2465       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
   2466       && parameters->target().has_code_fill())
   2467     {
   2468       // We need to add some fill data.  Using fill_list_ when
   2469       // possible is an optimization, since we will often have fill
   2470       // sections without input sections.
   2471       off_t fill_len = aligned_offset_in_section - offset_in_section;
   2472       if (this->input_sections_.empty())
   2473 	this->fills_.push_back(Fill(offset_in_section, fill_len));
   2474       else
   2475 	{
   2476 	  std::string fill_data(parameters->target().code_fill(fill_len));
   2477 	  Output_data_const* odc = new Output_data_const(fill_data, 1);
   2478 	  this->input_sections_.push_back(Input_section(odc));
   2479 	}
   2480     }
   2481 
   2482   // We need to keep track of this section if we are already keeping
   2483   // track of sections, or if we are relaxing.  Also, if this is a
   2484   // section which requires sorting, or which may require sorting in
   2485   // the future, we keep track of the sections.  If the
   2486   // --section-ordering-file option is used to specify the order of
   2487   // sections, we need to keep track of sections.
   2488   if (this->always_keeps_input_sections_
   2489       || have_sections_script
   2490       || !this->input_sections_.empty()
   2491       || this->may_sort_attached_input_sections()
   2492       || this->must_sort_attached_input_sections()
   2493       || parameters->options().user_set_Map()
   2494       || parameters->target().may_relax()
   2495       || layout->is_section_ordering_specified())
   2496     {
   2497       Input_section isecn(object, shndx, input_section_size, addralign);
   2498       /* If section ordering is requested by specifying a ordering file,
   2499 	 using --section-ordering-file, match the section name with
   2500 	 a pattern.  */
   2501       if (parameters->options().section_ordering_file())
   2502 	{
   2503 	  unsigned int section_order_index =
   2504 	    layout->find_section_order_index(std::string(secname));
   2505 	  if (section_order_index != 0)
   2506 	    {
   2507 	      isecn.set_section_order_index(section_order_index);
   2508 	      this->set_input_section_order_specified();
   2509 	    }
   2510 	}
   2511       this->input_sections_.push_back(isecn);
   2512     }
   2513 
   2514   return aligned_offset_in_section;
   2515 }
   2516 
   2517 // Add arbitrary data to an output section.
   2518 
   2519 void
   2520 Output_section::add_output_section_data(Output_section_data* posd)
   2521 {
   2522   Input_section inp(posd);
   2523   this->add_output_section_data(&inp);
   2524 
   2525   if (posd->is_data_size_valid())
   2526     {
   2527       off_t offset_in_section;
   2528       if (this->has_fixed_layout())
   2529 	{
   2530 	  // For incremental updates, find a chunk of unused space.
   2531 	  offset_in_section = this->free_list_.allocate(posd->data_size(),
   2532 							posd->addralign(), 0);
   2533 	  if (offset_in_section == -1)
   2534 	    gold_fallback(_("out of patch space in section %s; "
   2535 			    "relink with --incremental-full"),
   2536 			  this->name());
   2537 	  // Finalize the address and offset now.
   2538 	  uint64_t addr = this->address();
   2539 	  off_t offset = this->offset();
   2540 	  posd->set_address_and_file_offset(addr + offset_in_section,
   2541 					    offset + offset_in_section);
   2542 	}
   2543       else
   2544 	{
   2545 	  offset_in_section = this->current_data_size_for_child();
   2546 	  off_t aligned_offset_in_section = align_address(offset_in_section,
   2547 							  posd->addralign());
   2548 	  this->set_current_data_size_for_child(aligned_offset_in_section
   2549 						+ posd->data_size());
   2550 	}
   2551     }
   2552   else if (this->has_fixed_layout())
   2553     {
   2554       // For incremental updates, arrange for the data to have a fixed layout.
   2555       // This will mean that additions to the data must be allocated from
   2556       // free space within the containing output section.
   2557       uint64_t addr = this->address();
   2558       posd->set_address(addr);
   2559       posd->set_file_offset(0);
   2560       // FIXME: This should eventually be unreachable.
   2561       // gold_unreachable();
   2562     }
   2563 }
   2564 
   2565 // Add a relaxed input section.
   2566 
   2567 void
   2568 Output_section::add_relaxed_input_section(Layout* layout,
   2569 					  Output_relaxed_input_section* poris,
   2570 					  const std::string& name)
   2571 {
   2572   Input_section inp(poris);
   2573 
   2574   // If the --section-ordering-file option is used to specify the order of
   2575   // sections, we need to keep track of sections.
   2576   if (layout->is_section_ordering_specified())
   2577     {
   2578       unsigned int section_order_index =
   2579 	layout->find_section_order_index(name);
   2580       if (section_order_index != 0)
   2581 	{
   2582 	  inp.set_section_order_index(section_order_index);
   2583 	  this->set_input_section_order_specified();
   2584 	}
   2585     }
   2586 
   2587   this->add_output_section_data(&inp);
   2588   if (this->lookup_maps_->is_valid())
   2589     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
   2590 						  poris->shndx(), poris);
   2591 
   2592   // For a relaxed section, we use the current data size.  Linker scripts
   2593   // get all the input sections, including relaxed one from an output
   2594   // section and add them back to the same output section to compute the
   2595   // output section size.  If we do not account for sizes of relaxed input
   2596   // sections, an output section would be incorrectly sized.
   2597   off_t offset_in_section = this->current_data_size_for_child();
   2598   off_t aligned_offset_in_section = align_address(offset_in_section,
   2599 						  poris->addralign());
   2600   this->set_current_data_size_for_child(aligned_offset_in_section
   2601 					+ poris->current_data_size());
   2602 }
   2603 
   2604 // Add arbitrary data to an output section by Input_section.
   2605 
   2606 void
   2607 Output_section::add_output_section_data(Input_section* inp)
   2608 {
   2609   if (this->input_sections_.empty())
   2610     this->first_input_offset_ = this->current_data_size_for_child();
   2611 
   2612   this->input_sections_.push_back(*inp);
   2613 
   2614   uint64_t addralign = inp->addralign();
   2615   if (addralign > this->addralign_)
   2616     this->addralign_ = addralign;
   2617 
   2618   inp->set_output_section(this);
   2619 }
   2620 
   2621 // Add a merge section to an output section.
   2622 
   2623 void
   2624 Output_section::add_output_merge_section(Output_section_data* posd,
   2625 					 bool is_string, uint64_t entsize)
   2626 {
   2627   Input_section inp(posd, is_string, entsize);
   2628   this->add_output_section_data(&inp);
   2629 }
   2630 
   2631 // Add an input section to a SHF_MERGE section.
   2632 
   2633 bool
   2634 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
   2635 					uint64_t flags, uint64_t entsize,
   2636 					uint64_t addralign,
   2637 					bool keeps_input_sections)
   2638 {
   2639   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
   2640 
   2641   // We cannot restore merged input section states.
   2642   gold_assert(this->checkpoint_ == NULL);
   2643 
   2644   // Look up merge sections by required properties.
   2645   // Currently, we only invalidate the lookup maps in script processing
   2646   // and relaxation.  We should not have done either when we reach here.
   2647   // So we assume that the lookup maps are valid to simply code.
   2648   gold_assert(this->lookup_maps_->is_valid());
   2649   Merge_section_properties msp(is_string, entsize, addralign);
   2650   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
   2651   bool is_new = false;
   2652   if (pomb != NULL)
   2653     {
   2654       gold_assert(pomb->is_string() == is_string
   2655 		  && pomb->entsize() == entsize
   2656 		  && pomb->addralign() == addralign);
   2657     }
   2658   else
   2659     {
   2660       // Create a new Output_merge_data or Output_merge_string_data.
   2661       if (!is_string)
   2662 	pomb = new Output_merge_data(entsize, addralign);
   2663       else
   2664 	{
   2665 	  switch (entsize)
   2666 	    {
   2667 	    case 1:
   2668 	      pomb = new Output_merge_string<char>(addralign);
   2669 	      break;
   2670 	    case 2:
   2671 	      pomb = new Output_merge_string<uint16_t>(addralign);
   2672 	      break;
   2673 	    case 4:
   2674 	      pomb = new Output_merge_string<uint32_t>(addralign);
   2675 	      break;
   2676 	    default:
   2677 	      return false;
   2678 	    }
   2679 	}
   2680       // If we need to do script processing or relaxation, we need to keep
   2681       // the original input sections to rebuild the fast lookup maps.
   2682       if (keeps_input_sections)
   2683 	pomb->set_keeps_input_sections();
   2684       is_new = true;
   2685     }
   2686 
   2687   if (pomb->add_input_section(object, shndx))
   2688     {
   2689       // Add new merge section to this output section and link merge
   2690       // section properties to new merge section in map.
   2691       if (is_new)
   2692 	{
   2693 	  this->add_output_merge_section(pomb, is_string, entsize);
   2694 	  this->lookup_maps_->add_merge_section(msp, pomb);
   2695 	}
   2696 
   2697       // Add input section to new merge section and link input section to new
   2698       // merge section in map.
   2699       this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
   2700       return true;
   2701     }
   2702   else
   2703     {
   2704       // If add_input_section failed, delete new merge section to avoid
   2705       // exporting empty merge sections in Output_section::get_input_section.
   2706       if (is_new)
   2707 	delete pomb;
   2708       return false;
   2709     }
   2710 }
   2711 
   2712 // Build a relaxation map to speed up relaxation of existing input sections.
   2713 // Look up to the first LIMIT elements in INPUT_SECTIONS.
   2714 
   2715 void
   2716 Output_section::build_relaxation_map(
   2717   const Input_section_list& input_sections,
   2718   size_t limit,
   2719   Relaxation_map* relaxation_map) const
   2720 {
   2721   for (size_t i = 0; i < limit; ++i)
   2722     {
   2723       const Input_section& is(input_sections[i]);
   2724       if (is.is_input_section() || is.is_relaxed_input_section())
   2725 	{
   2726 	  Section_id sid(is.relobj(), is.shndx());
   2727 	  (*relaxation_map)[sid] = i;
   2728 	}
   2729     }
   2730 }
   2731 
   2732 // Convert regular input sections in INPUT_SECTIONS into relaxed input
   2733 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
   2734 // indices of INPUT_SECTIONS.
   2735 
   2736 void
   2737 Output_section::convert_input_sections_in_list_to_relaxed_sections(
   2738   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
   2739   const Relaxation_map& map,
   2740   Input_section_list* input_sections)
   2741 {
   2742   for (size_t i = 0; i < relaxed_sections.size(); ++i)
   2743     {
   2744       Output_relaxed_input_section* poris = relaxed_sections[i];
   2745       Section_id sid(poris->relobj(), poris->shndx());
   2746       Relaxation_map::const_iterator p = map.find(sid);
   2747       gold_assert(p != map.end());
   2748       gold_assert((*input_sections)[p->second].is_input_section());
   2749 
   2750       // Remember section order index of original input section
   2751       // if it is set.  Copy it to the relaxed input section.
   2752       unsigned int soi =
   2753 	(*input_sections)[p->second].section_order_index();
   2754       (*input_sections)[p->second] = Input_section(poris);
   2755       (*input_sections)[p->second].set_section_order_index(soi);
   2756     }
   2757 }
   2758 
   2759 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
   2760 // is a vector of pointers to Output_relaxed_input_section or its derived
   2761 // classes.  The relaxed sections must correspond to existing input sections.
   2762 
   2763 void
   2764 Output_section::convert_input_sections_to_relaxed_sections(
   2765   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
   2766 {
   2767   gold_assert(parameters->target().may_relax());
   2768 
   2769   // We want to make sure that restore_states does not undo the effect of
   2770   // this.  If there is no checkpoint active, just search the current
   2771   // input section list and replace the sections there.  If there is
   2772   // a checkpoint, also replace the sections there.
   2773 
   2774   // By default, we look at the whole list.
   2775   size_t limit = this->input_sections_.size();
   2776 
   2777   if (this->checkpoint_ != NULL)
   2778     {
   2779       // Replace input sections with relaxed input section in the saved
   2780       // copy of the input section list.
   2781       if (this->checkpoint_->input_sections_saved())
   2782 	{
   2783 	  Relaxation_map map;
   2784 	  this->build_relaxation_map(
   2785 		    *(this->checkpoint_->input_sections()),
   2786 		    this->checkpoint_->input_sections()->size(),
   2787 		    &map);
   2788 	  this->convert_input_sections_in_list_to_relaxed_sections(
   2789 		    relaxed_sections,
   2790 		    map,
   2791 		    this->checkpoint_->input_sections());
   2792 	}
   2793       else
   2794 	{
   2795 	  // We have not copied the input section list yet.  Instead, just
   2796 	  // look at the portion that would be saved.
   2797 	  limit = this->checkpoint_->input_sections_size();
   2798 	}
   2799     }
   2800 
   2801   // Convert input sections in input_section_list.
   2802   Relaxation_map map;
   2803   this->build_relaxation_map(this->input_sections_, limit, &map);
   2804   this->convert_input_sections_in_list_to_relaxed_sections(
   2805 	    relaxed_sections,
   2806 	    map,
   2807 	    &this->input_sections_);
   2808 
   2809   // Update fast look-up map.
   2810   if (this->lookup_maps_->is_valid())
   2811     for (size_t i = 0; i < relaxed_sections.size(); ++i)
   2812       {
   2813 	Output_relaxed_input_section* poris = relaxed_sections[i];
   2814 	this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
   2815 						      poris->shndx(), poris);
   2816       }
   2817 }
   2818 
   2819 // Update the output section flags based on input section flags.
   2820 
   2821 void
   2822 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
   2823 {
   2824   // If we created the section with SHF_ALLOC clear, we set the
   2825   // address.  If we are now setting the SHF_ALLOC flag, we need to
   2826   // undo that.
