Home | History | Annotate | Download | only in gold
      1 // gold.cc -- main linker functions
      2 
      3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
      4 // Written by Ian Lance Taylor <iant (at) google.com>.
      5 
      6 // This file is part of gold.
      7 
      8 // This program is free software; you can redistribute it and/or modify
      9 // it under the terms of the GNU General Public License as published by
     10 // the Free Software Foundation; either version 3 of the License, or
     11 // (at your option) any later version.
     12 
     13 // This program is distributed in the hope that it will be useful,
     14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16 // GNU General Public License for more details.
     17 
     18 // You should have received a copy of the GNU General Public License
     19 // along with this program; if not, write to the Free Software
     20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     21 // MA 02110-1301, USA.
     22 
     23 #include "gold.h"
     24 
     25 #include <cstdlib>
     26 #include <cstdio>
     27 #include <cstring>
     28 // __STDC_FORMAT_MACROS is needed to turn on macros in inttypes.h.
     29 #define __STDC_FORMAT_MACROS
     30 #include <inttypes.h>
     31 #include <unistd.h>
     32 #include <algorithm>
     33 #include "libiberty.h"
     34 
     35 #include "options.h"
     36 #include "target-select.h"
     37 #include "debug.h"
     38 #include "workqueue.h"
     39 #include "dirsearch.h"
     40 #include "readsyms.h"
     41 #include "symtab.h"
     42 #include "common.h"
     43 #include "object.h"
     44 #include "layout.h"
     45 #include "reloc.h"
     46 #include "defstd.h"
     47 #include "plugin.h"
     48 #include "gc.h"
     49 #include "icf.h"
     50 #include "incremental.h"
     51 #include "timer.h"
     52 
     53 namespace gold
     54 {
     55 
     56 class Object;
     57 
     58 const char* program_name;
     59 
     60 static Task*
     61 process_incremental_input(Incremental_binary*, unsigned int, Input_objects*,
     62 			  Symbol_table*, Layout*, Dirsearch*, Mapfile*,
     63 			  Task_token*, Task_token*);
     64 
     65 void
     66 gold_exit(Exit_status status)
     67 {
     68   if (parameters != NULL
     69       && parameters->options_valid()
     70       && parameters->options().has_plugins())
     71     parameters->options().plugins()->cleanup();
     72   if (status != GOLD_OK && parameters != NULL && parameters->options_valid())
     73     unlink_if_ordinary(parameters->options().output_file_name());
     74   exit(status);
     75 }
     76 
     77 void
     78 gold_nomem()
     79 {
     80   // We are out of memory, so try hard to print a reasonable message.
     81   // Note that we don't try to translate this message, since the
     82   // translation process itself will require memory.
     83 
     84   // LEN only exists to avoid a pointless warning when write is
     85   // declared with warn_use_result, as when compiling with
     86   // -D_USE_FORTIFY on GNU/Linux.  Casting to void does not appear to
     87   // work, at least not with gcc 4.3.0.
     88 
     89   ssize_t len = write(2, program_name, strlen(program_name));
     90   if (len >= 0)
     91     {
     92       const char* const s = ": out of memory\n";
     93       len = write(2, s, strlen(s));
     94     }
     95   gold_exit(GOLD_ERR);
     96 }
     97 
     98 // Handle an unreachable case.
     99 
    100 void
    101 do_gold_unreachable(const char* filename, int lineno, const char* function)
    102 {
    103   fprintf(stderr, _("%s: internal error in %s, at %s:%d\n"),
    104 	  program_name, function, filename, lineno);
    105   gold_exit(GOLD_ERR);
    106 }
    107 
    108 // This class arranges to run the functions done in the middle of the
    109 // link.  It is just a closure.
    110 
    111 class Middle_runner : public Task_function_runner
    112 {
    113  public:
    114   Middle_runner(const General_options& options,
    115 		const Input_objects* input_objects,
    116 		Symbol_table* symtab,
    117 		Layout* layout, Mapfile* mapfile)
    118     : options_(options), input_objects_(input_objects), symtab_(symtab),
    119       layout_(layout), mapfile_(mapfile)
    120   { }
    121 
    122   void
    123   run(Workqueue*, const Task*);
    124 
    125  private:
    126   const General_options& options_;
    127   const Input_objects* input_objects_;
    128   Symbol_table* symtab_;
    129   Layout* layout_;
    130   Mapfile* mapfile_;
    131 };
    132 
    133 void
    134 Middle_runner::run(Workqueue* workqueue, const Task* task)
    135 {
    136   queue_middle_tasks(this->options_, task, this->input_objects_, this->symtab_,
    137 		     this->layout_, workqueue, this->mapfile_);
    138 }
    139 
    140 // This class arranges the tasks to process the relocs for garbage collection.
