1 // object.cc -- support for an object file for linking in gold 2 3 // Copyright (C) 2006-2014 Free Software Foundation, Inc. 4 // Written by Ian Lance Taylor <iant (at) google.com>. 5 6 // This file is part of gold. 7 8 // This program is free software; you can redistribute it and/or modify 9 // it under the terms of the GNU General Public License as published by 10 // the Free Software Foundation; either version 3 of the License, or 11 // (at your option) any later version. 12 13 // This program is distributed in the hope that it will be useful, 14 // but WITHOUT ANY WARRANTY; without even the implied warranty of 15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 // GNU General Public License for more details. 17 18 // You should have received a copy of the GNU General Public License 19 // along with this program; if not, write to the Free Software 20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 21 // MA 02110-1301, USA. 22 23 #include "gold.h" 24 25 #include <cerrno> 26 #include <cstring> 27 #include <cstdarg> 28 #include "demangle.h" 29 #include "libiberty.h" 30 31 #include "gc.h" 32 #include "target-select.h" 33 #include "dwarf_reader.h" 34 #include "layout.h" 35 #include "output.h" 36 #include "symtab.h" 37 #include "cref.h" 38 #include "reloc.h" 39 #include "object.h" 40 #include "dynobj.h" 41 #include "plugin.h" 42 #include "compressed_output.h" 43 #include "incremental.h" 44 45 namespace gold 46 { 47 48 // Struct Read_symbols_data. 49 50 // Destroy any remaining File_view objects and buffers of decompressed 51 // sections. 52 53 Read_symbols_data::~Read_symbols_data() 54 { 55 if (this->section_headers != NULL) 56 delete this->section_headers; 57 if (this->section_names != NULL) 58 delete this->section_names; 59 if (this->symbols != NULL) 60 delete this->symbols; 61 if (this->symbol_names != NULL) 62 delete this->symbol_names; 63 if (this->versym != NULL) 64 delete this->versym; 65 if (this->verdef != NULL) 66 delete this->verdef; 67 if (this->verneed != NULL) 68 delete this->verneed; 69 } 70 71 // Class Xindex. 72 73 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX 74 // section and read it in. SYMTAB_SHNDX is the index of the symbol 75 // table we care about. 76 77 template<int size, bool big_endian> 78 void 79 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx) 80 { 81 if (!this->symtab_xindex_.empty()) 82 return; 83 84 gold_assert(symtab_shndx != 0); 85 86 // Look through the sections in reverse order, on the theory that it 87 // is more likely to be near the end than the beginning. 88 unsigned int i = object->shnum(); 89 while (i > 0) 90 { 91 --i; 92 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX 93 && this->adjust_shndx(object->section_link(i)) == symtab_shndx) 94 { 95 this->read_symtab_xindex<size, big_endian>(object, i, NULL); 96 return; 97 } 98 } 99 100 object->error(_("missing SHT_SYMTAB_SHNDX section")); 101 } 102 103 // Read in the symtab_xindex_ array, given the section index of the 104 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the 105 // section headers. 106 107 template<int size, bool big_endian> 108 void 109 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx, 110 const unsigned char* pshdrs) 111 { 112 section_size_type bytecount; 113 const unsigned char* contents; 114 if (pshdrs == NULL) 115 contents = object->section_contents(xindex_shndx, &bytecount, false); 116 else 117 { 118 const unsigned char* p = (pshdrs 119 + (xindex_shndx 120 * elfcpp::Elf_sizes<size>::shdr_size)); 121 typename elfcpp::Shdr<size, big_endian> shdr(p); 122 bytecount = convert_to_section_size_type(shdr.get_sh_size()); 123 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false); 124 } 125 126 gold_assert(this->symtab_xindex_.empty()); 127 this->symtab_xindex_.reserve(bytecount / 4); 128 for (section_size_type i = 0; i < bytecount; i += 4) 129 { 130 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i); 131 // We preadjust the section indexes we save. 132 this->symtab_xindex_.push_back(this->adjust_shndx(shndx)); 133 } 134 } 135 136 // Symbol symndx has a section of SHN_XINDEX; return the real section 137 // index. 138 139 unsigned int 140 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx) 141 { 142 if (symndx >= this->symtab_xindex_.size()) 143 { 144 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"), 145 symndx); 146 return elfcpp::SHN_UNDEF; 147 } 148 unsigned int shndx = this->symtab_xindex_[symndx]; 149 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum()) 150 { 151 object->error(_("extended index for symbol %u out of range: %u"), 152 symndx, shndx); 153 return elfcpp::SHN_UNDEF; 154 } 155 return shndx; 156 } 157 158 // Class Object. 159 160 // Report an error for this object file. This is used by the 161 // elfcpp::Elf_file interface, and also called by the Object code 162 // itself. 163 164 void 165 Object::error(const char* format, ...) const 166 { 167 va_list args; 168 va_start(args, format); 169 char* buf = NULL; 170 if (vasprintf(&buf, format, args) < 0) 171 gold_nomem(); 172 va_end(args); 173 gold_error(_("%s: %s"), this->name().c_str(), buf); 174 free(buf); 175 } 176 177 // Return a view of the contents of a section. 178 179 const unsigned char* 180 Object::section_contents(unsigned int shndx, section_size_type* plen, 181 bool cache) 182 { return this->do_section_contents(shndx, plen, cache); } 183 184 // Read the section data into SD. This is code common to Sized_relobj_file 185 // and Sized_dynobj, so we put it into Object. 186 187 template<int size, bool big_endian> 188 void 189 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file, 190 Read_symbols_data* sd) 191 { 192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; 193 194 // Read the section headers. 195 const off_t shoff = elf_file->shoff(); 196 const unsigned int shnum = this->shnum(); 197 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size, 198 true, true); 199 200 // Read the section names. 201 const unsigned char* pshdrs = sd->section_headers->data(); 202 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size; 203 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames); 204 205 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB) 206 this->error(_("section name section has wrong type: %u"), 207 static_cast<unsigned int>(shdrnames.get_sh_type())); 208 209 sd->section_names_size = 210 convert_to_section_size_type(shdrnames.get_sh_size()); 211 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(), 212 sd->section_names_size, false, 213 false); 214 } 215 216 // If NAME is the name of a special .gnu.warning section, arrange for 217 // the warning to be issued. SHNDX is the section index. Return 218 // whether it is a warning section. 219 220 bool 221 Object::handle_gnu_warning_section(const char* name, unsigned int shndx, 222 Symbol_table* symtab) 223 { 224 const char warn_prefix[] = ".gnu.warning."; 225 const int warn_prefix_len = sizeof warn_prefix - 1; 226 if (strncmp(name, warn_prefix, warn_prefix_len) == 0) 227 { 228 // Read the section contents to get the warning text. It would 229 // be nicer if we only did this if we have to actually issue a 230 // warning. Unfortunately, warnings are issued as we relocate 231 // sections. That means that we can not lock the object then, 232 // as we might try to issue the same warning multiple times 233 // simultaneously. 234 section_size_type len; 235 const unsigned char* contents = this->section_contents(shndx, &len, 236 false); 237 if (len == 0) 238 { 239 const char* warning = name + warn_prefix_len; 240 contents = reinterpret_cast<const unsigned char*>(warning); 241 len = strlen(warning); 242 } 243 std::string warning(reinterpret_cast<const char*>(contents), len); 244 symtab->add_warning(name + warn_prefix_len, this, warning); 245 return true; 246 } 247 return false; 248 } 249 250 // If NAME is the name of the special section which indicates that 251 // this object was compiled with -fsplit-stack, mark it accordingly. 252 253 bool 254 Object::handle_split_stack_section(const char* name) 255 { 256 if (strcmp(name, ".note.GNU-split-stack") == 0) 257 { 258 this->uses_split_stack_ = true; 259 return true; 260 } 261 if (strcmp(name, ".note.GNU-no-split-stack") == 0) 262 { 263 this->has_no_split_stack_ = true; 264 return true; 265 } 266 return false; 267 } 268 269 // Class Relobj 270 271 // To copy the symbols data read from the file to a local data structure. 272 // This function is called from do_layout only while doing garbage 273 // collection. 274 275 void 276 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, 277 unsigned int section_header_size) 278 { 279 gc_sd->section_headers_data = 280 new unsigned char[(section_header_size)]; 281 memcpy(gc_sd->section_headers_data, sd->section_headers->data(), 282 section_header_size); 283 gc_sd->section_names_data = 284 new unsigned char[sd->section_names_size]; 285 memcpy(gc_sd->section_names_data, sd->section_names->data(), 286 sd->section_names_size); 287 gc_sd->section_names_size = sd->section_names_size; 288 if (sd->symbols != NULL) 289 { 290 gc_sd->symbols_data = 291 new unsigned char[sd->symbols_size]; 292 memcpy(gc_sd->symbols_data, sd->symbols->data(), 293 sd->symbols_size); 294 } 295 else 296 { 297 gc_sd->symbols_data = NULL; 298 } 299 gc_sd->symbols_size = sd->symbols_size; 300 gc_sd->external_symbols_offset = sd->external_symbols_offset; 301 if (sd->symbol_names != NULL) 302 { 303 gc_sd->symbol_names_data = 304 new unsigned char[sd->symbol_names_size]; 305 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(), 306 sd->symbol_names_size); 307 } 308 else 309 { 310 gc_sd->symbol_names_data = NULL; 311 } 312 gc_sd->symbol_names_size = sd->symbol_names_size; 313 } 314 315 // This function determines if a particular section name must be included 316 // in the link. This is used during garbage collection to determine the 317 // roots of the worklist. 318 319 bool 320 Relobj::is_section_name_included(const char* name) 321 { 322 if (is_prefix_of(".ctors", name) 323 || is_prefix_of(".dtors", name) 324 || is_prefix_of(".note", name) 325 || is_prefix_of(".init", name) 326 || is_prefix_of(".fini", name) 327 || is_prefix_of(".gcc_except_table", name) 328 || is_prefix_of(".jcr", name) 329 || is_prefix_of(".preinit_array", name) 330 || (is_prefix_of(".text", name) 331 && strstr(name, "personality")) 332 || (is_prefix_of(".data", name) 333 && strstr(name, "personality")) 334 || (is_prefix_of(".sdata", name) 335 && strstr(name, "personality")) 336 || (is_prefix_of(".gnu.linkonce.d", name) 337 && strstr(name, "personality")) 338 || (is_prefix_of(".rodata", name) 339 && strstr(name, "nptl_version"))) 340 { 341 return true; 342 } 343 return false; 344 } 345 346 // Finalize the incremental relocation information. Allocates a block 347 // of relocation entries for each symbol, and sets the reloc_bases_ 348 // array to point to the first entry in each block. If CLEAR_COUNTS 349 // is TRUE, also clear the per-symbol relocation counters. 350 351 void 352 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts) 353 { 354 unsigned int nsyms = this->get_global_symbols()->size(); 355 this->reloc_bases_ = new unsigned int[nsyms]; 356 357 gold_assert(this->reloc_bases_ != NULL); 358 gold_assert(layout->incremental_inputs() != NULL); 359 360 unsigned int rindex = layout->incremental_inputs()->get_reloc_count(); 361 for (unsigned int i = 0; i < nsyms; ++i) 362 { 363 this->reloc_bases_[i] = rindex; 364 rindex += this->reloc_counts_[i]; 365 if (clear_counts) 366 this->reloc_counts_[i] = 0; 367 } 368 layout->incremental_inputs()->set_reloc_count(rindex); 369 } 370 371 // Class Sized_relobj. 372 373 // Iterate over local symbols, calling a visitor class V for each GOT offset 374 // associated with a local symbol. 375 376 template<int size, bool big_endian> 377 void 378 Sized_relobj<size, big_endian>::do_for_all_local_got_entries( 379 Got_offset_list::Visitor* v) const 380 { 381 unsigned int nsyms = this->local_symbol_count(); 382 for (unsigned int i = 0; i < nsyms; i++) 383 { 384 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i); 385 if (p != this->local_got_offsets_.end()) 386 { 387 const Got_offset_list* got_offsets = p->second; 388 got_offsets->for_all_got_offsets(v); 389 } 390 } 391 } 392 393 // Get the address of an output section. 394 395 template<int size, bool big_endian> 396 uint64_t 397 Sized_relobj<size, big_endian>::do_output_section_address( 398 unsigned int shndx) 399 { 400 // If the input file is linked as --just-symbols, the output 401 // section address is the input section address. 402 if (this->just_symbols()) 403 return this->section_address(shndx); 404 405 const Output_section* os = this->do_output_section(shndx); 406 gold_assert(os != NULL); 407 return os->address(); 408 } 409 410 // Class Sized_relobj_file. 411 412 template<int size, bool big_endian> 413 Sized_relobj_file<size, big_endian>::Sized_relobj_file( 414 const std::string& name, 415 Input_file* input_file, 416 off_t offset, 417 const elfcpp::Ehdr<size, big_endian>& ehdr) 418 : Sized_relobj<size, big_endian>(name, input_file, offset), 419 elf_file_(this, ehdr), 420 symtab_shndx_(-1U), 421 local_symbol_count_(0), 422 output_local_symbol_count_(0), 423 output_local_dynsym_count_(0), 424 symbols_(), 425 defined_count_(0), 426 local_symbol_offset_(0), 427 local_dynsym_offset_(0), 428 local_values_(), 429 local_plt_offsets_(), 430 kept_comdat_sections_(), 431 has_eh_frame_(false), 432 discarded_eh_frame_shndx_(-1U), 433 is_deferred_layout_(false), 434 deferred_layout_(), 435 deferred_layout_relocs_() 436 { 437 this->e_type_ = ehdr.get_e_type(); 438 } 439 440 template<int size, bool big_endian> 441 Sized_relobj_file<size, big_endian>::~Sized_relobj_file() 442 { 443 } 444 445 // Set up an object file based on the file header. This sets up the 446 // section information. 