Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2016 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "loop_optimization.h"
     18 
     19 #include "arch/instruction_set.h"
     20 #include "arch/arm/instruction_set_features_arm.h"
     21 #include "arch/arm64/instruction_set_features_arm64.h"
     22 #include "arch/mips/instruction_set_features_mips.h"
     23 #include "arch/mips64/instruction_set_features_mips64.h"
     24 #include "arch/x86/instruction_set_features_x86.h"
     25 #include "arch/x86_64/instruction_set_features_x86_64.h"
     26 #include "driver/compiler_driver.h"
     27 #include "linear_order.h"
     28 
     29 namespace art {
     30 
     31 // Enables vectorization (SIMDization) in the loop optimizer.
     32 static constexpr bool kEnableVectorization = true;
     33 
     34 // Remove the instruction from the graph. A bit more elaborate than the usual
     35 // instruction removal, since there may be a cycle in the use structure.
     36 static void RemoveFromCycle(HInstruction* instruction) {
     37   instruction->RemoveAsUserOfAllInputs();
     38   instruction->RemoveEnvironmentUsers();
     39   instruction->GetBlock()->RemoveInstructionOrPhi(instruction, /*ensure_safety=*/ false);
     40 }
     41 
     42 // Detect a goto block and sets succ to the single successor.
     43 static bool IsGotoBlock(HBasicBlock* block, /*out*/ HBasicBlock** succ) {
     44   if (block->GetPredecessors().size() == 1 &&
     45       block->GetSuccessors().size() == 1 &&
     46       block->IsSingleGoto()) {
     47     *succ = block->GetSingleSuccessor();
     48     return true;
     49   }
     50   return false;
     51 }
     52 
     53 // Detect an early exit loop.
     54 static bool IsEarlyExit(HLoopInformation* loop_info) {
     55   HBlocksInLoopReversePostOrderIterator it_loop(*loop_info);
     56   for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) {
     57     for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
     58       if (!loop_info->Contains(*successor)) {
     59         return true;
     60       }
     61     }
     62   }
     63   return false;
     64 }
     65 
     66 // Detect a sign extension from the given type. Returns the promoted operand on success.
     67 static bool IsSignExtensionAndGet(HInstruction* instruction,
     68                                   Primitive::Type type,
     69                                   /*out*/ HInstruction** operand) {
     70   // Accept any already wider constant that would be handled properly by sign
     71   // extension when represented in the *width* of the given narrower data type
     72   // (the fact that char normally zero extends does not matter here).
     73   int64_t value = 0;
     74   if (IsInt64AndGet(instruction, &value)) {
     75     switch (type) {
     76       case Primitive::kPrimByte:
     77         if (std::numeric_limits<int8_t>::min() <= value &&
     78             std::numeric_limits<int8_t>::max() >= value) {
     79           *operand = instruction;
     80           return true;
     81         }
     82         return false;
     83       case Primitive::kPrimChar:
     84       case Primitive::kPrimShort:
     85         if (std::numeric_limits<int16_t>::min() <= value &&
     86             std::numeric_limits<int16_t>::max() <= value) {
     87           *operand = instruction;
     88           return true;
     89         }
     90         return false;
     91       default:
     92         return false;
     93     }
     94   }
     95   // An implicit widening conversion of a signed integer to an integral type sign-extends
     96   // the two's-complement representation of the integer value to fill the wider format.
     97   if (instruction->GetType() == type && (instruction->IsArrayGet() ||
     98                                          instruction->IsStaticFieldGet() ||
     99                                          instruction->IsInstanceFieldGet())) {
    100     switch (type) {
    101       case Primitive::kPrimByte:
    102       case Primitive::kPrimShort:
    103         *operand = instruction;
    104         return true;
    105       default:
    106         return false;
    107     }
    108   }
    109   // TODO: perhaps explicit conversions later too?
    110   //       (this may return something different from instruction)
    111   return false;
    112 }
    113 
    114 // Detect a zero extension from the given type. Returns the promoted operand on success.
    115 static bool IsZeroExtensionAndGet(HInstruction* instruction,
    116                                   Primitive::Type type,
    117                                   /*out*/ HInstruction** operand) {
    118   // Accept any already wider constant that would be handled properly by zero
    119   // extension when represented in the *width* of the given narrower data type
    120   // (the fact that byte/short normally sign extend does not matter here).