    141 
    142 class Gc_runner : public Task_function_runner
    143 {
    144   public:
    145    Gc_runner(const General_options& options,
    146 	     const Input_objects* input_objects,
    147 	     Symbol_table* symtab,
    148 	     Layout* layout, Mapfile* mapfile)
    149     : options_(options), input_objects_(input_objects), symtab_(symtab),
    150       layout_(layout), mapfile_(mapfile)
    151    { }
    152 
    153   void
    154   run(Workqueue*, const Task*);
    155 
    156  private:
    157   const General_options& options_;
    158   const Input_objects* input_objects_;
    159   Symbol_table* symtab_;
    160   Layout* layout_;
    161   Mapfile* mapfile_;
    162 };
    163 
    164 void
    165 Gc_runner::run(Workqueue* workqueue, const Task* task)
    166 {
    167   queue_middle_gc_tasks(this->options_, task, this->input_objects_,
    168 			this->symtab_, this->layout_, workqueue,
    169 			this->mapfile_);
    170 }
    171 
    172 // Queue up the initial set of tasks for this link job.
    173 
    174 void
    175 queue_initial_tasks(const General_options& options,
    176 		    Dirsearch& search_path,
    177 		    const Command_line& cmdline,
    178 		    Workqueue* workqueue, Input_objects* input_objects,
    179 		    Symbol_table* symtab, Layout* layout, Mapfile* mapfile)
    180 {
    181   if (cmdline.begin() == cmdline.end())
    182     {
    183       bool is_ok = false;
    184       if (options.printed_version())
    185 	is_ok = true;
    186       if (options.print_output_format())
    187 	{
    188 	  print_output_format();
    189 	  is_ok = true;
    190 	}
    191       if (is_ok)
    192 	gold_exit(GOLD_OK);
    193       gold_fatal(_("no input files"));
    194     }
    195 
    196   int thread_count = options.thread_count_initial();
    197   if (thread_count == 0)
    198     thread_count = cmdline.number_of_input_files();
    199   workqueue->set_thread_count(thread_count);
    200 
    201   // For incremental links, the base output file.
    202   Incremental_binary* ibase = NULL;
    203 
    204   if (parameters->incremental_update())
    205     {
    206       Output_file* of = new Output_file(options.output_file_name());
    207       if (of->open_base_file(options.incremental_base(), true))
    208 	{
    209 	  ibase = open_incremental_binary(of);
    210 	  if (ibase != NULL
    211 	      && ibase->check_inputs(cmdline, layout->incremental_inputs()))
    212 	    ibase->init_layout(layout);
    213 	  else
    214 	    {
    215 	      delete ibase;
    216 	      ibase = NULL;
    217 	      of->close();
    218 	    }
    219 	}
    220       if (ibase == NULL)
    221 	{
    222 	  if (set_parameters_incremental_full())
    223 	    gold_info(_("linking with --incremental-full"));
    224 	  else
    225 	    gold_fallback(_("restart link with --incremental-full"));
    226 	}
    227     }
    228 
    229   // Read the input files.  We have to add the symbols to the symbol
    230   // table in order.  We do this by creating a separate blocker for
    231   // each input file.  We associate the blocker with the following
    232   // input file, to give us a convenient place to delete it.
    233   Task_token* this_blocker = NULL;
    234   if (ibase == NULL)
    235     {
    236       // Normal link.  Queue a Read_symbols task for each input file
    237       // on the command line.
    238       for (Command_line::const_iterator p = cmdline.begin();
    239 	   p != cmdline.end();
    240 	   ++p)
    241 	{
    242 	  Task_token* next_blocker = new Task_token(true);
    243 	  next_blocker->add_blocker();
    244 	  workqueue->queue(new Read_symbols(input_objects, symtab, layout,
    245 					    &search_path, 0, mapfile, &*p, NULL,
    246 					    NULL, this_blocker, next_blocker));
    247 	  this_blocker = next_blocker;
    248 	}
    249     }
    250   else
    251     {
    252       // Incremental update link.  Process the list of input files
    253       // stored in the base file, and queue a task for each file:
    254       // a Read_symbols task for a changed file, and an Add_symbols task
    255       // for an unchanged file.  We need to mark all the space used by
    256       // unchanged files before we can start any tasks running.
