Home | History | Annotate | Download | only in ADT
      1 //==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines classes to implement an intrusive doubly linked list class
     11 // (i.e. each node of the list must contain a next and previous field for the
     12 // list.
     13 //
     14 // The ilist_traits trait class is used to gain access to the next and previous
     15 // fields of the node type that the list is instantiated with.  If it is not
     16 // specialized, the list defaults to using the getPrev(), getNext() method calls
     17 // to get the next and previous pointers.
     18 //
     19 // The ilist class itself, should be a plug in replacement for list, assuming
     20 // that the nodes contain next/prev pointers.  This list replacement does not
     21 // provide a constant time size() method, so be careful to use empty() when you
     22 // really want to know if it's empty.
     23 //
     24 // The ilist class is implemented by allocating a 'tail' node when the list is
     25 // created (using ilist_traits<>::createSentinel()).  This tail node is
     26 // absolutely required because the user must be able to compute end()-1. Because
     27 // of this, users of the direct next/prev links will see an extra link on the
     28 // end of the list, which should be ignored.
     29 //
     30 // Requirements for a user of this list:
     31 //
     32 //   1. The user must provide {g|s}et{Next|Prev} methods, or specialize
     33 //      ilist_traits to provide an alternate way of getting and setting next and
     34 //      prev links.
     35 //
     36 //===----------------------------------------------------------------------===//
     37 
     38 #ifndef LLVM_ADT_ILIST_H
     39 #define LLVM_ADT_ILIST_H
     40 
     41 #include "llvm/Support/Compiler.h"
     42 #include <algorithm>
     43 #include <cassert>
     44 #include <cstddef>
     45 #include <iterator>
     46 
     47 namespace llvm {
     48 
     49 template<typename NodeTy, typename Traits> class iplist;
     50 template<typename NodeTy> class ilist_iterator;
     51 
     52 /// ilist_nextprev_traits - A fragment for template traits for intrusive list
     53 /// that provides default next/prev implementations for common operations.
     54 ///
     55 template<typename NodeTy>
     56 struct ilist_nextprev_traits {
     57   static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); }
     58   static NodeTy *getNext(NodeTy *N) { return N->getNext(); }
     59   static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); }
     60   static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); }
     61 
     62   static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); }
     63   static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); }
     64 };
     65 
     66 template<typename NodeTy>
     67 struct ilist_traits;
     68 
     69 /// ilist_sentinel_traits - A fragment for template traits for intrusive list
     70 /// that provides default sentinel implementations for common operations.
     71 ///
     72 /// ilist_sentinel_traits implements a lazy dynamic sentinel allocation
     73 /// strategy. The sentinel is stored in the prev field of ilist's Head.
     74 ///
     75 template<typename NodeTy>
     76 struct ilist_sentinel_traits {
     77   /// createSentinel - create the dynamic sentinel
     78   static NodeTy *createSentinel() { return new NodeTy(); }
     79 
     80   /// destroySentinel - deallocate the dynamic sentinel
     81   static void destroySentinel(NodeTy *N) { delete N; }
     82 
     83   /// provideInitialHead - when constructing an ilist, provide a starting
     84   /// value for its Head
     85   /// @return null node to indicate that it needs to be allocated later
     86   static NodeTy *provideInitialHead() { return nullptr; }
     87 
     88   /// ensureHead - make sure that Head is either already
     89   /// initialized or assigned a fresh sentinel
     90   /// @return the sentinel
     91   static NodeTy *ensureHead(NodeTy *&Head) {
     92     if (!Head) {
     93       Head = ilist_traits<NodeTy>::createSentinel();
     94       ilist_traits<NodeTy>::noteHead(Head, Head);
     95       ilist_traits<NodeTy>::setNext(Head, nullptr);
     96       return Head;
     97     }
     98     return ilist_traits<NodeTy>::getPrev(Head);
     99   }
    100 
    101   /// noteHead - stash the sentinel into its default location
    102   static void noteHead(NodeTy *NewHead, NodeTy *Sentinel) {
    103     ilist_traits<NodeTy>::setPrev(NewHead, Sentinel);
    104   }
    105 };
    106 
    107 template <typename NodeTy> class ilist_half_node;
    108 template <typename NodeTy> class ilist_node;
    109 
    110 /// Traits with an embedded ilist_node as a sentinel.