    121   int64_t value = 0;
    122   if (IsInt64AndGet(instruction, &value)) {
    123     switch (type) {
    124       case Primitive::kPrimByte:
    125         if (std::numeric_limits<uint8_t>::min() <= value &&
    126             std::numeric_limits<uint8_t>::max() >= value) {
    127           *operand = instruction;
    128           return true;
    129         }
    130         return false;
    131       case Primitive::kPrimChar:
    132       case Primitive::kPrimShort:
    133         if (std::numeric_limits<uint16_t>::min() <= value &&
    134             std::numeric_limits<uint16_t>::max() <= value) {
    135           *operand = instruction;
    136           return true;
    137         }
    138         return false;
    139       default:
    140         return false;
    141     }
    142   }
    143   // An implicit widening conversion of a char to an integral type zero-extends
    144   // the representation of the char value to fill the wider format.
    145   if (instruction->GetType() == type && (instruction->IsArrayGet() ||
    146                                          instruction->IsStaticFieldGet() ||
    147                                          instruction->IsInstanceFieldGet())) {
    148     if (type == Primitive::kPrimChar) {
    149       *operand = instruction;
    150       return true;
    151     }
    152   }
    153   // A sign (or zero) extension followed by an explicit removal of just the
    154   // higher sign bits is equivalent to a zero extension of the underlying operand.
    155   if (instruction->IsAnd()) {
    156     int64_t mask = 0;
    157     HInstruction* a = instruction->InputAt(0);
    158     HInstruction* b = instruction->InputAt(1);
    159     // In (a & b) find (mask & b) or (a & mask) with sign or zero extension on the non-mask.
    160     if ((IsInt64AndGet(a, /*out*/ &mask) && (IsSignExtensionAndGet(b, type, /*out*/ operand) ||
    161                                              IsZeroExtensionAndGet(b, type, /*out*/ operand))) ||
    162         (IsInt64AndGet(b, /*out*/ &mask) && (IsSignExtensionAndGet(a, type, /*out*/ operand) ||
    163                                              IsZeroExtensionAndGet(a, type, /*out*/ operand)))) {
    164       switch ((*operand)->GetType()) {
    165         case Primitive::kPrimByte:  return mask == std::numeric_limits<uint8_t>::max();
    166         case Primitive::kPrimChar:
    167         case Primitive::kPrimShort: return mask == std::numeric_limits<uint16_t>::max();
    168         default: return false;
    169       }
    170     }
    171   }
    172   // TODO: perhaps explicit conversions later too?
    173   return false;
    174 }
    175 
    176 // Test vector restrictions.
    177 static bool HasVectorRestrictions(uint64_t restrictions, uint64_t tested) {
    178   return (restrictions & tested) != 0;
    179 }
    180 
    181 // Insert an instruction.
    182 static HInstruction* Insert(HBasicBlock* block, HInstruction* instruction) {
    183   DCHECK(block != nullptr);
    184   DCHECK(instruction != nullptr);
    185   block->InsertInstructionBefore(instruction, block->GetLastInstruction());
    186   return instruction;
    187 }
    188 
    189 //
    190 // Class methods.
    191 //
    192 
    193 HLoopOptimization::HLoopOptimization(HGraph* graph,
    194                                      CompilerDriver* compiler_driver,
    195                                      HInductionVarAnalysis* induction_analysis)
    196     : HOptimization(graph, kLoopOptimizationPassName),
    197       compiler_driver_(compiler_driver),
    198       induction_range_(induction_analysis),
    199       loop_allocator_(nullptr),
    200       global_allocator_(graph_->GetArena()),
    201       top_loop_(nullptr),
    202       last_loop_(nullptr),
    203       iset_(nullptr),
    204       induction_simplication_count_(0),
    205       simplified_(false),
    206       vector_length_(0),
    207       vector_refs_(nullptr),
    208       vector_map_(nullptr) {
    209 }
    210 
    211 void HLoopOptimization::Run() {
    212   // Skip if there is no loop or the graph has try-catch/irreducible loops.
    213   // TODO: make this less of a sledgehammer.