    257       unsigned int input_file_count = ibase->input_file_count();
    258       std::vector<Task*> tasks;
    259       tasks.reserve(input_file_count);
    260       for (unsigned int i = 0; i < input_file_count; ++i)
    261 	{
    262 	  Task_token* next_blocker = new Task_token(true);
    263 	  next_blocker->add_blocker();
    264 	  Task* t = process_incremental_input(ibase, i, input_objects, symtab,
    265 					      layout, &search_path, mapfile,
    266 					      this_blocker, next_blocker);
    267 	  tasks.push_back(t);
    268 	  this_blocker = next_blocker;
    269 	}
    270       // Now we can queue the tasks.
    271       for (unsigned int i = 0; i < tasks.size(); i++)
    272 	workqueue->queue(tasks[i]);
    273     }
    274 
    275   if (options.has_plugins())
    276     {
    277       Task_token* next_blocker = new Task_token(true);
    278       next_blocker->add_blocker();
    279       workqueue->queue(new Plugin_hook(options, input_objects, symtab, layout,
    280 				       &search_path, mapfile, this_blocker,
    281 				       next_blocker));
    282       this_blocker = next_blocker;
    283     }
    284 
    285   if (options.relocatable()
    286       && (options.gc_sections() || options.icf_enabled()))
    287     gold_error(_("cannot mix -r with --gc-sections or --icf"));
    288 
    289   if (options.gc_sections() || options.icf_enabled())
    290     {
    291       workqueue->queue(new Task_function(new Gc_runner(options,
    292 						       input_objects,
    293 						       symtab,
    294 						       layout,
    295 						       mapfile),
    296 					 this_blocker,
    297 					 "Task_function Gc_runner"));
    298     }
    299   else
    300     {
    301       workqueue->queue(new Task_function(new Middle_runner(options,
    302 							   input_objects,
    303 							   symtab,
    304 							   layout,
    305 							   mapfile),
    306 					 this_blocker,
    307 					 "Task_function Middle_runner"));
    308     }
    309 }
    310 
    311 // Process an incremental input file: if it is unchanged from the previous
    312 // link, return a task to add its symbols from the base file's incremental
    313 // info; if it has changed, return a normal Read_symbols task.  We create a
    314 // task for every input file, if only to report the file for rebuilding the
    315 // incremental info.
    316 
    317 static Task*
    318 process_incremental_input(Incremental_binary* ibase,
    319 			  unsigned int input_file_index,
    320 			  Input_objects* input_objects,
    321 			  Symbol_table* symtab,
    322 			  Layout* layout,
    323 			  Dirsearch* search_path,
    324 			  Mapfile* mapfile,
    325 			  Task_token* this_blocker,
    326 			  Task_token* next_blocker)
    327 {
    328   const Incremental_binary::Input_reader* input_reader =
    329       ibase->get_input_reader(input_file_index);
    330   Incremental_input_type input_type = input_reader->type();
    331 
    332   // Get the input argument corresponding to this input file, matching on
    333   // the argument serial number.  If the input file cannot be matched
    334   // to an existing input argument, synthesize a new one.
    335   const Input_argument* input_argument =
    336       ibase->get_input_argument(input_file_index);
    337   if (input_argument == NULL)
    338     {
    339       Input_file_argument file(input_reader->filename(),
    340 			       Input_file_argument::INPUT_FILE_TYPE_FILE,
    341 			       "", false, parameters->options());
    342       Input_argument* arg = new Input_argument(file);
    343       arg->set_script_info(ibase->get_script_info(input_file_index));
    344       input_argument = arg;
    345     }
    346 
    347   gold_debug(DEBUG_INCREMENTAL, "Incremental object: %s, type %d",
    348 	     input_reader->filename(), input_type);
    349 
    350   if (input_type == INCREMENTAL_INPUT_SCRIPT)
    351     {
    352       // Incremental_binary::check_inputs should have cancelled the
    353       // incremental update if the script has changed.
    354       gold_assert(!ibase->file_has_changed(input_file_index));
    355       return new Check_script(layout, ibase, input_file_index, input_reader,
    356 			      this_blocker, next_blocker);
    357     }
    358 
    359   if (input_type == INCREMENTAL_INPUT_ARCHIVE)
    360     {
    361       Incremental_library* lib = ibase->get_library(input_file_index);
    362       gold_assert(lib != NULL);
    363       if (lib->filename() == "/group/"
    364 	  || !ibase->file_has_changed(input_file_index))
    365 	{
    366 	  // Queue a task to check that no references have been added to any
    367 	  // of the library's unused symbols.
    368 	  return new Check_library(symtab, layout, ibase, input_file_index,
    369 				   input_reader, this_blocker, next_blocker);
    370 	}
    371       else
    372 	{
    373 	  // Queue a Read_symbols task to process the archive normally.
