1 //===------ MemoryBuiltins.cpp - Identify calls to memory builtins --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions identifies calls to builtin functions that allocate 11 // or free memory. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/MemoryBuiltins.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/TargetLibraryInfo.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/GlobalVariable.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/Metadata.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 using namespace llvm; 31 32 #define DEBUG_TYPE "memory-builtins" 33 34 enum AllocType : uint8_t { 35 OpNewLike = 1<<0, // allocates; never returns null 36 MallocLike = 1<<1 | OpNewLike, // allocates; may return null 37 CallocLike = 1<<2, // allocates + bzero 38 ReallocLike = 1<<3, // reallocates 39 StrDupLike = 1<<4, 40 AllocLike = MallocLike | CallocLike | StrDupLike, 41 AnyAlloc = AllocLike | ReallocLike 42 }; 43 44 struct AllocFnsTy { 45 AllocType AllocTy; 46 unsigned NumParams; 47 // First and Second size parameters (or -1 if unused) 48 int FstParam, SndParam; 49 }; 50 51 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 52 // know which functions are nounwind, noalias, nocapture parameters, etc. 53 static const std::pair<LibFunc::Func, AllocFnsTy> AllocationFnData[] = { 54 {LibFunc::malloc, {MallocLike, 1, 0, -1}}, 55 {LibFunc::valloc, {MallocLike, 1, 0, -1}}, 56 {LibFunc::Znwj, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 57 {LibFunc::ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 58 {LibFunc::Znwm, {OpNewLike, 1, 0, -1}}, // new(unsigned long) 59 {LibFunc::ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned long, nothrow) 60 {LibFunc::Znaj, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 61 {LibFunc::ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 62 {LibFunc::Znam, {OpNewLike, 1, 0, -1}}, // new[](unsigned long) 63 {LibFunc::ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned long, nothrow) 64 {LibFunc::msvc_new_int, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 65 {LibFunc::msvc_new_int_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 66 {LibFunc::msvc_new_longlong, {OpNewLike, 1, 0, -1}}, // new(unsigned long long) 67 {LibFunc::msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned long long, nothrow) 68 {LibFunc::msvc_new_array_int, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 69 {LibFunc::msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 70 {LibFunc::msvc_new_array_longlong, {OpNewLike, 1, 0, -1}}, // new[](unsigned long long) 71 {LibFunc::msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned long long, nothrow) 72 {LibFunc::calloc, {CallocLike, 2, 0, 1}}, 73 {LibFunc::realloc, {ReallocLike, 2, 1, -1}}, 74 {LibFunc::reallocf, {ReallocLike, 2, 1, -1}}, 75 {LibFunc::strdup, {StrDupLike, 1, -1, -1}}, 76 {LibFunc::strndup, {StrDupLike, 2, 1, -1}} 77 // TODO: Handle "int posix_memalign(void **, size_t, size_t)" 78 }; 79 80 81 static Function *getCalledFunction(const Value *V, bool LookThroughBitCast) { 82 if (LookThroughBitCast) 83 V = V->stripPointerCasts(); 84 85 CallSite CS(const_cast<Value*>(V)); 86 if (!CS.getInstruction()) 87 return nullptr; 88 89 if (CS.isNoBuiltin()) 90 return nullptr; 91 92 Function *Callee = CS.getCalledFunction(); 93 if (!Callee || !Callee->isDeclaration()) 94 return nullptr; 95 return Callee; 96 } 97 98 /// Returns the allocation data for the given value if it's either a call to a 99 /// known allocation function, or a call to a function with the allocsize 100 /// attribute. 101 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy, 102 const TargetLibraryInfo *TLI, 103 bool LookThroughBitCast = false) { 104 // Skip intrinsics 105 if (isa<IntrinsicInst>(V)) 106 return None; 107 108 const Function *Callee = getCalledFunction(V, LookThroughBitCast); 109 if (!Callee) 110 return None; 111 112 // If it has allocsize, we can skip checking if it's a known function. 