    111 ///
    112 /// FIXME: The downcast in createSentinel() is UB.
    113 template <typename NodeTy> struct ilist_embedded_sentinel_traits {
    114   /// Get hold of the node that marks the end of the list.
    115   NodeTy *createSentinel() const {
    116     // Since i(p)lists always publicly derive from their corresponding traits,
    117     // placing a data member in this class will augment the i(p)list.  But since
    118     // the NodeTy is expected to be publicly derive from ilist_node<NodeTy>,
    119     // there is a legal viable downcast from it to NodeTy. We use this trick to
    120     // superimpose an i(p)list with a "ghostly" NodeTy, which becomes the
    121     // sentinel. Dereferencing the sentinel is forbidden (save the
    122     // ilist_node<NodeTy>), so no one will ever notice the superposition.
    123     return static_cast<NodeTy *>(&Sentinel);
    124   }
    125   static void destroySentinel(NodeTy *) {}
    126 
    127   NodeTy *provideInitialHead() const { return createSentinel(); }
    128   NodeTy *ensureHead(NodeTy *) const { return createSentinel(); }
    129   static void noteHead(NodeTy *, NodeTy *) {}
    130 
    131 private:
    132   mutable ilist_node<NodeTy> Sentinel;
    133 };
    134 
    135 /// Trait with an embedded ilist_half_node as a sentinel.
    136 ///
    137 /// FIXME: The downcast in createSentinel() is UB.
    138 template <typename NodeTy> struct ilist_half_embedded_sentinel_traits {
    139   /// Get hold of the node that marks the end of the list.
    140   NodeTy *createSentinel() const {
    141     // See comment in ilist_embedded_sentinel_traits::createSentinel().
    142     return static_cast<NodeTy *>(&Sentinel);
    143   }
    144   static void destroySentinel(NodeTy *) {}
    145 
    146   NodeTy *provideInitialHead() const { return createSentinel(); }
    147   NodeTy *ensureHead(NodeTy *) const { return createSentinel(); }
    148   static void noteHead(NodeTy *, NodeTy *) {}
    149 
    150 private:
    151   mutable ilist_half_node<NodeTy> Sentinel;
    152 };
    153 
    154 /// ilist_node_traits - A fragment for template traits for intrusive list
    155 /// that provides default node related operations.
    156 ///
    157 template<typename NodeTy>
    158 struct ilist_node_traits {
    159   static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); }
    160   static void deleteNode(NodeTy *V) { delete V; }
    161 
    162   void addNodeToList(NodeTy *) {}
    163   void removeNodeFromList(NodeTy *) {}
    164   void transferNodesFromList(ilist_node_traits &    /*SrcTraits*/,
    165                              ilist_iterator<NodeTy> /*first*/,
    166                              ilist_iterator<NodeTy> /*last*/) {}
    167 };
    168 
    169 /// ilist_default_traits - Default template traits for intrusive list.
    170 /// By inheriting from this, you can easily use default implementations
    171 /// for all common operations.
    172 ///
    173 template<typename NodeTy>
    174 struct ilist_default_traits : public ilist_nextprev_traits<NodeTy>,
    175                               public ilist_sentinel_traits<NodeTy>,
    176                               public ilist_node_traits<NodeTy> {
    177 };
    178 
    179 // Template traits for intrusive list.  By specializing this template class, you
    180 // can change what next/prev fields are used to store the links...
    181 template<typename NodeTy>
    182 struct ilist_traits : public ilist_default_traits<NodeTy> {};
    183 
    184 // Const traits are the same as nonconst traits...
    185 template<typename Ty>
    186 struct ilist_traits<const Ty> : public ilist_traits<Ty> {};
    187 
    188 //===----------------------------------------------------------------------===//
    189 // Iterator for intrusive list.