    374 	  return new Read_symbols(input_objects, symtab, layout, search_path,
    375 				  0, mapfile, input_argument, NULL, NULL,
    376 				  this_blocker, next_blocker);
    377 	}
    378     }
    379 
    380   if (input_type == INCREMENTAL_INPUT_ARCHIVE_MEMBER)
    381     {
    382       // For archive members, check the timestamp of the containing archive.
    383       Incremental_library* lib = ibase->get_library(input_file_index);
    384       gold_assert(lib != NULL);
    385       // Process members of a --start-lib/--end-lib group as normal objects.
    386       if (lib->filename() != "/group/")
    387 	{
    388 	  if (ibase->file_has_changed(lib->input_file_index()))
    389 	    {
    390 	      return new Read_member(input_objects, symtab, layout, mapfile,
    391 				     input_reader, this_blocker, next_blocker);
    392 	    }
    393 	  else
    394 	    {
    395 	      // The previous contributions from this file will be kept.
    396 	      // Mark the pieces of output sections contributed by this
    397 	      // object.
    398 	      ibase->reserve_layout(input_file_index);
    399 	      Object* obj = make_sized_incremental_object(ibase,
    400 							  input_file_index,
    401 							  input_type,
    402 							  input_reader);
    403 	      return new Add_symbols(input_objects, symtab, layout,
    404 				     search_path, 0, mapfile, input_argument,
    405 				     obj, lib, NULL, this_blocker,
    406 				     next_blocker);
    407 	    }
    408 	}
    409     }
    410 
    411   // Normal object file or shared library.  Check if the file has changed
    412   // since the last incremental link.
    413   if (ibase->file_has_changed(input_file_index))
    414     {
    415       return new Read_symbols(input_objects, symtab, layout, search_path, 0,
    416 			      mapfile, input_argument, NULL, NULL,
    417 			      this_blocker, next_blocker);
    418     }
    419   else
    420     {
    421       // The previous contributions from this file will be kept.
    422       // Mark the pieces of output sections contributed by this object.
    423       ibase->reserve_layout(input_file_index);
    424       Object* obj = make_sized_incremental_object(ibase,
    425 						  input_file_index,
    426 						  input_type,
    427 						  input_reader);
    428       return new Add_symbols(input_objects, symtab, layout, search_path, 0,
    429 			     mapfile, input_argument, obj, NULL, NULL,
    430 			     this_blocker, next_blocker);
    431     }
    432 }
    433 
    434 // Queue up a set of tasks to be done before queueing the middle set
    435 // of tasks.  This is only necessary when garbage collection
    436 // (--gc-sections) of unused sections is desired.  The relocs are read
    437 // and processed here early to determine the garbage sections before the
    438 // relocs can be scanned in later tasks.
    439 
    440 void
    441 queue_middle_gc_tasks(const General_options& options,
    442 		      const Task* ,
    443 		      const Input_objects* input_objects,
    444 		      Symbol_table* symtab,
    445 		      Layout* layout,
    446 		      Workqueue* workqueue,
    447 		      Mapfile* mapfile)
    448 {
    449   // Read_relocs for all the objects must be done and processed to find
    450   // unused sections before any scanning of the relocs can take place.
    451   Task_token* this_blocker = NULL;
    452   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
    453        p != input_objects->relobj_end();
    454        ++p)
    455     {
    456       Task_token* next_blocker = new Task_token(true);
    457       next_blocker->add_blocker();
    458       workqueue->queue(new Read_relocs(symtab, layout, *p, this_blocker,
    459 				       next_blocker));
    460       this_blocker = next_blocker;
    461     }
    462 
    463   // If we are given only archives in input, we have no regular
    464   // objects and THIS_BLOCKER is NULL here.  Create a dummy
    465   // blocker here so that we can run the middle tasks immediately.
    466   if (this_blocker == NULL)
    467     {
    468       gold_assert(input_objects->number_of_relobjs() == 0);
    469       this_blocker = new Task_token(true);
    470     }
    471 
    472   workqueue->queue(new Task_function(new Middle_runner(options,
    473 						       input_objects,
    474 						       symtab,
    475 						       layout,
    476 						       mapfile),
    477 				     this_blocker,
    478 				     "Task_function Middle_runner"));
    479 }
    480 
    481 // Queue up the middle set of tasks.  These are the tasks which run
    482 // after all the input objects have been found and all the symbols
    483 // have been read, but before we lay out the output file.
