Home | History | Annotate | Download | only in compiler
      1 // Copyright 2015 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_COMPILER_BYTECODE_GRAPH_BUILDER_H_
      6 #define V8_COMPILER_BYTECODE_GRAPH_BUILDER_H_
      7 
      8 #include "src/compiler/bytecode-branch-analysis.h"
      9 #include "src/compiler/bytecode-loop-analysis.h"
     10 #include "src/compiler/js-graph.h"
     11 #include "src/compiler/liveness-analyzer.h"
     12 #include "src/compiler/state-values-utils.h"
     13 #include "src/compiler/type-hint-analyzer.h"
     14 #include "src/interpreter/bytecode-array-iterator.h"
     15 #include "src/interpreter/bytecode-flags.h"
     16 #include "src/interpreter/bytecodes.h"
     17 #include "src/source-position-table.h"
     18 
     19 namespace v8 {
     20 namespace internal {
     21 
     22 class CompilationInfo;
     23 
     24 namespace compiler {
     25 
     26 class SourcePositionTable;
     27 
     28 // The BytecodeGraphBuilder produces a high-level IR graph based on
     29 // interpreter bytecodes.
     30 class BytecodeGraphBuilder {
     31  public:
     32   BytecodeGraphBuilder(Zone* local_zone, CompilationInfo* info,
     33                        JSGraph* jsgraph, float invocation_frequency,
     34                        SourcePositionTable* source_positions,
     35                        int inlining_id = SourcePosition::kNotInlined);
     36 
     37   // Creates a graph by visiting bytecodes.
     38   bool CreateGraph(bool stack_check = true);
     39 
     40  private:
     41   class Environment;
     42 
     43   void VisitBytecodes(bool stack_check);
     44 
     45   // Get or create the node that represents the outer function closure.
     46   Node* GetFunctionClosure();
     47 
     48   // Get or create the node that represents the outer function context.
     49   Node* GetFunctionContext();
     50 
     51   // Get or create the node that represents the incoming new target value.
     52   Node* GetNewTarget();
     53 
     54   // Builder for loading the a native context field.
     55   Node* BuildLoadNativeContextField(int index);
     56 
     57   // Helper function for creating a pair containing type feedback vector and
     58   // a feedback slot.
     59   VectorSlotPair CreateVectorSlotPair(int slot_id);
     60 
     61   void set_environment(Environment* env) { environment_ = env; }
     62   const Environment* environment() const { return environment_; }
     63   Environment* environment() { return environment_; }
     64 
     65   // Node creation helpers
     66   Node* NewNode(const Operator* op, bool incomplete = false) {
     67     return MakeNode(op, 0, static_cast<Node**>(nullptr), incomplete);
     68   }
     69 
     70   Node* NewNode(const Operator* op, Node* n1) {
     71     Node* buffer[] = {n1};
     72     return MakeNode(op, arraysize(buffer), buffer, false);
     73   }
     74 
     75   Node* NewNode(const Operator* op, Node* n1, Node* n2) {
     76     Node* buffer[] = {n1, n2};
     77     return MakeNode(op, arraysize(buffer), buffer, false);
     78   }
     79 
     80   Node* NewNode(const Operator* op, Node* n1, Node* n2, Node* n3) {
     81     Node* buffer[] = {n1, n2, n3};
     82     return MakeNode(op, arraysize(buffer), buffer, false);
     83   }
     84 
     85   Node* NewNode(const Operator* op, Node* n1, Node* n2, Node* n3, Node* n4) {
     86     Node* buffer[] = {n1, n2, n3, n4};
     87     return MakeNode(op, arraysize(buffer), buffer, false);
     88   }
     89 
     90   // Helpers to create new control nodes.
     91   Node* NewIfTrue() { return NewNode(common()->IfTrue()); }
     92   Node* NewIfFalse() { return NewNode(common()->IfFalse()); }
     93   Node* NewMerge() { return NewNode(common()->Merge(1), true); }
     94   Node* NewLoop() { return NewNode(common()->Loop(1), true); }
     95   Node* NewBranch(Node* condition, BranchHint hint = BranchHint::kNone) {
     96     return NewNode(common()->Branch(hint), condition);
     97   }
     98 
     99   // Creates a new Phi node having {count} input values.
    100   Node* NewPhi(int count, Node* input, Node* control);
    101   Node* NewEffectPhi(int count, Node* input, Node* control);
    102 
    103   // Helpers for merging control, effect or value dependencies.
    104   Node* MergeControl(Node* control, Node* other);
    105   Node* MergeEffect(Node* effect, Node* other_effect, Node* control);
    106   Node* MergeValue(Node* value, Node* other_value, Node* control);
    107 
    108   // The main node creation chokepoint. Adds context, frame state, effect,
    109   // and control dependencies depending on the operator.