447 448 template<int size, bool big_endian> 449 void 450 Sized_relobj_file<size, big_endian>::do_setup() 451 { 452 const unsigned int shnum = this->elf_file_.shnum(); 453 this->set_shnum(shnum); 454 } 455 456 // Find the SHT_SYMTAB section, given the section headers. The ELF 457 // standard says that maybe in the future there can be more than one 458 // SHT_SYMTAB section. Until somebody figures out how that could 459 // work, we assume there is only one. 460 461 template<int size, bool big_endian> 462 void 463 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs) 464 { 465 const unsigned int shnum = this->shnum(); 466 this->symtab_shndx_ = 0; 467 if (shnum > 0) 468 { 469 // Look through the sections in reverse order, since gas tends 470 // to put the symbol table at the end. 471 const unsigned char* p = pshdrs + shnum * This::shdr_size; 472 unsigned int i = shnum; 473 unsigned int xindex_shndx = 0; 474 unsigned int xindex_link = 0; 475 while (i > 0) 476 { 477 --i; 478 p -= This::shdr_size; 479 typename This::Shdr shdr(p); 480 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB) 481 { 482 this->symtab_shndx_ = i; 483 if (xindex_shndx > 0 && xindex_link == i) 484 { 485 Xindex* xindex = 486 new Xindex(this->elf_file_.large_shndx_offset()); 487 xindex->read_symtab_xindex<size, big_endian>(this, 488 xindex_shndx, 489 pshdrs); 490 this->set_xindex(xindex); 491 } 492 break; 493 } 494 495 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is 496 // one. This will work if it follows the SHT_SYMTAB 497 // section. 498 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX) 499 { 500 xindex_shndx = i; 501 xindex_link = this->adjust_shndx(shdr.get_sh_link()); 502 } 503 } 504 } 505 } 506 507 // Return the Xindex structure to use for object with lots of 508 // sections. 509 510 template<int size, bool big_endian> 511 Xindex* 512 Sized_relobj_file<size, big_endian>::do_initialize_xindex() 513 { 514 gold_assert(this->symtab_shndx_ != -1U); 515 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset()); 516 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_); 517 return xindex; 518 } 519 520 // Return whether SHDR has the right type and flags to be a GNU 521 // .eh_frame section. 522 523 template<int size, bool big_endian> 524 bool 525 Sized_relobj_file<size, big_endian>::check_eh_frame_flags( 526 const elfcpp::Shdr<size, big_endian>* shdr) const 527 { 528 elfcpp::Elf_Word sh_type = shdr->get_sh_type(); 529 return ((sh_type == elfcpp::SHT_PROGBITS 530 || sh_type == elfcpp::SHT_X86_64_UNWIND) 531 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0); 532 } 533 534 // Find the section header with the given name. 535 536 template<int size, bool big_endian> 537 const unsigned char* 538 Object::find_shdr( 539 const unsigned char* pshdrs, 540 const char* name, 541 const char* names, 542 section_size_type names_size, 543 const unsigned char* hdr) const 544 { 545 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; 546 const unsigned int shnum = this->shnum(); 547 const unsigned char* hdr_end = pshdrs + shdr_size * shnum; 548 size_t sh_name = 0; 549 550 while (1) 551 { 552 if (hdr) 553 { 554 // We found HDR last time we were called, continue looking. 555 typename elfcpp::Shdr<size, big_endian> shdr(hdr); 556 sh_name = shdr.get_sh_name(); 557 } 558 else 559 { 560 // Look for the next occurrence of NAME in NAMES. 561 // The fact that .shstrtab produced by current GNU tools is 562 // string merged means we shouldn't have both .not.foo and 563 // .foo in .shstrtab, and multiple .foo sections should all 564 // have the same sh_name. However, this is not guaranteed 565 // by the ELF spec and not all ELF object file producers may 566 // be so clever. 567 size_t len = strlen(name) + 1; 568 const char *p = sh_name ? names + sh_name + len : names; 569 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names), 570 name, len)); 571 if (p == NULL) 572 return NULL; 573 sh_name = p - names; 574 hdr = pshdrs; 575 if (sh_name == 0) 576 return hdr; 577 } 578 579 hdr += shdr_size; 580 while (hdr < hdr_end) 581 { 582 typename elfcpp::Shdr<size, big_endian> shdr(hdr); 583 if (shdr.get_sh_name() == sh_name) 584 return hdr; 585 hdr += shdr_size; 586 } 587 hdr = NULL; 588 if (sh_name == 0) 589 return hdr; 590 } 591 } 592 593 // Return whether there is a GNU .eh_frame section, given the section 594 // headers and the section names. 595 596 template<int size, bool big_endian> 597 bool 598 Sized_relobj_file<size, big_endian>::find_eh_frame( 599 const unsigned char* pshdrs, 600 const char* names, 601 section_size_type names_size) const 602 { 603 const unsigned char* s = NULL; 604 605 while (1) 606 { 607 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame", 608 names, names_size, s); 609 if (s == NULL) 610 return false; 611 612 typename This::Shdr shdr(s); 613 if (this->check_eh_frame_flags(&shdr)) 614 return true; 615 } 616 } 617 618 // Return TRUE if this is a section whose contents will be needed in the 619 // Add_symbols task. This function is only called for sections that have 620 // already passed the test in is_compressed_debug_section(), so we know 621 // that the section name begins with ".zdebug". 622 623 static bool 624 need_decompressed_section(const char* name) 625 { 626 // Skip over the ".zdebug" and a quick check for the "_". 627 name += 7; 628 if (*name++ != '_') 629 return false; 630 631 #ifdef ENABLE_THREADS 632 // Decompressing these sections now will help only if we're 633 // multithreaded. 634 if (parameters->options().threads()) 635 { 636 // We will need .zdebug_str if this is not an incremental link 637 // (i.e., we are processing string merge sections) or if we need 638 // to build a gdb index. 639 if ((!parameters->incremental() || parameters->options().gdb_index()) 640 && strcmp(name, "str") == 0) 641 return true; 642 643 // We will need these other sections when building a gdb index. 644 if (parameters->options().gdb_index() 645 && (strcmp(name, "info") == 0 646 || strcmp(name, "types") == 0 647 || strcmp(name, "pubnames") == 0 648 || strcmp(name, "pubtypes") == 0 649 || strcmp(name, "ranges") == 0 650 || strcmp(name, "abbrev") == 0)) 651 return true; 652 } 653 #endif 654 655 // Even when single-threaded, we will need .zdebug_str if this is 656 // not an incremental link and we are building a gdb index. 657 // Otherwise, we would decompress the section twice: once for 658 // string merge processing, and once for building the gdb index. 659 if (!parameters->incremental() 660 && parameters->options().gdb_index() 661 && strcmp(name, "str") == 0) 662 return true; 663 664 return false; 665 } 666 667 // Build a table for any compressed debug sections, mapping each section index 668 // to the uncompressed size and (if needed) the decompressed contents. 669 670 template<int size, bool big_endian> 671 Compressed_section_map* 672 build_compressed_section_map( 673 const unsigned char* pshdrs, 674 unsigned int shnum, 675 const char* names, 676 section_size_type names_size, 677 Object* obj, 678 bool decompress_if_needed) 679 { 680 Compressed_section_map* uncompressed_map = new Compressed_section_map(); 681 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; 682 const unsigned char* p = pshdrs + shdr_size; 683 684 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size) 685 { 686 typename elfcpp::Shdr<size, big_endian> shdr(p); 687 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS 688 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) 689 { 690 if (shdr.get_sh_name() >= names_size) 691 { 692 obj->error(_("bad section name offset for section %u: %lu"), 693 i, static_cast<unsigned long>(shdr.get_sh_name())); 694 continue; 695 } 696 697 const char* name = names + shdr.get_sh_name(); 698 if (is_compressed_debug_section(name)) 699 { 700 section_size_type len; 701 const unsigned char* contents = 702 obj->section_contents(i, &len, false); 703 uint64_t uncompressed_size = get_uncompressed_size(contents, len); 704 Compressed_section_info info; 705 info.size = convert_to_section_size_type(uncompressed_size); 706 info.contents = NULL; 707 if (uncompressed_size != -1ULL) 708 { 709 unsigned char* uncompressed_data = NULL; 710 if (decompress_if_needed && need_decompressed_section(name)) 711 { 712 uncompressed_data = new unsigned char[uncompressed_size]; 713 if (decompress_input_section(contents, len, 714 uncompressed_data, 715 uncompressed_size)) 716 info.contents = uncompressed_data; 717 else 718 delete[] uncompressed_data; 719 } 720 (*uncompressed_map)[i] = info; 721 } 722 } 723 } 724 } 725 return uncompressed_map; 726 } 727 728 // Stash away info for a number of special sections. 729 // Return true if any of the sections found require local symbols to be read. 730 731 template<int size, bool big_endian> 732 bool 733 Sized_relobj_file<size, big_endian>::do_find_special_sections( 734 Read_symbols_data* sd) 735 { 736 const unsigned char* const pshdrs = sd->section_headers->data(); 737 const unsigned char* namesu = sd->section_names->data(); 738 const char* names = reinterpret_cast<const char*>(namesu); 739 740 if (this->find_eh_frame(pshdrs, names, sd->section_names_size)) 741 this->has_eh_frame_ = true; 742 743 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL) 744 { 745 Compressed_section_map* compressed_sections = 746 build_compressed_section_map<size, big_endian>( 747 pshdrs, this->shnum(), names, sd->section_names_size, this, true); 748 if (compressed_sections != NULL) 749 this->set_compressed_sections(compressed_sections); 750 } 751 752 return (this->has_eh_frame_ 753 || (!parameters->options().relocatable() 754 && parameters->options().gdb_index() 755 && (memmem(names, sd->section_names_size, "debug_info", 12) == 0 756 || memmem(names, sd->section_names_size, "debug_types", 757 13) == 0))); 758 } 759 760 // Read the sections and symbols from an object file. 761 762 template<int size, bool big_endian> 763 void 764 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd) 765 { 766 this->base_read_symbols(sd); 767 } 768 769 // Read the sections and symbols from an object file. This is common 770 // code for all target-specific overrides of do_read_symbols(). 771 772 template<int size, bool big_endian> 773 void 774 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd) 775 { 776 this->read_section_data(&this->elf_file_, sd); 777 778 const unsigned char* const pshdrs = sd->section_headers->data(); 779 780 this->find_symtab(pshdrs); 781 782 bool need_local_symbols = this->do_find_special_sections(sd); 783 784 sd->symbols = NULL; 785 sd->symbols_size = 0; 786 sd->external_symbols_offset = 0; 787 sd->symbol_names = NULL; 788 sd->symbol_names_size = 0; 789 790 if (this->symtab_shndx_ == 0) 791 { 792 // No symbol table. Weird but legal. 793 return; 794 } 795 796 // Get the symbol table section header. 797 typename This::Shdr symtabshdr(pshdrs 798 + this->symtab_shndx_ * This::shdr_size); 799 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); 800 801 // If this object has a .eh_frame section, or if building a .gdb_index 802 // section and there is debug info, we need all the symbols. 803 // Otherwise we only need the external symbols. While it would be 804 // simpler to just always read all the symbols, I've seen object 805 // files with well over 2000 local symbols, which for a 64-bit 806 // object file format is over 5 pages that we don't need to read 807 // now. 808 809 const int sym_size = This::sym_size; 810 const unsigned int loccount = symtabshdr.get_sh_info(); 811 this->local_symbol_count_ = loccount; 812 this->local_values_.resize(loccount); 813 section_offset_type locsize = loccount * sym_size; 814 off_t dataoff = symtabshdr.get_sh_offset(); 815 section_size_type datasize = 816 convert_to_section_size_type(symtabshdr.get_sh_size()); 817 off_t extoff = dataoff + locsize; 818 section_size_type extsize = datasize - locsize; 819 820 off_t readoff = need_local_symbols ? dataoff : extoff; 821 section_size_type readsize = need_local_symbols ? datasize : extsize; 822 823 if (readsize == 0) 824 { 825 // No external symbols. Also weird but also legal. 826 return; 827 } 828 829 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false); 830 831 // Read the section header for the symbol names. 832 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link()); 833 if (strtab_shndx >= this->shnum()) 834 { 835 this->error(_("invalid symbol table name index: %u"), strtab_shndx); 836 return; 837 } 838 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size); 839 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) 840 { 841 this->error(_("symbol table name section has wrong type: %u"), 842 static_cast<unsigned int>(strtabshdr.get_sh_type())); 843 return; 844 } 845 846 // Read the symbol names. 