    484 
    485 void
    486 queue_middle_tasks(const General_options& options,
    487 		   const Task* task,
    488 		   const Input_objects* input_objects,
    489 		   Symbol_table* symtab,
    490 		   Layout* layout,
    491 		   Workqueue* workqueue,
    492 		   Mapfile* mapfile)
    493 {
    494   Timer* timer = parameters->timer();
    495   if (timer != NULL)
    496     timer->stamp(0);
    497 
    498   // Add any symbols named with -u options to the symbol table.
    499   symtab->add_undefined_symbols_from_command_line(layout);
    500 
    501   // If garbage collection was chosen, relocs have been read and processed
    502   // at this point by pre_middle_tasks.  Layout can then be done for all
    503   // objects.
    504   if (parameters->options().gc_sections())
    505     {
    506       // Find the start symbol if any.
    507       Symbol* sym = symtab->lookup(parameters->entry());
    508       if (sym != NULL)
    509 	symtab->gc_mark_symbol(sym);
    510       sym = symtab->lookup(parameters->options().init());
    511       if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
    512 	symtab->gc_mark_symbol(sym);
    513       sym = symtab->lookup(parameters->options().fini());
    514       if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
    515 	symtab->gc_mark_symbol(sym);
    516       // Symbols named with -u should not be considered garbage.
    517       symtab->gc_mark_undef_symbols(layout);
    518       gold_assert(symtab->gc() != NULL);
    519       // Do a transitive closure on all references to determine the worklist.
    520       symtab->gc()->do_transitive_closure();
    521     }
    522 
    523   // If identical code folding (--icf) is chosen it makes sense to do it
    524   // only after garbage collection (--gc-sections) as we do not want to
    525   // be folding sections that will be garbage.
    526   if (parameters->options().icf_enabled())
    527     {
    528       symtab->icf()->find_identical_sections(input_objects, symtab);
    529     }
    530 
    531   // Call Object::layout for the second time to determine the
    532   // output_sections for all referenced input sections.  When
    533   // --gc-sections or --icf is turned on, or when certain input
    534   // sections have to be mapped to unique segments, Object::layout
    535   // is called twice.  It is called the first time when symbols
    536   // are added.
    537   if (parameters->options().gc_sections()
    538       || parameters->options().icf_enabled()
    539       || layout->is_unique_segment_for_sections_specified())
    540     {
    541       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
    542 	   p != input_objects->relobj_end();
    543 	   ++p)
    544 	{
    545 	  Task_lock_obj<Object> tlo(task, *p);
    546 	  (*p)->layout(symtab, layout, NULL);
    547 	}
    548     }
    549 
    550   // Layout deferred objects due to plugins.
    551   if (parameters->options().has_plugins())
    552     {
    553       Plugin_manager* plugins = parameters->options().plugins();
    554       gold_assert(plugins != NULL);
    555       plugins->layout_deferred_objects();
    556     }
    557 
    558   // We have to support the case of not seeing any input objects, and
    559   // generate an empty file.  Existing builds depend on being able to
    560   // pass an empty archive to the linker and get an empty object file
    561   // out.  In order to do this we need to use a default target.
    562   if (input_objects->number_of_input_objects() == 0
    563       && layout->incremental_base() == NULL)
    564     parameters_force_valid_target();
    565 
    566   // TODO(tmsriram): figure out a more principled way to get the target
    567   Target* target = const_cast<Target*>(&parameters->target());
    568 
    569   // Check if we need to disable PIE because of an unsafe data segment size.
    570   // Go through each Output section and get the size.  At this point, we do not
    571   // have the exact size of the data segment but this is a very close estimate.
    572   // We are doing this here because disabling PIE later is too late.  Further,
    573   // if we miss some cases which are on the edge, it will be caught later in
    574   // layout.cc where we check with the exact size of the data segment and warn
    575   // if it is breached.
    576   if (parameters->options().disable_pie_when_unsafe_data_size()
    577       && parameters->options().pie() && target->max_pie_data_segment_size())
    578     {
    579       uint64_t segment_size = 0;
    580       for (Layout::Section_list::const_iterator p = layout->section_list().begin();
    581 	   p != layout->section_list().end();
    582 	   ++p)
    583 	{
    584 	  Output_section *os = *p;
    585 	  if (os->is_section_flag_set(elfcpp::SHF_ALLOC)
    586 	      && os->is_section_flag_set(elfcpp::SHF_WRITE))
    587 	    {
    588 	      segment_size += os->current_data_size();
    589 	    }
    590 	  // Count read-only sections if --rosegment is set.