   2827   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
   2828       && (flags & elfcpp::SHF_ALLOC) != 0)
   2829     this->mark_address_invalid();
   2830 
   2831   this->flags_ |= (flags
   2832 		   & (elfcpp::SHF_WRITE
   2833 		      | elfcpp::SHF_ALLOC
   2834 		      | elfcpp::SHF_EXECINSTR));
   2835 
   2836   if ((flags & elfcpp::SHF_MERGE) == 0)
   2837     this->flags_ &=~ elfcpp::SHF_MERGE;
   2838   else
   2839     {
   2840       if (this->current_data_size_for_child() == 0)
   2841 	this->flags_ |= elfcpp::SHF_MERGE;
   2842     }
   2843 
   2844   if ((flags & elfcpp::SHF_STRINGS) == 0)
   2845     this->flags_ &=~ elfcpp::SHF_STRINGS;
   2846   else
   2847     {
   2848       if (this->current_data_size_for_child() == 0)
   2849 	this->flags_ |= elfcpp::SHF_STRINGS;
   2850     }
   2851 }
   2852 
   2853 // Find the merge section into which an input section with index SHNDX in
   2854 // OBJECT has been added.  Return NULL if none found.
   2855 
   2856 Output_section_data*
   2857 Output_section::find_merge_section(const Relobj* object,
   2858 				   unsigned int shndx) const
   2859 {
   2860   if (!this->lookup_maps_->is_valid())
   2861     this->build_lookup_maps();
   2862   return this->lookup_maps_->find_merge_section(object, shndx);
   2863 }
   2864 
   2865 // Build the lookup maps for merge and relaxed sections.  This is needs
   2866 // to be declared as a const methods so that it is callable with a const
   2867 // Output_section pointer.  The method only updates states of the maps.
   2868 
   2869 void
   2870 Output_section::build_lookup_maps() const
   2871 {
   2872   this->lookup_maps_->clear();
   2873   for (Input_section_list::const_iterator p = this->input_sections_.begin();
   2874        p != this->input_sections_.end();
   2875        ++p)
   2876     {
   2877       if (p->is_merge_section())
   2878 	{
   2879 	  Output_merge_base* pomb = p->output_merge_base();
   2880 	  Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
   2881 				       pomb->addralign());
   2882 	  this->lookup_maps_->add_merge_section(msp, pomb);
   2883 	  for (Output_merge_base::Input_sections::const_iterator is =
   2884 		 pomb->input_sections_begin();
   2885 	       is != pomb->input_sections_end();
   2886 	       ++is)
   2887 	    {
   2888 	      const Const_section_id& csid = *is;
   2889 	    this->lookup_maps_->add_merge_input_section(csid.first,
   2890 							csid.second, pomb);
   2891 	    }
   2892 
   2893 	}
   2894       else if (p->is_relaxed_input_section())
   2895 	{
   2896 	  Output_relaxed_input_section* poris = p->relaxed_input_section();
   2897 	  this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
   2898 							poris->shndx(), poris);
   2899 	}
   2900     }
   2901 }
   2902 
   2903 // Find an relaxed input section corresponding to an input section
   2904 // in OBJECT with index SHNDX.
   2905 
   2906 const Output_relaxed_input_section*
   2907 Output_section::find_relaxed_input_section(const Relobj* object,
   2908 					   unsigned int shndx) const
   2909 {
   2910   if (!this->lookup_maps_->is_valid())
   2911     this->build_lookup_maps();
   2912   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
   2913 }
   2914 
   2915 // Given an address OFFSET relative to the start of input section
   2916 // SHNDX in OBJECT, return whether this address is being included in
   2917 // the final link.  This should only be called if SHNDX in OBJECT has
   2918 // a special mapping.
   2919 
   2920 bool
   2921 Output_section::is_input_address_mapped(const Relobj* object,
   2922 					unsigned int shndx,
   2923 					off_t offset) const
   2924 {
   2925   // Look at the Output_section_data_maps first.
   2926   const Output_section_data* posd = this->find_merge_section(object, shndx);
   2927   if (posd == NULL)
   2928     posd = this->find_relaxed_input_section(object, shndx);
   2929 
   2930   if (posd != NULL)
   2931     {
   2932       section_offset_type output_offset;
   2933       bool found = posd->output_offset(object, shndx, offset, &output_offset);
   2934       gold_assert(found);
   2935       return output_offset != -1;
   2936     }
   2937 
   2938   // Fall back to the slow look-up.
   2939   for (Input_section_list::const_iterator p = this->input_sections_.begin();
   2940        p != this->input_sections_.end();
   2941        ++p)
   2942     {
   2943       section_offset_type output_offset;
   2944       if (p->output_offset(object, shndx, offset, &output_offset))
   2945 	return output_offset != -1;
   2946     }
   2947 
   2948   // By default we assume that the address is mapped.  This should
   2949   // only be called after we have passed all sections to Layout.  At
   2950   // that point we should know what we are discarding.
   2951   return true;
   2952 }
   2953 
   2954 // Given an address OFFSET relative to the start of input section
   2955 // SHNDX in object OBJECT, return the output offset relative to the
   2956 // start of the input section in the output section.  This should only
   2957 // be called if SHNDX in OBJECT has a special mapping.
   2958 
   2959 section_offset_type
   2960 Output_section::output_offset(const Relobj* object, unsigned int shndx,
   2961 			      section_offset_type offset) const
   2962 {
   2963   // This can only be called meaningfully when we know the data size
   2964   // of this.
   2965   gold_assert(this->is_data_size_valid());
   2966 
   2967   // Look at the Output_section_data_maps first.
   2968   const Output_section_data* posd = this->find_merge_section(object, shndx);
   2969   if (posd == NULL)
   2970     posd = this->find_relaxed_input_section(object, shndx);
   2971   if (posd != NULL)
   2972     {
   2973       section_offset_type output_offset;
   2974       bool found = posd->output_offset(object, shndx, offset, &output_offset);
   2975       gold_assert(found);
   2976       return output_offset;
   2977     }
   2978 
   2979   // Fall back to the slow look-up.
   2980   for (Input_section_list::const_iterator p = this->input_sections_.begin();
   2981        p != this->input_sections_.end();
   2982        ++p)
   2983     {
   2984       section_offset_type output_offset;
   2985       if (p->output_offset(object, shndx, offset, &output_offset))
   2986 	return output_offset;
   2987     }
   2988   gold_unreachable();
   2989 }
   2990 
   2991 // Return the output virtual address of OFFSET relative to the start
   2992 // of input section SHNDX in object OBJECT.
   2993 
   2994 uint64_t
   2995 Output_section::output_address(const Relobj* object, unsigned int shndx,
   2996 			       off_t offset) const
   2997 {
   2998   uint64_t addr = this->address() + this->first_input_offset_;
   2999 
   3000   // Look at the Output_section_data_maps first.
   3001   const Output_section_data* posd = this->find_merge_section(object, shndx);
   3002   if (posd == NULL)
   3003     posd = this->find_relaxed_input_section(object, shndx);
   3004   if (posd != NULL && posd->is_address_valid())
   3005     {
   3006       section_offset_type output_offset;
   3007       bool found = posd->output_offset(object, shndx, offset, &output_offset);
   3008       gold_assert(found);
   3009       return posd->address() + output_offset;
   3010     }
   3011 
   3012   // Fall back to the slow look-up.
   3013   for (Input_section_list::const_iterator p = this->input_sections_.begin();
   3014        p != this->input_sections_.end();
   3015        ++p)
   3016     {
   3017       addr = align_address(addr, p->addralign());
   3018       section_offset_type output_offset;
   3019       if (p->output_offset(object, shndx, offset, &output_offset))
   3020 	{
   3021 	  if (output_offset == -1)
   3022 	    return -1ULL;
   3023 	  return addr + output_offset;
   3024 	}
   3025       addr += p->data_size();
   3026     }
   3027 
   3028   // If we get here, it means that we don't know the mapping for this
   3029   // input section.  This might happen in principle if
   3030   // add_input_section were called before add_output_section_data.
   3031   // But it should never actually happen.
   3032 
   3033   gold_unreachable();
   3034 }
   3035 
   3036 // Find the output address of the start of the merged section for
   3037 // input section SHNDX in object OBJECT.
   3038 
   3039 bool
   3040 Output_section::find_starting_output_address(const Relobj* object,
   3041 					     unsigned int shndx,
   3042 					     uint64_t* paddr) const
   3043 {
   3044   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
   3045   // Looking up the merge section map does not always work as we sometimes
   3046   // find a merge section without its address set.
   3047   uint64_t addr = this->address() + this->first_input_offset_;
   3048   for (Input_section_list::const_iterator p = this->input_sections_.begin();
   3049        p != this->input_sections_.end();
   3050        ++p)
   3051     {
   3052       addr = align_address(addr, p->addralign());
   3053 
   3054       // It would be nice if we could use the existing output_offset
   3055       // method to get the output offset of input offset 0.
   3056       // Unfortunately we don't know for sure that input offset 0 is
   3057       // mapped at all.
   3058       if (p->is_merge_section_for(object, shndx))
   3059 	{
   3060 	  *paddr = addr;
   3061 	  return true;
   3062 	}
   3063 
   3064       addr += p->data_size();
   3065     }
   3066 
   3067   // We couldn't find a merge output section for this input section.
   3068   return false;
   3069 }
   3070 
   3071 // Update the data size of an Output_section.
   3072 
   3073 void
   3074 Output_section::update_data_size()
   3075 {
   3076   if (this->input_sections_.empty())
   3077       return;
   3078 
   3079   if (this->must_sort_attached_input_sections()
   3080       || this->input_section_order_specified())
   3081     this->sort_attached_input_sections();
   3082 
   3083   off_t off = this->first_input_offset_;
   3084   for (Input_section_list::iterator p = this->input_sections_.begin();
   3085        p != this->input_sections_.end();
   3086        ++p)
   3087     {
   3088       off = align_address(off, p->addralign());
   3089       off += p->current_data_size();
   3090     }
   3091 
   3092   this->set_current_data_size_for_child(off);
   3093 }
   3094 
   3095 // Set the data size of an Output_section.  This is where we handle
   3096 // setting the addresses of any Output_section_data objects.
   3097 
   3098 void
   3099 Output_section::set_final_data_size()
   3100 {
   3101   off_t data_size;
   3102 
   3103   if (this->input_sections_.empty())
   3104     data_size = this->current_data_size_for_child();
   3105   else
   3106     {
   3107       if (this->must_sort_attached_input_sections()
   3108 	  || this->input_section_order_specified())
   3109 	this->sort_attached_input_sections();
   3110 
   3111       uint64_t address = this->address();
   3112       off_t startoff = this->offset();
   3113       off_t off = startoff + this->first_input_offset_;
   3114       for (Input_section_list::iterator p = this->input_sections_.begin();
   3115 	   p != this->input_sections_.end();
   3116 	   ++p)
   3117 	{
   3118 	  off = align_address(off, p->addralign());
   3119 	  p->set_address_and_file_offset(address + (off - startoff), off,
   3120 					 startoff);
   3121 	  off += p->data_size();
   3122 	}
   3123       data_size = off - startoff;
   3124     }
   3125 
   3126   // For full incremental links, we want to allocate some patch space
   3127   // in most sections for subsequent incremental updates.
   3128   if (this->is_patch_space_allowed_ && parameters->incremental_full())
   3129     {
   3130       double pct = parameters->options().incremental_patch();
   3131       size_t extra = static_cast<size_t>(data_size * pct);
   3132       if (this->free_space_fill_ != NULL
   3133 	  && this->free_space_fill_->minimum_hole_size() > extra)
   3134 	extra = this->free_space_fill_->minimum_hole_size();
   3135       off_t new_size = align_address(data_size + extra, this->addralign());
   3136       this->patch_space_ = new_size - data_size;
   3137       gold_debug(DEBUG_INCREMENTAL,
   3138 		 "set_final_data_size: %08lx + %08lx: section %s",
   3139 		 static_cast<long>(data_size),
   3140 		 static_cast<long>(this->patch_space_),
   3141 		 this->name());
   3142       data_size = new_size;
   3143     }
   3144 
   3145   this->set_data_size(data_size);
   3146 }
   3147 
   3148 // Reset the address and file offset.
   3149 
   3150 void
   3151 Output_section::do_reset_address_and_file_offset()
   3152 {
   3153   // An unallocated section has no address.  Forcing this means that
   3154   // we don't need special treatment for symbols defined in debug
   3155   // sections.  We do the same in the constructor.  This does not
   3156   // apply to NOLOAD sections though.
   3157   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
   3158      this->set_address(0);
   3159 
   3160   for (Input_section_list::iterator p = this->input_sections_.begin();
   3161        p != this->input_sections_.end();
   3162        ++p)
   3163     p->reset_address_and_file_offset();
   3164 
   3165   // Remove any patch space that was added in set_final_data_size.
   3166   if (this->patch_space_ > 0)
   3167     {
   3168       this->set_current_data_size_for_child(this->current_data_size_for_child()
   3169 					    - this->patch_space_);
   3170       this->patch_space_ = 0;
   3171     }
   3172 }
   3173 
   3174 // Return true if address and file offset have the values after reset.
   3175 
   3176 bool
   3177 Output_section::do_address_and_file_offset_have_reset_values() const
   3178 {
   3179   if (this->is_offset_valid())
   3180     return false;
   3181 
   3182   // An unallocated section has address 0 after its construction or a reset.
   3183   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
   3184     return this->is_address_valid() && this->address() == 0;
   3185   else
   3186     return !this->is_address_valid();
   3187 }
   3188 
   3189 // Set the TLS offset.  Called only for SHT_TLS sections.