    214   if (!graph_->HasLoops() || graph_->HasTryCatch() || graph_->HasIrreducibleLoops()) {
    215     return;
    216   }
    217 
    218   // Phase-local allocator that draws from the global pool. Since the allocator
    219   // itself resides on the stack, it is destructed on exiting Run(), which
    220   // implies its underlying memory is released immediately.
    221   ArenaAllocator allocator(global_allocator_->GetArenaPool());
    222   loop_allocator_ = &allocator;
    223 
    224   // Perform loop optimizations.
    225   LocalRun();
    226   if (top_loop_ == nullptr) {
    227     graph_->SetHasLoops(false);  // no more loops
    228   }
    229 
    230   // Detach.
    231   loop_allocator_ = nullptr;
    232   last_loop_ = top_loop_ = nullptr;
    233 }
    234 
    235 void HLoopOptimization::LocalRun() {
    236   // Build the linear order using the phase-local allocator. This step enables building
    237   // a loop hierarchy that properly reflects the outer-inner and previous-next relation.
    238   ArenaVector<HBasicBlock*> linear_order(loop_allocator_->Adapter(kArenaAllocLinearOrder));
    239   LinearizeGraph(graph_, loop_allocator_, &linear_order);
    240 
    241   // Build the loop hierarchy.
    242   for (HBasicBlock* block : linear_order) {
    243     if (block->IsLoopHeader()) {
    244       AddLoop(block->GetLoopInformation());
    245     }
    246   }
    247 
    248   // Traverse the loop hierarchy inner-to-outer and optimize. Traversal can use
    249   // temporary data structures using the phase-local allocator. All new HIR
    250   // should use the global allocator.
    251   if (top_loop_ != nullptr) {
    252     ArenaSet<HInstruction*> iset(loop_allocator_->Adapter(kArenaAllocLoopOptimization));
    253     ArenaSet<ArrayReference> refs(loop_allocator_->Adapter(kArenaAllocLoopOptimization));
    254     ArenaSafeMap<HInstruction*, HInstruction*> map(
    255         std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization));
    256     // Attach.
    257     iset_ = &iset;
    258     vector_refs_ = &refs;
    259     vector_map_ = &map;
    260     // Traverse.
    261     TraverseLoopsInnerToOuter(top_loop_);
    262     // Detach.
    263     iset_ = nullptr;
    264     vector_refs_ = nullptr;
    265     vector_map_ = nullptr;
    266   }
    267 }
    268 
    269 void HLoopOptimization::AddLoop(HLoopInformation* loop_info) {
    270   DCHECK(loop_info != nullptr);
    271   LoopNode* node = new (loop_allocator_) LoopNode(loop_info);
    272   if (last_loop_ == nullptr) {
    273     // First loop.
    274     DCHECK(top_loop_ == nullptr);
    275     last_loop_ = top_loop_ = node;
    276   } else if (loop_info->IsIn(*last_loop_->loop_info)) {
    277     // Inner loop.
    278     node->outer = last_loop_;
    279     DCHECK(last_loop_->inner == nullptr);
    280     last_loop_ = last_loop_->inner = node;
    281   } else {
    282     // Subsequent loop.
    283     while (last_loop_->outer != nullptr && !loop_info->IsIn(*last_loop_->outer->loop_info)) {
    284       last_loop_ = last_loop_->outer;
    285     }
    286     node->outer = last_loop_->outer;
    287     node->previous = last_loop_;
    288     DCHECK(last_loop_->next == nullptr);
    289     last_loop_ = last_loop_->next = node;
    290   }
    291 }
    292 
    293 void HLoopOptimization::RemoveLoop(LoopNode* node) {
    294   DCHECK(node != nullptr);
    295   DCHECK(node->inner == nullptr);
    296   if (node->previous != nullptr) {
    297     // Within sequence.
    298     node->previous->next = node->next;
    299     if (node->next != nullptr) {
    300       node->next->previous = node->previous;
    301     }
    302   } else {
    303     // First of sequence.
    304     if (node->outer != nullptr) {
    305       node->outer->inner = node->next;
    306     } else {
    307       top_loop_ = node->next;
    308     }
    309     if (node->next != nullptr) {
    310       node->next->outer = node->outer;
    311       node->next->previous = nullptr;
    312     }
    313   }
    314 }
    315 
    316 void HLoopOptimization::TraverseLoopsInnerToOuter(LoopNode* node) {
    317   for ( ; node != nullptr; node = node->next) {
    318     // Visit inner loops first.