    591 	  else if (parameters->options().rosegment()
    592 		   && os->is_section_flag_set(elfcpp::SHF_ALLOC)
    593 		   && !os->is_section_flag_set(elfcpp::SHF_EXECINSTR))
    594 	    {
    595 	      segment_size += os->current_data_size();
    596 	    }
    597 	}
    598       // Should we inflate the value of segment_size to account for relaxation?
    599       // If we miss disabling PIE here, the check in layout.cc will catch it
    600       // perfectly and warn.  So, this is fine.
    601       if (segment_size >= target->max_pie_data_segment_size())
    602 	{
    603 	  gold_info(
    604 	    _("The data segment size (%" PRIu64 " > %" PRIu64 ") is likely unsafe and"
    605 	      " PIE has been disabled for this link. See go/unsafe-pie."),
    606 	    segment_size,
    607 	    target->max_pie_data_segment_size());
    608 	  const_cast<General_options*>(&parameters->options())->set_pie_value(false);
    609 	}
    610     }
    611 
    612   // Finalize the .eh_frame section.
    613   layout->finalize_eh_frame_section();
    614 
    615   /* If plugins have specified a section order, re-arrange input sections
    616      according to a specified section order.  If --section-ordering-file is
    617      also specified, do not do anything here.  */
    618   if (parameters->options().has_plugins()
    619       && layout->is_section_ordering_specified()
    620       && !parameters->options().section_ordering_file ())
    621     {
    622       for (Layout::Section_list::const_iterator p
    623 	     = layout->section_list().begin();
    624 	   p != layout->section_list().end();
    625 	   ++p)
    626 	(*p)->update_section_layout(layout->get_section_order_map());
    627     }
    628 
    629   if (parameters->options().gc_sections()
    630       || parameters->options().icf_enabled())
    631     {
    632       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
    633 	   p != input_objects->relobj_end();
    634 	   ++p)
    635 	{
    636 	  // Update the value of output_section stored in rd.
    637 	  Read_relocs_data* rd = (*p)->get_relocs_data();
    638 	  for (Read_relocs_data::Relocs_list::iterator q = rd->relocs.begin();
    639 	       q != rd->relocs.end();
    640 	       ++q)
    641 	    {
    642 	      q->output_section = (*p)->output_section(q->data_shndx);
    643 	      q->needs_special_offset_handling =
    644 		      (*p)->is_output_section_offset_invalid(q->data_shndx);
    645 	    }
    646 	}
    647     }
    648 
    649   int thread_count = options.thread_count_middle();
    650   if (thread_count == 0)
    651     thread_count = std::max(2, input_objects->number_of_input_objects());
    652   workqueue->set_thread_count(thread_count);
    653 
    654   // Now we have seen all the input files.
    655   const bool doing_static_link =
    656     (!input_objects->any_dynamic()
    657      && !parameters->options().output_is_position_independent());
    658   set_parameters_doing_static_link(doing_static_link);
    659   if (!doing_static_link && options.is_static())
    660     {
    661       // We print out just the first .so we see; there may be others.
    662       gold_assert(input_objects->dynobj_begin() != input_objects->dynobj_end());
    663       gold_error(_("cannot mix -static with dynamic object %s"),
    664 		 (*input_objects->dynobj_begin())->name().c_str());
    665     }
    666   if (!doing_static_link && parameters->options().relocatable())
    667     gold_fatal(_("cannot mix -r with dynamic object %s"),
    668 	       (*input_objects->dynobj_begin())->name().c_str());
    669   if (!doing_static_link
    670       && options.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
    671     gold_fatal(_("cannot use non-ELF output format with dynamic object %s"),
    672 	       (*input_objects->dynobj_begin())->name().c_str());
    673 
    674   if (parameters->options().relocatable())
    675     {
    676       Input_objects::Relobj_iterator p = input_objects->relobj_begin();
    677       if (p != input_objects->relobj_end())
    678 	{
    679 	  bool uses_split_stack = (*p)->uses_split_stack();
    680 	  for (++p; p != input_objects->relobj_end(); ++p)
    681 	    {
    682 	      if ((*p)->uses_split_stack() != uses_split_stack)
    683 		gold_fatal(_("cannot mix split-stack '%s' and "
    684 			     "non-split-stack '%s' when using -r"),
    685 			   (*input_objects->relobj_begin())->name().c_str(),
    686 			   (*p)->name().c_str());
    687 	    }
    688 	}
    689     }
    690 
    691   // For incremental updates, record the existing GOT and PLT entries,
    692   // and the COPY relocations.