    110   Node* MakeNode(const Operator* op, int value_input_count, Node** value_inputs,
    111                  bool incomplete);
    112 
    113   Node** EnsureInputBufferSize(int size);
    114 
    115   Node* ProcessCallArguments(const Operator* call_op, Node* callee,
    116                              interpreter::Register receiver, size_t arity);
    117   Node* ProcessCallNewArguments(const Operator* call_new_op, Node* callee,
    118                                 Node* new_target,
    119                                 interpreter::Register first_arg, size_t arity);
    120   Node* ProcessCallRuntimeArguments(const Operator* call_runtime_op,
    121                                     interpreter::Register first_arg,
    122                                     size_t arity);
    123 
    124   // Prepare information for eager deoptimization. This information is carried
    125   // by dedicated {Checkpoint} nodes that are wired into the effect chain.
    126   // Conceptually this frame state is "before" a given operation.
    127   void PrepareEagerCheckpoint();
    128 
    129   // Prepare information for lazy deoptimization. This information is attached
    130   // to the given node and the output value produced by the node is combined.
    131   // Conceptually this frame state is "after" a given operation.
    132   void PrepareFrameState(Node* node, OutputFrameStateCombine combine);
    133 
    134   // Computes register liveness and replaces dead ones in frame states with the
    135   // undefined values.
    136   void ClearNonLiveSlotsInFrameStates();
    137 
    138   void BuildCreateArguments(CreateArgumentsType type);
    139   Node* BuildLoadGlobal(uint32_t feedback_slot_index, TypeofMode typeof_mode);
    140   void BuildStoreGlobal(LanguageMode language_mode);
    141   void BuildNamedStore(LanguageMode language_mode);
    142   void BuildKeyedStore(LanguageMode language_mode);
    143   void BuildLdaLookupSlot(TypeofMode typeof_mode);
    144   void BuildLdaLookupContextSlot(TypeofMode typeof_mode);
    145   void BuildLdaLookupGlobalSlot(TypeofMode typeof_mode);
    146   void BuildStaLookupSlot(LanguageMode language_mode);
    147   void BuildCall(TailCallMode tail_call_mode,
    148                  ConvertReceiverMode receiver_hint);
    149   void BuildThrow();
    150   void BuildBinaryOp(const Operator* op);
    151   void BuildBinaryOpWithImmediate(const Operator* op);
    152   void BuildCompareOp(const Operator* op);
    153   void BuildDelete(LanguageMode language_mode);
    154   void BuildCastOperator(const Operator* op);
    155   void BuildForInPrepare();
    156   void BuildForInNext();
    157   void BuildInvokeIntrinsic();
    158 
    159   // Check the context chain for extensions, for lookup fast paths.
    160   Environment* CheckContextExtensions(uint32_t depth);
    161 
    162   // Helper function to create binary operation hint from the recorded
    163   // type feedback.
    164   BinaryOperationHint GetBinaryOperationHint(int operand_index);
    165 
    166   // Helper function to create compare operation hint from the recorded
    167   // type feedback.
    168   CompareOperationHint GetCompareOperationHint();
    169 
    170   // Helper function to compute call frequency from the recorded type
    171   // feedback.
    172   float ComputeCallFrequency(int slot_id) const;
    173 
    174   // Control flow plumbing.
    175   void BuildJump();
    176   void BuildJumpIf(Node* condition);
    177   void BuildJumpIfNot(Node* condition);
    178   void BuildJumpIfEqual(Node* comperand);
    179   void BuildJumpIfTrue();
    180   void BuildJumpIfFalse();
    181   void BuildJumpIfToBooleanTrue();
    182   void BuildJumpIfToBooleanFalse();
    183   void BuildJumpIfNotHole();
    184 
    185   // Simulates control flow by forward-propagating environments.
    186   void MergeIntoSuccessorEnvironment(int target_offset);
    187   void BuildLoopHeaderEnvironment(int current_offset);
    188   void SwitchToMergeEnvironment(int current_offset);
    189 
    190   // Simulates control flow that exits the function body.
    191   void MergeControlToLeaveFunction(Node* exit);
    192 
    193   // Builds entry points that are used by OSR deconstruction.
    194   void BuildOSRLoopEntryPoint(int current_offset);
    195   void BuildOSRNormalEntryPoint();
    196 
    197   // Builds loop exit nodes for every exited loop between the current bytecode
    198   // offset and {target_offset}.
    199   void BuildLoopExitsForBranch(int target_offset);
    200   void BuildLoopExitsForFunctionExit();
    201   void BuildLoopExitsUntilLoop(int loop_offset);
    202 
    203   // Simulates entry and exit of exception handlers.
    204   void EnterAndExitExceptionHandlers(int current_offset);
    205 
    206   // Growth increment for the temporary buffer used to construct input lists to
    207   // new nodes.
    208   static const int kInputBufferSizeIncrement = 64;
    209 
    210   // An abstract representation for an exception handler that is being
    211   // entered and exited while the graph builder is iterating over the
    212   // underlying bytecode. The exception handlers within the bytecode are
    213   // well scoped, hence will form a stack during iteration.
    214   struct ExceptionHandler {
    215     int start_offset_;      // Start offset of the handled area in the bytecode.
    216     int end_offset_;        // End offset of the handled area in the bytecode.
    217     int handler_offset_;    // Handler entry offset within the bytecode.