    190 //
    191 template <typename NodeTy>
    192 class ilist_iterator
    193     : public std::iterator<std::bidirectional_iterator_tag, NodeTy, ptrdiff_t> {
    194 public:
    195   typedef ilist_traits<NodeTy> Traits;
    196   typedef std::iterator<std::bidirectional_iterator_tag, NodeTy, ptrdiff_t>
    197       super;
    198 
    199   typedef typename super::value_type value_type;
    200   typedef typename super::difference_type difference_type;
    201   typedef typename super::pointer pointer;
    202   typedef typename super::reference reference;
    203 
    204 private:
    205   pointer NodePtr;
    206 
    207 public:
    208   explicit ilist_iterator(pointer NP) : NodePtr(NP) {}
    209   explicit ilist_iterator(reference NR) : NodePtr(&NR) {}
    210   ilist_iterator() : NodePtr(nullptr) {}
    211 
    212   // This is templated so that we can allow constructing a const iterator from
    213   // a nonconst iterator...
    214   template <class node_ty>
    215   ilist_iterator(const ilist_iterator<node_ty> &RHS)
    216       : NodePtr(RHS.getNodePtrUnchecked()) {}
    217 
    218   // This is templated so that we can allow assigning to a const iterator from
    219   // a nonconst iterator...
    220   template <class node_ty>
    221   const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) {
    222     NodePtr = RHS.getNodePtrUnchecked();
    223     return *this;
    224   }
    225 
    226   void reset(pointer NP) { NodePtr = NP; }
    227 
    228   // Accessors...
    229   explicit operator pointer() const { return NodePtr; }
    230   reference operator*() const { return *NodePtr; }
    231   pointer operator->() const { return &operator*(); }
    232 
    233   // Comparison operators
    234   template <class Y> bool operator==(const ilist_iterator<Y> &RHS) const {
    235     return NodePtr == RHS.getNodePtrUnchecked();
    236   }
    237   template <class Y> bool operator!=(const ilist_iterator<Y> &RHS) const {
    238     return NodePtr != RHS.getNodePtrUnchecked();
    239   }
    240 
    241   // Increment and decrement operators...
    242   ilist_iterator &operator--() {
    243     NodePtr = Traits::getPrev(NodePtr);
    244     assert(NodePtr && "--'d off the beginning of an ilist!");
    245     return *this;
    246   }
    247   ilist_iterator &operator++() {
    248     NodePtr = Traits::getNext(NodePtr);
    249     return *this;
    250   }
    251   ilist_iterator operator--(int) {
    252     ilist_iterator tmp = *this;
    253     --*this;
    254     return tmp;
    255   }
    256   ilist_iterator operator++(int) {
    257     ilist_iterator tmp = *this;
    258     ++*this;
    259     return tmp;
    260   }
    261 
    262   // Internal interface, do not use...
    263   pointer getNodePtrUnchecked() const { return NodePtr; }
    264 };
    265 
    266 // Allow ilist_iterators to convert into pointers to a node automatically when
    267 // used by the dyn_cast, cast, isa mechanisms...
    268 
    269 template<typename From> struct simplify_type;
    270 
    271 template<typename NodeTy> struct simplify_type<ilist_iterator<NodeTy> > {
    272   typedef NodeTy* SimpleType;
    273 
    274   static SimpleType getSimplifiedValue(ilist_iterator<NodeTy> &Node) {
    275     return &*Node;
    276   }
    277 };
    278 template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > {
    279   typedef /*const*/ NodeTy* SimpleType;
    280 
    281   static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) {
    282     return &*Node;
    283   }
    284 };
    285 
    286 
    287 //===----------------------------------------------------------------------===//
    288 //
    289 /// iplist - The subset of list functionality that can safely be used on nodes
    290 /// of polymorphic types, i.e. a heterogeneous list with a common base class that
    291 /// holds the next/prev pointers.  The only state of the list itself is a single
    292 /// pointer to the head of the list.
    293 ///
    294 /// This list can be in one of three interesting states:
    295 /// 1. The list may be completely unconstructed.  In this case, the head
    296 ///    pointer is null.  When in this form, any query for an iterator (e.g.
    297 ///    begin() or end()) causes the list to transparently change to state #2.
    298 /// 2. The list may be empty, but contain a sentinel for the end iterator. This
    299 ///    sentinel is created by the Traits::createSentinel method and is a link
    300 ///    in the list.  When the list is empty, the pointer in the iplist points
    301 ///    to the sentinel.  Once the sentinel is constructed, it
    302 ///    is not destroyed until the list is.