    693   if (parameters->incremental_update())
    694     {
    695       Incremental_binary* ibase = layout->incremental_base();
    696       ibase->process_got_plt(symtab, layout);
    697       ibase->emit_copy_relocs(symtab);
    698     }
    699 
    700   if (is_debugging_enabled(DEBUG_SCRIPT))
    701     layout->script_options()->print(stderr);
    702 
    703   // For each dynamic object, record whether we've seen all the
    704   // dynamic objects that it depends upon.
    705   input_objects->check_dynamic_dependencies();
    706 
    707   // Do the --no-undefined-version check.
    708   if (!parameters->options().undefined_version())
    709     {
    710       Script_options* so = layout->script_options();
    711       so->version_script_info()->check_unmatched_names(symtab);
    712     }
    713 
    714   // Create any automatic note sections.
    715   layout->create_notes();
    716 
    717   // Create any output sections required by any linker script.
    718   layout->create_script_sections();
    719 
    720   // Define some sections and symbols needed for a dynamic link.  This
    721   // handles some cases we want to see before we read the relocs.
    722   layout->create_initial_dynamic_sections(symtab);
    723 
    724   // Define symbols from any linker scripts.
    725   layout->define_script_symbols(symtab);
    726 
    727   // Attach sections to segments.
    728   layout->attach_sections_to_segments(target);
    729 
    730   if (!parameters->options().relocatable())
    731     {
    732       // Predefine standard symbols.
    733       define_standard_symbols(symtab, layout);
    734 
    735       // Define __start and __stop symbols for output sections where
    736       // appropriate.
    737       layout->define_section_symbols(symtab);
    738 
    739       // Define target-specific symbols.
    740       target->define_standard_symbols(symtab, layout);
    741     }
    742 
    743   // Make sure we have symbols for any required group signatures.
    744   layout->define_group_signatures(symtab);
    745 
    746   Task_token* this_blocker = NULL;
    747 
    748   // Allocate common symbols.  We use a blocker to run this before the
    749   // Scan_relocs tasks, because it writes to the symbol table just as
    750   // they do.
    751   if (parameters->options().define_common())
    752     {
    753       this_blocker = new Task_token(true);
    754       this_blocker->add_blocker();
    755       workqueue->queue(new Allocate_commons_task(symtab, layout, mapfile,
    756 						 this_blocker));
    757     }
    758 
    759   // If doing garbage collection, the relocations have already been read.
    760   // Otherwise, read and scan the relocations.
    761   if (parameters->options().gc_sections()
    762       || parameters->options().icf_enabled())
    763     {
    764       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
    765 	   p != input_objects->relobj_end();
    766 	   ++p)
    767 	{
    768 	  Task_token* next_blocker = new Task_token(true);
    769 	  next_blocker->add_blocker();
    770 	  workqueue->queue(new Scan_relocs(symtab, layout, *p,
    771 					   (*p)->get_relocs_data(),
    772 					   this_blocker, next_blocker));
    773 	  this_blocker = next_blocker;
    774 	}
    775     }
    776   else
    777     {
    778       // Read the relocations of the input files.  We do this to find
    779       // which symbols are used by relocations which require a GOT and/or
    780       // a PLT entry, or a COPY reloc.  When we implement garbage
    781       // collection we will do it here by reading the relocations in a
    782       // breadth first search by references.
    783       //
    784       // We could also read the relocations during the first pass, and
    785       // mark symbols at that time.  That is how the old GNU linker works.
    786       // Doing that is more complex, since we may later decide to discard
    787       // some of the sections, and thus change our minds about the types
    788       // of references made to the symbols.
    789       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
    790 	   p != input_objects->relobj_end();
    791 	   ++p)
    792 	{
    793 	  Task_token* next_blocker = new Task_token(true);
    794 	  next_blocker->add_blocker();
    795 	  workqueue->queue(new Read_relocs(symtab, layout, *p, this_blocker,
    796 					   next_blocker));
    797 	  this_blocker = next_blocker;
    798 	}
    799     }
    800 
    801   if (this_blocker == NULL)
    802     {
    803       if (input_objects->number_of_relobjs() == 0)
    804 	{
    805 	  // If we are given only archives in input, we have no regular
    806 	  // objects and THIS_BLOCKER is NULL here.  Create a dummy
    807 	  // blocker here so that we can run the layout task immediately.
    808 	  this_blocker = new Task_token(true);
    809 	}
    810       else
    811 	{
    812 	  // If we failed to open any input files, it's possible for
    813 	  // THIS_BLOCKER to be NULL here.  There's no real point in
    814 	  // continuing if that happens.
    815 	  gold_assert(parameters->errors()->error_count() > 0);
    816 	  gold_exit(GOLD_ERR);
    817 	}
    818     }
    819 
    820   // When all those tasks are complete, we can start laying out the
    821   // output file.