    319     uint32_t current_induction_simplification_count = induction_simplication_count_;
    320     if (node->inner != nullptr) {
    321       TraverseLoopsInnerToOuter(node->inner);
    322     }
    323     // Recompute induction information of this loop if the induction
    324     // of any inner loop has been simplified.
    325     if (current_induction_simplification_count != induction_simplication_count_) {
    326       induction_range_.ReVisit(node->loop_info);
    327     }
    328     // Repeat simplifications in the loop-body until no more changes occur.
    329     // Note that since each simplification consists of eliminating code (without
    330     // introducing new code), this process is always finite.
    331     do {
    332       simplified_ = false;
    333       SimplifyInduction(node);
    334       SimplifyBlocks(node);
    335     } while (simplified_);
    336     // Optimize inner loop.
    337     if (node->inner == nullptr) {
    338       OptimizeInnerLoop(node);
    339     }
    340   }
    341 }
    342 
    343 //
    344 // Optimization.
    345 //
    346 
    347 bool HLoopOptimization::CanRemoveCycle() {
    348   for (HInstruction* i : *iset_) {
    349     // We can never remove instructions that have environment
    350     // uses when we compile 'debuggable'.
    351     if (i->HasEnvironmentUses() && graph_->IsDebuggable()) {
    352       return false;
    353     }
    354     // A deoptimization should never have an environment input removed.
    355     for (const HUseListNode<HEnvironment*>& use : i->GetEnvUses()) {
    356       if (use.GetUser()->GetHolder()->IsDeoptimize()) {
    357         return false;
    358       }
    359     }
    360   }
    361   return true;
    362 }
    363 
    364 void HLoopOptimization::SimplifyInduction(LoopNode* node) {
    365   HBasicBlock* header = node->loop_info->GetHeader();
    366   HBasicBlock* preheader = node->loop_info->GetPreHeader();
    367   // Scan the phis in the header to find opportunities to simplify an induction
    368   // cycle that is only used outside the loop. Replace these uses, if any, with
    369   // the last value and remove the induction cycle.
    370   // Examples: for (int i = 0; x != null;   i++) { .... no i .... }
    371   //           for (int i = 0; i < 10; i++, k++) { .... no k .... } return k;
    372   for (HInstructionIterator it(header->GetPhis()); !it.Done(); it.Advance()) {
    373     HPhi* phi = it.Current()->AsPhi();
    374     iset_->clear();  // prepare phi induction
    375     if (TrySetPhiInduction(phi, /*restrict_uses*/ true) &&
    376         TryAssignLastValue(node->loop_info, phi, preheader, /*collect_loop_uses*/ false)) {
    377       // Note that it's ok to have replaced uses after the loop with the last value, without
    378       // being able to remove the cycle. Environment uses (which are the reason we may not be
    379       // able to remove the cycle) within the loop will still hold the right value.
    380       if (CanRemoveCycle()) {
    381         for (HInstruction* i : *iset_) {
    382           RemoveFromCycle(i);
    383         }
    384         simplified_ = true;
    385       }
    386     }
    387   }
    388 }
    389 
    390 void HLoopOptimization::SimplifyBlocks(LoopNode* node) {
    391   // Iterate over all basic blocks in the loop-body.
    392   for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
    393     HBasicBlock* block = it.Current();
    394     // Remove dead instructions from the loop-body.
    395     RemoveDeadInstructions(block->GetPhis());
    396     RemoveDeadInstructions(block->GetInstructions());
    397     // Remove trivial control flow blocks from the loop-body.
    398     if (block->GetPredecessors().size() == 1 &&
    399         block->GetSuccessors().size() == 1 &&
    400         block->GetSingleSuccessor()->GetPredecessors().size() == 1) {
    401       simplified_ = true;
    402       block->MergeWith(block->GetSingleSuccessor());
    403     } else if (block->GetSuccessors().size() == 2) {
    404       // Trivial if block can be bypassed to either branch.