    303 /// 3. The list may contain actual objects in it, which are stored as a doubly
    304 ///    linked list of nodes.  One invariant of the list is that the predecessor
    305 ///    of the first node in the list always points to the last node in the list,
    306 ///    and the successor pointer for the sentinel (which always stays at the
    307 ///    end of the list) is always null.
    308 ///
    309 template<typename NodeTy, typename Traits=ilist_traits<NodeTy> >
    310 class iplist : public Traits {
    311   mutable NodeTy *Head;
    312 
    313   // Use the prev node pointer of 'head' as the tail pointer.  This is really a
    314   // circularly linked list where we snip the 'next' link from the sentinel node
    315   // back to the first node in the list (to preserve assertions about going off
    316   // the end of the list).
    317   NodeTy *getTail() { return this->ensureHead(Head); }
    318   const NodeTy *getTail() const { return this->ensureHead(Head); }
    319   void setTail(NodeTy *N) const { this->noteHead(Head, N); }
    320 
    321   /// CreateLazySentinel - This method verifies whether the sentinel for the
    322   /// list has been created and lazily makes it if not.
    323   void CreateLazySentinel() const {
    324     this->ensureHead(Head);
    325   }
    326 
    327   static bool op_less(NodeTy &L, NodeTy &R) { return L < R; }
    328   static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; }
    329 
    330   // No fundamental reason why iplist can't be copyable, but the default
    331   // copy/copy-assign won't do.
    332   iplist(const iplist &) = delete;
    333   void operator=(const iplist &) = delete;
    334 
    335 public:
    336   typedef NodeTy *pointer;
    337   typedef const NodeTy *const_pointer;
    338   typedef NodeTy &reference;
    339   typedef const NodeTy &const_reference;
    340   typedef NodeTy value_type;
    341   typedef ilist_iterator<NodeTy> iterator;
    342   typedef ilist_iterator<const NodeTy> const_iterator;
    343   typedef size_t size_type;
    344   typedef ptrdiff_t difference_type;
    345   typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
    346   typedef std::reverse_iterator<iterator>  reverse_iterator;
    347 
    348   iplist() : Head(this->provideInitialHead()) {}
    349   ~iplist() {
    350     if (!Head) return;
    351     clear();
    352     Traits::destroySentinel(getTail());
    353   }
    354 
    355   // Iterator creation methods.
    356   iterator begin() {
    357     CreateLazySentinel();
    358     return iterator(Head);
    359   }
    360   const_iterator begin() const {
    361     CreateLazySentinel();
    362     return const_iterator(Head);
    363   }
    364   iterator end() {
    365     CreateLazySentinel();
    366     return iterator(getTail());
    367   }
    368   const_iterator end() const {
    369     CreateLazySentinel();
    370     return const_iterator(getTail());
    371   }
    372 
    373   // reverse iterator creation methods.
    374   reverse_iterator rbegin()            { return reverse_iterator(end()); }
    375   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
    376   reverse_iterator rend()              { return reverse_iterator(begin()); }
    377   const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
    378 
    379 
    380   // Miscellaneous inspection routines.
    381   size_type max_size() const { return size_type(-1); }
    382   bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const {
    383     return !Head || Head == getTail();
    384   }
    385 
    386   // Front and back accessor functions...
    387   reference front() {
    388     assert(!empty() && "Called front() on empty list!");
    389     return *Head;
    390   }
    391   const_reference front() const {
    392     assert(!empty() && "Called front() on empty list!");
    393     return *Head;
    394   }
    395   reference back() {
    396     assert(!empty() && "Called back() on empty list!");
    397     return *this->getPrev(getTail());
    398   }
    399   const_reference back() const {
    400     assert(!empty() && "Called back() on empty list!");
    401     return *this->getPrev(getTail());
    402   }
    403 
    404   void swap(iplist &RHS) {
    405     assert(0 && "Swap does not use list traits callback correctly yet!");
    406     std::swap(Head, RHS.Head);
    407   }
    408 
    409   iterator insert(iterator where, NodeTy *New) {
    410     NodeTy *CurNode = where.getNodePtrUnchecked();
    411     NodeTy *PrevNode = this->getPrev(CurNode);
    412     this->setNext(New, CurNode);
    413     this->setPrev(New, PrevNode);
    414 
    415     if (CurNode != Head)  // Is PrevNode off the beginning of the list?