   3190 
   3191 void
   3192 Output_section::do_set_tls_offset(uint64_t tls_base)
   3193 {
   3194   this->tls_offset_ = this->address() - tls_base;
   3195 }
   3196 
   3197 // In a few cases we need to sort the input sections attached to an
   3198 // output section.  This is used to implement the type of constructor
   3199 // priority ordering implemented by the GNU linker, in which the
   3200 // priority becomes part of the section name and the sections are
   3201 // sorted by name.  We only do this for an output section if we see an
   3202 // attached input section matching ".ctors.*", ".dtors.*",
   3203 // ".init_array.*" or ".fini_array.*".
   3204 
   3205 class Output_section::Input_section_sort_entry
   3206 {
   3207  public:
   3208   Input_section_sort_entry()
   3209     : input_section_(), index_(-1U), section_name_()
   3210   { }
   3211 
   3212   Input_section_sort_entry(const Input_section& input_section,
   3213 			   unsigned int index,
   3214 			   bool must_sort_attached_input_sections,
   3215 			   const char* output_section_name)
   3216     : input_section_(input_section), index_(index), section_name_()
   3217   {
   3218     if ((input_section.is_input_section()
   3219 	 || input_section.is_relaxed_input_section())
   3220 	&& must_sort_attached_input_sections)
   3221       {
   3222 	// This is only called single-threaded from Layout::finalize,
   3223 	// so it is OK to lock.  Unfortunately we have no way to pass
   3224 	// in a Task token.
   3225 	const Task* dummy_task = reinterpret_cast<const Task*>(-1);
   3226 	Object* obj = (input_section.is_input_section()
   3227 		       ? input_section.relobj()
   3228 		       : input_section.relaxed_input_section()->relobj());
   3229 	Task_lock_obj<Object> tl(dummy_task, obj);
   3230 
   3231 	// This is a slow operation, which should be cached in
   3232 	// Layout::layout if this becomes a speed problem.
   3233 	this->section_name_ = obj->section_name(input_section.shndx());
   3234       }
   3235     else if (input_section.is_output_section_data()
   3236     	     && must_sort_attached_input_sections)
   3237       {
   3238 	// For linker-generated sections, use the output section name.
   3239 	this->section_name_.assign(output_section_name);
   3240       }
   3241   }
   3242 
   3243   // Return the Input_section.
   3244   const Input_section&
   3245   input_section() const
   3246   {
   3247     gold_assert(this->index_ != -1U);
   3248     return this->input_section_;
   3249   }
   3250 
   3251   // The index of this entry in the original list.  This is used to
   3252   // make the sort stable.
   3253   unsigned int
   3254   index() const
   3255   {
   3256     gold_assert(this->index_ != -1U);
   3257     return this->index_;
   3258   }
   3259 
   3260   // The section name.
   3261   const std::string&
   3262   section_name() const
   3263   {
   3264     return this->section_name_;
   3265   }
   3266 
   3267   // Return true if the section name has a priority.  This is assumed
   3268   // to be true if it has a dot after the initial dot.
   3269   bool
   3270   has_priority() const
   3271   {
   3272     return this->section_name_.find('.', 1) != std::string::npos;
   3273   }
   3274 
   3275   // Return the priority.  Believe it or not, gcc encodes the priority
   3276   // differently for .ctors/.dtors and .init_array/.fini_array
   3277   // sections.
   3278   unsigned int
   3279   get_priority() const
   3280   {
   3281     bool is_ctors;
   3282     if (is_prefix_of(".ctors.", this->section_name_.c_str())
   3283 	|| is_prefix_of(".dtors.", this->section_name_.c_str()))
   3284       is_ctors = true;
   3285     else if (is_prefix_of(".init_array.", this->section_name_.c_str())
   3286 	     || is_prefix_of(".fini_array.", this->section_name_.c_str()))
   3287       is_ctors = false;
   3288     else
   3289       return 0;
   3290     char* end;
   3291     unsigned long prio = strtoul((this->section_name_.c_str()
   3292 				  + (is_ctors ? 7 : 12)),
   3293 				 &end, 10);
   3294     if (*end != '\0')
   3295       return 0;
   3296     else if (is_ctors)
   3297       return 65535 - prio;
   3298     else
   3299       return prio;
   3300   }
   3301 
   3302   // Return true if this an input file whose base name matches
   3303   // FILE_NAME.  The base name must have an extension of ".o", and
   3304   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
   3305   // This is to match crtbegin.o as well as crtbeginS.o without
   3306   // getting confused by other possibilities.  Overall matching the
   3307   // file name this way is a dreadful hack, but the GNU linker does it
   3308   // in order to better support gcc, and we need to be compatible.
   3309   bool
   3310   match_file_name(const char* file_name) const
   3311   {
   3312     if (this->input_section_.is_output_section_data())
   3313       return false;
   3314     return Layout::match_file_name(this->input_section_.relobj(), file_name);
   3315   }
   3316 
   3317   // Returns 1 if THIS should appear before S in section order, -1 if S
   3318   // appears before THIS and 0 if they are not comparable.
   3319   int
   3320   compare_section_ordering(const Input_section_sort_entry& s) const
   3321   {
   3322     unsigned int this_secn_index = this->input_section_.section_order_index();
   3323     unsigned int s_secn_index = s.input_section().section_order_index();
   3324     if (this_secn_index > 0 && s_secn_index > 0)
   3325       {
   3326 	if (this_secn_index < s_secn_index)
   3327 	  return 1;
   3328 	else if (this_secn_index > s_secn_index)
   3329 	  return -1;
   3330       }
   3331     return 0;
   3332   }
   3333 
   3334  private:
   3335   // The Input_section we are sorting.
   3336   Input_section input_section_;
   3337   // The index of this Input_section in the original list.
   3338   unsigned int index_;
   3339   // The section name if there is one.
   3340   std::string section_name_;
   3341 };
   3342 
   3343 // Return true if S1 should come before S2 in the output section.
   3344 
   3345 bool
   3346 Output_section::Input_section_sort_compare::operator()(
   3347     const Output_section::Input_section_sort_entry& s1,
   3348     const Output_section::Input_section_sort_entry& s2) const
   3349 {
   3350   // crtbegin.o must come first.
   3351   bool s1_begin = s1.match_file_name("crtbegin");
   3352   bool s2_begin = s2.match_file_name("crtbegin");
   3353   if (s1_begin || s2_begin)
   3354     {
   3355       if (!s1_begin)
   3356 	return false;
   3357       if (!s2_begin)
   3358 	return true;
   3359       return s1.index() < s2.index();
   3360     }
   3361 
   3362   // crtend.o must come last.
   3363   bool s1_end = s1.match_file_name("crtend");
   3364   bool s2_end = s2.match_file_name("crtend");
   3365   if (s1_end || s2_end)
   3366     {
   3367       if (!s1_end)
   3368 	return true;
   3369       if (!s2_end)
   3370 	return false;
   3371       return s1.index() < s2.index();
   3372     }
   3373 
   3374   // A section with a priority follows a section without a priority.
   3375   bool s1_has_priority = s1.has_priority();
   3376   bool s2_has_priority = s2.has_priority();
   3377   if (s1_has_priority && !s2_has_priority)
   3378     return false;
   3379   if (!s1_has_priority && s2_has_priority)
   3380     return true;
   3381 
   3382   // Check if a section order exists for these sections through a section
   3383   // ordering file.  If sequence_num is 0, an order does not exist.
   3384   int sequence_num = s1.compare_section_ordering(s2);
   3385   if (sequence_num != 0)
   3386     return sequence_num == 1;
   3387 
   3388   // Otherwise we sort by name.
   3389   int compare = s1.section_name().compare(s2.section_name());
   3390   if (compare != 0)
   3391     return compare < 0;
   3392 
   3393   // Otherwise we keep the input order.
   3394   return s1.index() < s2.index();
   3395 }
   3396 
   3397 // Return true if S1 should come before S2 in an .init_array or .fini_array
   3398 // output section.
   3399 
   3400 bool
   3401 Output_section::Input_section_sort_init_fini_compare::operator()(
   3402     const Output_section::Input_section_sort_entry& s1,
   3403     const Output_section::Input_section_sort_entry& s2) const
   3404 {
   3405   // A section without a priority follows a section with a priority.
   3406   // This is the reverse of .ctors and .dtors sections.
   3407   bool s1_has_priority = s1.has_priority();
   3408   bool s2_has_priority = s2.has_priority();
   3409   if (s1_has_priority && !s2_has_priority)
   3410     return true;
   3411   if (!s1_has_priority && s2_has_priority)
   3412     return false;
   3413 
   3414   // .ctors and .dtors sections without priority come after
   3415   // .init_array and .fini_array sections without priority.
   3416   if (!s1_has_priority
   3417       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
   3418       && s1.section_name() != s2.section_name())
   3419     return false;
   3420   if (!s2_has_priority
   3421       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
   3422       && s2.section_name() != s1.section_name())
   3423     return true;
   3424 
   3425   // Sort by priority if we can.
   3426   if (s1_has_priority)
   3427     {
   3428       unsigned int s1_prio = s1.get_priority();
   3429       unsigned int s2_prio = s2.get_priority();
   3430       if (s1_prio < s2_prio)
   3431 	return true;
   3432       else if (s1_prio > s2_prio)
   3433 	return false;
   3434     }
   3435 
   3436   // Check if a section order exists for these sections through a section
   3437   // ordering file.  If sequence_num is 0, an order does not exist.
   3438   int sequence_num = s1.compare_section_ordering(s2);
   3439   if (sequence_num != 0)
   3440     return sequence_num == 1;
   3441 
   3442   // Otherwise we sort by name.
   3443   int compare = s1.section_name().compare(s2.section_name());
   3444   if (compare != 0)
   3445     return compare < 0;
   3446 
   3447   // Otherwise we keep the input order.
   3448   return s1.index() < s2.index();
   3449 }
   3450 
   3451 // Return true if S1 should come before S2.  Sections that do not match
   3452 // any pattern in the section ordering file are placed ahead of the sections
   3453 // that match some pattern.
   3454 
   3455 bool
   3456 Output_section::Input_section_sort_section_order_index_compare::operator()(
   3457     const Output_section::Input_section_sort_entry& s1,
   3458     const Output_section::Input_section_sort_entry& s2) const
   3459 {
   3460   unsigned int s1_secn_index = s1.input_section().section_order_index();
   3461   unsigned int s2_secn_index = s2.input_section().section_order_index();
   3462 
   3463   // Keep input order if section ordering cannot determine order.
   3464   if (s1_secn_index == s2_secn_index)
   3465     return s1.index() < s2.index();
   3466 
   3467   return s1_secn_index < s2_secn_index;
   3468 }
   3469 
   3470 // Return true if S1 should come before S2.  This is the sort comparison
   3471 // function for .text to sort sections with prefixes
   3472 // .text.{unlikely,exit,startup,hot} before other sections.
   3473 
   3474 bool
   3475 Output_section::Input_section_sort_section_prefix_special_ordering_compare
   3476   ::operator()(
   3477     const Output_section::Input_section_sort_entry& s1,
   3478     const Output_section::Input_section_sort_entry& s2) const
   3479 {
   3480   // Some input section names have special ordering requirements.
   3481   int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
   3482   int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
   3483   if (o1 != o2)
   3484     {
   3485       if (o1 < 0)
   3486 	return false;
   3487       else if (o2 < 0)
   3488 	return true;
   3489       else
   3490 	return o1 < o2;
   3491     }
   3492 
   3493   // Keep input order otherwise.
   3494   return s1.index() < s2.index();
   3495 }
   3496 
   3497 // Return true if S1 should come before S2.  This is the sort comparison
   3498 // function for sections to sort them by name.
   3499 
   3500 bool
   3501 Output_section::Input_section_sort_section_name_compare
   3502   ::operator()(
   3503     const Output_section::Input_section_sort_entry& s1,
   3504     const Output_section::Input_section_sort_entry& s2) const
   3505 {
   3506   // We sort by name.
   3507   int compare = s1.section_name().compare(s2.section_name());
   3508   if (compare != 0)
   3509     return compare < 0;
   3510 
   3511   // Keep input order otherwise.
   3512   return s1.index() < s2.index();
   3513 }
   3514 
   3515 // This updates the section order index of input sections according to the
   3516 // the order specified in the mapping from Section id to order index.
   3517 
   3518 void
   3519 Output_section::update_section_layout(
   3520   const Section_layout_order* order_map)
   3521 {
   3522   for (Input_section_list::iterator p = this->input_sections_.begin();
   3523        p != this->input_sections_.end();
   3524        ++p)
   3525     {
   3526       if (p->is_input_section()
   3527 	  || p->is_relaxed_input_section())
   3528 	{
   3529 	  Object* obj = (p->is_input_section()
   3530 			 ? p->relobj()
   3531 			 : p->relaxed_input_section()->relobj());
   3532 	  unsigned int shndx = p->shndx();
   3533 	  Section_layout_order::const_iterator it
   3534 	    = order_map->find(Section_id(obj, shndx));
   3535 	  if (it == order_map->end())
   3536 	    continue;
   3537 	  unsigned int section_order_index = it->second;
   3538 	  if (section_order_index != 0)
   3539 	    {
   3540 	      p->set_section_order_index(section_order_index);
   3541 	      this->set_input_section_order_specified();
   3542 	    }
   3543 	}
   3544     }
   3545 }
   3546 
   3547 // Sort the input sections attached to an output section.
