Home | History | Annotate | Download | only in ec
      1 /* Originally written by Bodo Moeller for the OpenSSL project.
      2  * ====================================================================
      3  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  *
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in
     14  *    the documentation and/or other materials provided with the
     15  *    distribution.
     16  *
     17  * 3. All advertising materials mentioning features or use of this
     18  *    software must display the following acknowledgment:
     19  *    "This product includes software developed by the OpenSSL Project
     20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     21  *
     22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     23  *    endorse or promote products derived from this software without
     24  *    prior written permission. For written permission, please contact
     25  *    openssl-core (at) openssl.org.
     26  *
     27  * 5. Products derived from this software may not be called "OpenSSL"
     28  *    nor may "OpenSSL" appear in their names without prior written
     29  *    permission of the OpenSSL Project.
     30  *
     31  * 6. Redistributions of any form whatsoever must retain the following
     32  *    acknowledgment:
     33  *    "This product includes software developed by the OpenSSL Project
     34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     35  *
     36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     47  * OF THE POSSIBILITY OF SUCH DAMAGE.
     48  * ====================================================================
     49  *
     50  * This product includes cryptographic software written by Eric Young
     51  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     52  * Hudson (tjh (at) cryptsoft.com).
     53  *
     54  */
     55 /* ====================================================================
     56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
     57  *
     58  * Portions of the attached software ("Contribution") are developed by
     59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
     60  *
     61  * The Contribution is licensed pursuant to the OpenSSL open source
     62  * license provided above.
     63  *
     64  * The elliptic curve binary polynomial software is originally written by
     65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
     66  * Laboratories. */
     67 
     68 #include <openssl/ec.h>
     69 
     70 #include <string.h>
     71 
     72 #include <openssl/bn.h>
     73 #include <openssl/err.h>
     74 #include <openssl/mem.h>
     75 #include <openssl/thread.h>
     76 
     77 #include "internal.h"
     78 #include "../internal.h"
     79 
     80 
     81 /* This file implements the wNAF-based interleaving multi-exponentation method
     82  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
     83  * */
     84 
     85 /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
     86  * This is an array  r[]  of values that are either zero or odd with an
     87  * absolute value less than  2^w  satisfying
     88  *     scalar = \sum_j r[j]*2^j
     89  * where at most one of any  w+1  consecutive digits is non-zero
     90  * with the exception that the most significant digit may be only
     91  * w-1 zeros away from that next non-zero digit.
     92  */
     93 static int8_t *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) {
     94   int window_val;
     95   int ok = 0;
     96   int8_t *r = NULL;
     97   int sign = 1;
     98   int bit, next_bit, mask;
     99   size_t len = 0, j;
    100 
    101   if (BN_is_zero(scalar)) {
    102     r = OPENSSL_malloc(1);
    103     if (!r) {
    104       OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
    105       goto err;
    106     }
    107     r[0] = 0;
    108     *ret_len = 1;
    109     return r;
    110   }
    111 
    112   /* 'int8_t' can represent integers with absolute values less than 2^7. */
    113   if (w <= 0 || w > 7) {
    114     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    115     goto err;
    116   }
    117   bit = 1 << w;        /* at most 128 */
    118   next_bit = bit << 1; /* at most 256 */
    119   mask = next_bit - 1; /* at most 255 */
    120 
    121   if (BN_is_negative(scalar)) {
    122     sign = -1;
    123   }
    124 
    125   if (scalar->d == NULL || scalar->top == 0) {
    126     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    127     goto err;
    128   }
    129 
    130   len = BN_num_bits(scalar);
    131   /* The modified wNAF may be one digit longer than binary representation
    132    * (*ret_len will be set to the actual length, i.e. at most
    133    * BN_num_bits(scalar) + 1). */
    134   r = OPENSSL_malloc(len + 1);
    135   if (r == NULL) {
    136     OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
    137     goto err;
    138   }
    139   window_val = scalar->d[0] & mask;
    140   j = 0;
    141   /* If j+w+1 >= len, window_val will not increase. */