113 // 114 // MallocLike is chosen here because allocsize makes no guarantees about the 115 // nullness of the result of the function, nor does it deal with strings, nor 116 // does it require that the memory returned is zeroed out. 117 LLVM_CONSTEXPR auto AllocSizeAllocTy = MallocLike; 118 if ((AllocTy & AllocSizeAllocTy) == AllocSizeAllocTy && 119 Callee->hasFnAttribute(Attribute::AllocSize)) { 120 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize); 121 std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs(); 122 123 AllocFnsTy Result; 124 Result.AllocTy = AllocSizeAllocTy; 125 Result.NumParams = Callee->getNumOperands(); 126 Result.FstParam = Args.first; 127 Result.SndParam = Args.second.getValueOr(-1); 128 return Result; 129 } 130 131 // Make sure that the function is available. 132 StringRef FnName = Callee->getName(); 133 LibFunc::Func TLIFn; 134 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 135 return None; 136 137 const auto *Iter = 138 std::find_if(std::begin(AllocationFnData), std::end(AllocationFnData), 139 [TLIFn](const std::pair<LibFunc::Func, AllocFnsTy> &P) { 140 return P.first == TLIFn; 141 }); 142 143 if (Iter == std::end(AllocationFnData)) 144 return None; 145 146 const AllocFnsTy *FnData = &Iter->second; 147 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 148 return None; 149 150 // Check function prototype. 151 int FstParam = FnData->FstParam; 152 int SndParam = FnData->SndParam; 153 FunctionType *FTy = Callee->getFunctionType(); 154 155 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && 156 FTy->getNumParams() == FnData->NumParams && 157 (FstParam < 0 || 158 (FTy->getParamType(FstParam)->isIntegerTy(32) || 159 FTy->getParamType(FstParam)->isIntegerTy(64))) && 160 (SndParam < 0 || 161 FTy->getParamType(SndParam)->isIntegerTy(32) || 162 FTy->getParamType(SndParam)->isIntegerTy(64))) 163 return *FnData; 164 return None; 165 } 166 167 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) { 168 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V); 169 return CS && CS.paramHasAttr(AttributeSet::ReturnIndex, Attribute::NoAlias); 170 } 171 172 173 /// \brief Tests if a value is a call or invoke to a library function that 174 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 175 /// like). 176 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, 177 bool LookThroughBitCast) { 178 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue(); 179 } 180 181 /// \brief Tests if a value is a call or invoke to a function that returns a 182 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions). 183 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI, 184 bool LookThroughBitCast) { 185 // it's safe to consider realloc as noalias since accessing the original 186 // pointer is undefined behavior 187 return isAllocationFn(V, TLI, LookThroughBitCast) || 188 hasNoAliasAttr(V, LookThroughBitCast); 189 } 190 191 /// \brief Tests if a value is a call or invoke to a library function that 192 /// allocates uninitialized memory (such as malloc). 193 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 194 bool LookThroughBitCast) { 195 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue(); 196 } 197 198 /// \brief Tests if a value is a call or invoke to a library function that 199 /// allocates zero-filled memory (such as calloc). 200 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 201 bool LookThroughBitCast) { 202 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue(); 203 } 204 205 /// \brief Tests if a value is a call or invoke to a library function that 206 /// allocates memory (either malloc, calloc, or strdup like). 207 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 208 bool LookThroughBitCast) { 209 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue(); 210 } 211 212 /// extractMallocCall - Returns the corresponding CallInst if the instruction 213 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we 214 /// ignore InvokeInst here. 215 const CallInst *llvm::extractMallocCall(const Value *I, 216 const TargetLibraryInfo *TLI) { 217 return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr; 218 } 219 220 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL, 221 const TargetLibraryInfo *TLI, 222 bool LookThroughSExt = false) { 223 if (!CI) 224 return nullptr; 225 226 // The size of the malloc's result type must be known to determine array size. 227 Type *T = getMallocAllocatedType(CI, TLI); 228 if (!T || !T->isSized()) 229 return nullptr; 230 231 unsigned ElementSize = DL.getTypeAllocSize(T); 232 if (StructType *ST = dyn_cast<StructType>(T)) 233 ElementSize = DL.getStructLayout(ST)->getSizeInBytes(); 234 235 // If malloc call's