    416       this->setNext(PrevNode, New);
    417     else
    418       Head = New;
    419     this->setPrev(CurNode, New);
    420 
    421     this->addNodeToList(New);  // Notify traits that we added a node...
    422     return iterator(New);
    423   }
    424 
    425   iterator insertAfter(iterator where, NodeTy *New) {
    426     if (empty())
    427       return insert(begin(), New);
    428     else
    429       return insert(++where, New);
    430   }
    431 
    432   NodeTy *remove(iterator &IT) {
    433     assert(IT != end() && "Cannot remove end of list!");
    434     NodeTy *Node = &*IT;
    435     NodeTy *NextNode = this->getNext(Node);
    436     NodeTy *PrevNode = this->getPrev(Node);
    437 
    438     if (Node != Head)  // Is PrevNode off the beginning of the list?
    439       this->setNext(PrevNode, NextNode);
    440     else
    441       Head = NextNode;
    442     this->setPrev(NextNode, PrevNode);
    443     IT.reset(NextNode);
    444     this->removeNodeFromList(Node);  // Notify traits that we removed a node...
    445 
    446     // Set the next/prev pointers of the current node to null.  This isn't
    447     // strictly required, but this catches errors where a node is removed from
    448     // an ilist (and potentially deleted) with iterators still pointing at it.
    449     // When those iterators are incremented or decremented, they will assert on
    450     // the null next/prev pointer instead of "usually working".
    451     this->setNext(Node, nullptr);
    452     this->setPrev(Node, nullptr);
    453     return Node;
    454   }
    455 
    456   NodeTy *remove(const iterator &IT) {
    457     iterator MutIt = IT;
    458     return remove(MutIt);
    459   }
    460 
    461   NodeTy *remove(NodeTy *IT) { return remove(iterator(IT)); }
    462   NodeTy *remove(NodeTy &IT) { return remove(iterator(IT)); }
    463 
    464   // erase - remove a node from the controlled sequence... and delete it.
    465   iterator erase(iterator where) {
    466     this->deleteNode(remove(where));
    467     return where;
    468   }
    469 
    470   iterator erase(NodeTy *IT) { return erase(iterator(IT)); }
    471   iterator erase(NodeTy &IT) { return erase(iterator(IT)); }
    472 
    473   /// Remove all nodes from the list like clear(), but do not call
    474   /// removeNodeFromList() or deleteNode().
    475   ///
    476   /// This should only be used immediately before freeing nodes in bulk to
    477   /// avoid traversing the list and bringing all the nodes into cache.
    478   void clearAndLeakNodesUnsafely() {
    479     if (Head) {
    480       Head = getTail();
    481       this->setPrev(Head, Head);
    482     }
    483   }
    484 
    485 private:
    486   // transfer - The heart of the splice function.  Move linked list nodes from
    487   // [first, last) into position.
    488   //
    489   void transfer(iterator position, iplist &L2, iterator first, iterator last) {
    490     assert(first != last && "Should be checked by callers");
    491     // Position cannot be contained in the range to be transferred.
    492     // Check for the most common mistake.
    493     assert(position != first &&
    494            "Insertion point can't be one of the transferred nodes");
    495 
    496     if (position != last) {
    497       // Note: we have to be careful about the case when we move the first node
    498       // in the list.  This node is the list sentinel node and we can't move it.
    499       NodeTy *ThisSentinel = getTail();
    500       setTail(nullptr);
    501       NodeTy *L2Sentinel = L2.getTail();
    502       L2.setTail(nullptr);
    503 
    504       // Remove [first, last) from its old position.
    505       NodeTy *First = &*first, *Prev = this->getPrev(First);
    506       NodeTy *Next = last.getNodePtrUnchecked(), *Last = this->getPrev(Next);
    507       if (Prev)
    508         this->setNext(Prev, Next);
    509       else
    510         L2.Head = Next;
    511       this->setPrev(Next, Prev);
    512 
    513       // Splice [first, last) into its new position.
    514       NodeTy *PosNext = position.getNodePtrUnchecked();
    515       NodeTy *PosPrev = this->getPrev(PosNext);
    516 
    517       // Fix head of list...