    822   workqueue->queue(new Task_function(new Layout_task_runner(options,
    823 							    input_objects,
    824 							    symtab,
    825 							    target,
    826 							    layout,
    827 							    mapfile),
    828 				     this_blocker,
    829 				     "Task_function Layout_task_runner"));
    830 }
    831 
    832 // Queue up the final set of tasks.  This is called at the end of
    833 // Layout_task.
    834 
    835 void
    836 queue_final_tasks(const General_options& options,
    837 		  const Input_objects* input_objects,
    838 		  const Symbol_table* symtab,
    839 		  Layout* layout,
    840 		  Workqueue* workqueue,
    841 		  Output_file* of)
    842 {
    843   Timer* timer = parameters->timer();
    844   if (timer != NULL)
    845     timer->stamp(1);
    846 
    847   int thread_count = options.thread_count_final();
    848   if (thread_count == 0)
    849     thread_count = std::max(2, input_objects->number_of_input_objects());
    850   workqueue->set_thread_count(thread_count);
    851 
    852   bool any_postprocessing_sections = layout->any_postprocessing_sections();
    853 
    854   // Use a blocker to wait until all the input sections have been
    855   // written out.
    856   Task_token* input_sections_blocker = NULL;
    857   if (!any_postprocessing_sections)
    858     {
    859       input_sections_blocker = new Task_token(true);
    860       // Write_symbols_task, Relocate_tasks.
    861       input_sections_blocker->add_blocker();
    862       input_sections_blocker->add_blockers(input_objects->number_of_relobjs());
    863     }
    864 
    865   // Use a blocker to block any objects which have to wait for the
    866   // output sections to complete before they can apply relocations.
    867   Task_token* output_sections_blocker = new Task_token(true);
    868   output_sections_blocker->add_blocker();
    869 
    870   // Use a blocker to block the final cleanup task.
    871   Task_token* final_blocker = new Task_token(true);
    872   // Write_symbols_task, Write_sections_task, Write_data_task,
    873   // Relocate_tasks.
    874   final_blocker->add_blockers(3);
    875   final_blocker->add_blockers(input_objects->number_of_relobjs());
    876   if (!any_postprocessing_sections)
    877     final_blocker->add_blocker();
    878 
    879   // Queue a task to write out the symbol table.
    880   workqueue->queue(new Write_symbols_task(layout,
    881 					  symtab,
    882 					  input_objects,
    883 					  layout->sympool(),
    884 					  layout->dynpool(),
    885 					  of,
    886 					  final_blocker));
    887 
    888   // Queue a task to write out the output sections.
    889   workqueue->queue(new Write_sections_task(layout, of, output_sections_blocker,
    890 					   input_sections_blocker,
    891 					   final_blocker));
    892 
    893   // Queue a task to write out everything else.
    894   workqueue->queue(new Write_data_task(layout, symtab, of, final_blocker));
    895 
    896   // Queue a task for each input object to relocate the sections and
    897   // write out the local symbols.
    898   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
    899        p != input_objects->relobj_end();
    900        ++p)
    901     workqueue->queue(new Relocate_task(symtab, layout, *p, of,
    902 				       input_sections_blocker,
    903 				       output_sections_blocker,
    904 				       final_blocker));
    905 
    906   // Queue a task to write out the output sections which depend on
    907   // input sections.  If there are any sections which require
    908   // postprocessing, then we need to do this last, since it may resize
    909   // the output file.
    910   if (!any_postprocessing_sections)
    911     {
    912       Task* t = new Write_after_input_sections_task(layout, of,
    913 						    input_sections_blocker,
    914 						    final_blocker);
    915       workqueue->queue(t);
    916     }
    917   else
    918     {
    919       Task_token* new_final_blocker = new Task_token(true);
    920       new_final_blocker->add_blocker();
    921       Task* t = new Write_after_input_sections_task(layout, of,
    922 						    final_blocker,
    923 						    new_final_blocker);
    924       workqueue->queue(t);
    925       final_blocker = new_final_blocker;
    926     }
    927 
    928   // Create tasks for tree-style build ID computation, if necessary.
    929   final_blocker = layout->queue_build_id_tasks(workqueue, final_blocker, of);
    930 
    931   // Queue a task to close the output file.  This will be blocked by
    932   // FINAL_BLOCKER.
    933   workqueue->queue(new Task_function(new Close_task_runner(&options, layout,
    934 							   of),
    935 				     final_blocker,
    936 				     "Task_function Close_task_runner"));
    937 }
    938 
    939 } // End namespace gold.
    940