    405       HBasicBlock* succ0 = block->GetSuccessors()[0];
    406       HBasicBlock* succ1 = block->GetSuccessors()[1];
    407       HBasicBlock* meet0 = nullptr;
    408       HBasicBlock* meet1 = nullptr;
    409       if (succ0 != succ1 &&
    410           IsGotoBlock(succ0, &meet0) &&
    411           IsGotoBlock(succ1, &meet1) &&
    412           meet0 == meet1 &&  // meets again
    413           meet0 != block &&  // no self-loop
    414           meet0->GetPhis().IsEmpty()) {  // not used for merging
    415         simplified_ = true;
    416         succ0->DisconnectAndDelete();
    417         if (block->Dominates(meet0)) {
    418           block->RemoveDominatedBlock(meet0);
    419           succ1->AddDominatedBlock(meet0);
    420           meet0->SetDominator(succ1);
    421         }
    422       }
    423     }
    424   }
    425 }
    426 
    427 void HLoopOptimization::OptimizeInnerLoop(LoopNode* node) {
    428   HBasicBlock* header = node->loop_info->GetHeader();
    429   HBasicBlock* preheader = node->loop_info->GetPreHeader();
    430   // Ensure loop header logic is finite.
    431   int64_t trip_count = 0;
    432   if (!induction_range_.IsFinite(node->loop_info, &trip_count)) {
    433     return;
    434   }
    435 
    436   // Ensure there is only a single loop-body (besides the header).
    437   HBasicBlock* body = nullptr;
    438   for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
    439     if (it.Current() != header) {
    440       if (body != nullptr) {
    441         return;
    442       }
    443       body = it.Current();
    444     }
    445   }
    446   // Ensure there is only a single exit point.
    447   if (header->GetSuccessors().size() != 2) {
    448     return;
    449   }
    450   HBasicBlock* exit = (header->GetSuccessors()[0] == body)
    451       ? header->GetSuccessors()[1]
    452       : header->GetSuccessors()[0];
    453   // Ensure exit can only be reached by exiting loop.
    454   if (exit->GetPredecessors().size() != 1) {
    455     return;
    456   }
    457   // Detect either an empty loop (no side effects other than plain iteration) or
    458   // a trivial loop (just iterating once). Replace subsequent index uses, if any,
    459   // with the last value and remove the loop, possibly after unrolling its body.
    460   HInstruction* phi = header->GetFirstPhi();
    461   iset_->clear();  // prepare phi induction
    462   if (TrySetSimpleLoopHeader(header)) {
    463     bool is_empty = IsEmptyBody(body);
    464     if ((is_empty || trip_count == 1) &&
    465         TryAssignLastValue(node->loop_info, phi, preheader, /*collect_loop_uses*/ true)) {
    466       if (!is_empty) {
    467         // Unroll the loop-body, which sees initial value of the index.
    468         phi->ReplaceWith(phi->InputAt(0));
    469         preheader->MergeInstructionsWith(body);
    470       }
    471       body->DisconnectAndDelete();
    472       exit->RemovePredecessor(header);
    473       header->RemoveSuccessor(exit);
    474       header->RemoveDominatedBlock(exit);
    475       header->DisconnectAndDelete();
    476       preheader->AddSuccessor(exit);
    477       preheader->AddInstruction(new (global_allocator_) HGoto());
    478       preheader->AddDominatedBlock(exit);
    479       exit->SetDominator(preheader);
    480       RemoveLoop(node);  // update hierarchy
    481       return;
    482     }
    483   }
    484 
    485   // Vectorize loop, if possible and valid.
    486   if (kEnableVectorization) {
    487     iset_->clear();  // prepare phi induction
    488     if (TrySetSimpleLoopHeader(header) &&
    489         CanVectorize(node, body, trip_count) &&
    490         TryAssignLastValue(node->loop_info, phi, preheader, /*collect_loop_uses*/ true)) {
    491       Vectorize(node, body, exit, trip_count);
    492       graph_->SetHasSIMD(true);  // flag SIMD usage
    493       return;
    494     }
    495   }
    496 }
    497 
    498 //
    499 // Loop vectorization. The implementation is based on the book by Aart J.C. Bik:
    500 // "The Software Vectorization Handbook. Applying Multimedia Extensions for Maximum Performance."
    501 // Intel Press, June, 2004 (http://www.aartbik.com/).