   3548 
   3549 void
   3550 Output_section::sort_attached_input_sections()
   3551 {
   3552   if (this->attached_input_sections_are_sorted_)
   3553     return;
   3554 
   3555   if (this->checkpoint_ != NULL
   3556       && !this->checkpoint_->input_sections_saved())
   3557     this->checkpoint_->save_input_sections();
   3558 
   3559   // The only thing we know about an input section is the object and
   3560   // the section index.  We need the section name.  Recomputing this
   3561   // is slow but this is an unusual case.  If this becomes a speed
   3562   // problem we can cache the names as required in Layout::layout.
   3563 
   3564   // We start by building a larger vector holding a copy of each
   3565   // Input_section, plus its current index in the list and its name.
   3566   std::vector<Input_section_sort_entry> sort_list;
   3567 
   3568   unsigned int i = 0;
   3569   for (Input_section_list::iterator p = this->input_sections_.begin();
   3570        p != this->input_sections_.end();
   3571        ++p, ++i)
   3572       sort_list.push_back(Input_section_sort_entry(*p, i,
   3573 			    this->must_sort_attached_input_sections(),
   3574 			    this->name()));
   3575 
   3576   // Sort the input sections.
   3577   if (this->must_sort_attached_input_sections())
   3578     {
   3579       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
   3580 	  || this->type() == elfcpp::SHT_INIT_ARRAY
   3581 	  || this->type() == elfcpp::SHT_FINI_ARRAY)
   3582 	std::sort(sort_list.begin(), sort_list.end(),
   3583 		  Input_section_sort_init_fini_compare());
   3584       else if (strcmp(parameters->options().sort_section(), "name") == 0)
   3585 	std::sort(sort_list.begin(), sort_list.end(),
   3586 		  Input_section_sort_section_name_compare());
   3587       else if (strcmp(this->name(), ".text") == 0)
   3588 	std::sort(sort_list.begin(), sort_list.end(),
   3589 		  Input_section_sort_section_prefix_special_ordering_compare());
   3590       else
   3591 	std::sort(sort_list.begin(), sort_list.end(),
   3592 		  Input_section_sort_compare());
   3593     }
   3594   else
   3595     {
   3596       gold_assert(this->input_section_order_specified());
   3597       std::sort(sort_list.begin(), sort_list.end(),
   3598 		Input_section_sort_section_order_index_compare());
   3599     }
   3600 
   3601   // Copy the sorted input sections back to our list.
   3602   this->input_sections_.clear();
   3603   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
   3604        p != sort_list.end();
   3605        ++p)
   3606     this->input_sections_.push_back(p->input_section());
   3607   sort_list.clear();
   3608 
   3609   // Remember that we sorted the input sections, since we might get
   3610   // called again.
   3611   this->attached_input_sections_are_sorted_ = true;
   3612 }
   3613 
   3614 // Write the section header to *OSHDR.
   3615 
   3616 template<int size, bool big_endian>
   3617 void
   3618 Output_section::write_header(const Layout* layout,
   3619 			     const Stringpool* secnamepool,
   3620 			     elfcpp::Shdr_write<size, big_endian>* oshdr) const
   3621 {
   3622   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
   3623   oshdr->put_sh_type(this->type_);
   3624 
   3625   elfcpp::Elf_Xword flags = this->flags_;
   3626   if (this->info_section_ != NULL && this->info_uses_section_index_)
   3627     flags |= elfcpp::SHF_INFO_LINK;
   3628   oshdr->put_sh_flags(flags);
   3629 
   3630   oshdr->put_sh_addr(this->address());
   3631   oshdr->put_sh_offset(this->offset());
   3632   oshdr->put_sh_size(this->data_size());
   3633   if (this->link_section_ != NULL)
   3634     oshdr->put_sh_link(this->link_section_->out_shndx());
   3635   else if (this->should_link_to_symtab_)
   3636     oshdr->put_sh_link(layout->symtab_section_shndx());
   3637   else if (this->should_link_to_dynsym_)
   3638     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
   3639   else
   3640     oshdr->put_sh_link(this->link_);
   3641 
   3642   elfcpp::Elf_Word info;
   3643   if (this->info_section_ != NULL)
   3644     {
   3645       if (this->info_uses_section_index_)
   3646 	info = this->info_section_->out_shndx();
   3647       else
   3648 	info = this->info_section_->symtab_index();
   3649     }
   3650   else if (this->info_symndx_ != NULL)
   3651     info = this->info_symndx_->symtab_index();
   3652   else
   3653     info = this->info_;
   3654   oshdr->put_sh_info(info);
   3655 
   3656   oshdr->put_sh_addralign(this->addralign_);
   3657   oshdr->put_sh_entsize(this->entsize_);
   3658 }
   3659 
   3660 // Write out the data.  For input sections the data is written out by
   3661 // Object::relocate, but we have to handle Output_section_data objects
   3662 // here.
   3663 
   3664 void
   3665 Output_section::do_write(Output_file* of)
   3666 {
   3667   gold_assert(!this->requires_postprocessing());
   3668 
   3669   // If the target performs relaxation, we delay filler generation until now.
   3670   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
   3671 
   3672   off_t output_section_file_offset = this->offset();
   3673   for (Fill_list::iterator p = this->fills_.begin();
   3674        p != this->fills_.end();
   3675        ++p)
   3676     {
   3677       std::string fill_data(parameters->target().code_fill(p->length()));
   3678       of->write(output_section_file_offset + p->section_offset(),
   3679 		fill_data.data(), fill_data.size());
   3680     }
   3681 
   3682   off_t off = this->offset() + this->first_input_offset_;
   3683   for (Input_section_list::iterator p = this->input_sections_.begin();
   3684        p != this->input_sections_.end();
   3685        ++p)
   3686     {
   3687       off_t aligned_off = align_address(off, p->addralign());
   3688       if (this->generate_code_fills_at_write_ && (off != aligned_off))
   3689 	{
   3690 	  size_t fill_len = aligned_off - off;
   3691 	  std::string fill_data(parameters->target().code_fill(fill_len));
   3692 	  of->write(off, fill_data.data(), fill_data.size());
   3693 	}
   3694 
   3695       p->write(of);
   3696       off = aligned_off + p->data_size();
   3697     }
   3698 
   3699   // For incremental links, fill in unused chunks in debug sections
   3700   // with dummy compilation unit headers.
   3701   if (this->free_space_fill_ != NULL)
   3702     {
   3703       for (Free_list::Const_iterator p = this->free_list_.begin();
   3704 	   p != this->free_list_.end();
   3705 	   ++p)
   3706 	{
   3707 	  off_t off = p->start_;
   3708 	  size_t len = p->end_ - off;
   3709 	  this->free_space_fill_->write(of, this->offset() + off, len);
   3710 	}
   3711       if (this->patch_space_ > 0)
   3712 	{
   3713 	  off_t off = this->current_data_size_for_child() - this->patch_space_;
   3714 	  this->free_space_fill_->write(of, this->offset() + off,
   3715 					this->patch_space_);
   3716 	}
   3717     }
   3718 }
   3719 
   3720 // If a section requires postprocessing, create the buffer to use.
   3721 
   3722 void
   3723 Output_section::create_postprocessing_buffer()
   3724 {
   3725   gold_assert(this->requires_postprocessing());
   3726 
   3727   if (this->postprocessing_buffer_ != NULL)
   3728     return;
   3729 
   3730   if (!this->input_sections_.empty())
   3731     {
   3732       off_t off = this->first_input_offset_;
   3733       for (Input_section_list::iterator p = this->input_sections_.begin();
   3734 	   p != this->input_sections_.end();
   3735 	   ++p)
   3736 	{
   3737 	  off = align_address(off, p->addralign());
   3738 	  p->finalize_data_size();
   3739 	  off += p->data_size();
   3740 	}
   3741       this->set_current_data_size_for_child(off);
   3742     }
   3743 
   3744   off_t buffer_size = this->current_data_size_for_child();
   3745   this->postprocessing_buffer_ = new unsigned char[buffer_size];
   3746 }
   3747 
   3748 // Write all the data of an Output_section into the postprocessing
   3749 // buffer.  This is used for sections which require postprocessing,
   3750 // such as compression.  Input sections are handled by
   3751 // Object::Relocate.
   3752 
   3753 void
   3754 Output_section::write_to_postprocessing_buffer()
   3755 {
   3756   gold_assert(this->requires_postprocessing());
   3757 
   3758   // If the target performs relaxation, we delay filler generation until now.
   3759   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
   3760 
   3761   unsigned char* buffer = this->postprocessing_buffer();
   3762   for (Fill_list::iterator p = this->fills_.begin();
   3763        p != this->fills_.end();
   3764        ++p)
   3765     {
   3766       std::string fill_data(parameters->target().code_fill(p->length()));
   3767       memcpy(buffer + p->section_offset(), fill_data.data(),
   3768 	     fill_data.size());
   3769     }
   3770 
   3771   off_t off = this->first_input_offset_;
   3772   for (Input_section_list::iterator p = this->input_sections_.begin();
   3773        p != this->input_sections_.end();
   3774        ++p)
   3775     {
   3776       off_t aligned_off = align_address(off, p->addralign());
   3777       if (this->generate_code_fills_at_write_ && (off != aligned_off))
   3778 	{
   3779 	  size_t fill_len = aligned_off - off;
   3780 	  std::string fill_data(parameters->target().code_fill(fill_len));
   3781 	  memcpy(buffer + off, fill_data.data(), fill_data.size());
   3782 	}
   3783 
   3784       p->write_to_buffer(buffer + aligned_off);
   3785       off = aligned_off + p->data_size();
   3786     }
   3787 }
   3788 
   3789 // Get the input sections for linker script processing.  We leave
   3790 // behind the Output_section_data entries.  Note that this may be
   3791 // slightly incorrect for merge sections.  We will leave them behind,
   3792 // but it is possible that the script says that they should follow
   3793 // some other input sections, as in:
   3794 //    .rodata { *(.rodata) *(.rodata.cst*) }
   3795 // For that matter, we don't handle this correctly:
   3796 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
   3797 // With luck this will never matter.
   3798 
   3799 uint64_t
   3800 Output_section::get_input_sections(
   3801     uint64_t address,
   3802     const std::string& fill,
   3803     std::list<Input_section>* input_sections)
   3804 {
   3805   if (this->checkpoint_ != NULL
   3806       && !this->checkpoint_->input_sections_saved())
   3807     this->checkpoint_->save_input_sections();
   3808 
   3809   // Invalidate fast look-up maps.
   3810   this->lookup_maps_->invalidate();
   3811 
   3812   uint64_t orig_address = address;
   3813 
   3814   address = align_address(address, this->addralign());
   3815 
   3816   Input_section_list remaining;
   3817   for (Input_section_list::iterator p = this->input_sections_.begin();
   3818        p != this->input_sections_.end();
   3819        ++p)
   3820     {
   3821       if (p->is_input_section()
   3822 	  || p->is_relaxed_input_section()
   3823 	  || p->is_merge_section())
   3824 	input_sections->push_back(*p);
   3825       else
   3826 	{
   3827 	  uint64_t aligned_address = align_address(address, p->addralign());
   3828 	  if (aligned_address != address && !fill.empty())
   3829 	    {
   3830 	      section_size_type length =
   3831 		convert_to_section_size_type(aligned_address - address);
   3832 	      std::string this_fill;
   3833 	      this_fill.reserve(length);
   3834 	      while (this_fill.length() + fill.length() <= length)
   3835 		this_fill += fill;
   3836 	      if (this_fill.length() < length)
   3837 		this_fill.append(fill, 0, length - this_fill.length());
   3838 
   3839 	      Output_section_data* posd = new Output_data_const(this_fill, 0);
   3840 	      remaining.push_back(Input_section(posd));
   3841 	    }
   3842 	  address = aligned_address;
   3843 
   3844 	  remaining.push_back(*p);
   3845 
   3846 	  p->finalize_data_size();
   3847 	  address += p->data_size();
   3848 	}
   3849     }
   3850 
   3851   this->input_sections_.swap(remaining);
   3852   this->first_input_offset_ = 0;
   3853 
   3854   uint64_t data_size = address - orig_address;
   3855   this->set_current_data_size_for_child(data_size);
   3856   return data_size;
   3857 }
   3858 
   3859 // Add a script input section.  SIS is an Output_section::Input_section,
   3860 // which can be either a plain input section or a special input section like
   3861 // a relaxed input section.  For a special input section, its size must be
   3862 // finalized.
   3863 
   3864 void
   3865 Output_section::add_script_input_section(const Input_section& sis)
   3866 {
   3867   uint64_t data_size = sis.data_size();
   3868   uint64_t addralign = sis.addralign();
   3869   if (addralign > this->addralign_)
   3870     this->addralign_ = addralign;
   3871 
   3872   off_t offset_in_section = this->current_data_size_for_child();
   3873   off_t aligned_offset_in_section = align_address(offset_in_section,
   3874 						  addralign);
   3875 
   3876   this->set_current_data_size_for_child(aligned_offset_in_section
   3877 					+ data_size);
   3878 
   3879   this->input_sections_.push_back(sis);
   3880 
   3881   // Update fast lookup maps if necessary.
   3882   if (this->lookup_maps_->is_valid())
   3883     {
   3884       if (sis.is_merge_section())
   3885 	{
   3886 	  Output_merge_base* pomb = sis.output_merge_base();
   3887 	  Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
   3888 				       pomb->addralign());
   3889 	  this->lookup_maps_->add_merge_section(msp, pomb);
   3890 	  for (Output_merge_base::Input_sections::const_iterator p =
   3891 		 pomb->input_sections_begin();
   3892 	       p != pomb->input_sections_end();
   3893 	       ++p)
   3894 	    this->lookup_maps_->add_merge_input_section(p->first, p->second,
   3895 							pomb);
   3896 	}
   3897       else if (sis.is_relaxed_input_section())
   3898 	{
   3899 	  Output_relaxed_input_section* poris = sis.relaxed_input_section();
   3900 	  this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
   3901 							poris->shndx(), poris);
   3902 	}
   3903     }
   3904 }
   3905 
   3906 // Save states for relaxation.