847 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(), 848 strtabshdr.get_sh_size(), 849 false, true); 850 851 sd->symbols = fvsymtab; 852 sd->symbols_size = readsize; 853 sd->external_symbols_offset = need_local_symbols ? locsize : 0; 854 sd->symbol_names = fvstrtab; 855 sd->symbol_names_size = 856 convert_to_section_size_type(strtabshdr.get_sh_size()); 857 } 858 859 // Return the section index of symbol SYM. Set *VALUE to its value in 860 // the object file. Set *IS_ORDINARY if this is an ordinary section 861 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE. 862 // Note that for a symbol which is not defined in this object file, 863 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return 864 // the final value of the symbol in the link. 865 866 template<int size, bool big_endian> 867 unsigned int 868 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym, 869 Address* value, 870 bool* is_ordinary) 871 { 872 section_size_type symbols_size; 873 const unsigned char* symbols = this->section_contents(this->symtab_shndx_, 874 &symbols_size, 875 false); 876 877 const size_t count = symbols_size / This::sym_size; 878 gold_assert(sym < count); 879 880 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size); 881 *value = elfsym.get_st_value(); 882 883 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary); 884 } 885 886 // Return whether to include a section group in the link. LAYOUT is 887 // used to keep track of which section groups we have already seen. 888 // INDEX is the index of the section group and SHDR is the section 889 // header. If we do not want to include this group, we set bits in 890 // OMIT for each section which should be discarded. 891 892 template<int size, bool big_endian> 893 bool 894 Sized_relobj_file<size, big_endian>::include_section_group( 895 Symbol_table* symtab, 896 Layout* layout, 897 unsigned int index, 898 const char* name, 899 const unsigned char* shdrs, 900 const char* section_names, 901 section_size_type section_names_size, 902 std::vector<bool>* omit) 903 { 904 // Read the section contents. 905 typename This::Shdr shdr(shdrs + index * This::shdr_size); 906 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(), 907 shdr.get_sh_size(), true, false); 908 const elfcpp::Elf_Word* pword = 909 reinterpret_cast<const elfcpp::Elf_Word*>(pcon); 910 911 // The first word contains flags. We only care about COMDAT section 912 // groups. Other section groups are always included in the link 913 // just like ordinary sections. 914 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword); 915 916 // Look up the group signature, which is the name of a symbol. ELF 917 // uses a symbol name because some group signatures are long, and 918 // the name is generally already in the symbol table, so it makes 919 // sense to put the long string just once in .strtab rather than in 920 // both .strtab and .shstrtab. 921 922 // Get the appropriate symbol table header (this will normally be 923 // the single SHT_SYMTAB section, but in principle it need not be). 924 const unsigned int link = this->adjust_shndx(shdr.get_sh_link()); 925 typename This::Shdr symshdr(this, this->elf_file_.section_header(link)); 926 927 // Read the symbol table entry. 928 unsigned int symndx = shdr.get_sh_info(); 929 if (symndx >= symshdr.get_sh_size() / This::sym_size) 930 { 931 this->error(_("section group %u info %u out of range"), 932 index, symndx); 933 return false; 934 } 935 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size; 936 const unsigned char* psym = this->get_view(symoff, This::sym_size, true, 937 false); 938 elfcpp::Sym<size, big_endian> sym(psym); 939 940 // Read the symbol table names. 941 section_size_type symnamelen; 942 const unsigned char* psymnamesu; 943 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()), 944 &symnamelen, true); 945 const char* psymnames = reinterpret_cast<const char*>(psymnamesu); 946 947 // Get the section group signature. 948 if (sym.get_st_name() >= symnamelen) 949 { 950 this->error(_("symbol %u name offset %u out of range"), 951 symndx, sym.get_st_name()); 952 return false; 953 } 954 955 std::string signature(psymnames + sym.get_st_name()); 956 957 // It seems that some versions of gas will create a section group 958 // associated with a section symbol, and then fail to give a name to 959 // the section symbol. In such a case, use the name of the section. 960 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION) 961 { 962 bool is_ordinary; 963 unsigned int sym_shndx = this->adjust_sym_shndx(symndx, 964 sym.get_st_shndx(), 965 &is_ordinary); 966 if (!is_ordinary || sym_shndx >= this->shnum()) 967 { 968 this->error(_("symbol %u invalid section index %u"), 969 symndx, sym_shndx); 970 return false; 971 } 972 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size); 973 if (member_shdr.get_sh_name() < section_names_size) 974 signature = section_names + member_shdr.get_sh_name(); 975 } 976 977 // Record this section group in the layout, and see whether we've already 978 // seen one with the same signature. 979 bool include_group; 980 bool is_comdat; 981 Kept_section* kept_section = NULL; 982 983 if ((flags & elfcpp::GRP_COMDAT) == 0) 984 { 985 include_group = true; 986 is_comdat = false; 987 } 988 else 989 { 990 include_group = layout->find_or_add_kept_section(signature, 991 this, index, true, 992 true, &kept_section); 993 is_comdat = true; 994 } 995 996 if (is_comdat && include_group) 997 { 998 Incremental_inputs* incremental_inputs = layout->incremental_inputs(); 999 if (incremental_inputs != NULL) 1000 incremental_inputs->report_comdat_group(this, signature.c_str()); 1001 } 1002 1003 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word); 1004 1005 std::vector<unsigned int> shndxes; 1006 bool relocate_group = include_group && parameters->options().relocatable(); 1007 if (relocate_group) 1008 shndxes.reserve(count - 1); 1009 1010 for (size_t i = 1; i < count; ++i) 1011 { 1012 elfcpp::Elf_Word shndx = 1013 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i)); 1014 1015 if (relocate_group) 1016 shndxes.push_back(shndx); 1017 1018 if (shndx >= this->shnum()) 1019 { 1020 this->error(_("section %u in section group %u out of range"), 1021 shndx, index); 1022 continue; 1023 } 1024 1025 // Check for an earlier section number, since we're going to get 1026 // it wrong--we may have already decided to include the section. 1027 if (shndx < index) 1028 this->error(_("invalid section group %u refers to earlier section %u"), 1029 index, shndx); 1030 1031 // Get the name of the member section. 1032 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size); 1033 if (member_shdr.get_sh_name() >= section_names_size) 1034 { 1035 // This is an error, but it will be diagnosed eventually 1036 // in do_layout, so we don't need to do anything here but 1037 // ignore it. 1038 continue; 1039 } 1040 std::string mname(section_names + member_shdr.get_sh_name()); 1041 1042 if (include_group) 1043 { 1044 if (is_comdat) 1045 kept_section->add_comdat_section(mname, shndx, 1046 member_shdr.get_sh_size()); 1047 } 1048 else 1049 { 1050 (*omit)[shndx] = true; 1051 1052 if (is_comdat) 1053 { 1054 Relobj* kept_object = kept_section->object(); 1055 if (kept_section->is_comdat()) 1056 { 1057 // Find the corresponding kept section, and store 1058 // that info in the discarded section table. 1059 unsigned int kept_shndx; 1060 uint64_t kept_size; 1061 if (kept_section->find_comdat_section(mname, &kept_shndx, 1062 &kept_size)) 1063 { 1064 // We don't keep a mapping for this section if 1065 // it has a different size. The mapping is only 1066 // used for relocation processing, and we don't 1067 // want to treat the sections as similar if the 1068 // sizes are different. Checking the section 1069 // size is the approach used by the GNU linker. 1070 if (kept_size == member_shdr.get_sh_size()) 1071 this->set_kept_comdat_section(shndx, kept_object, 1072 kept_shndx); 1073 } 1074 } 1075 else 1076 { 1077 // The existing section is a linkonce section. Add 1078 // a mapping if there is exactly one section in the 1079 // group (which is true when COUNT == 2) and if it 1080 // is the same size. 1081 if (count == 2 1082 && (kept_section->linkonce_size() 1083 == member_shdr.get_sh_size())) 1084 this->set_kept_comdat_section(shndx, kept_object, 1085 kept_section->shndx()); 1086 } 1087 } 1088 } 1089 } 1090 1091 if (relocate_group) 1092 layout->layout_group(symtab, this, index, name, signature.c_str(), 1093 shdr, flags, &shndxes); 1094 1095 return include_group; 1096 } 1097 1098 // Whether to include a linkonce section in the link. NAME is the 1099 // name of the section and SHDR is the section header. 1100 1101 // Linkonce sections are a GNU extension implemented in the original 1102 // GNU linker before section groups were defined. The semantics are 1103 // that we only include one linkonce section with a given name. The 1104 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME, 1105 // where T is the type of section and SYMNAME is the name of a symbol. 1106 // In an attempt to make linkonce sections interact well with section 1107 // groups, we try to identify SYMNAME and use it like a section group 1108 // signature. We want to block section groups with that signature, 1109 // but not other linkonce sections with that signature. We also use 1110 // the full name of the linkonce section as a normal section group 1111 // signature. 1112 1113 template<int size, bool big_endian> 1114 bool 1115 Sized_relobj_file<size, big_endian>::include_linkonce_section( 1116 Layout* layout, 1117 unsigned int index, 1118 const char* name, 1119 const elfcpp::Shdr<size, big_endian>& shdr) 1120 { 1121 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size(); 1122 // In general the symbol name we want will be the string following 1123 // the last '.'. However, we have to handle the case of 1124 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by 1125 // some versions of gcc. So we use a heuristic: if the name starts 1126 // with ".gnu.linkonce.t.", we use everything after that. Otherwise 1127 // we look for the last '.'. We can't always simply skip 1128 // ".gnu.linkonce.X", because we have to deal with cases like 1129 // ".gnu.linkonce.d.rel.ro.local". 1130 const char* const linkonce_t = ".gnu.linkonce.t."; 1131 const char* symname; 1132 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0) 1133 symname = name + strlen(linkonce_t); 1134 else 1135 symname = strrchr(name, '.') + 1; 1136 std::string sig1(symname); 1137 std::string sig2(name); 1138 Kept_section* kept1; 1139 Kept_section* kept2; 1140 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false, 1141 false, &kept1); 1142 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false, 1143 true, &kept2); 1144 1145 if (!include2) 1146 { 1147 // We are not including this section because we already saw the 1148 // name of the section as a signature. This normally implies 1149 // that the kept section is another linkonce section. If it is 1150 // the same size, record it as the section which corresponds to 1151 // this one. 1152 if (kept2->object() != NULL 1153 && !kept2->is_comdat() 1154 && kept2->linkonce_size() == sh_size) 1155 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx()); 1156 } 1157 else if (!include1) 1158 { 1159 // The section is being discarded on the basis of its symbol 1160 // name. This means that the corresponding kept section was 1161 // part of a comdat group, and it will be difficult to identify 1162 // the specific section within that group that corresponds to 1163 // this linkonce section. We'll handle the simple case where 1164 // the group has only one member section. Otherwise, it's not 1165 // worth the effort. 1166 unsigned int kept_shndx; 1167 uint64_t kept_size; 1168 if (kept1->object() != NULL 1169 && kept1->is_comdat() 1170 && kept1->find_single_comdat_section(&kept_shndx, &kept_size) 1171 && kept_size == sh_size) 1172 this->set_kept_comdat_section(index, kept1->object(), kept_shndx); 1173 } 1174 else 1175 { 1176 kept1->set_linkonce_size(sh_size); 1177 kept2->set_linkonce_size(sh_size); 1178 } 1179 1180 return include1 && include2; 1181 } 1182 1183 // Layout an input section. 1184 1185 template<int size, bool big_endian> 1186 inline void 1187 Sized_relobj_file<size, big_endian>::layout_section( 1188 Layout* layout, 1189 unsigned int shndx, 1190 const char* name, 1191 const typename This::Shdr& shdr, 1192 unsigned int reloc_shndx, 1193 unsigned int reloc_type) 1194 { 1195 off_t offset; 1196 Output_section* os = layout->layout(this, shndx, name, shdr, 1197 reloc_shndx, reloc_type, &offset); 1198 1199 this->output_sections()[shndx] = os; 1200 if (offset == -1) 1201 this->section_offsets()[shndx] = invalid_address; 1202 else 1203 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset); 1204 1205 // If this section requires special handling, and if there are 1206 // relocs that apply to it, then we must do the special handling 1207 // before we apply the relocs. 1208 if (offset == -1 && reloc_shndx != 0) 1209 this->set_relocs_must_follow_section_writes(); 1210 } 1211 1212 // Layout an input .eh_frame section. 1213 1214 template<int size, bool big_endian> 1215 void 1216 Sized_relobj_file<size, big_endian>::layout_eh_frame_section( 1217 Layout* layout, 1218 const unsigned char* symbols_data, 1219 section_size_type symbols_size, 1220 const unsigned char* symbol_names_data, 1221 section_size_type symbol_names_size, 1222 unsigned int shndx, 1223 const typename This::Shdr& shdr, 1224 unsigned int reloc_shndx, 1225 unsigned int reloc_type) 1226 { 1227 gold_assert(this->has_eh_frame_); 1228 1229 off_t offset; 1230 Output_section* os = layout->layout_eh_frame(this, 1231 symbols_data, 1232 symbols_size, 1233 symbol_names_data, 1234 symbol_names_size, 1235 shndx, 1236 shdr, 1237 reloc_shndx, 1238 reloc_type, 1239 &offset); 1240 this->output_sections()[shndx] = os; 1241 if (os == NULL || offset == -1) 1242 { 1243 // An object can contain at most one section holding exception 1244 // frame information. 