    502 //
    503 
    504 bool HLoopOptimization::CanVectorize(LoopNode* node, HBasicBlock* block, int64_t trip_count) {
    505   // Reset vector bookkeeping.
    506   vector_length_ = 0;
    507   vector_refs_->clear();
    508   vector_runtime_test_a_ =
    509   vector_runtime_test_b_= nullptr;
    510 
    511   // Phis in the loop-body prevent vectorization.
    512   if (!block->GetPhis().IsEmpty()) {
    513     return false;
    514   }
    515 
    516   // Scan the loop-body, starting a right-hand-side tree traversal at each left-hand-side
    517   // occurrence, which allows passing down attributes down the use tree.
    518   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
    519     if (!VectorizeDef(node, it.Current(), /*generate_code*/ false)) {
    520       return false;  // failure to vectorize a left-hand-side
    521     }
    522   }
    523 
    524   // Heuristics. Does vectorization seem profitable?
    525   // TODO: refine
    526   if (vector_length_ == 0) {
    527     return false;  // nothing found
    528   } else if (0 < trip_count && trip_count < vector_length_) {
    529     return false;  // insufficient iterations
    530   }
    531 
    532   // Data dependence analysis. Find each pair of references with same type, where
    533   // at least one is a write. Each such pair denotes a possible data dependence.
    534   // This analysis exploits the property that differently typed arrays cannot be
    535   // aliased, as well as the property that references either point to the same
    536   // array or to two completely disjoint arrays, i.e., no partial aliasing.
    537   // Other than a few simply heuristics, no detailed subscript analysis is done.
    538   for (auto i = vector_refs_->begin(); i != vector_refs_->end(); ++i) {
    539     for (auto j = i; ++j != vector_refs_->end(); ) {
    540       if (i->type == j->type && (i->lhs || j->lhs)) {
    541         // Found same-typed a[i+x] vs. b[i+y], where at least one is a write.
    542         HInstruction* a = i->base;
    543         HInstruction* b = j->base;
    544         HInstruction* x = i->offset;
    545         HInstruction* y = j->offset;
    546         if (a == b) {
    547           // Found a[i+x] vs. a[i+y]. Accept if x == y (loop-independent data dependence).
    548           // Conservatively assume a loop-carried data dependence otherwise, and reject.
    549           if (x != y) {
    550             return false;
    551           }
    552         } else {
    553           // Found a[i+x] vs. b[i+y]. Accept if x == y (at worst loop-independent data dependence).
    554           // Conservatively assume a potential loop-carried data dependence otherwise, avoided by
    555           // generating an explicit a != b disambiguation runtime test on the two references.
    556           if (x != y) {
    557             // For now, we reject after one test to avoid excessive overhead.
    558             if (vector_runtime_test_a_ != nullptr) {
    559               return false;
    560             }
    561             vector_runtime_test_a_ = a;
    562             vector_runtime_test_b_ = b;
    563           }
    564         }
    565       }
    566     }
    567   }
    568 
    569   // Success!
    570   return true;
    571 }
    572 
    573 void HLoopOptimization::Vectorize(LoopNode* node,
    574                                   HBasicBlock* block,
    575                                   HBasicBlock* exit,
    576                                   int64_t trip_count) {
    577   Primitive::Type induc_type = Primitive::kPrimInt;
    578   HBasicBlock* header = node->loop_info->GetHeader();
    579   HBasicBlock* preheader = node->loop_info->GetPreHeader();
    580 
    581   // A cleanup is needed for any unknown trip count or for a known trip count
    582   // with remainder iterations after vectorization.
    583   bool needs_cleanup = trip_count == 0 || (trip_count % vector_length_) != 0;
    584 
    585   // Adjust vector bookkeeping.