    518       if (PosPrev)
    519         this->setNext(PosPrev, First);
    520       else
    521         Head = First;
    522       this->setPrev(First, PosPrev);
    523 
    524       // Fix end of list...
    525       this->setNext(Last, PosNext);
    526       this->setPrev(PosNext, Last);
    527 
    528       this->transferNodesFromList(L2, iterator(First), iterator(PosNext));
    529 
    530       // Now that everything is set, restore the pointers to the list sentinels.
    531       L2.setTail(L2Sentinel);
    532       setTail(ThisSentinel);
    533     }
    534   }
    535 
    536 public:
    537 
    538   //===----------------------------------------------------------------------===
    539   // Functionality derived from other functions defined above...
    540   //
    541 
    542   size_type LLVM_ATTRIBUTE_UNUSED_RESULT size() const {
    543     if (!Head) return 0; // Don't require construction of sentinel if empty.
    544     return std::distance(begin(), end());
    545   }
    546 
    547   iterator erase(iterator first, iterator last) {
    548     while (first != last)
    549       first = erase(first);
    550     return last;
    551   }
    552 
    553   void clear() { if (Head) erase(begin(), end()); }
    554 
    555   // Front and back inserters...
    556   void push_front(NodeTy *val) { insert(begin(), val); }
    557   void push_back(NodeTy *val) { insert(end(), val); }
    558   void pop_front() {
    559     assert(!empty() && "pop_front() on empty list!");
    560     erase(begin());
    561   }
    562   void pop_back() {
    563     assert(!empty() && "pop_back() on empty list!");
    564     iterator t = end(); erase(--t);
    565   }
    566 
    567   // Special forms of insert...
    568   template<class InIt> void insert(iterator where, InIt first, InIt last) {
    569     for (; first != last; ++first) insert(where, *first);
    570   }
    571 
    572   // Splice members - defined in terms of transfer...
    573   void splice(iterator where, iplist &L2) {
    574     if (!L2.empty())
    575       transfer(where, L2, L2.begin(), L2.end());
    576   }
    577   void splice(iterator where, iplist &L2, iterator first) {
    578     iterator last = first; ++last;
    579     if (where == first || where == last) return; // No change
    580     transfer(where, L2, first, last);
    581   }
    582   void splice(iterator where, iplist &L2, iterator first, iterator last) {
    583     if (first != last) transfer(where, L2, first, last);
    584   }
    585   void splice(iterator where, iplist &L2, NodeTy &N) {
    586     splice(where, L2, iterator(N));
    587   }
    588   void splice(iterator where, iplist &L2, NodeTy *N) {
    589     splice(where, L2, iterator(N));
    590   }
    591 
    592   template <class Compare>
    593   void merge(iplist &Right, Compare comp) {
    594     if (this == &Right)
    595       return;
    596     iterator First1 = begin(), Last1 = end();
    597     iterator First2 = Right.begin(), Last2 = Right.end();
    598     while (First1 != Last1 && First2 != Last2) {
    599       if (comp(*First2, *First1)) {
    600         iterator Next = First2;
    601         transfer(First1, Right, First2, ++Next);
    602         First2 = Next;
    603       } else {
    604         ++First1;
    605       }
    606     }
    607     if (First2 != Last2)
    608       transfer(Last1, Right, First2, Last2);
    609   }
    610   void merge(iplist &Right) { return merge(Right, op_less); }
    611 
    612   template <class Compare>
    613   void sort(Compare comp) {
    614     // The list is empty, vacuously sorted.
    615     if (empty())
    616       return;
    617     // The list has a single element, vacuously sorted.
    618     if (std::next(begin()) == end())
    619       return;
    620     // Find the split point for the list.
    621     iterator Center = begin(), End = begin();
    622     while (End != end() && std::next(End) != end()) {
    623       Center = std::next(Center);
    624       End = std::next(std::next(End));
    625     }
    626     // Split the list into two.
    627     iplist RightHalf;
    628     RightHalf.splice(RightHalf.begin(), *this, Center, end());
    629 
    630     // Sort the two sublists.
    631     sort(comp);
    632     RightHalf.sort(comp);
    633 
    634     // Merge the two sublists back together.