    142   while (window_val != 0 || j + w + 1 < len) {
    143     int digit = 0;
    144 
    145     /* 0 <= window_val <= 2^(w+1) */
    146 
    147     if (window_val & 1) {
    148       /* 0 < window_val < 2^(w+1) */
    149 
    150       if (window_val & bit) {
    151         digit = window_val - next_bit; /* -2^w < digit < 0 */
    152 
    153 #if 1 /* modified wNAF */
    154         if (j + w + 1 >= len) {
    155           /* special case for generating modified wNAFs:
    156            * no new bits will be added into window_val,
    157            * so using a positive digit here will decrease
    158            * the total length of the representation */
    159 
    160           digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
    161         }
    162 #endif
    163       } else {
    164         digit = window_val; /* 0 < digit < 2^w */
    165       }
    166 
    167       if (digit <= -bit || digit >= bit || !(digit & 1)) {
    168         OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    169         goto err;
    170       }
    171 
    172       window_val -= digit;
    173 
    174       /* Now window_val is 0 or 2^(w+1) in standard wNAF generation;
    175        * for modified window NAFs, it may also be 2^w. */
    176       if (window_val != 0 && window_val != next_bit && window_val != bit) {
    177         OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    178         goto err;
    179       }
    180     }
    181 
    182     r[j++] = sign * digit;
    183 
    184     window_val >>= 1;
    185     window_val += bit * BN_is_bit_set(scalar, j + w);
    186 
    187     if (window_val > next_bit) {
    188       OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    189       goto err;
    190     }
    191   }
    192 
    193   if (j > len + 1) {
    194     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    195     goto err;
    196   }
    197   len = j;
    198   ok = 1;
    199 
    200 err:
    201   if (!ok) {
    202     OPENSSL_free(r);
    203     r = NULL;
    204   }
    205   if (ok) {
    206     *ret_len = len;
    207   }
    208   return r;
    209 }
    210 
    211 
    212 /* TODO: table should be optimised for the wNAF-based implementation,
    213  *       sometimes smaller windows will give better performance
    214  *       (thus the boundaries should be increased)
    215  */
    216 static size_t window_bits_for_scalar_size(size_t b) {
    217   if (b >= 2000) {
    218     return 6;
    219   }
    220 
    221   if (b >= 800) {
    222     return 5;
    223   }
    224 
    225   if (b >= 300) {
    226     return 4;
    227   }
    228 
    229   if (b >= 70) {
    230     return 3;
    231   }
    232 
    233   if (b >= 20) {
    234     return 2;
    235   }
    236 
    237   return 1;
    238 }
    239 
    240 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
    241                 const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) {
    242   BN_CTX *new_ctx = NULL;
    243   const EC_POINT *generator = NULL;
    244   EC_POINT *tmp = NULL;
    245   size_t total_num = 0;
    246   size_t i, j;
    247   int k;
    248   int r_is_inverted = 0;
    249   int r_is_at_infinity = 1;
    250   size_t *wsize = NULL;      /* individual window sizes */
    251   int8_t **wNAF = NULL; /* individual wNAFs */
    252   size_t *wNAF_len = NULL;
    253   size_t max_len = 0;
    254   size_t num_val = 0;
    255   EC_POINT **val = NULL; /* precomputation */
    256   EC_POINT **v;
    257   EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
    258   int ret = 0;
    259 
    260   if (ctx == NULL) {
    261     ctx = new_ctx = BN_CTX_new();
    262     if (ctx == NULL) {
    263       goto err;
    264     }
    265   }
    266 
    267   /* TODO: This function used to take |points| and |scalars| as arrays of
    268    * |num| elements. The code below should be simplified to work in terms of |p|
    269    * and |p_scalar|. */
    270   size_t num = p != NULL ? 1 : 0;
    271   const EC_POINT **points = p != NULL ? &p : NULL;
    272   const BIGNUM **scalars = p != NULL ? &p_scalar : NULL;
    273 
    274   total_num = num;
    275 
    276   if (g_scalar != NULL) {
    277     generator = EC_GROUP_get0_generator(group);
    278     if (generator == NULL) {
    279       OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
    280       goto err;
    281     }
    282 
    283     ++total_num; /* treat 'g_scalar' like 'num'-th element of 'scalars' */
    284   }
    285 
    286 
    287   wsize = OPENSSL_malloc(total_num * sizeof(wsize[0]));
    288   wNAF_len = OPENSSL_malloc(total_num * sizeof(wNAF_len[0]));
    289   wNAF = OPENSSL_malloc(total_num * sizeof(wNAF[0]));
    290   val_sub = OPENSSL_malloc(total_num * sizeof(val_sub[0]));
    291 
    292   /* Ensure wNAF is initialised in case we end up going to err. */
    293   if (wNAF != NULL) {
    294     OPENSSL_memset(wNAF, 0, total_num * sizeof(wNAF[0]));
    295   }
    296 
    297   if (!wsize || !wNAF_len || !wNAF || !val_sub) {