   3907 
   3908 void
   3909 Output_section::save_states()
   3910 {
   3911   gold_assert(this->checkpoint_ == NULL);
   3912   Checkpoint_output_section* checkpoint =
   3913     new Checkpoint_output_section(this->addralign_, this->flags_,
   3914 				  this->input_sections_,
   3915 				  this->first_input_offset_,
   3916 				  this->attached_input_sections_are_sorted_);
   3917   this->checkpoint_ = checkpoint;
   3918   gold_assert(this->fills_.empty());
   3919 }
   3920 
   3921 void
   3922 Output_section::discard_states()
   3923 {
   3924   gold_assert(this->checkpoint_ != NULL);
   3925   delete this->checkpoint_;
   3926   this->checkpoint_ = NULL;
   3927   gold_assert(this->fills_.empty());
   3928 
   3929   // Simply invalidate the fast lookup maps since we do not keep
   3930   // track of them.
   3931   this->lookup_maps_->invalidate();
   3932 }
   3933 
   3934 void
   3935 Output_section::restore_states()
   3936 {
   3937   gold_assert(this->checkpoint_ != NULL);
   3938   Checkpoint_output_section* checkpoint = this->checkpoint_;
   3939 
   3940   this->addralign_ = checkpoint->addralign();
   3941   this->flags_ = checkpoint->flags();
   3942   this->first_input_offset_ = checkpoint->first_input_offset();
   3943 
   3944   if (!checkpoint->input_sections_saved())
   3945     {
   3946       // If we have not copied the input sections, just resize it.
   3947       size_t old_size = checkpoint->input_sections_size();
   3948       gold_assert(this->input_sections_.size() >= old_size);
   3949       this->input_sections_.resize(old_size);
   3950     }
   3951   else
   3952     {
   3953       // We need to copy the whole list.  This is not efficient for
   3954       // extremely large output with hundreads of thousands of input
   3955       // objects.  We may need to re-think how we should pass sections
   3956       // to scripts.
   3957       this->input_sections_ = *checkpoint->input_sections();
   3958     }
   3959 
   3960   this->attached_input_sections_are_sorted_ =
   3961     checkpoint->attached_input_sections_are_sorted();
   3962 
   3963   // Simply invalidate the fast lookup maps since we do not keep
   3964   // track of them.
   3965   this->lookup_maps_->invalidate();
   3966 }
   3967 
   3968 // Update the section offsets of input sections in this.  This is required if
   3969 // relaxation causes some input sections to change sizes.
   3970 
   3971 void
   3972 Output_section::adjust_section_offsets()
   3973 {
   3974   if (!this->section_offsets_need_adjustment_)
   3975     return;
   3976 
   3977   off_t off = 0;
   3978   for (Input_section_list::iterator p = this->input_sections_.begin();
   3979        p != this->input_sections_.end();
   3980        ++p)
   3981     {
   3982       off = align_address(off, p->addralign());
   3983       if (p->is_input_section())
   3984 	p->relobj()->set_section_offset(p->shndx(), off);
   3985       off += p->data_size();
   3986     }
   3987 
   3988   this->section_offsets_need_adjustment_ = false;
   3989 }
   3990 
   3991 // Print to the map file.
   3992 
   3993 void
   3994 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
   3995 {
   3996   mapfile->print_output_section(this);
   3997 
   3998   for (Input_section_list::const_iterator p = this->input_sections_.begin();
   3999        p != this->input_sections_.end();
   4000        ++p)
   4001     p->print_to_mapfile(mapfile);
   4002 }
   4003 
   4004 // Print stats for merge sections to stderr.
   4005 
   4006 void
   4007 Output_section::print_merge_stats()
   4008 {
   4009   Input_section_list::iterator p;
   4010   for (p = this->input_sections_.begin();
   4011        p != this->input_sections_.end();
   4012        ++p)
   4013     p->print_merge_stats(this->name_);
   4014 }
   4015 
   4016 // Set a fixed layout for the section.  Used for incremental update links.
   4017 
   4018 void
   4019 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
   4020 				 off_t sh_size, uint64_t sh_addralign)
   4021 {
   4022   this->addralign_ = sh_addralign;
   4023   this->set_current_data_size(sh_size);
   4024   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
   4025     this->set_address(sh_addr);
   4026   this->set_file_offset(sh_offset);
   4027   this->finalize_data_size();
   4028   this->free_list_.init(sh_size, false);
   4029   this->has_fixed_layout_ = true;
   4030 }
   4031 
   4032 // Reserve space within the fixed layout for the section.  Used for
   4033 // incremental update links.
   4034 
   4035 void
   4036 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
   4037 {
   4038   this->free_list_.remove(sh_offset, sh_offset + sh_size);
   4039 }
   4040 
   4041 // Allocate space from the free list for the section.  Used for
   4042 // incremental update links.
   4043 
   4044 off_t
   4045 Output_section::allocate(off_t len, uint64_t addralign)
   4046 {
   4047   return this->free_list_.allocate(len, addralign, 0);
   4048 }
   4049 
   4050 // Output segment methods.
   4051 
   4052 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
   4053   : vaddr_(0),
   4054     paddr_(0),
   4055     memsz_(0),
   4056     max_align_(0),
   4057     min_p_align_(0),
   4058     offset_(0),
   4059     filesz_(0),
   4060     type_(type),
   4061     flags_(flags),
   4062     is_max_align_known_(false),
   4063     are_addresses_set_(false),
   4064     is_large_data_segment_(false),
   4065     is_unique_segment_(false)
   4066 {
   4067   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
   4068   // the flags.
   4069   if (type == elfcpp::PT_TLS)
   4070     this->flags_ = elfcpp::PF_R;
   4071 }
   4072 
   4073 // Add an Output_section to a PT_LOAD Output_segment.
   4074 
   4075 void
   4076 Output_segment::add_output_section_to_load(Layout* layout,
   4077 					   Output_section* os,
   4078 					   elfcpp::Elf_Word seg_flags)
   4079 {
   4080   gold_assert(this->type() == elfcpp::PT_LOAD);
   4081   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
   4082   gold_assert(!this->is_max_align_known_);
   4083   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
   4084 
   4085   this->update_flags_for_output_section(seg_flags);
   4086 
   4087   // We don't want to change the ordering if we have a linker script
   4088   // with a SECTIONS clause.
   4089   Output_section_order order = os->order();
   4090   if (layout->script_options()->saw_sections_clause())
   4091     order = static_cast<Output_section_order>(0);
   4092   else
   4093     gold_assert(order != ORDER_INVALID);
   4094 
   4095   this->output_lists_[order].push_back(os);
   4096 }
   4097 
   4098 // Add an Output_section to a non-PT_LOAD Output_segment.
   4099 
   4100 void
   4101 Output_segment::add_output_section_to_nonload(Output_section* os,
   4102 					      elfcpp::Elf_Word seg_flags)
   4103 {
   4104   gold_assert(this->type() != elfcpp::PT_LOAD);
   4105   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
   4106   gold_assert(!this->is_max_align_known_);
   4107 
   4108   this->update_flags_for_output_section(seg_flags);
   4109 
   4110   this->output_lists_[0].push_back(os);
   4111 }
   4112 
   4113 // Remove an Output_section from this segment.  It is an error if it
   4114 // is not present.
   4115 
   4116 void
   4117 Output_segment::remove_output_section(Output_section* os)
   4118 {
   4119   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4120     {
   4121       Output_data_list* pdl = &this->output_lists_[i];
   4122       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
   4123 	{
   4124 	  if (*p == os)
   4125 	    {
   4126 	      pdl->erase(p);
   4127 	      return;
   4128 	    }
   4129 	}
   4130     }
   4131   gold_unreachable();
   4132 }
   4133 
   4134 // Add an Output_data (which need not be an Output_section) to the
   4135 // start of a segment.
   4136 
   4137 void
   4138 Output_segment::add_initial_output_data(Output_data* od)
   4139 {
   4140   gold_assert(!this->is_max_align_known_);
   4141   Output_data_list::iterator p = this->output_lists_[0].begin();
   4142   this->output_lists_[0].insert(p, od);
   4143 }
   4144 
   4145 // Return true if this segment has any sections which hold actual
   4146 // data, rather than being a BSS section.
   4147 
   4148 bool
   4149 Output_segment::has_any_data_sections() const
   4150 {
   4151   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4152     {
   4153       const Output_data_list* pdl = &this->output_lists_[i];
   4154       for (Output_data_list::const_iterator p = pdl->begin();
   4155 	   p != pdl->end();
   4156 	   ++p)
   4157 	{
   4158 	  if (!(*p)->is_section())
   4159 	    return true;
   4160 	  if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
   4161 	    return true;
   4162 	}
   4163     }
   4164   return false;
   4165 }
   4166 
   4167 // Return whether the first data section (not counting TLS sections)
   4168 // is a relro section.
   4169 
   4170 bool
   4171 Output_segment::is_first_section_relro() const
   4172 {
   4173   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4174     {
   4175       if (i == static_cast<int>(ORDER_TLS_DATA)
   4176 	  || i == static_cast<int>(ORDER_TLS_BSS))
   4177 	continue;
   4178       const Output_data_list* pdl = &this->output_lists_[i];
   4179       if (!pdl->empty())
   4180 	{
   4181 	  Output_data* p = pdl->front();
   4182 	  return p->is_section() && p->output_section()->is_relro();
   4183 	}
   4184     }
   4185   return false;
   4186 }
   4187 
   4188 // Return the maximum alignment of the Output_data in Output_segment.
   4189 
   4190 uint64_t
   4191 Output_segment::maximum_alignment()
   4192 {
   4193   if (!this->is_max_align_known_)
   4194     {
   4195       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4196 	{
   4197 	  const Output_data_list* pdl = &this->output_lists_[i];
   4198 	  uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
   4199 	  if (addralign > this->max_align_)
   4200 	    this->max_align_ = addralign;
   4201 	}
   4202       this->is_max_align_known_ = true;
   4203     }
   4204 
   4205   return this->max_align_;
   4206 }
   4207 
   4208 // Return the maximum alignment of a list of Output_data.
   4209 
   4210 uint64_t
   4211 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
   4212 {
   4213   uint64_t ret = 0;
   4214   for (Output_data_list::const_iterator p = pdl->begin();
   4215        p != pdl->end();
   4216        ++p)
   4217     {
   4218       uint64_t addralign = (*p)->addralign();
   4219       if (addralign > ret)
   4220 	ret = addralign;
   4221     }
   4222   return ret;
   4223 }
   4224 
   4225 // Return whether this segment has any dynamic relocs.
   4226 
   4227 bool
   4228 Output_segment::has_dynamic_reloc() const
   4229 {
   4230   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4231     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
   4232       return true;
   4233   return false;
   4234 }
   4235 
   4236 // Return whether this Output_data_list has any dynamic relocs.
   4237 
   4238 bool
   4239 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
   4240 {
   4241   for (Output_data_list::const_iterator p = pdl->begin();
   4242        p != pdl->end();
   4243        ++p)
   4244     if ((*p)->has_dynamic_reloc())
   4245       return true;
   4246   return false;
   4247 }
   4248 
   4249 // Set the section addresses for an Output_segment.  If RESET is true,
   4250 // reset the addresses first.  ADDR is the address and *POFF is the
   4251 // file offset.  Set the section indexes starting with *PSHNDX.
   4252 // INCREASE_RELRO is the size of the portion of the first non-relro
   4253 // section that should be included in the PT_GNU_RELRO segment.
   4254 // If this segment has relro sections, and has been aligned for
   4255 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
   4256 // the immediately following segment.  Update *HAS_RELRO, *POFF,
   4257 // and *PSHNDX.
   4258 
   4259 uint64_t
   4260 Output_segment::set_section_addresses(const Target* target,
   4261 				      Layout* layout, bool reset,
   4262 				      uint64_t addr,
   4263 				      unsigned int* increase_relro,
   4264 				      bool* has_relro,
   4265 				      off_t* poff,
   4266 				      unsigned int* pshndx)
   4267 {
   4268   gold_assert(this->type_ == elfcpp::PT_LOAD);
   4269 
   4270   uint64_t last_relro_pad = 0;
   4271   off_t orig_off = *poff;
   4272 
   4273   bool in_tls = false;
   4274 
   4275   // If we have relro sections, we need to pad forward now so that the
   4276   // relro sections plus INCREASE_RELRO end on an abi page boundary.
   4277   if (parameters->options().relro()
   4278       && this->is_first_section_relro()
   4279       && (!this->are_addresses_set_ || reset))
   4280     {
   4281       uint64_t relro_size = 0;
   4282       off_t off = *poff;
   4283       uint64_t max_align = 0;
   4284       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
   4285 	{
   4286 	  Output_data_list* pdl = &this->output_lists_[i];
   4287 	  Output_data_list::iterator p;
   4288 	  for (p = pdl->begin(); p != pdl->end(); ++p)
   4289 	    {
   4290 	      if (!(*p)->is_section())
   4291 		break;
   4292 	      uint64_t align = (*p)->addralign();
   4293 	      if (align > max_align)
   4294 		max_align = align;
   4295 	      if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
   4296 		in_tls = true;
   4297 	      else if (in_tls)
   4298 		{
   4299 		  // Align the first non-TLS section to the alignment
   4300 		  // of the TLS segment.
   4301 		  align = max_align;
   4302 		  in_tls = false;
   4303 		}
   4304 	      relro_size = align_address(relro_size, align);
   4305 	      // Ignore the size of the .tbss section.