arg can be determined to be a multiple of ElementSize, 236 // return the multiple. Otherwise, return NULL. 237 Value *MallocArg = CI->getArgOperand(0); 238 Value *Multiple = nullptr; 239 if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt)) 240 return Multiple; 241 242 return nullptr; 243 } 244 245 /// getMallocType - Returns the PointerType resulting from the malloc call. 246 /// The PointerType depends on the number of bitcast uses of the malloc call: 247 /// 0: PointerType is the calls' return type. 248 /// 1: PointerType is the bitcast's result type. 249 /// >1: Unique PointerType cannot be determined, return NULL. 250 PointerType *llvm::getMallocType(const CallInst *CI, 251 const TargetLibraryInfo *TLI) { 252 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call"); 253 254 PointerType *MallocType = nullptr; 255 unsigned NumOfBitCastUses = 0; 256 257 // Determine if CallInst has a bitcast use. 258 for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end(); 259 UI != E;) 260 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) { 261 MallocType = cast<PointerType>(BCI->getDestTy()); 262 NumOfBitCastUses++; 263 } 264 265 // Malloc call has 1 bitcast use, so type is the bitcast's destination type. 266 if (NumOfBitCastUses == 1) 267 return MallocType; 268 269 // Malloc call was not bitcast, so type is the malloc function's return type. 270 if (NumOfBitCastUses == 0) 271 return cast<PointerType>(CI->getType()); 272 273 // Type could not be determined. 274 return nullptr; 275 } 276 277 /// getMallocAllocatedType - Returns the Type allocated by malloc call. 278 /// The Type depends on the number of bitcast uses of the malloc call: 279 /// 0: PointerType is the malloc calls' return type. 280 /// 1: PointerType is the bitcast's result type. 281 /// >1: Unique PointerType cannot be determined, return NULL. 282 Type *llvm::getMallocAllocatedType(const CallInst *CI, 283 const TargetLibraryInfo *TLI) { 284 PointerType *PT = getMallocType(CI, TLI); 285 return PT ? PT->getElementType() : nullptr; 286 } 287 288 /// getMallocArraySize - Returns the array size of a malloc call. If the 289 /// argument passed to malloc is a multiple of the size of the malloced type, 290 /// then return that multiple. For non-array mallocs, the multiple is 291 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be 292 /// determined. 293 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL, 294 const TargetLibraryInfo *TLI, 295 bool LookThroughSExt) { 296 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call"); 297 return computeArraySize(CI, DL, TLI, LookThroughSExt); 298 } 299 300 301 /// extractCallocCall - Returns the corresponding CallInst if the instruction 302 /// is a calloc call. 303 const CallInst *llvm::extractCallocCall(const Value *I, 304 const TargetLibraryInfo *TLI) { 305 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr; 306 } 307 308 309 /// isFreeCall - Returns non-null if the value is a call to the builtin free() 310 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) { 311 const CallInst *CI = dyn_cast<CallInst>(I); 312 if (!CI || isa<IntrinsicInst>(CI)) 313 return nullptr; 314 Function *Callee = CI->getCalledFunction(); 315 if (Callee == nullptr) 316 return nullptr; 317 318 StringRef FnName = Callee->getName(); 319 LibFunc::Func TLIFn; 320 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 321 return nullptr; 322 323 unsigned ExpectedNumParams; 324 if (TLIFn == LibFunc::free || 325 TLIFn == LibFunc::ZdlPv || // operator delete(void*) 326 TLIFn == LibFunc::ZdaPv || // operator delete[](void*) 327 TLIFn == LibFunc::msvc_delete_ptr32 || // operator delete(void*) 328 TLIFn == LibFunc::msvc_delete_ptr64 || // operator delete(void*) 329 TLIFn == LibFunc::msvc_delete_array_ptr32 || // operator delete[](void*) 330 TLIFn == LibFunc::msvc_delete_array_ptr64) // operator delete[](void*) 331 ExpectedNumParams = 1; 332 else if (TLIFn == LibFunc::ZdlPvj || // delete(void*, uint) 333 TLIFn == LibFunc::ZdlPvm || // delete(void*, ulong) 334 TLIFn == LibFunc::ZdlPvRKSt9nothrow_t || // delete(void*, nothrow) 335 TLIFn == LibFunc::ZdaPvj || // delete[](void*, uint) 336 TLIFn == LibFunc::ZdaPvm || // delete[](void*, ulong) 337 TLIFn == LibFunc::ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow) 338 TLIFn == LibFunc::msvc_delete_ptr32_int || // delete(void*, uint) 339 TLIFn == LibFunc::msvc_delete_ptr64_longlong || // delete(void*, ulonglong) 340 TLIFn == LibFunc::msvc_delete_ptr32_nothrow || // delete(void*, nothrow) 341 TLIFn == LibFunc::msvc_delete_ptr64_nothrow || // delete(void*, nothrow) 342 TLIFn == LibFunc::msvc_delete_array_ptr32_int || // delete[](void*, uint) 343 TLIFn == LibFunc::msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong) 344 TLIFn == LibFunc::msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow) 345 TLIFn == LibFunc::msvc_delete_array_ptr64_nothrow) // delete[](void*, nothrow) 346 ExpectedNumParams = 2; 347 else 348 return nullptr; 349 350 // Check free prototype. 351 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 352 // attribute will exist. 353 FunctionType *FTy = Callee->getFunctionType(); 354 if (!FTy->getReturnType()->isVoidTy()) 355 return nullptr; 356 if (FTy->getNumParams() != ExpectedNumParams) 357 return nullptr; 358 if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext())) 359 return nullptr; 360 361 return CI; 362 } 363 364 365 366 //===----------------------------------------------------------------------===// 367 // Utility functions to compute size of objects. 368 // 369 static APInt getSizeWithOverflow(const SizeOffsetType &Data) { 370 if (Data.second.isNegative() || Data.first.ult(Data.second)) 371 return APInt(Data.first.getBitWidth(), 0); 372 return Data.first - Data.second; 373 } 374 375 /// \brief Compute the size of the object pointed by Ptr. Returns true and the 376 /// object size in Size if successful, and false otherwise. 377 /// If RoundToAlign is true, then Size is rounded up to the aligment of allocas, 378 /// byval arguments, and global variables. 379 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, 380 const TargetLibraryInfo *TLI, bool RoundToAlign, 381 llvm::ObjSizeMode Mode) { 382 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), 383 RoundToAlign, Mode); 384 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 385 if (!Visitor.bothKnown(Data)) 386 return false; 387 388 Size = getSizeWithOverflow(Data).getZExtValue(); 389 return true; 390 } 391 392 STATISTIC(ObjectVisitorArgument, 393 "Number of arguments with unsolved size and offset"); 394 STATISTIC(ObjectVisitorLoad, 395 "Number of load instructions with unsolved size and offset"); 396 397 398 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) { 399 if (RoundToAlign && Align) 400 return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align)); 401 return Size; 402 } 403 404 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, 405 const TargetLibraryInfo *TLI, 406 LLVMContext &Context, 407 bool RoundToAlign, 408 ObjSizeMode Mode) 409 : DL(DL), TLI(TLI), RoundToAlign(RoundToAlign), Mode(Mode) { 410 // Pointer size must be rechecked for each object visited since it could have 411 // a different address space. 412 } 413 414 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { 415 IntTyBits = DL.getPointerTypeSizeInBits(V->getType()); 416 Zero = APInt::getNullValue(IntTyBits); 417 418 V = V->stripPointerCasts(); 419 if (Instruction *I = dyn_cast<Instruction>(V)) { 420 // If we have already seen this instruction, bail out. Cycles can happen in 421 // unreachable code after constant propagation. 422 if (!SeenInsts.insert(I).second) 423 return unknown(); 424 425 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 426 return visitGEPOperator(*GEP); 427 return visit(*I); 428 } 429 if (Argument *A = dyn_cast<Argument>(V)) 430 return visitArgument(*A); 431 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 432 return visitConstantPointerNull(*P); 433 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 434 return visitGlobalAlias(*GA); 435 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 436 return visitGlobalVariable(*GV); 437 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 438 return visitUndefValue(*UV); 439 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 440 if (CE->getOpcode() == Instruction::IntToPtr) 441 return unknown(); // clueless 442 if (CE->getOpcode() == Instruction::GetElementPtr) 443 return visitGEPOperator(cast<GEPOperator>(*CE)); 444 } 445 446 DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V 447 << '\n'); 448 return unknown(); 449 } 450 451 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 452 if (!I.getAllocatedType()->isSized()) 453 return unknown(); 454 455 APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType())); 456 if (!I.isArrayAllocation()) 457 return std::make_pair(align(Size, I.getAlignment()), Zero); 458 459 Value *ArraySize = I.getArraySize(); 460 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 461 Size *= C->getValue().zextOrSelf(IntTyBits); 462 return std::make_pair(align(Size, I.getAlignment()), Zero); 463 } 464 return unknown(); 465 } 466 467 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 468 // No interprocedural analysis is done at the moment. 