1245 gold_assert(this->discarded_eh_frame_shndx_ == -1U); 1246 this->discarded_eh_frame_shndx_ = shndx; 1247 this->section_offsets()[shndx] = invalid_address; 1248 } 1249 else 1250 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset); 1251 1252 // If this section requires special handling, and if there are 1253 // relocs that aply to it, then we must do the special handling 1254 // before we apply the relocs. 1255 if (os != NULL && offset == -1 && reloc_shndx != 0) 1256 this->set_relocs_must_follow_section_writes(); 1257 } 1258 1259 // Lay out the input sections. We walk through the sections and check 1260 // whether they should be included in the link. If they should, we 1261 // pass them to the Layout object, which will return an output section 1262 // and an offset. 1263 // This function is called twice sometimes, two passes, when mapping 1264 // of input sections to output sections must be delayed. 1265 // This is true for the following : 1266 // * Garbage collection (--gc-sections): Some input sections will be 1267 // discarded and hence the assignment must wait until the second pass. 1268 // In the first pass, it is for setting up some sections as roots to 1269 // a work-list for --gc-sections and to do comdat processing. 1270 // * Identical Code Folding (--icf=<safe,all>): Some input sections 1271 // will be folded and hence the assignment must wait. 1272 // * Using plugins to map some sections to unique segments: Mapping 1273 // some sections to unique segments requires mapping them to unique 1274 // output sections too. This can be done via plugins now and this 1275 // information is not available in the first pass. 1276 1277 template<int size, bool big_endian> 1278 void 1279 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab, 1280 Layout* layout, 1281 Read_symbols_data* sd) 1282 { 1283 const unsigned int shnum = this->shnum(); 1284 1285 /* Should this function be called twice? */ 1286 bool is_two_pass = (parameters->options().gc_sections() 1287 || parameters->options().icf_enabled() 1288 || layout->is_unique_segment_for_sections_specified()); 1289 1290 /* Only one of is_pass_one and is_pass_two is true. Both are false when 1291 a two-pass approach is not needed. */ 1292 bool is_pass_one = false; 1293 bool is_pass_two = false; 1294 1295 Symbols_data* gc_sd = NULL; 1296 1297 /* Check if do_layout needs to be two-pass. If so, find out which pass 1298 should happen. In the first pass, the data in sd is saved to be used 1299 later in the second pass. */ 1300 if (is_two_pass) 1301 { 1302 gc_sd = this->get_symbols_data(); 1303 if (gc_sd == NULL) 1304 { 1305 gold_assert(sd != NULL); 1306 is_pass_one = true; 1307 } 1308 else 1309 { 1310 if (parameters->options().gc_sections()) 1311 gold_assert(symtab->gc()->is_worklist_ready()); 1312 if (parameters->options().icf_enabled()) 1313 gold_assert(symtab->icf()->is_icf_ready()); 1314 is_pass_two = true; 1315 } 1316 } 1317 1318 if (shnum == 0) 1319 return; 1320 1321 if (is_pass_one) 1322 { 1323 // During garbage collection save the symbols data to use it when 1324 // re-entering this function. 1325 gc_sd = new Symbols_data; 1326 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum); 1327 this->set_symbols_data(gc_sd); 1328 } 1329 1330 const unsigned char* section_headers_data = NULL; 1331 section_size_type section_names_size; 1332 const unsigned char* symbols_data = NULL; 1333 section_size_type symbols_size; 1334 const unsigned char* symbol_names_data = NULL; 1335 section_size_type symbol_names_size; 1336 1337 if (is_two_pass) 1338 { 1339 section_headers_data = gc_sd->section_headers_data; 1340 section_names_size = gc_sd->section_names_size; 1341 symbols_data = gc_sd->symbols_data; 1342 symbols_size = gc_sd->symbols_size; 1343 symbol_names_data = gc_sd->symbol_names_data; 1344 symbol_names_size = gc_sd->symbol_names_size; 1345 } 1346 else 1347 { 1348 section_headers_data = sd->section_headers->data(); 1349 section_names_size = sd->section_names_size; 1350 if (sd->symbols != NULL) 1351 symbols_data = sd->symbols->data(); 1352 symbols_size = sd->symbols_size; 1353 if (sd->symbol_names != NULL) 1354 symbol_names_data = sd->symbol_names->data(); 1355 symbol_names_size = sd->symbol_names_size; 1356 } 1357 1358 // Get the section headers. 1359 const unsigned char* shdrs = section_headers_data; 1360 const unsigned char* pshdrs; 1361 1362 // Get the section names. 1363 const unsigned char* pnamesu = (is_two_pass 1364 ? gc_sd->section_names_data 1365 : sd->section_names->data()); 1366 1367 const char* pnames = reinterpret_cast<const char*>(pnamesu); 1368 1369 // If any input files have been claimed by plugins, we need to defer 1370 // actual layout until the replacement files have arrived. 1371 const bool should_defer_layout = 1372 (parameters->options().has_plugins() 1373 && parameters->options().plugins()->should_defer_layout()); 1374 unsigned int num_sections_to_defer = 0; 1375 1376 // For each section, record the index of the reloc section if any. 1377 // Use 0 to mean that there is no reloc section, -1U to mean that 1378 // there is more than one. 1379 std::vector<unsigned int> reloc_shndx(shnum, 0); 1380 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL); 1381 // Skip the first, dummy, section. 1382 pshdrs = shdrs + This::shdr_size; 1383 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size) 1384 { 1385 typename This::Shdr shdr(pshdrs); 1386 1387 // Count the number of sections whose layout will be deferred. 1388 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC)) 1389 ++num_sections_to_defer; 1390 1391 unsigned int sh_type = shdr.get_sh_type(); 1392 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA) 1393 { 1394 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info()); 1395 if (target_shndx == 0 || target_shndx >= shnum) 1396 { 1397 this->error(_("relocation section %u has bad info %u"), 1398 i, target_shndx); 1399 continue; 1400 } 1401 1402 if (reloc_shndx[target_shndx] != 0) 1403 reloc_shndx[target_shndx] = -1U; 1404 else 1405 { 1406 reloc_shndx[target_shndx] = i; 1407 reloc_type[target_shndx] = sh_type; 1408 } 1409 } 1410 } 1411 1412 Output_sections& out_sections(this->output_sections()); 1413 std::vector<Address>& out_section_offsets(this->section_offsets()); 1414 1415 if (!is_pass_two) 1416 { 1417 out_sections.resize(shnum); 1418 out_section_offsets.resize(shnum); 1419 } 1420 1421 // If we are only linking for symbols, then there is nothing else to 1422 // do here. 1423 if (this->input_file()->just_symbols()) 1424 { 1425 if (!is_pass_two) 1426 { 1427 delete sd->section_headers; 1428 sd->section_headers = NULL; 1429 delete sd->section_names; 1430 sd->section_names = NULL; 1431 } 1432 return; 1433 } 1434 1435 if (num_sections_to_defer > 0) 1436 { 1437 parameters->options().plugins()->add_deferred_layout_object(this); 1438 this->deferred_layout_.reserve(num_sections_to_defer); 1439 this->is_deferred_layout_ = true; 1440 } 1441 1442 // Whether we've seen a .note.GNU-stack section. 1443 bool seen_gnu_stack = false; 1444 // The flags of a .note.GNU-stack section. 1445 uint64_t gnu_stack_flags = 0; 1446 1447 // Keep track of which sections to omit. 1448 std::vector<bool> omit(shnum, false); 1449 1450 // Keep track of reloc sections when emitting relocations. 1451 const bool relocatable = parameters->options().relocatable(); 1452 const bool emit_relocs = (relocatable 1453 || parameters->options().emit_relocs()); 1454 std::vector<unsigned int> reloc_sections; 1455 1456 // Keep track of .eh_frame sections. 1457 std::vector<unsigned int> eh_frame_sections; 1458 1459 // Keep track of .debug_info and .debug_types sections. 1460 std::vector<unsigned int> debug_info_sections; 1461 std::vector<unsigned int> debug_types_sections; 1462 1463 // Skip the first, dummy, section. 1464 pshdrs = shdrs + This::shdr_size; 1465 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size) 1466 { 1467 typename This::Shdr shdr(pshdrs); 1468 1469 if (shdr.get_sh_name() >= section_names_size) 1470 { 1471 this->error(_("bad section name offset for section %u: %lu"), 1472 i, static_cast<unsigned long>(shdr.get_sh_name())); 1473 return; 1474 } 1475 1476 const char* name = pnames + shdr.get_sh_name(); 1477 1478 if (!is_pass_two) 1479 { 1480 if (this->handle_gnu_warning_section(name, i, symtab)) 1481 { 1482 if (!relocatable && !parameters->options().shared()) 1483 omit[i] = true; 1484 } 1485 1486 // The .note.GNU-stack section is special. It gives the 1487 // protection flags that this object file requires for the stack 1488 // in memory. 1489 if (strcmp(name, ".note.GNU-stack") == 0) 1490 { 1491 seen_gnu_stack = true; 1492 gnu_stack_flags |= shdr.get_sh_flags(); 1493 omit[i] = true; 1494 } 1495 1496 // The .note.GNU-split-stack section is also special. It 1497 // indicates that the object was compiled with 1498 // -fsplit-stack. 1499 if (this->handle_split_stack_section(name)) 1500 { 1501 if (!relocatable && !parameters->options().shared()) 1502 omit[i] = true; 1503 } 1504 1505 // Skip attributes section. 1506 if (parameters->target().is_attributes_section(name)) 1507 { 1508 omit[i] = true; 1509 } 1510 1511 bool discard = omit[i]; 1512 if (!discard) 1513 { 1514 if (shdr.get_sh_type() == elfcpp::SHT_GROUP) 1515 { 1516 if (!this->include_section_group(symtab, layout, i, name, 1517 shdrs, pnames, 1518 section_names_size, 1519 &omit)) 1520 discard = true; 1521 } 1522 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0 1523 && Layout::is_linkonce(name)) 1524 { 1525 if (!this->include_linkonce_section(layout, i, name, shdr)) 1526 discard = true; 1527 } 1528 } 1529 1530 // Add the section to the incremental inputs layout. 1531 Incremental_inputs* incremental_inputs = layout->incremental_inputs(); 1532 if (incremental_inputs != NULL 1533 && !discard 1534 && can_incremental_update(shdr.get_sh_type())) 1535 { 1536 off_t sh_size = shdr.get_sh_size(); 1537 section_size_type uncompressed_size; 1538 if (this->section_is_compressed(i, &uncompressed_size)) 1539 sh_size = uncompressed_size; 1540 incremental_inputs->report_input_section(this, i, name, sh_size); 1541 } 1542 1543 if (discard) 1544 { 1545 // Do not include this section in the link. 1546 out_sections[i] = NULL; 1547 out_section_offsets[i] = invalid_address; 1548 continue; 1549 } 1550 } 1551 1552 if (is_pass_one && parameters->options().gc_sections()) 1553 { 1554 if (this->is_section_name_included(name) 1555 || layout->keep_input_section (this, name) 1556 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY 1557 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY) 1558 { 1559 symtab->gc()->worklist().push(Section_id(this, i)); 1560 } 1561 // If the section name XXX can be represented as a C identifier 1562 // it cannot be discarded if there are references to 1563 // __start_XXX and __stop_XXX symbols. These need to be 1564 // specially handled. 1565 if (is_cident(name)) 1566 { 1567 symtab->gc()->add_cident_section(name, Section_id(this, i)); 1568 } 1569 } 1570 1571 // When doing a relocatable link we are going to copy input 1572 // reloc sections into the output. We only want to copy the 1573 // ones associated with sections which are not being discarded. 1574 // However, we don't know that yet for all sections. So save 1575 // reloc sections and process them later. Garbage collection is 1576 // not triggered when relocatable code is desired. 1577 if (emit_relocs 1578 && (shdr.get_sh_type() == elfcpp::SHT_REL 1579 || shdr.get_sh_type() == elfcpp::SHT_RELA)) 1580 { 1581 reloc_sections.push_back(i); 1582 continue; 1583 } 1584 1585 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP) 1586 continue; 1587 1588 // The .eh_frame section is special. It holds exception frame 1589 // information that we need to read in order to generate the 1590 // exception frame header. We process these after all the other 1591 // sections so that the exception frame reader can reliably 1592 // determine which sections are being discarded, and discard the 1593 // corresponding information. 1594 if (!relocatable 1595 && strcmp(name, ".eh_frame") == 0 1596 && this->check_eh_frame_flags(&shdr)) 1597 { 1598 if (is_pass_one) 1599 { 1600 if (this->is_deferred_layout()) 1601 out_sections[i] = reinterpret_cast<Output_section*>(2); 1602 else 1603 out_sections[i] = reinterpret_cast<Output_section*>(1); 1604 out_section_offsets[i] = invalid_address; 1605 } 1606 else if (this->is_deferred_layout()) 1607 this->deferred_layout_.push_back(Deferred_layout(i, name, 1608 pshdrs, 1609 reloc_shndx[i], 1610 reloc_type[i])); 1611 else 1612 eh_frame_sections.push_back(i); 1613 continue; 1614 } 1615 1616 if (is_pass_two && parameters->options().gc_sections()) 1617 { 1618 // This is executed during the second pass of garbage 1619 // collection. do_layout has been called before and some 1620 // sections have been already discarded. Simply ignore 1621 // such sections this time around. 