   4306 	      if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
   4307 		  && (*p)->is_section_type(elfcpp::SHT_NOBITS))
   4308 		continue;
   4309 	      if ((*p)->is_address_valid())
   4310 		relro_size += (*p)->data_size();
   4311 	      else
   4312 		{
   4313 		  // FIXME: This could be faster.
   4314 		  (*p)->set_address_and_file_offset(relro_size,
   4315 						    relro_size);
   4316 		  relro_size += (*p)->data_size();
   4317 		  (*p)->reset_address_and_file_offset();
   4318 		}
   4319 	    }
   4320 	  if (p != pdl->end())
   4321 	    break;
   4322 	}
   4323       relro_size += *increase_relro;
   4324       // Pad the total relro size to a multiple of the maximum
   4325       // section alignment seen.
   4326       uint64_t aligned_size = align_address(relro_size, max_align);
   4327       // Note the amount of padding added after the last relro section.
   4328       last_relro_pad = aligned_size - relro_size;
   4329       *has_relro = true;
   4330 
   4331       uint64_t page_align = parameters->target().abi_pagesize();
   4332 
   4333       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
   4334       uint64_t desired_align = page_align - (aligned_size % page_align);
   4335       if (desired_align < off % page_align)
   4336 	off += page_align;
   4337       off += desired_align - off % page_align;
   4338       addr += off - orig_off;
   4339       orig_off = off;
   4340       *poff = off;
   4341     }
   4342 
   4343   if (!reset && this->are_addresses_set_)
   4344     {
   4345       gold_assert(this->paddr_ == addr);
   4346       addr = this->vaddr_;
   4347     }
   4348   else
   4349     {
   4350       this->vaddr_ = addr;
   4351       this->paddr_ = addr;
   4352       this->are_addresses_set_ = true;
   4353     }
   4354 
   4355   in_tls = false;
   4356 
   4357   this->offset_ = orig_off;
   4358 
   4359   off_t off = 0;
   4360   uint64_t ret;
   4361   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4362     {
   4363       if (i == static_cast<int>(ORDER_RELRO_LAST))
   4364 	{
   4365 	  *poff += last_relro_pad;
   4366 	  addr += last_relro_pad;
   4367 	  if (this->output_lists_[i].empty())
   4368 	    {
   4369 	      // If there is nothing in the ORDER_RELRO_LAST list,
   4370 	      // the padding will occur at the end of the relro
   4371 	      // segment, and we need to add it to *INCREASE_RELRO.
   4372 	      *increase_relro += last_relro_pad;
   4373 	    }
   4374 	}
   4375       addr = this->set_section_list_addresses(layout, reset,
   4376 					      &this->output_lists_[i],
   4377 					      addr, poff, pshndx, &in_tls);
   4378       if (i < static_cast<int>(ORDER_SMALL_BSS))
   4379 	{
   4380 	  this->filesz_ = *poff - orig_off;
   4381 	  off = *poff;
   4382 	}
   4383 
   4384       ret = addr;
   4385     }
   4386 
   4387   // If the last section was a TLS section, align upward to the
   4388   // alignment of the TLS segment, so that the overall size of the TLS
   4389   // segment is aligned.
   4390   if (in_tls)
   4391     {
   4392       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
   4393       *poff = align_address(*poff, segment_align);
   4394     }
   4395 
   4396   this->memsz_ = *poff - orig_off;
   4397 
   4398   // Ignore the file offset adjustments made by the BSS Output_data
   4399   // objects.
   4400   *poff = off;
   4401 
   4402   // If code segments must contain only code, and this code segment is
   4403   // page-aligned in the file, then fill it out to a whole page with
   4404   // code fill (the tail of the segment will not be within any section).
   4405   // Thus the entire code segment can be mapped from the file as whole
   4406   // pages and that mapping will contain only valid instructions.
   4407   if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
   4408     {
   4409       uint64_t abi_pagesize = target->abi_pagesize();
   4410       if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
   4411 	{
   4412 	  size_t fill_size = abi_pagesize - (off % abi_pagesize);
   4413 
   4414 	  std::string fill_data;
   4415 	  if (target->has_code_fill())
   4416 	    fill_data = target->code_fill(fill_size);
   4417 	  else
   4418 	    fill_data.resize(fill_size); // Zero fill.
   4419 
   4420 	  Output_data_const* fill = new Output_data_const(fill_data, 0);
   4421 	  fill->set_address(this->vaddr_ + this->memsz_);
   4422 	  fill->set_file_offset(off);
   4423 	  layout->add_relax_output(fill);
   4424 
   4425 	  off += fill_size;
   4426 	  gold_assert(off % abi_pagesize == 0);
   4427 	  ret += fill_size;
   4428 	  gold_assert(ret % abi_pagesize == 0);
   4429 
   4430 	  gold_assert((uint64_t) this->filesz_ == this->memsz_);
   4431 	  this->memsz_ = this->filesz_ += fill_size;
   4432 
   4433 	  *poff = off;
   4434 	}
   4435     }
   4436 
   4437   return ret;
   4438 }
   4439 
   4440 // Set the addresses and file offsets in a list of Output_data
   4441 // structures.
   4442 
   4443 uint64_t
   4444 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
   4445 					   Output_data_list* pdl,
   4446 					   uint64_t addr, off_t* poff,
   4447 					   unsigned int* pshndx,
   4448 					   bool* in_tls)
   4449 {
   4450   off_t startoff = *poff;
   4451   // For incremental updates, we may allocate non-fixed sections from
   4452   // free space in the file.  This keeps track of the high-water mark.
   4453   off_t maxoff = startoff;
   4454 
   4455   off_t off = startoff;
   4456   for (Output_data_list::iterator p = pdl->begin();
   4457        p != pdl->end();
   4458        ++p)
   4459     {
   4460       if (reset)
   4461 	(*p)->reset_address_and_file_offset();
   4462 
   4463       // When doing an incremental update or when using a linker script,
   4464       // the section will most likely already have an address.
   4465       if (!(*p)->is_address_valid())
   4466 	{
   4467 	  uint64_t align = (*p)->addralign();
   4468 
   4469 	  if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
   4470 	    {
   4471 	      // Give the first TLS section the alignment of the
   4472 	      // entire TLS segment.  Otherwise the TLS segment as a
   4473 	      // whole may be misaligned.
   4474 	      if (!*in_tls)
   4475 		{
   4476 		  Output_segment* tls_segment = layout->tls_segment();
   4477 		  gold_assert(tls_segment != NULL);
   4478 		  uint64_t segment_align = tls_segment->maximum_alignment();
   4479 		  gold_assert(segment_align >= align);
   4480 		  align = segment_align;
   4481 
   4482 		  *in_tls = true;
   4483 		}
   4484 	    }
   4485 	  else
   4486 	    {
   4487 	      // If this is the first section after the TLS segment,
   4488 	      // align it to at least the alignment of the TLS
   4489 	      // segment, so that the size of the overall TLS segment
   4490 	      // is aligned.
   4491 	      if (*in_tls)
   4492 		{
   4493 		  uint64_t segment_align =
   4494 		      layout->tls_segment()->maximum_alignment();
   4495 		  if (segment_align > align)
   4496 		    align = segment_align;
   4497 
   4498 		  *in_tls = false;
   4499 		}
   4500 	    }
   4501 
   4502 	  if (!parameters->incremental_update())
   4503 	    {
   4504 	      off = align_address(off, align);
   4505 	      (*p)->set_address_and_file_offset(addr + (off - startoff), off);
   4506 	    }
   4507 	  else
   4508 	    {
   4509 	      // Incremental update: allocate file space from free list.
   4510 	      (*p)->pre_finalize_data_size();
   4511 	      off_t current_size = (*p)->current_data_size();
   4512 	      off = layout->allocate(current_size, align, startoff);
   4513 	      if (off == -1)
   4514 		{
   4515 		  gold_assert((*p)->output_section() != NULL);
   4516 		  gold_fallback(_("out of patch space for section %s; "
   4517 				  "relink with --incremental-full"),
   4518 				(*p)->output_section()->name());
   4519 		}
   4520 	      (*p)->set_address_and_file_offset(addr + (off - startoff), off);
   4521 	      if ((*p)->data_size() > current_size)
   4522 		{
   4523 		  gold_assert((*p)->output_section() != NULL);
   4524 		  gold_fallback(_("%s: section changed size; "
   4525 				  "relink with --incremental-full"),
   4526 				(*p)->output_section()->name());
   4527 		}
   4528 	    }
   4529 	}
   4530       else if (parameters->incremental_update())
   4531 	{
   4532 	  // For incremental updates, use the fixed offset for the
   4533 	  // high-water mark computation.
   4534 	  off = (*p)->offset();
   4535 	}
   4536       else
   4537 	{
   4538 	  // The script may have inserted a skip forward, but it
   4539 	  // better not have moved backward.
   4540 	  if ((*p)->address() >= addr + (off - startoff))
   4541 	    off += (*p)->address() - (addr + (off - startoff));
   4542 	  else
   4543 	    {
   4544 	      if (!layout->script_options()->saw_sections_clause())
   4545 		gold_unreachable();
   4546 	      else
   4547 		{
   4548 		  Output_section* os = (*p)->output_section();
   4549 
   4550 		  // Cast to unsigned long long to avoid format warnings.
   4551 		  unsigned long long previous_dot =
   4552 		    static_cast<unsigned long long>(addr + (off - startoff));
   4553 		  unsigned long long dot =
   4554 		    static_cast<unsigned long long>((*p)->address());
   4555 
   4556 		  if (os == NULL)
   4557 		    gold_error(_("dot moves backward in linker script "
   4558 				 "from 0x%llx to 0x%llx"), previous_dot, dot);
   4559 		  else
   4560 		    gold_error(_("address of section '%s' moves backward "
   4561 				 "from 0x%llx to 0x%llx"),
   4562 			       os->name(), previous_dot, dot);
   4563 		}
   4564 	    }
   4565 	  (*p)->set_file_offset(off);
   4566 	  (*p)->finalize_data_size();
   4567 	}
   4568 
   4569       if (parameters->incremental_update())
   4570 	gold_debug(DEBUG_INCREMENTAL,
   4571 		   "set_section_list_addresses: %08lx %08lx %s",
   4572 		   static_cast<long>(off),
   4573 		   static_cast<long>((*p)->data_size()),
   4574 		   ((*p)->output_section() != NULL
   4575 		    ? (*p)->output_section()->name() : "(special)"));
   4576 
   4577       // We want to ignore the size of a SHF_TLS SHT_NOBITS
   4578       // section.  Such a section does not affect the size of a
   4579       // PT_LOAD segment.
   4580       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
   4581 	  || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
   4582 	off += (*p)->data_size();
   4583 
   4584       if (off > maxoff)
   4585 	maxoff = off;
   4586 
   4587       if ((*p)->is_section())
   4588 	{
   4589 	  (*p)->set_out_shndx(*pshndx);
   4590 	  ++*pshndx;
   4591 	}
   4592     }
   4593 
   4594   *poff = maxoff;
   4595   return addr + (maxoff - startoff);
   4596 }
   4597 
   4598 // For a non-PT_LOAD segment, set the offset from the sections, if
   4599 // any.  Add INCREASE to the file size and the memory size.
   4600 
   4601 void
   4602 Output_segment::set_offset(unsigned int increase)
   4603 {
   4604   gold_assert(this->type_ != elfcpp::PT_LOAD);
   4605 
   4606   gold_assert(!this->are_addresses_set_);
   4607 
   4608   // A non-load section only uses output_lists_[0].
   4609 
   4610   Output_data_list* pdl = &this->output_lists_[0];
   4611 
   4612   if (pdl->empty())
   4613     {
   4614       gold_assert(increase == 0);
   4615       this->vaddr_ = 0;
   4616       this->paddr_ = 0;
   4617       this->are_addresses_set_ = true;
   4618       this->memsz_ = 0;
   4619       this->min_p_align_ = 0;
   4620       this->offset_ = 0;
   4621       this->filesz_ = 0;
   4622       return;
   4623     }
   4624 
   4625   // Find the first and last section by address.
   4626   const Output_data* first = NULL;
   4627   const Output_data* last_data = NULL;
   4628   const Output_data* last_bss = NULL;
   4629   for (Output_data_list::const_iterator p = pdl->begin();
   4630        p != pdl->end();
   4631        ++p)
   4632     {
   4633       if (first == NULL
   4634 	  || (*p)->address() < first->address()
   4635 	  || ((*p)->address() == first->address()
   4636 	      && (*p)->data_size() < first->data_size()))
   4637 	first = *p;
   4638       const Output_data** plast;
   4639       if ((*p)->is_section()
   4640 	  && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
   4641 	plast = &last_bss;
   4642       else
   4643 	plast = &last_data;
   4644       if (*plast == NULL
   4645 	  || (*p)->address() > (*plast)->address()
   4646 	  || ((*p)->address() == (*plast)->address()
   4647 	      && (*p)->data_size() > (*plast)->data_size()))
   4648 	*plast = *p;
   4649     }
   4650 
   4651   this->vaddr_ = first->address();
   4652   this->paddr_ = (first->has_load_address()
   4653 		  ? first->load_address()
   4654 		  : this->vaddr_);
   4655   this->are_addresses_set_ = true;
   4656   this->offset_ = first->offset();
   4657 
   4658   if (last_data == NULL)
   4659     this->filesz_ = 0;
   4660   else
   4661     this->filesz_ = (last_data->address()
   4662 		     + last_data->data_size()
   4663 		     - this->vaddr_);
   4664 
   4665   const Output_data* last = last_bss != NULL ? last_bss : last_data;
   4666   this->memsz_ = (last->address()
   4667 		  + last->data_size()
   4668 		  - this->vaddr_);
   4669 
   4670   this->filesz_ += increase;
   4671   this->memsz_ += increase;
   4672 
   4673   // If this is a RELRO segment, verify that the segment ends at a
   4674   // page boundary.