    635     merge(RightHalf, comp);
    636   }
    637   void sort() { sort(op_less); }
    638 
    639   /// \brief Get the previous node, or \c nullptr for the list head.
    640   NodeTy *getPrevNode(NodeTy &N) const {
    641     auto I = N.getIterator();
    642     if (I == begin())
    643       return nullptr;
    644     return &*std::prev(I);
    645   }
    646   /// \brief Get the previous node, or \c nullptr for the list head.
    647   const NodeTy *getPrevNode(const NodeTy &N) const {
    648     return getPrevNode(const_cast<NodeTy &>(N));
    649   }
    650 
    651   /// \brief Get the next node, or \c nullptr for the list tail.
    652   NodeTy *getNextNode(NodeTy &N) const {
    653     auto Next = std::next(N.getIterator());
    654     if (Next == end())
    655       return nullptr;
    656     return &*Next;
    657   }
    658   /// \brief Get the next node, or \c nullptr for the list tail.
    659   const NodeTy *getNextNode(const NodeTy &N) const {
    660     return getNextNode(const_cast<NodeTy &>(N));
    661   }
    662 };
    663 
    664 
    665 template<typename NodeTy>
    666 struct ilist : public iplist<NodeTy> {
    667   typedef typename iplist<NodeTy>::size_type size_type;
    668   typedef typename iplist<NodeTy>::iterator iterator;
    669 
    670   ilist() {}
    671   ilist(const ilist &right) {
    672     insert(this->begin(), right.begin(), right.end());
    673   }
    674   explicit ilist(size_type count) {
    675     insert(this->begin(), count, NodeTy());
    676   }
    677   ilist(size_type count, const NodeTy &val) {
    678     insert(this->begin(), count, val);
    679   }
    680   template<class InIt> ilist(InIt first, InIt last) {
    681     insert(this->begin(), first, last);
    682   }
    683 
    684   // bring hidden functions into scope
    685   using iplist<NodeTy>::insert;
    686   using iplist<NodeTy>::push_front;
    687   using iplist<NodeTy>::push_back;
    688 
    689   // Main implementation here - Insert for a node passed by value...
    690   iterator insert(iterator where, const NodeTy &val) {
    691     return insert(where, this->createNode(val));
    692   }
    693 
    694 
    695   // Front and back inserters...
    696   void push_front(const NodeTy &val) { insert(this->begin(), val); }
    697   void push_back(const NodeTy &val) { insert(this->end(), val); }
    698 
    699   void insert(iterator where, size_type count, const NodeTy &val) {
    700     for (; count != 0; --count) insert(where, val);
    701   }
    702 
    703   // Assign special forms...
    704   void assign(size_type count, const NodeTy &val) {
    705     iterator I = this->begin();
    706     for (; I != this->end() && count != 0; ++I, --count)
    707       *I = val;
    708     if (count != 0)
    709       insert(this->end(), val, val);
    710     else
    711       erase(I, this->end());
    712   }
    713   template<class InIt> void assign(InIt first1, InIt last1) {
    714     iterator first2 = this->begin(), last2 = this->end();
    715     for ( ; first1 != last1 && first2 != last2; ++first1, ++first2)
    716       *first1 = *first2;
    717     if (first2 == last2)
    718       erase(first1, last1);
    719     else
    720       insert(last1, first2, last2);
    721   }
    722 
    723 
    724   // Resize members...
    725   void resize(size_type newsize, NodeTy val) {
    726     iterator i = this->begin();
    727     size_type len = 0;
    728     for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ;
    729 
    730     if (len == newsize)
    731       erase(i, this->end());
    732     else                                          // i == end()
    733       insert(this->end(), newsize - len, val);
    734   }
    735   void resize(size_type newsize) { resize(newsize, NodeTy()); }
    736 };
    737 
    738 } // End llvm namespace
    739 
    740 namespace std {
    741   // Ensure that swap uses the fast list swap...
    742   template<class Ty>
    743   void swap(llvm::iplist<Ty> &Left, llvm::iplist<Ty> &Right) {
    744     Left.swap(Right);
    745   }
    746 }  // End 'std' extensions...
    747 
    748 #endif // LLVM_ADT_ILIST_H
    749