1622 if (out_sections[i] == NULL) 1623 { 1624 gold_assert(out_section_offsets[i] == invalid_address); 1625 continue; 1626 } 1627 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0) 1628 && symtab->gc()->is_section_garbage(this, i)) 1629 { 1630 if (parameters->options().print_gc_sections()) 1631 gold_info(_("%s: removing unused section from '%s'" 1632 " in file '%s'"), 1633 program_name, this->section_name(i).c_str(), 1634 this->name().c_str()); 1635 out_sections[i] = NULL; 1636 out_section_offsets[i] = invalid_address; 1637 continue; 1638 } 1639 } 1640 1641 if (is_pass_two && parameters->options().icf_enabled()) 1642 { 1643 if (out_sections[i] == NULL) 1644 { 1645 gold_assert(out_section_offsets[i] == invalid_address); 1646 continue; 1647 } 1648 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0) 1649 && symtab->icf()->is_section_folded(this, i)) 1650 { 1651 if (parameters->options().print_icf_sections()) 1652 { 1653 Section_id folded = 1654 symtab->icf()->get_folded_section(this, i); 1655 Relobj* folded_obj = 1656 reinterpret_cast<Relobj*>(folded.first); 1657 gold_info(_("%s: ICF folding section '%s' in file '%s' " 1658 "into '%s' in file '%s'"), 1659 program_name, this->section_name(i).c_str(), 1660 this->name().c_str(), 1661 folded_obj->section_name(folded.second).c_str(), 1662 folded_obj->name().c_str()); 1663 } 1664 out_sections[i] = NULL; 1665 out_section_offsets[i] = invalid_address; 1666 continue; 1667 } 1668 } 1669 1670 // Defer layout here if input files are claimed by plugins. When gc 1671 // is turned on this function is called twice; we only want to do this 1672 // on the first pass. 1673 if (!is_pass_two 1674 && this->is_deferred_layout() 1675 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC)) 1676 { 1677 this->deferred_layout_.push_back(Deferred_layout(i, name, 1678 pshdrs, 1679 reloc_shndx[i], 1680 reloc_type[i])); 1681 // Put dummy values here; real values will be supplied by 1682 // do_layout_deferred_sections. 1683 out_sections[i] = reinterpret_cast<Output_section*>(2); 1684 out_section_offsets[i] = invalid_address; 1685 continue; 1686 } 1687 1688 // During gc_pass_two if a section that was previously deferred is 1689 // found, do not layout the section as layout_deferred_sections will 1690 // do it later from gold.cc. 1691 if (is_pass_two 1692 && (out_sections[i] == reinterpret_cast<Output_section*>(2))) 1693 continue; 1694 1695 if (is_pass_one) 1696 { 1697 // This is during garbage collection. The out_sections are 1698 // assigned in the second call to this function. 1699 out_sections[i] = reinterpret_cast<Output_section*>(1); 1700 out_section_offsets[i] = invalid_address; 1701 } 1702 else 1703 { 1704 // When garbage collection is switched on the actual layout 1705 // only happens in the second call. 1706 this->layout_section(layout, i, name, shdr, reloc_shndx[i], 1707 reloc_type[i]); 1708 1709 // When generating a .gdb_index section, we do additional 1710 // processing of .debug_info and .debug_types sections after all 1711 // the other sections for the same reason as above. 1712 if (!relocatable 1713 && parameters->options().gdb_index() 1714 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC)) 1715 { 1716 if (strcmp(name, ".debug_info") == 0 1717 || strcmp(name, ".zdebug_info") == 0) 1718 debug_info_sections.push_back(i); 1719 else if (strcmp(name, ".debug_types") == 0 1720 || strcmp(name, ".zdebug_types") == 0) 1721 debug_types_sections.push_back(i); 1722 } 1723 } 1724 } 1725 1726 if (!is_pass_two) 1727 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this); 1728 1729 // Handle the .eh_frame sections after the other sections. 1730 gold_assert(!is_pass_one || eh_frame_sections.empty()); 1731 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin(); 1732 p != eh_frame_sections.end(); 1733 ++p) 1734 { 1735 unsigned int i = *p; 1736 const unsigned char* pshdr; 1737 pshdr = section_headers_data + i * This::shdr_size; 1738 typename This::Shdr shdr(pshdr); 1739 1740 this->layout_eh_frame_section(layout, 1741 symbols_data, 1742 symbols_size, 1743 symbol_names_data, 1744 symbol_names_size, 1745 i, 1746 shdr, 1747 reloc_shndx[i], 1748 reloc_type[i]); 1749 } 1750 1751 // When doing a relocatable link handle the reloc sections at the 1752 // end. Garbage collection and Identical Code Folding is not 1753 // turned on for relocatable code. 1754 if (emit_relocs) 1755 this->size_relocatable_relocs(); 1756 1757 gold_assert(!is_two_pass || reloc_sections.empty()); 1758 1759 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin(); 1760 p != reloc_sections.end(); 1761 ++p) 1762 { 1763 unsigned int i = *p; 1764 const unsigned char* pshdr; 1765 pshdr = section_headers_data + i * This::shdr_size; 1766 typename This::Shdr shdr(pshdr); 1767 1768 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info()); 1769 if (data_shndx >= shnum) 1770 { 1771 // We already warned about this above. 1772 continue; 1773 } 1774 1775 Output_section* data_section = out_sections[data_shndx]; 1776 if (data_section == reinterpret_cast<Output_section*>(2)) 1777 { 1778 if (is_pass_two) 1779 continue; 1780 // The layout for the data section was deferred, so we need 1781 // to defer the relocation section, too. 1782 const char* name = pnames + shdr.get_sh_name(); 1783 this->deferred_layout_relocs_.push_back( 1784 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL)); 1785 out_sections[i] = reinterpret_cast<Output_section*>(2); 1786 out_section_offsets[i] = invalid_address; 1787 continue; 1788 } 1789 if (data_section == NULL) 1790 { 1791 out_sections[i] = NULL; 1792 out_section_offsets[i] = invalid_address; 1793 continue; 1794 } 1795 1796 Relocatable_relocs* rr = new Relocatable_relocs(); 1797 this->set_relocatable_relocs(i, rr); 1798 1799 Output_section* os = layout->layout_reloc(this, i, shdr, data_section, 1800 rr); 1801 out_sections[i] = os; 1802 out_section_offsets[i] = invalid_address; 1803 } 1804 1805 // When building a .gdb_index section, scan the .debug_info and 1806 // .debug_types sections. 1807 gold_assert(!is_pass_one 1808 || (debug_info_sections.empty() && debug_types_sections.empty())); 1809 for (std::vector<unsigned int>::const_iterator p 1810 = debug_info_sections.begin(); 1811 p != debug_info_sections.end(); 1812 ++p) 1813 { 1814 unsigned int i = *p; 1815 layout->add_to_gdb_index(false, this, symbols_data, symbols_size, 1816 i, reloc_shndx[i], reloc_type[i]); 1817 } 1818 for (std::vector<unsigned int>::const_iterator p 1819 = debug_types_sections.begin(); 1820 p != debug_types_sections.end(); 1821 ++p) 1822 { 1823 unsigned int i = *p; 1824 layout->add_to_gdb_index(true, this, symbols_data, symbols_size, 1825 i, reloc_shndx[i], reloc_type[i]); 1826 } 1827 1828 if (is_pass_two) 1829 { 1830 delete[] gc_sd->section_headers_data; 1831 delete[] gc_sd->section_names_data; 1832 delete[] gc_sd->symbols_data; 1833 delete[] gc_sd->symbol_names_data; 1834 this->set_symbols_data(NULL); 1835 } 1836 else 1837 { 1838 delete sd->section_headers; 1839 sd->section_headers = NULL; 1840 delete sd->section_names; 1841 sd->section_names = NULL; 1842 } 1843 } 1844 1845 // Layout sections whose layout was deferred while waiting for 1846 // input files from a plugin. 1847 1848 template<int size, bool big_endian> 1849 void 1850 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout) 1851 { 1852 typename std::vector<Deferred_layout>::iterator deferred; 1853 1854 for (deferred = this->deferred_layout_.begin(); 1855 deferred != this->deferred_layout_.end(); 1856 ++deferred) 1857 { 1858 typename This::Shdr shdr(deferred->shdr_data_); 1859 1860 if (!parameters->options().relocatable() 1861 && deferred->name_ == ".eh_frame" 1862 && this->check_eh_frame_flags(&shdr)) 1863 { 1864 // Checking is_section_included is not reliable for 1865 // .eh_frame sections, because they do not have an output 1866 // section. This is not a problem normally because we call 1867 // layout_eh_frame_section unconditionally, but when 1868 // deferring sections that is not true. We don't want to 1869 // keep all .eh_frame sections because that will cause us to 1870 // keep all sections that they refer to, which is the wrong 1871 // way around. Instead, the eh_frame code will discard 1872 // .eh_frame sections that refer to discarded sections. 1873 1874 // Reading the symbols again here may be slow. 1875 Read_symbols_data sd; 1876 this->base_read_symbols(&sd); 1877 this->layout_eh_frame_section(layout, 1878 sd.symbols->data(), 1879 sd.symbols_size, 1880 sd.symbol_names->data(), 1881 sd.symbol_names_size, 1882 deferred->shndx_, 1883 shdr, 1884 deferred->reloc_shndx_, 1885 deferred->reloc_type_); 1886 continue; 1887 } 1888 1889 // If the section is not included, it is because the garbage collector 1890 // decided it is not needed. Avoid reverting that decision. 1891 if (!this->is_section_included(deferred->shndx_)) 1892 continue; 1893 1894 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(), 1895 shdr, deferred->reloc_shndx_, 1896 deferred->reloc_type_); 1897 } 1898 1899 this->deferred_layout_.clear(); 1900 1901 // Now handle the deferred relocation sections. 1902 1903 Output_sections& out_sections(this->output_sections()); 1904 std::vector<Address>& out_section_offsets(this->section_offsets()); 1905 1906 for (deferred = this->deferred_layout_relocs_.begin(); 1907 deferred != this->deferred_layout_relocs_.end(); 1908 ++deferred) 1909 { 1910 unsigned int shndx = deferred->shndx_; 1911 typename This::Shdr shdr(deferred->shdr_data_); 1912 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info()); 1913 1914 Output_section* data_section = out_sections[data_shndx]; 1915 if (data_section == NULL) 1916 { 1917 out_sections[shndx] = NULL; 1918 out_section_offsets[shndx] = invalid_address; 1919 continue; 1920 } 1921 1922 Relocatable_relocs* rr = new Relocatable_relocs(); 1923 this->set_relocatable_relocs(shndx, rr); 1924 1925 Output_section* os = layout->layout_reloc(this, shndx, shdr, 1926 data_section, rr); 1927 out_sections[shndx] = os; 1928 out_section_offsets[shndx] = invalid_address; 1929 } 1930 } 1931 1932 // Add the symbols to the symbol table. 1933 1934 template<int size, bool big_endian> 1935 void 1936 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab, 1937 Read_symbols_data* sd, 1938 Layout*) 1939 { 1940 if (sd->symbols == NULL) 1941 { 1942 gold_assert(sd->symbol_names == NULL); 1943 return; 1944 } 1945 1946 const int sym_size = This::sym_size; 1947 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset) 1948 / sym_size); 1949 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset) 1950 { 1951 this->error(_("size of symbols is not multiple of symbol size")); 1952 return; 1953 } 1954 1955 this->symbols_.resize(symcount); 1956 1957 const char* sym_names = 1958 reinterpret_cast<const char*>(sd->symbol_names->data()); 1959 symtab->add_from_relobj(this, 1960 sd->symbols->data() + sd->external_symbols_offset, 1961 symcount, this->local_symbol_count_, 1962 sym_names, sd->symbol_names_size, 1963 &this->symbols_, 1964 &this->defined_count_); 1965 1966 delete sd->symbols; 1967 sd->symbols = NULL; 1968 delete sd->symbol_names; 1969 sd->symbol_names = NULL; 1970 } 1971 1972 // Find out if this object, that is a member of a lib group, should be included 1973 // in the link. We check every symbol defined by this object. If the symbol 1974 // table has a strong undefined reference to that symbol, we have to include 1975 // the object. 1976 1977 template<int size, bool big_endian> 1978 Archive::Should_include 1979 Sized_relobj_file<size, big_endian>::do_should_include_member( 1980 Symbol_table* symtab, 1981 Layout* layout, 1982 Read_symbols_data* sd, 1983 std::string* why) 1984 { 1985 char* tmpbuf = NULL; 1986 size_t tmpbuflen = 0; 1987 const char* sym_names = 1988 reinterpret_cast<const char*>(sd->symbol_names->data()); 1989 const unsigned char* syms = 1990 sd->symbols->data() + sd->external_symbols_offset; 1991 const int sym_size = elfcpp::Elf_sizes<size>::sym_size; 1992 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset) 1993 / sym_size); 1994 1995 const unsigned char* p = syms; 1996 1997 for (size_t i = 0; i < symcount; ++i, p += sym_size) 1998 { 1999 elfcpp::Sym<size, big_endian> sym(p); 2000 unsigned int st_shndx = sym.get_st_shndx(); 2001 if (st_shndx == elfcpp::SHN_UNDEF) 2002 continue; 2003 2004 unsigned int st_name = sym.get_st_name(); 2005 const char* name = sym_names + st_name; 2006 Symbol* symbol; 2007 Archive::Should_include t = Archive::should_include_member(symtab, 2008 layout, 2009 name, 2010 &symbol, why, 2011 &tmpbuf, 2012 &tmpbuflen); 2013 if (t == Archive::SHOULD_INCLUDE_YES) 2014 { 2015 if (tmpbuf != NULL) 2016 free(tmpbuf); 2017 return t; 2018 } 2019 } 2020 if (tmpbuf != NULL) 2021 free(tmpbuf); 2022 return Archive::SHOULD_INCLUDE_UNKNOWN; 2023 } 2024 2025 // Iterate over global defined symbols, calling a visitor class V for each. 2026 2027 template<int size, bool big_endian> 2028 void 2029 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols( 2030 Read_symbols_data* sd, 2031 Library_base::Symbol_visitor_base* v) 2032 { 2033 const char* sym_names = 2034 reinterpret_cast<const char*>(sd->symbol_names->data()); 2035 const unsigned char* syms = 2036 sd->symbols->data() + sd->external_symbols_offset; 2037 const int sym_size = elfcpp::Elf_sizes<size>::sym_size; 2038 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset) 2039 / sym_size); 2040 const unsigned char* p = syms; 2041 2042 for (size_t i = 0; i < symcount; ++i, p += sym_size) 2043 { 2044 elfcpp::Sym<size, big_endian> sym(p); 2045 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF) 2046 v->visit(sym_names + sym.get_st_name()); 2047 } 2048 } 2049 2050 // Return whether the local symbol SYMNDX has a PLT offset. 