   4675   if (this->type_ == elfcpp::PT_GNU_RELRO)
   4676     {
   4677       uint64_t page_align = parameters->target().abi_pagesize();
   4678       uint64_t segment_end = this->vaddr_ + this->memsz_;
   4679       if (parameters->incremental_update())
   4680 	{
   4681 	  // The INCREASE_RELRO calculation is bypassed for an incremental
   4682 	  // update, so we need to adjust the segment size manually here.
   4683 	  segment_end = align_address(segment_end, page_align);
   4684 	  this->memsz_ = segment_end - this->vaddr_;
   4685 	}
   4686       else
   4687 	gold_assert(segment_end == align_address(segment_end, page_align));
   4688     }
   4689 
   4690   // If this is a TLS segment, align the memory size.  The code in
   4691   // set_section_list ensures that the section after the TLS segment
   4692   // is aligned to give us room.
   4693   if (this->type_ == elfcpp::PT_TLS)
   4694     {
   4695       uint64_t segment_align = this->maximum_alignment();
   4696       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
   4697       this->memsz_ = align_address(this->memsz_, segment_align);
   4698     }
   4699 }
   4700 
   4701 // Set the TLS offsets of the sections in the PT_TLS segment.
   4702 
   4703 void
   4704 Output_segment::set_tls_offsets()
   4705 {
   4706   gold_assert(this->type_ == elfcpp::PT_TLS);
   4707 
   4708   for (Output_data_list::iterator p = this->output_lists_[0].begin();
   4709        p != this->output_lists_[0].end();
   4710        ++p)
   4711     (*p)->set_tls_offset(this->vaddr_);
   4712 }
   4713 
   4714 // Return the first section.
   4715 
   4716 Output_section*
   4717 Output_segment::first_section() const
   4718 {
   4719   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4720     {
   4721       const Output_data_list* pdl = &this->output_lists_[i];
   4722       for (Output_data_list::const_iterator p = pdl->begin();
   4723 	   p != pdl->end();
   4724 	   ++p)
   4725 	{
   4726 	  if ((*p)->is_section())
   4727 	    return (*p)->output_section();
   4728 	}
   4729     }
   4730   gold_unreachable();
   4731 }
   4732 
   4733 // Return the number of Output_sections in an Output_segment.
   4734 
   4735 unsigned int
   4736 Output_segment::output_section_count() const
   4737 {
   4738   unsigned int ret = 0;
   4739   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4740     ret += this->output_section_count_list(&this->output_lists_[i]);
   4741   return ret;
   4742 }
   4743 
   4744 // Return the number of Output_sections in an Output_data_list.
   4745 
   4746 unsigned int
   4747 Output_segment::output_section_count_list(const Output_data_list* pdl) const
   4748 {
   4749   unsigned int count = 0;
   4750   for (Output_data_list::const_iterator p = pdl->begin();
   4751        p != pdl->end();
   4752        ++p)
   4753     {
   4754       if ((*p)->is_section())
   4755 	++count;
   4756     }
   4757   return count;
   4758 }
   4759 
   4760 // Return the section attached to the list segment with the lowest
   4761 // load address.  This is used when handling a PHDRS clause in a
   4762 // linker script.
   4763 
   4764 Output_section*
   4765 Output_segment::section_with_lowest_load_address() const
   4766 {
   4767   Output_section* found = NULL;
   4768   uint64_t found_lma = 0;
   4769   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4770     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
   4771 				      &found_lma);
   4772   return found;
   4773 }
   4774 
   4775 // Look through a list for a section with a lower load address.
   4776 
   4777 void
   4778 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
   4779 					    Output_section** found,
   4780 					    uint64_t* found_lma) const
   4781 {
   4782   for (Output_data_list::const_iterator p = pdl->begin();
   4783        p != pdl->end();
   4784        ++p)
   4785     {
   4786       if (!(*p)->is_section())
   4787 	continue;
   4788       Output_section* os = static_cast<Output_section*>(*p);
   4789       uint64_t lma = (os->has_load_address()
   4790 		      ? os->load_address()
   4791 		      : os->address());
   4792       if (*found == NULL || lma < *found_lma)
   4793 	{
   4794 	  *found = os;
   4795 	  *found_lma = lma;
   4796 	}
   4797     }
   4798 }
   4799 
   4800 // Write the segment data into *OPHDR.
   4801 
   4802 template<int size, bool big_endian>
   4803 void
   4804 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
   4805 {
   4806   ophdr->put_p_type(this->type_);
   4807   ophdr->put_p_offset(this->offset_);
   4808   ophdr->put_p_vaddr(this->vaddr_);
   4809   ophdr->put_p_paddr(this->paddr_);
   4810   ophdr->put_p_filesz(this->filesz_);
   4811   ophdr->put_p_memsz(this->memsz_);
   4812   ophdr->put_p_flags(this->flags_);
   4813   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
   4814 }
   4815 
   4816 // Write the section headers into V.
   4817 
   4818 template<int size, bool big_endian>
   4819 unsigned char*
   4820 Output_segment::write_section_headers(const Layout* layout,
   4821 				      const Stringpool* secnamepool,
   4822 				      unsigned char* v,
   4823 				      unsigned int* pshndx) const
   4824 {
   4825   // Every section that is attached to a segment must be attached to a
   4826   // PT_LOAD segment, so we only write out section headers for PT_LOAD
   4827   // segments.
   4828   if (this->type_ != elfcpp::PT_LOAD)
   4829     return v;
   4830 
   4831   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4832     {
   4833       const Output_data_list* pdl = &this->output_lists_[i];
   4834       v = this->write_section_headers_list<size, big_endian>(layout,
   4835 							     secnamepool,
   4836 							     pdl,
   4837 							     v, pshndx);
   4838     }
   4839 
   4840   return v;
   4841 }
   4842 
   4843 template<int size, bool big_endian>
   4844 unsigned char*
   4845 Output_segment::write_section_headers_list(const Layout* layout,
   4846 					   const Stringpool* secnamepool,
   4847 					   const Output_data_list* pdl,
   4848 					   unsigned char* v,
   4849 					   unsigned int* pshndx) const
   4850 {
   4851   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
   4852   for (Output_data_list::const_iterator p = pdl->begin();
   4853        p != pdl->end();
   4854        ++p)
   4855     {
   4856       if ((*p)->is_section())
   4857 	{
   4858 	  const Output_section* ps = static_cast<const Output_section*>(*p);
   4859 	  gold_assert(*pshndx == ps->out_shndx());
   4860 	  elfcpp::Shdr_write<size, big_endian> oshdr(v);
   4861 	  ps->write_header(layout, secnamepool, &oshdr);
   4862 	  v += shdr_size;
   4863 	  ++*pshndx;
   4864 	}
   4865     }
   4866   return v;
   4867 }
   4868 
   4869 // Print the output sections to the map file.
   4870 
   4871 void
   4872 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
   4873 {
   4874   if (this->type() != elfcpp::PT_LOAD)
   4875     return;
   4876   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   4877     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
   4878 }
   4879 
   4880 // Print an output section list to the map file.
   4881 
   4882 void
   4883 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
   4884 					      const Output_data_list* pdl) const
   4885 {
   4886   for (Output_data_list::const_iterator p = pdl->begin();
   4887        p != pdl->end();
   4888        ++p)
   4889     (*p)->print_to_mapfile(mapfile);
   4890 }
   4891 
   4892 // Output_file methods.
   4893 
   4894 Output_file::Output_file(const char* name)
   4895   : name_(name),
   4896     o_(-1),
   4897     file_size_(0),
   4898     base_(NULL),
   4899     map_is_anonymous_(false),
   4900     map_is_allocated_(false),
   4901     is_temporary_(false)
   4902 {
   4903 }
   4904 
   4905 // Try to open an existing file.  Returns false if the file doesn't
   4906 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
   4907 // NULL, open that file as the base for incremental linking, and
   4908 // copy its contents to the new output file.  This routine can
   4909 // be called for incremental updates, in which case WRITABLE should
   4910 // be true, or by the incremental-dump utility, in which case
   4911 // WRITABLE should be false.
   4912 
   4913 bool
   4914 Output_file::open_base_file(const char* base_name, bool writable)
   4915 {
   4916   // The name "-" means "stdout".
   4917   if (strcmp(this->name_, "-") == 0)
   4918     return false;
   4919 
   4920   bool use_base_file = base_name != NULL;
   4921   if (!use_base_file)
   4922     base_name = this->name_;
   4923   else if (strcmp(base_name, this->name_) == 0)
   4924     gold_fatal(_("%s: incremental base and output file name are the same"),
   4925 	       base_name);
   4926 
   4927   // Don't bother opening files with a size of zero.
   4928   struct stat s;
   4929   if (::stat(base_name, &s) != 0)
   4930     {
   4931       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
   4932       return false;
   4933     }
   4934   if (s.st_size == 0)
   4935     {
   4936       gold_info(_("%s: incremental base file is empty"), base_name);
   4937       return false;
   4938     }
   4939 
   4940   // If we're using a base file, we want to open it read-only.
   4941   if (use_base_file)
   4942     writable = false;
   4943 
   4944   int oflags = writable ? O_RDWR : O_RDONLY;
   4945   int o = open_descriptor(-1, base_name, oflags, 0);
   4946   if (o < 0)
   4947     {
   4948       gold_info(_("%s: open: %s"), base_name, strerror(errno));
   4949       return false;
   4950     }
   4951 
   4952   // If the base file and the output file are different, open a
   4953   // new output file and read the contents from the base file into
   4954   // the newly-mapped region.
   4955   if (use_base_file)
   4956     {
   4957       this->open(s.st_size);
   4958       ssize_t bytes_to_read = s.st_size;
   4959       unsigned char* p = this->base_;
   4960       while (bytes_to_read > 0)
   4961 	{
   4962 	  ssize_t len = ::read(o, p, bytes_to_read);
   4963 	  if (len < 0)
   4964 	    {
   4965 	      gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
   4966 	      return false;
   4967 	    }
   4968 	  if (len == 0)
   4969 	    {
   4970 	      gold_info(_("%s: file too short: read only %lld of %lld bytes"),
   4971 			base_name,
   4972 			static_cast<long long>(s.st_size - bytes_to_read),
   4973 			static_cast<long long>(s.st_size));
   4974 	      return false;
   4975 	    }
   4976 	  p += len;
   4977 	  bytes_to_read -= len;
   4978 	}
   4979       ::close(o);
   4980       return true;
   4981     }
   4982 
   4983   this->o_ = o;
   4984   this->file_size_ = s.st_size;
   4985 
   4986   if (!this->map_no_anonymous(writable))
   4987     {
   4988       release_descriptor(o, true);
   4989       this->o_ = -1;
   4990       this->file_size_ = 0;
   4991       return false;
   4992     }
   4993 
   4994   return true;
   4995 }
   4996 
   4997 // Open the output file.
   4998 
   4999 void
   5000 Output_file::open(off_t file_size)
   5001 {
   5002   this->file_size_ = file_size;
   5003 
   5004   // Unlink the file first; otherwise the open() may fail if the file
   5005   // is busy (e.g. it's an executable that's currently being executed).
   5006   //
   5007   // However, the linker may be part of a system where a zero-length
   5008   // file is created for it to write to, with tight permissions (gcc
   5009   // 2.95 did something like this).  Unlinking the file would work
   5010   // around those permission controls, so we only unlink if the file
   5011   // has a non-zero size.  We also unlink only regular files to avoid
   5012   // trouble with directories/etc.
   5013   //
   5014   // If we fail, continue; this command is merely a best-effort attempt
   5015   // to improve the odds for open().
   5016 
   5017   // We let the name "-" mean "stdout"
   5018   if (!this->is_temporary_)
   5019     {
   5020       if (strcmp(this->name_, "-") == 0)
   5021 	this->o_ = STDOUT_FILENO;
   5022       else
   5023 	{
   5024 	  struct stat s;
   5025 	  if (::stat(this->name_, &s) == 0
   5026 	      && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
   5027 	    {
   5028 	      if (s.st_size != 0)
   5029 		::unlink(this->name_);
   5030 	      else if (!parameters->options().relocatable())
   5031 		{
   5032 		  // If we don't unlink the existing file, add execute
   5033 		  // permission where read permissions already exist
   5034 		  // and where the umask permits.
   5035 		  int mask = ::umask(0);
   5036 		  ::umask(mask);
   5037 		  s.st_mode |= (s.st_mode & 0444) >> 2;
   5038 		  ::chmod(this->name_, s.st_mode & ~mask);
   5039 		}
   5040 	    }
   5041 
   5042 	  int mode = parameters->options().relocatable() ? 0666 : 0777;
   5043 	  int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
   5044 				  mode);
   5045 	  if (o < 0)
   5046 	    gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
   5047 	  this->o_ = o;
   5048 	}
   5049     }
   5050 
   5051   this->map();
   5052 }
   5053 
   5054 // Resize the output file.
   5055 
   5056 void
   5057 Output_file::resize(off_t file_size)
   5058 {
   5059   // If the mmap is mapping an anonymous memory buffer, this is easy:
   5060   // just mremap to the new size.  If it's mapping to a file, we want
   5061   // to unmap to flush to the file, then remap after growing the file.