469 if (!A.hasByValOrInAllocaAttr()) { 470 ++ObjectVisitorArgument; 471 return unknown(); 472 } 473 PointerType *PT = cast<PointerType>(A.getType()); 474 APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType())); 475 return std::make_pair(align(Size, A.getParamAlignment()), Zero); 476 } 477 478 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) { 479 Optional<AllocFnsTy> FnData = 480 getAllocationData(CS.getInstruction(), AnyAlloc, TLI); 481 if (!FnData) 482 return unknown(); 483 484 // Handle strdup-like functions separately. 485 if (FnData->AllocTy == StrDupLike) { 486 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0))); 487 if (!Size) 488 return unknown(); 489 490 // Strndup limits strlen. 491 if (FnData->FstParam > 0) { 492 ConstantInt *Arg = 493 dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 494 if (!Arg) 495 return unknown(); 496 497 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits); 498 if (Size.ugt(MaxSize)) 499 Size = MaxSize + 1; 500 } 501 return std::make_pair(Size, Zero); 502 } 503 504 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 505 if (!Arg) 506 return unknown(); 507 508 // When we're compiling N-bit code, and the user uses parameters that are 509 // greater than N bits (e.g. uint64_t on a 32-bit build), we can run into 510 // trouble with APInt size issues. This function handles resizing + overflow 511 // checks for us. 512 auto CheckedZextOrTrunc = [&](APInt &I) { 513 // More bits than we can handle. Checking the bit width isn't necessary, but 514 // it's faster than checking active bits, and should give `false` in the 515 // vast majority of cases. 516 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) 517 return false; 518 if (I.getBitWidth() != IntTyBits) 519 I = I.zextOrTrunc(IntTyBits); 520 return true; 521 }; 522 523 APInt Size = Arg->getValue(); 524 if (!CheckedZextOrTrunc(Size)) 525 return unknown(); 526 527 // Size is determined by just 1 parameter. 528 if (FnData->SndParam < 0) 529 return std::make_pair(Size, Zero); 530 531 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam)); 532 if (!Arg) 533 return unknown(); 534 535 APInt NumElems = Arg->getValue(); 536 if (!CheckedZextOrTrunc(NumElems)) 537 return unknown(); 538 539 bool Overflow; 540 Size = Size.umul_ov(NumElems, Overflow); 541 return Overflow ? unknown() : std::make_pair(Size, Zero); 542 543 // TODO: handle more standard functions (+ wchar cousins): 544 // - strdup / strndup 545 // - strcpy / strncpy 546 // - strcat / strncat 547 // - memcpy / memmove 548 // - strcat / strncat 549 // - memset 550 } 551 552 SizeOffsetType 553 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull&) { 554 return std::make_pair(Zero, Zero); 555 } 556 557 SizeOffsetType 558 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { 559 return unknown(); 560 } 561 562 SizeOffsetType 563 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { 564 // Easy cases were already folded by previous passes. 565 return unknown(); 566 } 567 568 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) { 569 SizeOffsetType PtrData = compute(GEP.getPointerOperand()); 570 APInt Offset(IntTyBits, 0); 571 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset)) 572 return unknown(); 573 574 return std::make_pair(PtrData.first, PtrData.second + Offset); 575 } 576 577 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 578 if (GA.isInterposable()) 579 return unknown(); 580 return compute(GA.getAliasee()); 581 } 582 583 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ 584 if (!GV.hasDefinitiveInitializer()) 585 return unknown(); 586 587 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType())); 588 return std::make_pair(align(Size, GV.getAlignment()), Zero); 589 } 590 591 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { 592 // clueless 593 return unknown(); 594 } 595 596 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) { 597 ++ObjectVisitorLoad; 598 return unknown(); 599 } 600 601 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) { 602 // too complex to analyze statically. 