2051 2052 template<int size, bool big_endian> 2053 bool 2054 Sized_relobj_file<size, big_endian>::local_has_plt_offset( 2055 unsigned int symndx) const 2056 { 2057 typename Local_plt_offsets::const_iterator p = 2058 this->local_plt_offsets_.find(symndx); 2059 return p != this->local_plt_offsets_.end(); 2060 } 2061 2062 // Get the PLT offset of a local symbol. 2063 2064 template<int size, bool big_endian> 2065 unsigned int 2066 Sized_relobj_file<size, big_endian>::do_local_plt_offset( 2067 unsigned int symndx) const 2068 { 2069 typename Local_plt_offsets::const_iterator p = 2070 this->local_plt_offsets_.find(symndx); 2071 gold_assert(p != this->local_plt_offsets_.end()); 2072 return p->second; 2073 } 2074 2075 // Set the PLT offset of a local symbol. 2076 2077 template<int size, bool big_endian> 2078 void 2079 Sized_relobj_file<size, big_endian>::set_local_plt_offset( 2080 unsigned int symndx, unsigned int plt_offset) 2081 { 2082 std::pair<typename Local_plt_offsets::iterator, bool> ins = 2083 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset)); 2084 gold_assert(ins.second); 2085 } 2086 2087 // First pass over the local symbols. Here we add their names to 2088 // *POOL and *DYNPOOL, and we store the symbol value in 2089 // THIS->LOCAL_VALUES_. This function is always called from a 2090 // singleton thread. This is followed by a call to 2091 // finalize_local_symbols. 2092 2093 template<int size, bool big_endian> 2094 void 2095 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool, 2096 Stringpool* dynpool) 2097 { 2098 gold_assert(this->symtab_shndx_ != -1U); 2099 if (this->symtab_shndx_ == 0) 2100 { 2101 // This object has no symbols. Weird but legal. 2102 return; 2103 } 2104 2105 // Read the symbol table section header. 2106 const unsigned int symtab_shndx = this->symtab_shndx_; 2107 typename This::Shdr symtabshdr(this, 2108 this->elf_file_.section_header(symtab_shndx)); 2109 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); 2110 2111 // Read the local symbols. 2112 const int sym_size = This::sym_size; 2113 const unsigned int loccount = this->local_symbol_count_; 2114 gold_assert(loccount == symtabshdr.get_sh_info()); 2115 off_t locsize = loccount * sym_size; 2116 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), 2117 locsize, true, true); 2118 2119 // Read the symbol names. 2120 const unsigned int strtab_shndx = 2121 this->adjust_shndx(symtabshdr.get_sh_link()); 2122 section_size_type strtab_size; 2123 const unsigned char* pnamesu = this->section_contents(strtab_shndx, 2124 &strtab_size, 2125 true); 2126 const char* pnames = reinterpret_cast<const char*>(pnamesu); 2127 2128 // Loop over the local symbols. 2129 2130 const Output_sections& out_sections(this->output_sections()); 2131 unsigned int shnum = this->shnum(); 2132 unsigned int count = 0; 2133 unsigned int dyncount = 0; 2134 // Skip the first, dummy, symbol. 2135 psyms += sym_size; 2136 bool strip_all = parameters->options().strip_all(); 2137 bool discard_all = parameters->options().discard_all(); 2138 bool discard_locals = parameters->options().discard_locals(); 2139 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) 2140 { 2141 elfcpp::Sym<size, big_endian> sym(psyms); 2142 2143 Symbol_value<size>& lv(this->local_values_[i]); 2144 2145 bool is_ordinary; 2146 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(), 2147 &is_ordinary); 2148 lv.set_input_shndx(shndx, is_ordinary); 2149 2150 if (sym.get_st_type() == elfcpp::STT_SECTION) 2151 lv.set_is_section_symbol(); 2152 else if (sym.get_st_type() == elfcpp::STT_TLS) 2153 lv.set_is_tls_symbol(); 2154 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC) 2155 lv.set_is_ifunc_symbol(); 2156 2157 // Save the input symbol value for use in do_finalize_local_symbols(). 2158 lv.set_input_value(sym.get_st_value()); 2159 2160 // Decide whether this symbol should go into the output file. 2161 2162 if ((shndx < shnum && out_sections[shndx] == NULL) 2163 || shndx == this->discarded_eh_frame_shndx_) 2164 { 2165 lv.set_no_output_symtab_entry(); 2166 gold_assert(!lv.needs_output_dynsym_entry()); 2167 continue; 2168 } 2169 2170 if (sym.get_st_type() == elfcpp::STT_SECTION 2171 || !this->adjust_local_symbol(&lv)) 2172 { 2173 lv.set_no_output_symtab_entry(); 2174 gold_assert(!lv.needs_output_dynsym_entry()); 2175 continue; 2176 } 2177 2178 if (sym.get_st_name() >= strtab_size) 2179 { 2180 this->error(_("local symbol %u section name out of range: %u >= %u"), 2181 i, sym.get_st_name(), 2182 static_cast<unsigned int>(strtab_size)); 2183 lv.set_no_output_symtab_entry(); 2184 continue; 2185 } 2186 2187 const char* name = pnames + sym.get_st_name(); 2188 2189 // If needed, add the symbol to the dynamic symbol table string pool. 2190 if (lv.needs_output_dynsym_entry()) 2191 { 2192 dynpool->add(name, true, NULL); 2193 ++dyncount; 2194 } 2195 2196 if (strip_all 2197 || (discard_all && lv.may_be_discarded_from_output_symtab())) 2198 { 2199 lv.set_no_output_symtab_entry(); 2200 continue; 2201 } 2202 2203 // If --discard-locals option is used, discard all temporary local 2204 // symbols. These symbols start with system-specific local label 2205 // prefixes, typically .L for ELF system. We want to be compatible 2206 // with GNU ld so here we essentially use the same check in 2207 // bfd_is_local_label(). The code is different because we already 2208 // know that: 2209 // 2210 // - the symbol is local and thus cannot have global or weak binding. 2211 // - the symbol is not a section symbol. 2212 // - the symbol has a name. 2213 // 2214 // We do not discard a symbol if it needs a dynamic symbol entry. 2215 if (discard_locals 2216 && sym.get_st_type() != elfcpp::STT_FILE 2217 && !lv.needs_output_dynsym_entry() 2218 && lv.may_be_discarded_from_output_symtab() 2219 && parameters->target().is_local_label_name(name)) 2220 { 2221 lv.set_no_output_symtab_entry(); 2222 continue; 2223 } 2224 2225 // Discard the local symbol if -retain_symbols_file is specified 2226 // and the local symbol is not in that file. 2227 if (!parameters->options().should_retain_symbol(name)) 2228 { 2229 lv.set_no_output_symtab_entry(); 2230 continue; 2231 } 2232 2233 // Add the symbol to the symbol table string pool. 2234 pool->add(name, true, NULL); 2235 ++count; 2236 } 2237 2238 this->output_local_symbol_count_ = count; 2239 this->output_local_dynsym_count_ = dyncount; 2240 } 2241 2242 // Compute the final value of a local symbol. 2243 2244 template<int size, bool big_endian> 2245 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status 2246 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal( 2247 unsigned int r_sym, 2248 const Symbol_value<size>* lv_in, 2249 Symbol_value<size>* lv_out, 2250 bool relocatable, 2251 const Output_sections& out_sections, 2252 const std::vector<Address>& out_offsets, 2253 const Symbol_table* symtab) 2254 { 2255 // We are going to overwrite *LV_OUT, if it has a merged symbol value, 2256 // we may have a memory leak. 2257 gold_assert(lv_out->has_output_value()); 2258 2259 bool is_ordinary; 2260 unsigned int shndx = lv_in->input_shndx(&is_ordinary); 2261 2262 // Set the output symbol value. 2263 2264 if (!is_ordinary) 2265 { 2266 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx)) 2267 lv_out->set_output_value(lv_in->input_value()); 2268 else 2269 { 2270 this->error(_("unknown section index %u for local symbol %u"), 2271 shndx, r_sym); 2272 lv_out->set_output_value(0); 2273 return This::CFLV_ERROR; 2274 } 2275 } 2276 else 2277 { 2278 if (shndx >= this->shnum()) 2279 { 2280 this->error(_("local symbol %u section index %u out of range"), 2281 r_sym, shndx); 2282 lv_out->set_output_value(0); 2283 return This::CFLV_ERROR; 2284 } 2285 2286 Output_section* os = out_sections[shndx]; 2287 Address secoffset = out_offsets[shndx]; 2288 if (symtab->is_section_folded(this, shndx)) 2289 { 2290 gold_assert(os == NULL && secoffset == invalid_address); 2291 // Get the os of the section it is folded onto. 2292 Section_id folded = symtab->icf()->get_folded_section(this, 2293 shndx); 2294 gold_assert(folded.first != NULL); 2295 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast 2296 <Sized_relobj_file<size, big_endian>*>(folded.first); 2297 os = folded_obj->output_section(folded.second); 2298 gold_assert(os != NULL); 2299 secoffset = folded_obj->get_output_section_offset(folded.second); 2300 2301 // This could be a relaxed input section. 2302 if (secoffset == invalid_address) 2303 { 2304 const Output_relaxed_input_section* relaxed_section = 2305 os->find_relaxed_input_section(folded_obj, folded.second); 2306 gold_assert(relaxed_section != NULL); 2307 secoffset = relaxed_section->address() - os->address(); 2308 } 2309 } 2310 2311 if (os == NULL) 2312 { 2313 // This local symbol belongs to a section we are discarding. 2314 // In some cases when applying relocations later, we will 2315 // attempt to match it to the corresponding kept section, 2316 // so we leave the input value unchanged here. 2317 return This::CFLV_DISCARDED; 2318 } 2319 else if (secoffset == invalid_address) 2320 { 2321 uint64_t start; 2322 2323 // This is a SHF_MERGE section or one which otherwise 2324 // requires special handling. 2325 if (shndx == this->discarded_eh_frame_shndx_) 2326 { 2327 // This local symbol belongs to a discarded .eh_frame 2328 // section. Just treat it like the case in which 2329 // os == NULL above. 2330 gold_assert(this->has_eh_frame_); 2331 return This::CFLV_DISCARDED; 2332 } 2333 else if (!lv_in->is_section_symbol()) 2334 { 2335 // This is not a section symbol. We can determine 2336 // the final value now. 2337 lv_out->set_output_value( 2338 os->output_address(this, shndx, lv_in->input_value())); 2339 } 2340 else if (!os->find_starting_output_address(this, shndx, &start)) 2341 { 2342 // This is a section symbol, but apparently not one in a 2343 // merged section. First check to see if this is a relaxed 2344 // input section. If so, use its address. Otherwise just 2345 // use the start of the output section. This happens with 2346 // relocatable links when the input object has section 2347 // symbols for arbitrary non-merge sections. 2348 const Output_section_data* posd = 2349 os->find_relaxed_input_section(this, shndx); 2350 if (posd != NULL) 2351 { 2352 Address relocatable_link_adjustment = 2353 relocatable ? os->address() : 0; 2354 lv_out->set_output_value(posd->address() 2355 - relocatable_link_adjustment); 2356 } 2357 else 2358 lv_out->set_output_value(os->address()); 2359 } 2360 else 2361 { 2362 // We have to consider the addend to determine the 2363 // value to use in a relocation. START is the start 2364 // of this input section. If we are doing a relocatable 2365 // link, use offset from start output section instead of 2366 // address. 2367 Address adjusted_start = 2368 relocatable ? start - os->address() : start; 2369 Merged_symbol_value<size>* msv = 2370 new Merged_symbol_value<size>(lv_in->input_value(), 2371 adjusted_start); 2372 lv_out->set_merged_symbol_value(msv); 2373 } 2374 } 2375 else if (lv_in->is_tls_symbol() 2376 || (lv_in->is_section_symbol() 2377 && (os->flags() & elfcpp::SHF_TLS))) 2378 lv_out->set_output_value(os->tls_offset() 2379 + secoffset 2380 + lv_in->input_value()); 2381 else 2382 lv_out->set_output_value((relocatable ? 0 : os->address()) 2383 + secoffset 2384 + lv_in->input_value()); 2385 } 2386 return This::CFLV_OK; 2387 } 2388 2389 // Compute final local symbol value. R_SYM is the index of a local 2390 // symbol in symbol table. LV points to a symbol value, which is 2391 // expected to hold the input value and to be over-written by the 2392 // final value. SYMTAB points to a symbol table. Some targets may want 2393 // to know would-be-finalized local symbol values in relaxation. 2394 // Hence we provide this method. Since this method updates *LV, a 2395 // callee should make a copy of the original local symbol value and 2396 // use the copy instead of modifying an object's local symbols before 2397 // everything is finalized. The caller should also free up any allocated 2398 // memory in the return value in *LV. 2399 template<int size, bool big_endian> 2400 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status 2401 Sized_relobj_file<size, big_endian>::compute_final_local_value( 2402 unsigned int r_sym, 2403 const Symbol_value<size>* lv_in, 2404 Symbol_value<size>* lv_out, 2405 const Symbol_table* symtab) 2406 { 2407 // This is just a wrapper of compute_final_local_value_internal. 2408 const bool relocatable = parameters->options().relocatable(); 2409 const Output_sections& out_sections(this->output_sections()); 2410 const std::vector<Address>& out_offsets(this->section_offsets()); 2411 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out, 2412 relocatable, out_sections, 2413 out_offsets, symtab); 2414 } 2415 2416 // Finalize the local symbols. Here we set the final value in 2417 // THIS->LOCAL_VALUES_ and set their output symbol table indexes. 