   5062   if (this->map_is_anonymous_)
   5063     {
   5064       void* base;
   5065       if (!this->map_is_allocated_)
   5066 	{
   5067 	  base = ::mremap(this->base_, this->file_size_, file_size,
   5068 			  MREMAP_MAYMOVE);
   5069 	  if (base == MAP_FAILED)
   5070 	    gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
   5071 	}
   5072       else
   5073 	{
   5074 	  base = realloc(this->base_, file_size);
   5075 	  if (base == NULL)
   5076 	    gold_nomem();
   5077 	  if (file_size > this->file_size_)
   5078 	    memset(static_cast<char*>(base) + this->file_size_, 0,
   5079 		   file_size - this->file_size_);
   5080 	}
   5081       this->base_ = static_cast<unsigned char*>(base);
   5082       this->file_size_ = file_size;
   5083     }
   5084   else
   5085     {
   5086       this->unmap();
   5087       this->file_size_ = file_size;
   5088       if (!this->map_no_anonymous(true))
   5089 	gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
   5090     }
   5091 }
   5092 
   5093 // Map an anonymous block of memory which will later be written to the
   5094 // file.  Return whether the map succeeded.
   5095 
   5096 bool
   5097 Output_file::map_anonymous()
   5098 {
   5099   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
   5100 		      MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
   5101   if (base == MAP_FAILED)
   5102     {
   5103       base = malloc(this->file_size_);
   5104       if (base == NULL)
   5105 	return false;
   5106       memset(base, 0, this->file_size_);
   5107       this->map_is_allocated_ = true;
   5108     }
   5109   this->base_ = static_cast<unsigned char*>(base);
   5110   this->map_is_anonymous_ = true;
   5111   return true;
   5112 }
   5113 
   5114 // Map the file into memory.  Return whether the mapping succeeded.
   5115 // If WRITABLE is true, map with write access.
   5116 
   5117 bool
   5118 Output_file::map_no_anonymous(bool writable)
   5119 {
   5120   const int o = this->o_;
   5121 
   5122   // If the output file is not a regular file, don't try to mmap it;
   5123   // instead, we'll mmap a block of memory (an anonymous buffer), and
   5124   // then later write the buffer to the file.
   5125   void* base;
   5126   struct stat statbuf;
   5127   if (o == STDOUT_FILENO || o == STDERR_FILENO
   5128       || ::fstat(o, &statbuf) != 0
   5129       || !S_ISREG(statbuf.st_mode)
   5130       || this->is_temporary_)
   5131     return false;
   5132 
   5133   // Ensure that we have disk space available for the file.  If we
   5134   // don't do this, it is possible that we will call munmap, close,
   5135   // and exit with dirty buffers still in the cache with no assigned
   5136   // disk blocks.  If the disk is out of space at that point, the
   5137   // output file will wind up incomplete, but we will have already
   5138   // exited.  The alternative to fallocate would be to use fdatasync,
   5139   // but that would be a more significant performance hit.
   5140   if (writable)
   5141     {
   5142       int err = gold_fallocate(o, 0, this->file_size_);
   5143       if (err != 0)
   5144        gold_fatal(_("%s: %s"), this->name_, strerror(err));
   5145     }
   5146 
   5147   // Map the file into memory.
   5148   int prot = PROT_READ;
   5149   if (writable)
   5150     prot |= PROT_WRITE;
   5151   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
   5152 
   5153   // The mmap call might fail because of file system issues: the file
   5154   // system might not support mmap at all, or it might not support
   5155   // mmap with PROT_WRITE.
   5156   if (base == MAP_FAILED)
   5157     return false;
   5158 
   5159   this->map_is_anonymous_ = false;
   5160   this->base_ = static_cast<unsigned char*>(base);
   5161   return true;
   5162 }
   5163 
   5164 // Map the file into memory.
   5165 
   5166 void
   5167 Output_file::map()
   5168 {
   5169   if (parameters->options().mmap_output_file()
   5170       && this->map_no_anonymous(true))
   5171     return;
   5172 
   5173   // The mmap call might fail because of file system issues: the file
   5174   // system might not support mmap at all, or it might not support
   5175   // mmap with PROT_WRITE.  I'm not sure which errno values we will
   5176   // see in all cases, so if the mmap fails for any reason and we
   5177   // don't care about file contents, try for an anonymous map.
   5178   if (this->map_anonymous())
   5179     return;
   5180 
   5181   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
   5182 	     this->name_, static_cast<unsigned long>(this->file_size_),
   5183 	     strerror(errno));
   5184 }
   5185 
   5186 // Unmap the file from memory.
   5187 
   5188 void
   5189 Output_file::unmap()
   5190 {
   5191   if (this->map_is_anonymous_)
   5192     {
   5193       // We've already written out the data, so there is no reason to
   5194       // waste time unmapping or freeing the memory.
   5195     }
   5196   else
   5197     {
   5198       if (::munmap(this->base_, this->file_size_) < 0)
   5199 	gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
   5200     }
   5201   this->base_ = NULL;
   5202 }
   5203 
   5204 // Close the output file.
   5205 
   5206 void
   5207 Output_file::close()
   5208 {
   5209   // If the map isn't file-backed, we need to write it now.
   5210   if (this->map_is_anonymous_ && !this->is_temporary_)
   5211     {
   5212       size_t bytes_to_write = this->file_size_;
   5213       size_t offset = 0;
   5214       while (bytes_to_write > 0)
   5215 	{
   5216 	  ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
   5217 					  bytes_to_write);
   5218 	  if (bytes_written == 0)
   5219 	    gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
   5220 	  else if (bytes_written < 0)
   5221 	    gold_error(_("%s: write: %s"), this->name_, strerror(errno));
   5222 	  else
   5223 	    {
   5224 	      bytes_to_write -= bytes_written;
   5225 	      offset += bytes_written;
   5226 	    }
   5227 	}
   5228     }
   5229   this->unmap();
   5230 
   5231   // We don't close stdout or stderr
   5232   if (this->o_ != STDOUT_FILENO
   5233       && this->o_ != STDERR_FILENO
   5234       && !this->is_temporary_)
   5235     if (::close(this->o_) < 0)
   5236       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
   5237   this->o_ = -1;
   5238 }
   5239 
   5240 // Instantiate the templates we need.  We could use the configure
   5241 // script to restrict this to only the ones for implemented targets.
   5242 
   5243 #ifdef HAVE_TARGET_32_LITTLE
   5244 template
   5245 off_t
   5246 Output_section::add_input_section<32, false>(
   5247     Layout* layout,
   5248     Sized_relobj_file<32, false>* object,
   5249     unsigned int shndx,
   5250     const char* secname,
   5251     const elfcpp::Shdr<32, false>& shdr,
   5252     unsigned int reloc_shndx,
   5253     bool have_sections_script);
   5254 #endif
   5255 
   5256 #ifdef HAVE_TARGET_32_BIG
   5257 template
   5258 off_t
   5259 Output_section::add_input_section<32, true>(
   5260     Layout* layout,
   5261     Sized_relobj_file<32, true>* object,
   5262     unsigned int shndx,
   5263     const char* secname,
   5264     const elfcpp::Shdr<32, true>& shdr,
   5265     unsigned int reloc_shndx,
   5266     bool have_sections_script);
   5267 #endif
   5268 
   5269 #ifdef HAVE_TARGET_64_LITTLE
   5270 template
   5271 off_t
   5272 Output_section::add_input_section<64, false>(
   5273     Layout* layout,
   5274     Sized_relobj_file<64, false>* object,
   5275     unsigned int shndx,
   5276     const char* secname,
   5277     const elfcpp::Shdr<64, false>& shdr,
   5278     unsigned int reloc_shndx,
   5279     bool have_sections_script);
   5280 #endif
   5281 
   5282 #ifdef HAVE_TARGET_64_BIG
   5283 template
   5284 off_t
   5285 Output_section::add_input_section<64, true>(
   5286     Layout* layout,
   5287     Sized_relobj_file<64, true>* object,
   5288     unsigned int shndx,
   5289     const char* secname,
   5290     const elfcpp::Shdr<64, true>& shdr,
   5291     unsigned int reloc_shndx,
   5292     bool have_sections_script);
   5293 #endif
   5294 
   5295 #ifdef HAVE_TARGET_32_LITTLE
   5296 template
   5297 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
   5298 #endif
   5299 
   5300 #ifdef HAVE_TARGET_32_BIG
   5301 template
   5302 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
   5303 #endif
   5304 
   5305 #ifdef HAVE_TARGET_64_LITTLE
   5306 template
   5307 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
   5308 #endif
   5309 
   5310 #ifdef HAVE_TARGET_64_BIG
   5311 template
   5312 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
   5313 #endif
   5314 
   5315 #ifdef HAVE_TARGET_32_LITTLE
   5316 template
   5317 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
   5318 #endif
   5319 
   5320 #ifdef HAVE_TARGET_32_BIG
   5321 template
   5322 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
   5323 #endif
   5324 
   5325 #ifdef HAVE_TARGET_64_LITTLE
   5326 template
   5327 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
   5328 #endif
   5329 
   5330 #ifdef HAVE_TARGET_64_BIG
   5331 template
   5332 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
   5333 #endif
   5334 
   5335 #ifdef HAVE_TARGET_32_LITTLE
   5336 template
   5337 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
   5338 #endif
   5339 
   5340 #ifdef HAVE_TARGET_32_BIG
   5341 template
   5342 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
   5343 #endif
   5344 
   5345 #ifdef HAVE_TARGET_64_LITTLE
   5346 template
   5347 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
   5348 #endif
   5349 
   5350 #ifdef HAVE_TARGET_64_BIG
   5351 template
   5352 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
   5353 #endif
   5354 
   5355 #ifdef HAVE_TARGET_32_LITTLE
   5356 template
   5357 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
   5358 #endif
   5359 
   5360 #ifdef HAVE_TARGET_32_BIG
   5361 template
   5362 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
   5363 #endif
   5364 
   5365 #ifdef HAVE_TARGET_64_LITTLE
   5366 template
   5367 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
   5368 #endif
   5369 
   5370 #ifdef HAVE_TARGET_64_BIG
   5371 template
   5372 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
   5373 #endif
   5374 
   5375 #ifdef HAVE_TARGET_32_LITTLE
   5376 template
   5377 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
   5378 #endif
   5379 
   5380 #ifdef HAVE_TARGET_32_BIG
   5381 template
   5382 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
   5383 #endif
   5384 
   5385 #ifdef HAVE_TARGET_64_LITTLE
   5386 template
   5387 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
   5388 #endif
   5389 
   5390 #ifdef HAVE_TARGET_64_BIG
   5391 template
   5392 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
   5393 #endif
   5394 
   5395 #ifdef HAVE_TARGET_32_LITTLE
   5396 template
   5397 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
   5398 #endif
   5399 
   5400 #ifdef HAVE_TARGET_32_BIG
   5401 template
   5402 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
   5403 #endif
   5404 
   5405 #ifdef HAVE_TARGET_64_LITTLE
   5406 template
   5407 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
   5408 #endif
   5409 
   5410 #ifdef HAVE_TARGET_64_BIG
   5411 template
   5412 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
   5413 #endif
   5414 
   5415 #ifdef HAVE_TARGET_32_LITTLE
   5416 template
   5417 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
   5418 #endif
   5419 
   5420 #ifdef HAVE_TARGET_32_BIG
   5421 template
   5422 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
   5423 #endif
   5424 
   5425 #ifdef HAVE_TARGET_64_LITTLE
   5426 template
   5427 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
   5428 #endif
   5429 
   5430 #ifdef HAVE_TARGET_64_BIG
   5431 template
   5432 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
   5433 #endif
   5434 
   5435 #ifdef HAVE_TARGET_32_LITTLE
   5436 template
   5437 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
   5438 #endif
   5439 
   5440 #ifdef HAVE_TARGET_32_BIG
   5441 template
   5442 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
   5443 #endif
   5444 
   5445 #ifdef HAVE_TARGET_64_LITTLE
   5446 template
   5447 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
   5448 #endif
   5449 
   5450 #ifdef HAVE_TARGET_64_BIG
   5451 template
   5452 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
   5453 #endif
   5454 
   5455 #ifdef HAVE_TARGET_32_LITTLE
   5456 template
   5457 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
   5458 #endif
   5459 
   5460 #ifdef HAVE_TARGET_32_BIG
   5461 template
   5462 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
   5463 #endif
   5464 
   5465 #ifdef HAVE_TARGET_64_LITTLE
   5466 template
   5467 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
   5468 #endif
   5469 
   5470 #ifdef HAVE_TARGET_64_BIG
   5471 template
   5472 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
   5473 #endif
   5474 
   5475 #ifdef HAVE_TARGET_32_LITTLE
   5476 template
   5477 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
   5478 #endif
   5479 
   5480 #ifdef HAVE_TARGET_32_BIG
   5481 template
   5482 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
   5483 #endif
   5484 
   5485 #ifdef HAVE_TARGET_64_LITTLE
   5486 template
   5487 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
   5488 #endif
   5489 
   5490 #ifdef HAVE_TARGET_64_BIG
   5491 template
   5492 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
   5493 #endif
   5494 
   5495 #ifdef HAVE_TARGET_32_LITTLE
   5496 template
   5497 class Output_data_group<32, false>;
   5498 #endif
   5499 
   5500 #ifdef HAVE_TARGET_32_BIG
   5501 template
   5502 class Output_data_group<32, true>;
   5503 #endif
   5504 
   5505 #ifdef HAVE_TARGET_64_LITTLE
   5506 template
   5507 class Output_data_group<64, false>;
   5508 #endif
   5509 
   5510 #ifdef HAVE_TARGET_64_BIG
   5511 template
   5512 class Output_data_group<64, true>;
   5513 #endif
   5514 
   5515 template
   5516 class Output_data_got<32, false>;
   5517 
   5518 template
   5519 class Output_data_got<32, true>;
   5520 
   5521 template
   5522 class Output_data_got<64, false>;
   5523 
   5524 template
   5525 class Output_data_got<64, true>;
   5526 
   5527 } // End namespace gold.
   5528