603 return unknown(); 604 } 605 606 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 607 SizeOffsetType TrueSide = compute(I.getTrueValue()); 608 SizeOffsetType FalseSide = compute(I.getFalseValue()); 609 if (bothKnown(TrueSide) && bothKnown(FalseSide)) { 610 if (TrueSide == FalseSide) { 611 return TrueSide; 612 } 613 614 APInt TrueResult = getSizeWithOverflow(TrueSide); 615 APInt FalseResult = getSizeWithOverflow(FalseSide); 616 617 if (TrueResult == FalseResult) { 618 return TrueSide; 619 } 620 if (Mode == ObjSizeMode::Min) { 621 if (TrueResult.slt(FalseResult)) 622 return TrueSide; 623 return FalseSide; 624 } 625 if (Mode == ObjSizeMode::Max) { 626 if (TrueResult.sgt(FalseResult)) 627 return TrueSide; 628 return FalseSide; 629 } 630 } 631 return unknown(); 632 } 633 634 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { 635 return std::make_pair(Zero, Zero); 636 } 637 638 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 639 DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n'); 640 return unknown(); 641 } 642 643 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( 644 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, 645 bool RoundToAlign) 646 : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)), 647 RoundToAlign(RoundToAlign) { 648 // IntTy and Zero must be set for each compute() since the address space may 649 // be different for later objects. 650 } 651 652 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { 653 // XXX - Are vectors of pointers possible here? 654 IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 655 Zero = ConstantInt::get(IntTy, 0); 656 657 SizeOffsetEvalType Result = compute_(V); 658 659 if (!bothKnown(Result)) { 660 // Erase everything that was computed in this iteration from the cache, so 661 // that no dangling references are left behind. We could be a bit smarter if 662 // we kept a dependency graph. It's probably not worth the complexity. 663 for (const Value *SeenVal : SeenVals) { 664 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); 665 // non-computable results can be safely cached 666 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) 667 CacheMap.erase(CacheIt); 668 } 669 } 670 671 SeenVals.clear(); 672 return Result; 673 } 674 675 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { 676 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, RoundToAlign); 677 SizeOffsetType Const = Visitor.compute(V); 678 if (Visitor.bothKnown(Const)) 679 return std::make_pair(ConstantInt::get(Context, Const.first), 680 ConstantInt::get(Context, Const.second)); 681 682 V = V->stripPointerCasts(); 683 684 // Check cache. 685 CacheMapTy::iterator CacheIt = CacheMap.find(V); 686 if (CacheIt != CacheMap.end()) 687 return CacheIt->second; 688 689 // Always generate code immediately before the instruction being 690 // processed, so that the generated code dominates the same BBs. 691 BuilderTy::InsertPointGuard Guard(Builder); 692 if (Instruction *I = dyn_cast<Instruction>(V)) 693 Builder.SetInsertPoint(I); 694 695 // Now compute the size and offset. 696 SizeOffsetEvalType Result; 697 698 // Record the pointers that were handled in this run, so that they can be 699 // cleaned later if something fails. We also use this set to break cycles that 700 // can occur in dead code. 701 if (!SeenVals.insert(V).second) { 702 Result = unknown(); 703 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 704 Result = visitGEPOperator(*GEP); 705 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 706 Result = visit(*I); 707 } else if (isa<Argument>(V) || 708 (isa<ConstantExpr>(V) && 709 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 710 isa<GlobalAlias>(V) || 711 isa<GlobalVariable>(V)) { 712 // Ignore values where we cannot do more than ObjectSizeVisitor. 713 Result = unknown(); 714 } else { 715 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " 716 << *V << '\n'); 717 Result = unknown(); 718 } 719 720 // Don't reuse CacheIt since it may be invalid at this point. 