2418 // This function is always called from a singleton thread. The actual 2419 // output of the local symbols will occur in a separate task. 2420 2421 template<int size, bool big_endian> 2422 unsigned int 2423 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols( 2424 unsigned int index, 2425 off_t off, 2426 Symbol_table* symtab) 2427 { 2428 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3))); 2429 2430 const unsigned int loccount = this->local_symbol_count_; 2431 this->local_symbol_offset_ = off; 2432 2433 const bool relocatable = parameters->options().relocatable(); 2434 const Output_sections& out_sections(this->output_sections()); 2435 const std::vector<Address>& out_offsets(this->section_offsets()); 2436 2437 for (unsigned int i = 1; i < loccount; ++i) 2438 { 2439 Symbol_value<size>* lv = &this->local_values_[i]; 2440 2441 Compute_final_local_value_status cflv_status = 2442 this->compute_final_local_value_internal(i, lv, lv, relocatable, 2443 out_sections, out_offsets, 2444 symtab); 2445 switch (cflv_status) 2446 { 2447 case CFLV_OK: 2448 if (!lv->is_output_symtab_index_set()) 2449 { 2450 lv->set_output_symtab_index(index); 2451 ++index; 2452 } 2453 break; 2454 case CFLV_DISCARDED: 2455 case CFLV_ERROR: 2456 // Do nothing. 2457 break; 2458 default: 2459 gold_unreachable(); 2460 } 2461 } 2462 return index; 2463 } 2464 2465 // Set the output dynamic symbol table indexes for the local variables. 2466 2467 template<int size, bool big_endian> 2468 unsigned int 2469 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes( 2470 unsigned int index) 2471 { 2472 const unsigned int loccount = this->local_symbol_count_; 2473 for (unsigned int i = 1; i < loccount; ++i) 2474 { 2475 Symbol_value<size>& lv(this->local_values_[i]); 2476 if (lv.needs_output_dynsym_entry()) 2477 { 2478 lv.set_output_dynsym_index(index); 2479 ++index; 2480 } 2481 } 2482 return index; 2483 } 2484 2485 // Set the offset where local dynamic symbol information will be stored. 2486 // Returns the count of local symbols contributed to the symbol table by 2487 // this object. 2488 2489 template<int size, bool big_endian> 2490 unsigned int 2491 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off) 2492 { 2493 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3))); 2494 this->local_dynsym_offset_ = off; 2495 return this->output_local_dynsym_count_; 2496 } 2497 2498 // If Symbols_data is not NULL get the section flags from here otherwise 2499 // get it from the file. 2500 2501 template<int size, bool big_endian> 2502 uint64_t 2503 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx) 2504 { 2505 Symbols_data* sd = this->get_symbols_data(); 2506 if (sd != NULL) 2507 { 2508 const unsigned char* pshdrs = sd->section_headers_data 2509 + This::shdr_size * shndx; 2510 typename This::Shdr shdr(pshdrs); 2511 return shdr.get_sh_flags(); 2512 } 2513 // If sd is NULL, read the section header from the file. 2514 return this->elf_file_.section_flags(shndx); 2515 } 2516 2517 // Get the section's ent size from Symbols_data. Called by get_section_contents 2518 // in icf.cc 2519 2520 template<int size, bool big_endian> 2521 uint64_t 2522 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx) 2523 { 2524 Symbols_data* sd = this->get_symbols_data(); 2525 gold_assert(sd != NULL); 2526 2527 const unsigned char* pshdrs = sd->section_headers_data 2528 + This::shdr_size * shndx; 2529 typename This::Shdr shdr(pshdrs); 2530 return shdr.get_sh_entsize(); 2531 } 2532 2533 // Write out the local symbols. 2534 2535 template<int size, bool big_endian> 2536 void 2537 Sized_relobj_file<size, big_endian>::write_local_symbols( 2538 Output_file* of, 2539 const Stringpool* sympool, 2540 const Stringpool* dynpool, 2541 Output_symtab_xindex* symtab_xindex, 2542 Output_symtab_xindex* dynsym_xindex, 2543 off_t symtab_off) 2544 { 2545 const bool strip_all = parameters->options().strip_all(); 2546 if (strip_all) 2547 { 2548 if (this->output_local_dynsym_count_ == 0) 2549 return; 2550 this->output_local_symbol_count_ = 0; 2551 } 2552 2553 gold_assert(this->symtab_shndx_ != -1U); 2554 if (this->symtab_shndx_ == 0) 2555 { 2556 // This object has no symbols. Weird but legal. 2557 return; 2558 } 2559 2560 // Read the symbol table section header. 2561 const unsigned int symtab_shndx = this->symtab_shndx_; 2562 typename This::Shdr symtabshdr(this, 2563 this->elf_file_.section_header(symtab_shndx)); 2564 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); 2565 const unsigned int loccount = this->local_symbol_count_; 2566 gold_assert(loccount == symtabshdr.get_sh_info()); 2567 2568 // Read the local symbols. 2569 const int sym_size = This::sym_size; 2570 off_t locsize = loccount * sym_size; 2571 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), 2572 locsize, true, false); 2573 2574 // Read the symbol names. 2575 const unsigned int strtab_shndx = 2576 this->adjust_shndx(symtabshdr.get_sh_link()); 2577 section_size_type strtab_size; 2578 const unsigned char* pnamesu = this->section_contents(strtab_shndx, 2579 &strtab_size, 2580 false); 2581 const char* pnames = reinterpret_cast<const char*>(pnamesu); 2582 2583 // Get views into the output file for the portions of the symbol table 2584 // and the dynamic symbol table that we will be writing. 2585 off_t output_size = this->output_local_symbol_count_ * sym_size; 2586 unsigned char* oview = NULL; 2587 if (output_size > 0) 2588 oview = of->get_output_view(symtab_off + this->local_symbol_offset_, 2589 output_size); 2590 2591 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size; 2592 unsigned char* dyn_oview = NULL; 2593 if (dyn_output_size > 0) 2594 dyn_oview = of->get_output_view(this->local_dynsym_offset_, 2595 dyn_output_size); 2596 2597 const Output_sections& out_sections(this->output_sections()); 2598 2599 gold_assert(this->local_values_.size() == loccount); 2600 2601 unsigned char* ov = oview; 2602 unsigned char* dyn_ov = dyn_oview; 2603 psyms += sym_size; 2604 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) 2605 { 2606 elfcpp::Sym<size, big_endian> isym(psyms); 2607 2608 Symbol_value<size>& lv(this->local_values_[i]); 2609 2610 bool is_ordinary; 2611 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(), 2612 &is_ordinary); 2613 if (is_ordinary) 2614 { 2615 gold_assert(st_shndx < out_sections.size()); 2616 if (out_sections[st_shndx] == NULL) 2617 continue; 2618 st_shndx = out_sections[st_shndx]->out_shndx(); 2619 if (st_shndx >= elfcpp::SHN_LORESERVE) 2620 { 2621 if (lv.has_output_symtab_entry()) 2622 symtab_xindex->add(lv.output_symtab_index(), st_shndx); 2623 if (lv.has_output_dynsym_entry()) 2624 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx); 2625 st_shndx = elfcpp::SHN_XINDEX; 2626 } 2627 } 2628 2629 // Write the symbol to the output symbol table. 2630 if (lv.has_output_symtab_entry()) 2631 { 2632 elfcpp::Sym_write<size, big_endian> osym(ov); 2633 2634 gold_assert(isym.get_st_name() < strtab_size); 2635 const char* name = pnames + isym.get_st_name(); 2636 osym.put_st_name(sympool->get_offset(name)); 2637 osym.put_st_value(this->local_values_[i].value(this, 0)); 2638 osym.put_st_size(isym.get_st_size()); 2639 osym.put_st_info(isym.get_st_info()); 2640 osym.put_st_other(isym.get_st_other()); 2641 osym.put_st_shndx(st_shndx); 2642 2643 ov += sym_size; 2644 } 2645 2646 // Write the symbol to the output dynamic symbol table. 2647 if (lv.has_output_dynsym_entry()) 2648 { 2649 gold_assert(dyn_ov < dyn_oview + dyn_output_size); 2650 elfcpp::Sym_write<size, big_endian> osym(dyn_ov); 2651 2652 gold_assert(isym.get_st_name() < strtab_size); 2653 const char* name = pnames + isym.get_st_name(); 2654 osym.put_st_name(dynpool->get_offset(name)); 2655 osym.put_st_value(this->local_values_[i].value(this, 0)); 2656 osym.put_st_size(isym.get_st_size()); 2657 osym.put_st_info(isym.get_st_info()); 2658 osym.put_st_other(isym.get_st_other()); 2659 osym.put_st_shndx(st_shndx); 2660 2661 dyn_ov += sym_size; 2662 } 2663 } 2664 2665 2666 if (output_size > 0) 2667 { 2668 gold_assert(ov - oview == output_size); 2669 of->write_output_view(symtab_off + this->local_symbol_offset_, 2670 output_size, oview); 2671 } 2672 2673 if (dyn_output_size > 0) 2674 { 2675 gold_assert(dyn_ov - dyn_oview == dyn_output_size); 2676 of->write_output_view(this->local_dynsym_offset_, dyn_output_size, 2677 dyn_oview); 2678 } 2679 } 2680 2681 // Set *INFO to symbolic information about the offset OFFSET in the 2682 // section SHNDX. Return true if we found something, false if we 2683 // found nothing. 2684 2685 template<int size, bool big_endian> 2686 bool 2687 Sized_relobj_file<size, big_endian>::get_symbol_location_info( 2688 unsigned int shndx, 2689 off_t offset, 2690 Symbol_location_info* info) 2691 { 2692 if (this->symtab_shndx_ == 0) 2693 return false; 2694 2695 section_size_type symbols_size; 2696 const unsigned char* symbols = this->section_contents(this->symtab_shndx_, 2697 &symbols_size, 2698 false); 2699 2700 unsigned int symbol_names_shndx = 2701 this->adjust_shndx(this->section_link(this->symtab_shndx_)); 2702 section_size_type names_size; 2703 const unsigned char* symbol_names_u = 2704 this->section_contents(symbol_names_shndx, &names_size, false); 2705 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u); 2706 2707 const int sym_size = This::sym_size; 2708 const size_t count = symbols_size / sym_size; 2709 2710 const unsigned char* p = symbols; 2711 for (size_t i = 0; i < count; ++i, p += sym_size) 2712 { 2713 elfcpp::Sym<size, big_endian> sym(p); 2714 2715 if (sym.get_st_type() == elfcpp::STT_FILE) 2716 { 2717 if (sym.get_st_name() >= names_size) 2718 info->source_file = "(invalid)"; 2719 else 2720 info->source_file = symbol_names + sym.get_st_name(); 2721 continue; 2722 } 2723 2724 bool is_ordinary; 2725 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(), 2726 &is_ordinary); 2727 if (is_ordinary 2728 && st_shndx == shndx 2729 && static_cast<off_t>(sym.get_st_value()) <= offset 2730 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size()) 2731 > offset)) 2732 { 2733 info->enclosing_symbol_type = sym.get_st_type(); 2734 if (sym.get_st_name() > names_size) 2735 info->enclosing_symbol_name = "(invalid)"; 2736 else 2737 { 2738 info->enclosing_symbol_name = symbol_names + sym.get_st_name(); 2739 if (parameters->options().do_demangle()) 2740 { 2741 char* demangled_name = cplus_demangle( 2742 info->enclosing_symbol_name.c_str(), 2743 DMGL_ANSI | DMGL_PARAMS); 2744 if (demangled_name != NULL) 2745 { 2746 info->enclosing_symbol_name.assign(demangled_name); 2747 free(demangled_name); 2748 } 2749 } 2750 } 2751 return true; 2752 } 2753 } 2754 2755 return false; 2756 } 2757 2758 // Look for a kept section corresponding to the given discarded section, 2759 // and return its output address. This is used only for relocations in 2760 // debugging sections. If we can't find the kept section, return 0. 2761 2762 template<int size, bool big_endian> 2763 typename Sized_relobj_file<size, big_endian>::Address 2764 Sized_relobj_file<size, big_endian>::map_to_kept_section( 2765 unsigned int shndx, 2766 bool* found) const 2767 { 2768 Relobj* kept_object; 2769 unsigned int kept_shndx; 2770 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx)) 2771 { 2772 Sized_relobj_file<size, big_endian>* kept_relobj = 2773 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object); 2774 Output_section* os = kept_relobj->output_section(kept_shndx); 2775 Address offset = kept_relobj->get_output_section_offset(kept_shndx); 2776 if (os != NULL && offset != invalid_address) 2777 { 2778 *found = true; 2779 return os->address() + offset; 2780 } 2781 } 2782 *found = false; 2783 return 0; 2784 } 2785 2786 // Get symbol counts. 2787 2788 template<int size, bool big_endian> 2789 void 2790 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts( 2791 const Symbol_table*, 2792 size_t* defined, 2793 size_t* used) const 2794 { 2795 *defined = this->defined_count_; 2796 size_t count = 0; 2797 for (typename Symbols::const_iterator p = this->symbols_.begin(); 2798 p != this->symbols_.end(); 2799 ++p) 2800 if (*p != NULL 2801 && (*p)->source() == Symbol::FROM_OBJECT 2802 && (*p)->object() == this 2803 && (*p)->is_defined()) 2804 ++count; 2805 *used = count; 2806 } 2807 2808 // Return a view of the decompressed contents of a section. Set *PLEN 2809 // to the size. Set *IS_NEW to true if the contents need to be freed 2810 // by the caller. 2811 2812 const unsigned char* 2813 Object::decompressed_section_contents( 2814 unsigned int shndx, 2815 section_size_type* plen, 2816 bool* is_new) 2817 { 2818 section_size_type buffer_size; 2819 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size, 2820 false); 2821 2822 if (this->compressed_sections_ == NULL) 2823 { 2824 *plen = buffer_size; 2825 *is_new = false; 2826 return buffer; 2827 } 2828 2829 Compressed_section_map::const_iterator p = 2830 this->compressed_sections_->find(shndx); 2831 if (p == this->compressed_sections_->end()) 2832 { 2833 *plen = buffer_size; 2834 *is_new = false; 2835 return buffer; 2836 } 2837 2838 section_size_type uncompressed_size = p->second.size; 2839 if (p->second.contents != NULL) 2840 { 2841 *plen = uncompressed_size; 2842 *is_new = false; 2843 return p->second.contents; 2844 } 2845 2846 unsigned char* uncompressed_data = new unsigned char[uncompressed_size]; 2847 if (!decompress_input_section(buffer, 2848 buffer_size, 2849 uncompressed_data, 2850 uncompressed_size)) 2851 this->error(_("could not decompress section %s"), 2852 this->do_section_name(shndx).c_str()); 2853 2854 // We could cache the results in p->second.contents and store 2855 // false in *IS_NEW, but build_compressed_section_map() would 2856 // have done so if it had expected it to be profitable. If 2857 // we reach this point, we expect to need the contents only 2858 // once in this pass. 2859 *plen = uncompressed_size; 2860 *is_new = true; 2861 return uncompressed_data; 2862 } 2863 2864 // Discard any buffers of uncompressed sections. This is done 2865 // at the end of the Add_symbols task. 2866 2867 void 2868 Object::discard_decompressed_sections() 2869 { 2870 if (this->compressed_sections_ == NULL) 2871 return; 2872 2873 for (Compressed_section_map::iterator p = this->compressed_sections_->begin(); 2874 p != this->compressed_sections_->end(); 2875 ++p) 2876 { 2877 if (p->second.contents != NULL) 2878 { 2879 delete[] p->second.contents; 2880 p->second.contents = NULL; 2881 } 2882 } 2883 } 2884 2885 // Input_objects methods. 