    298     OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
    299     goto err;
    300   }
    301 
    302   /* num_val will be the total number of temporarily precomputed points */
    303   num_val = 0;
    304 
    305   for (i = 0; i < total_num; i++) {
    306     size_t bits;
    307 
    308     bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(g_scalar);
    309     wsize[i] = window_bits_for_scalar_size(bits);
    310     num_val += (size_t)1 << (wsize[i] - 1);
    311     wNAF[i] =
    312         compute_wNAF((i < num ? scalars[i] : g_scalar), wsize[i], &wNAF_len[i]);
    313     if (wNAF[i] == NULL) {
    314       goto err;
    315     }
    316     if (wNAF_len[i] > max_len) {
    317       max_len = wNAF_len[i];
    318     }
    319   }
    320 
    321   /* All points we precompute now go into a single array 'val'. 'val_sub[i]' is
    322    * a pointer to the subarray for the i-th point. */
    323   val = OPENSSL_malloc(num_val * sizeof(val[0]));
    324   if (val == NULL) {
    325     OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
    326     goto err;
    327   }
    328   OPENSSL_memset(val, 0, num_val * sizeof(val[0]));
    329 
    330   /* allocate points for precomputation */
    331   v = val;
    332   for (i = 0; i < total_num; i++) {
    333     val_sub[i] = v;
    334     for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
    335       *v = EC_POINT_new(group);
    336       if (*v == NULL) {
    337         goto err;
    338       }
    339       v++;
    340     }
    341   }
    342   if (!(v == val + num_val)) {
    343     OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
    344     goto err;
    345   }
    346 
    347   if (!(tmp = EC_POINT_new(group))) {
    348     goto err;
    349   }
    350 
    351   /* prepare precomputed values:
    352    *    val_sub[i][0] :=     points[i]
    353    *    val_sub[i][1] := 3 * points[i]
    354    *    val_sub[i][2] := 5 * points[i]
    355    *    ...
    356    */
    357   for (i = 0; i < total_num; i++) {
    358     if (i < num) {
    359       if (!EC_POINT_copy(val_sub[i][0], points[i])) {
    360         goto err;
    361       }
    362     } else if (!EC_POINT_copy(val_sub[i][0], generator)) {
    363       goto err;
    364     }
    365 
    366     if (wsize[i] > 1) {
    367       if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) {
    368         goto err;
    369       }
    370       for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
    371         if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) {
    372           goto err;
    373         }
    374       }
    375     }
    376   }
    377 
    378 #if 1 /* optional; window_bits_for_scalar_size assumes we do this step */
    379   if (!EC_POINTs_make_affine(group, num_val, val, ctx)) {
    380     goto err;
    381   }
    382 #endif
    383 
    384   r_is_at_infinity = 1;
    385 
    386   for (k = max_len - 1; k >= 0; k--) {
    387     if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) {
    388       goto err;
    389     }
    390 
    391     for (i = 0; i < total_num; i++) {
    392       if (wNAF_len[i] > (size_t)k) {
    393         int digit = wNAF[i][k];
    394         int is_neg;
    395 
    396         if (digit) {
    397           is_neg = digit < 0;
    398 
    399           if (is_neg) {
    400             digit = -digit;
    401           }
    402 
    403           if (is_neg != r_is_inverted) {
    404             if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) {
    405               goto err;
    406             }
    407             r_is_inverted = !r_is_inverted;
    408           }
    409 
    410           /* digit > 0 */
    411 
    412           if (r_is_at_infinity) {
    413             if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) {
    414               goto err;
    415             }
    416             r_is_at_infinity = 0;
    417           } else {
    418             if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) {
    419               goto err;
    420             }
    421           }
    422         }
    423       }
    424     }
    425   }
    426 
    427   if (r_is_at_infinity) {
    428     if (!EC_POINT_set_to_infinity(group, r)) {
    429       goto err;
    430     }
    431   } else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) {
    432     goto err;
    433   }
    434 
    435   ret = 1;
    436 
    437 err:
    438   BN_CTX_free(new_ctx);
    439   EC_POINT_free(tmp);
    440   OPENSSL_free(wsize);
    441   OPENSSL_free(wNAF_len);
    442   if (wNAF != NULL) {
    443     for (i = 0; i < total_num; i++) {
    444       OPENSSL_free(wNAF[i]);
    445     }
    446 
    447     OPENSSL_free(wNAF);
    448   }
    449   if (val != NULL) {
    450     for (i = 0; i < num_val; i++) {
    451       EC_POINT_clear_free(val[i]);
    452     }
    453 
    454     OPENSSL_free(val);
    455   }
    456   OPENSSL_free(val_sub);
    457   return ret;
    458 }
    459