    218     int context_register_;  // Index of register holding handler context.
    219   };
    220 
    221   // Field accessors
    222   Graph* graph() const { return jsgraph_->graph(); }
    223   CommonOperatorBuilder* common() const { return jsgraph_->common(); }
    224   Zone* graph_zone() const { return graph()->zone(); }
    225   JSGraph* jsgraph() const { return jsgraph_; }
    226   JSOperatorBuilder* javascript() const { return jsgraph_->javascript(); }
    227   Zone* local_zone() const { return local_zone_; }
    228   const Handle<BytecodeArray>& bytecode_array() const {
    229     return bytecode_array_;
    230   }
    231   const Handle<HandlerTable>& exception_handler_table() const {
    232     return exception_handler_table_;
    233   }
    234   const Handle<TypeFeedbackVector>& feedback_vector() const {
    235     return feedback_vector_;
    236   }
    237   const FrameStateFunctionInfo* frame_state_function_info() const {
    238     return frame_state_function_info_;
    239   }
    240 
    241   const interpreter::BytecodeArrayIterator& bytecode_iterator() const {
    242     return *bytecode_iterator_;
    243   }
    244 
    245   void set_bytecode_iterator(
    246       const interpreter::BytecodeArrayIterator* bytecode_iterator) {
    247     bytecode_iterator_ = bytecode_iterator;
    248   }
    249 
    250   const BytecodeBranchAnalysis* branch_analysis() const {
    251     return branch_analysis_;
    252   }
    253 
    254   void set_branch_analysis(const BytecodeBranchAnalysis* branch_analysis) {
    255     branch_analysis_ = branch_analysis;
    256   }
    257 
    258   const BytecodeLoopAnalysis* loop_analysis() const { return loop_analysis_; }
    259 
    260   void set_loop_analysis(const BytecodeLoopAnalysis* loop_analysis) {
    261     loop_analysis_ = loop_analysis;
    262   }
    263 
    264   LivenessAnalyzer* liveness_analyzer() { return &liveness_analyzer_; }
    265 
    266   bool IsLivenessAnalysisEnabled() const {
    267     return this->is_liveness_analysis_enabled_;
    268   }
    269 
    270 #define DECLARE_VISIT_BYTECODE(name, ...) void Visit##name();
    271   BYTECODE_LIST(DECLARE_VISIT_BYTECODE)
    272 #undef DECLARE_VISIT_BYTECODE
    273 
    274   Zone* local_zone_;
    275   JSGraph* jsgraph_;
    276   float const invocation_frequency_;
    277   Handle<BytecodeArray> bytecode_array_;
    278   Handle<HandlerTable> exception_handler_table_;
    279   Handle<TypeFeedbackVector> feedback_vector_;
    280   const FrameStateFunctionInfo* frame_state_function_info_;
    281   const interpreter::BytecodeArrayIterator* bytecode_iterator_;
    282   const BytecodeBranchAnalysis* branch_analysis_;
    283   const BytecodeLoopAnalysis* loop_analysis_;
    284   Environment* environment_;
    285   BailoutId osr_ast_id_;
    286 
    287   // Merge environments are snapshots of the environment at points where the
    288   // control flow merges. This models a forward data flow propagation of all
    289   // values from all predecessors of the merge in question.
    290   ZoneMap<int, Environment*> merge_environments_;
    291 
    292   // Exception handlers currently entered by the iteration.
    293   ZoneStack<ExceptionHandler> exception_handlers_;
    294   int current_exception_handler_;
    295 
    296   // Temporary storage for building node input lists.
    297   int input_buffer_size_;
    298   Node** input_buffer_;
    299 
    300   // Nodes representing values in the activation record.
    301   SetOncePointer<Node> function_context_;
    302   SetOncePointer<Node> function_closure_;
    303   SetOncePointer<Node> new_target_;
    304 
    305   // Control nodes that exit the function body.
    306   ZoneVector<Node*> exit_controls_;
    307 
    308   bool const is_liveness_analysis_enabled_;
    309 
    310   StateValuesCache state_values_cache_;
    311 
    312   // Analyzer of register liveness.
    313   LivenessAnalyzer liveness_analyzer_;
    314 
    315   // The Turbofan source position table, to be populated.
    316   SourcePositionTable* source_positions_;
    317 
    318   SourcePosition const start_position_;
    319 
    320   // Update [source_positions_]'s current position to that of the bytecode at
    321   // [offset], if any.
    322   void UpdateCurrentSourcePosition(SourcePositionTableIterator* it, int offset);
    323 
    324   static int const kBinaryOperationHintIndex = 1;
    325   static int const kCountOperationHintIndex = 0;
    326   static int const kBinaryOperationSmiHintIndex = 2;
    327 
    328   DISALLOW_COPY_AND_ASSIGN(BytecodeGraphBuilder);
    329 };
    330 
    331 }  // namespace compiler
    332 }  // namespace internal
    333 }  // namespace v8
    334 
    335 #endif  // V8_COMPILER_BYTECODE_GRAPH_BUILDER_H_
    336