2886 2887 // Add a regular relocatable object to the list. Return false if this 2888 // object should be ignored. 2889 2890 bool 2891 Input_objects::add_object(Object* obj) 2892 { 2893 // Print the filename if the -t/--trace option is selected. 2894 if (parameters->options().trace()) 2895 gold_info("%s", obj->name().c_str()); 2896 2897 if (!obj->is_dynamic()) 2898 this->relobj_list_.push_back(static_cast<Relobj*>(obj)); 2899 else 2900 { 2901 // See if this is a duplicate SONAME. 2902 Dynobj* dynobj = static_cast<Dynobj*>(obj); 2903 const char* soname = dynobj->soname(); 2904 2905 std::pair<Unordered_set<std::string>::iterator, bool> ins = 2906 this->sonames_.insert(soname); 2907 if (!ins.second) 2908 { 2909 // We have already seen a dynamic object with this soname. 2910 return false; 2911 } 2912 2913 this->dynobj_list_.push_back(dynobj); 2914 } 2915 2916 // Add this object to the cross-referencer if requested. 2917 if (parameters->options().user_set_print_symbol_counts() 2918 || parameters->options().cref()) 2919 { 2920 if (this->cref_ == NULL) 2921 this->cref_ = new Cref(); 2922 this->cref_->add_object(obj); 2923 } 2924 2925 return true; 2926 } 2927 2928 // For each dynamic object, record whether we've seen all of its 2929 // explicit dependencies. 2930 2931 void 2932 Input_objects::check_dynamic_dependencies() const 2933 { 2934 bool issued_copy_dt_needed_error = false; 2935 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin(); 2936 p != this->dynobj_list_.end(); 2937 ++p) 2938 { 2939 const Dynobj::Needed& needed((*p)->needed()); 2940 bool found_all = true; 2941 Dynobj::Needed::const_iterator pneeded; 2942 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded) 2943 { 2944 if (this->sonames_.find(*pneeded) == this->sonames_.end()) 2945 { 2946 found_all = false; 2947 break; 2948 } 2949 } 2950 (*p)->set_has_unknown_needed_entries(!found_all); 2951 2952 // --copy-dt-needed-entries aka --add-needed is a GNU ld option 2953 // that gold does not support. However, they cause no trouble 2954 // unless there is a DT_NEEDED entry that we don't know about; 2955 // warn only in that case. 2956 if (!found_all 2957 && !issued_copy_dt_needed_error 2958 && (parameters->options().copy_dt_needed_entries() 2959 || parameters->options().add_needed())) 2960 { 2961 const char* optname; 2962 if (parameters->options().copy_dt_needed_entries()) 2963 optname = "--copy-dt-needed-entries"; 2964 else 2965 optname = "--add-needed"; 2966 gold_error(_("%s is not supported but is required for %s in %s"), 2967 optname, (*pneeded).c_str(), (*p)->name().c_str()); 2968 issued_copy_dt_needed_error = true; 2969 } 2970 } 2971 } 2972 2973 // Start processing an archive. 2974 2975 void 2976 Input_objects::archive_start(Archive* archive) 2977 { 2978 if (parameters->options().user_set_print_symbol_counts() 2979 || parameters->options().cref()) 2980 { 2981 if (this->cref_ == NULL) 2982 this->cref_ = new Cref(); 2983 this->cref_->add_archive_start(archive); 2984 } 2985 } 2986 2987 // Stop processing an archive. 2988 2989 void 2990 Input_objects::archive_stop(Archive* archive) 2991 { 2992 if (parameters->options().user_set_print_symbol_counts() 2993 || parameters->options().cref()) 2994 this->cref_->add_archive_stop(archive); 2995 } 2996 2997 // Print symbol counts 2998 2999 void 3000 Input_objects::print_symbol_counts(const Symbol_table* symtab) const 3001 { 3002 if (parameters->options().user_set_print_symbol_counts() 3003 && this->cref_ != NULL) 3004 this->cref_->print_symbol_counts(symtab); 3005 } 3006 3007 // Print a cross reference table. 3008 3009 void 3010 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const 3011 { 3012 if (parameters->options().cref() && this->cref_ != NULL) 3013 this->cref_->print_cref(symtab, f); 3014 } 3015 3016 // Relocate_info methods. 3017 3018 // Return a string describing the location of a relocation when file 3019 // and lineno information is not available. This is only used in 3020 // error messages. 3021 3022 template<int size, bool big_endian> 3023 std::string 3024 Relocate_info<size, big_endian>::location(size_t, off_t offset) const 3025 { 3026 Sized_dwarf_line_info<size, big_endian> line_info(this->object); 3027 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL); 3028 if (!ret.empty()) 3029 return ret; 3030 3031 ret = this->object->name(); 3032 3033 Symbol_location_info info; 3034 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info)) 3035 { 3036 if (!info.source_file.empty()) 3037 { 3038 ret += ":"; 3039 ret += info.source_file; 3040 } 3041 ret += ":"; 3042 if (info.enclosing_symbol_type == elfcpp::STT_FUNC) 3043 ret += _("function "); 3044 ret += info.enclosing_symbol_name; 3045 return ret; 3046 } 3047 3048 ret += "("; 3049 ret += this->object->section_name(this->data_shndx); 3050 char buf[100]; 3051 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset)); 3052 ret += buf; 3053 return ret; 3054 } 3055 3056 } // End namespace gold. 3057 3058 namespace 3059 { 3060 3061 using namespace gold; 3062 3063 // Read an ELF file with the header and return the appropriate 3064 // instance of Object. 3065 3066 template<int size, bool big_endian> 3067 Object* 3068 make_elf_sized_object(const std::string& name, Input_file* input_file, 3069 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr, 3070 bool* punconfigured) 3071 { 3072 Target* target = select_target(input_file, offset, 3073 ehdr.get_e_machine(), size, big_endian, 3074 ehdr.get_e_ident()[elfcpp::EI_OSABI], 3075 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]); 3076 if (target == NULL) 3077 gold_fatal(_("%s: unsupported ELF machine number %d"), 3078 name.c_str(), ehdr.get_e_machine()); 3079 3080 if (!parameters->target_valid()) 3081 set_parameters_target(target); 3082 else if (target != ¶meters->target()) 3083 { 3084 if (punconfigured != NULL) 3085 *punconfigured = true; 3086 else 3087 gold_error(_("%s: incompatible target"), name.c_str()); 3088 return NULL; 3089 } 3090 3091 return target->make_elf_object<size, big_endian>(name, input_file, offset, 3092 ehdr); 3093 } 3094 3095 } // End anonymous namespace. 3096 3097 namespace gold 3098 { 3099 3100 // Return whether INPUT_FILE is an ELF object. 3101 3102 bool 3103 is_elf_object(Input_file* input_file, off_t offset, 3104 const unsigned char** start, int* read_size) 3105 { 3106 off_t filesize = input_file->file().filesize(); 3107 int want = elfcpp::Elf_recognizer::max_header_size; 3108 if (filesize - offset < want) 3109 want = filesize - offset; 3110 3111 const unsigned char* p = input_file->file().get_view(offset, 0, want, 3112 true, false); 3113 *start = p; 3114 *read_size = want; 3115 3116 return elfcpp::Elf_recognizer::is_elf_file(p, want); 3117 } 3118 3119 // Read an ELF file and return the appropriate instance of Object. 3120 3121 Object* 3122 make_elf_object(const std::string& name, Input_file* input_file, off_t offset, 3123 const unsigned char* p, section_offset_type bytes, 3124 bool* punconfigured) 3125 { 3126 if (punconfigured != NULL) 3127 *punconfigured = false; 3128 3129 std::string error; 3130 bool big_endian = false; 3131 int size = 0; 3132 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size, 3133 &big_endian, &error)) 3134 { 3135 gold_error(_("%s: %s"), name.c_str(), error.c_str()); 3136 return NULL; 3137 } 3138 3139 if (size == 32) 3140 { 3141 if (big_endian) 3142 { 3143 #ifdef HAVE_TARGET_32_BIG 3144 elfcpp::Ehdr<32, true> ehdr(p); 3145 return make_elf_sized_object<32, true>(name, input_file, 3146 offset, ehdr, punconfigured); 3147 #else 3148 if (punconfigured != NULL) 3149 *punconfigured = true; 3150 else 3151 gold_error(_("%s: not configured to support " 3152 "32-bit big-endian object"), 3153 name.c_str()); 3154 return NULL; 3155 #endif 3156 } 3157 else 3158 { 3159 #ifdef HAVE_TARGET_32_LITTLE 3160 elfcpp::Ehdr<32, false> ehdr(p); 3161 return make_elf_sized_object<32, false>(name, input_file, 3162 offset, ehdr, punconfigured); 3163 #else 3164 if (punconfigured != NULL) 3165 *punconfigured = true; 3166 else 3167 gold_error(_("%s: not configured to support " 3168 "32-bit little-endian object"), 3169 name.c_str()); 3170 return NULL; 3171 #endif 3172 } 3173 } 3174 else if (size == 64) 3175 { 3176 if (big_endian) 3177 { 3178 #ifdef HAVE_TARGET_64_BIG 3179 elfcpp::Ehdr<64, true> ehdr(p); 3180 return make_elf_sized_object<64, true>(name, input_file, 3181 offset, ehdr, punconfigured); 3182 #else 3183 if (punconfigured != NULL) 3184 *punconfigured = true; 3185 else 3186 gold_error(_("%s: not configured to support " 3187 "64-bit big-endian object"), 3188 name.c_str()); 3189 return NULL; 3190 #endif 3191 } 3192 else 3193 { 3194 #ifdef HAVE_TARGET_64_LITTLE 3195 elfcpp::Ehdr<64, false> ehdr(p); 3196 return make_elf_sized_object<64, false>(name, input_file, 3197 offset, ehdr, punconfigured); 3198 #else 3199 if (punconfigured != NULL) 3200 *punconfigured = true; 3201 else 3202 gold_error(_("%s: not configured to support " 3203 "64-bit little-endian object"), 3204 name.c_str()); 3205 return NULL; 3206 #endif 3207 } 3208 } 3209 else 3210 gold_unreachable(); 3211 } 3212 3213 // Instantiate the templates we need. 3214 3215 #ifdef HAVE_TARGET_32_LITTLE 3216 template 3217 void 3218 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*, 3219 Read_symbols_data*); 3220 template 3221 const unsigned char* 3222 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*, 3223 section_size_type, const unsigned char*) const; 3224 #endif 3225 3226 #ifdef HAVE_TARGET_32_BIG 3227 template 3228 void 3229 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*, 3230 Read_symbols_data*); 3231 template 3232 const unsigned char* 3233 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*, 3234 section_size_type, const unsigned char*) const; 3235 #endif 3236 3237 #ifdef HAVE_TARGET_64_LITTLE 3238 template 3239 void 3240 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*, 3241 Read_symbols_data*); 3242 template 3243 const unsigned char* 3244 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*, 3245 section_size_type, const unsigned char*) const; 3246 #endif 3247 3248 #ifdef HAVE_TARGET_64_BIG 3249 template 3250 void 3251 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*, 3252 Read_symbols_data*); 3253 template 3254 const unsigned char* 3255 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*, 3256 section_size_type, const unsigned char*) const; 3257 #endif 3258 3259 #ifdef HAVE_TARGET_32_LITTLE 3260 template 3261 class Sized_relobj<32, false>; 3262 3263 template 3264 class Sized_relobj_file<32, false>; 3265 #endif 3266 3267 #ifdef HAVE_TARGET_32_BIG 3268 template 3269 class Sized_relobj<32, true>; 3270 3271 template 3272 class Sized_relobj_file<32, true>; 3273 #endif 3274 3275 #ifdef HAVE_TARGET_64_LITTLE 3276 template 3277 class Sized_relobj<64, false>; 3278 3279 template 3280 class Sized_relobj_file<64, false>; 3281 #endif 3282 3283 #ifdef HAVE_TARGET_64_BIG 3284 template 3285 class Sized_relobj<64, true>; 3286 3287 template 3288 class Sized_relobj_file<64, true>; 3289 #endif 3290 3291 #ifdef HAVE_TARGET_32_LITTLE 3292 template 3293 struct Relocate_info<32, false>; 3294 #endif 3295 3296 #ifdef HAVE_TARGET_32_BIG 3297 template 3298 struct Relocate_info<32, true>; 3299 #endif 3300 3301 #ifdef HAVE_TARGET_64_LITTLE 3302 template 3303 struct Relocate_info<64, false>; 3304 #endif 3305 3306 #ifdef HAVE_TARGET_64_BIG 3307 template 3308 struct Relocate_info<64, true>; 3309 #endif 3310 3311 #ifdef HAVE_TARGET_32_LITTLE 3312 template 3313 void 3314 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int); 3315 3316 template 3317 void 3318 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int, 3319 const unsigned char*); 3320 #endif 3321 3322 #ifdef HAVE_TARGET_32_BIG 3323 template 3324 void 3325 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int); 3326 3327 template 3328 void 3329 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int, 3330 const unsigned char*); 3331 #endif 3332 3333 #ifdef HAVE_TARGET_64_LITTLE 3334 template 3335 void 3336 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int); 3337 3338 template 3339 void 3340 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int, 3341 const unsigned char*); 3342 #endif 3343 3344 #ifdef HAVE_TARGET_64_BIG 3345 template 3346 void 3347 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int); 3348 3349 template 3350 void 3351 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int, 3352 const unsigned char*); 3353 #endif 3354 3355 } // End namespace gold. 3356