721 CacheMap[V] = Result; 722 return Result; 723 } 724 725 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 726 if (!I.getAllocatedType()->isSized()) 727 return unknown(); 728 729 // must be a VLA 730 assert(I.isArrayAllocation()); 731 Value *ArraySize = I.getArraySize(); 732 Value *Size = ConstantInt::get(ArraySize->getType(), 733 DL.getTypeAllocSize(I.getAllocatedType())); 734 Size = Builder.CreateMul(Size, ArraySize); 735 return std::make_pair(Size, Zero); 736 } 737 738 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) { 739 Optional<AllocFnsTy> FnData = 740 getAllocationData(CS.getInstruction(), AnyAlloc, TLI); 741 if (!FnData) 742 return unknown(); 743 744 // Handle strdup-like functions separately. 745 if (FnData->AllocTy == StrDupLike) { 746 // TODO 747 return unknown(); 748 } 749 750 Value *FirstArg = CS.getArgument(FnData->FstParam); 751 FirstArg = Builder.CreateZExt(FirstArg, IntTy); 752 if (FnData->SndParam < 0) 753 return std::make_pair(FirstArg, Zero); 754 755 Value *SecondArg = CS.getArgument(FnData->SndParam); 756 SecondArg = Builder.CreateZExt(SecondArg, IntTy); 757 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 758 return std::make_pair(Size, Zero); 759 760 // TODO: handle more standard functions (+ wchar cousins): 761 // - strdup / strndup 762 // - strcpy / strncpy 763 // - strcat / strncat 764 // - memcpy / memmove 765 // - strcat / strncat 766 // - memset 767 } 768 769 SizeOffsetEvalType 770 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { 771 return unknown(); 772 } 773 774 SizeOffsetEvalType 775 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { 776 return unknown(); 777 } 778 779 SizeOffsetEvalType 780 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 781 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); 782 if (!bothKnown(PtrData)) 783 return unknown(); 784 785 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); 786 Offset = Builder.CreateAdd(PtrData.second, Offset); 787 return std::make_pair(PtrData.first, Offset); 788 } 789 790 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { 791 // clueless 792 return unknown(); 793 } 794 795 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) { 796 return unknown(); 797 } 798 799 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 800 // Create 2 PHIs: one for size and another for offset. 801 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 802 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 803 804 // Insert right away in the cache to handle recursive PHIs. 805 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); 806 807 // Compute offset/size for each PHI incoming pointer. 808 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 809 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt()); 810 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); 811 812 if (!bothKnown(EdgeData)) { 813 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy)); 814 OffsetPHI->eraseFromParent(); 815 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy)); 816 SizePHI->eraseFromParent(); 817 return unknown(); 818 } 819 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); 820 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); 821 } 822 823 Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp; 824 if ((Tmp = SizePHI->hasConstantValue())) { 825 Size = Tmp; 826 SizePHI->replaceAllUsesWith(Size); 827 SizePHI->eraseFromParent(); 828 } 829 if ((Tmp = OffsetPHI->hasConstantValue())) { 830 Offset = Tmp; 831 OffsetPHI->replaceAllUsesWith(Offset); 832 OffsetPHI->eraseFromParent(); 833 } 834 return std::make_pair(Size, Offset); 835 } 836 837 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 838 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); 839 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); 840 841 if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) 842 return unknown(); 843 if (TrueSide == FalseSide) 844 return TrueSide; 845 846 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, 847 FalseSide.first); 848 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, 849 FalseSide.second); 850 return std::make_pair(Size, Offset); 851 } 852 853 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 854 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n'); 855 return unknown(); 856 } 857