    586   iset_->clear();  // prepare phi induction
    587   bool is_simple_loop_header = TrySetSimpleLoopHeader(header);  // fills iset_
    588   DCHECK(is_simple_loop_header);
    589 
    590   // Generate preheader:
    591   // stc = <trip-count>;
    592   // vtc = stc - stc % VL;
    593   HInstruction* stc = induction_range_.GenerateTripCount(node->loop_info, graph_, preheader);
    594   HInstruction* vtc = stc;
    595   if (needs_cleanup) {
    596     DCHECK(IsPowerOfTwo(vector_length_));
    597     HInstruction* rem = Insert(
    598         preheader, new (global_allocator_) HAnd(induc_type,
    599                                                 stc,
    600                                                 graph_->GetIntConstant(vector_length_ - 1)));
    601     vtc = Insert(preheader, new (global_allocator_) HSub(induc_type, stc, rem));
    602   }
    603 
    604   // Generate runtime disambiguation test:
    605   // vtc = a != b ? vtc : 0;
    606   if (vector_runtime_test_a_ != nullptr) {
    607     HInstruction* rt = Insert(
    608         preheader,
    609         new (global_allocator_) HNotEqual(vector_runtime_test_a_, vector_runtime_test_b_));
    610     vtc = Insert(preheader,
    611                  new (global_allocator_) HSelect(rt, vtc, graph_->GetIntConstant(0), kNoDexPc));
    612     needs_cleanup = true;
    613   }
    614 
    615   // Generate vector loop:
    616   // for (i = 0; i < vtc; i += VL)
    617   //    <vectorized-loop-body>
    618   vector_mode_ = kVector;
    619   GenerateNewLoop(node,
    620                   block,
    621                   graph_->TransformLoopForVectorization(header, block, exit),
    622                   graph_->GetIntConstant(0),
    623                   vtc,
    624                   graph_->GetIntConstant(vector_length_));
    625   HLoopInformation* vloop = vector_header_->GetLoopInformation();
    626 
    627   // Generate cleanup loop, if needed:
    628   // for ( ; i < stc; i += 1)
    629   //    <loop-body>
    630   if (needs_cleanup) {
    631     vector_mode_ = kSequential;
    632     GenerateNewLoop(node,
    633                     block,
    634                     graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit),
    635                     vector_phi_,
    636                     stc,
    637                     graph_->GetIntConstant(1));
    638   }
    639 
    640   // Remove the original loop by disconnecting the body block
    641   // and removing all instructions from the header.
    642   block->DisconnectAndDelete();
    643   while (!header->GetFirstInstruction()->IsGoto()) {
    644     header->RemoveInstruction(header->GetFirstInstruction());
    645   }
    646   // Update loop hierarchy: the old header now resides in the
    647   // same outer loop as the old preheader.
    648   header->SetLoopInformation(preheader->GetLoopInformation());  // outward
    649   node->loop_info = vloop;
    650 }
    651 
    652 void HLoopOptimization::GenerateNewLoop(LoopNode* node,
    653                                         HBasicBlock* block,
    654                                         HBasicBlock* new_preheader,
    655                                         HInstruction* lo,
    656                                         HInstruction* hi,
    657                                         HInstruction* step) {
    658   Primitive::Type induc_type = Primitive::kPrimInt;
    659   // Prepare new loop.
    660   vector_map_->clear();
    661   vector_preheader_ = new_preheader,
    662   vector_header_ = vector_preheader_->GetSingleSuccessor();
    663   vector_body_ = vector_header_->GetSuccessors()[1];
    664   vector_phi_ = new (global_allocator_) HPhi(global_allocator_,
    665                                              kNoRegNumber,
    666                                              0,
    667                                              HPhi::ToPhiType(induc_type));
    668   // Generate header and prepare body.
    669   // for (i = lo; i < hi; i += step)
    670   //    <loop-body>
    671   HInstruction* cond = new (global_allocator_) HAboveOrEqual(vector_phi_, hi);
    672   vector_header_->AddPhi(vector_phi_);
    673   vector_header_->AddInstruction(cond);
    674   vector_header_->AddInstruction(new (global_allocator_) HIf(cond));
    675   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
    676     bool vectorized_def = VectorizeDef(node, it.Current(), /*generate_code*/ true);
    677     DCHECK(vectorized_def);
    678   }
    679   // Generate body from the instruction map, but in original program order.
    680   HEnvironment* env = vector_header_->GetFirstInstruction()->GetEnvironment();
    681   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
    682     auto i = vector_map_->find(it.Current());
    683     if (i != vector_map_->end() && !i->second->IsInBlock()) {
    684       Insert(vector_body_, i->second);
    685       // Deal with instructions that need an environment, such as the scalar intrinsics.
    686       if (i->second->NeedsEnvironment()) {
    687         i->second->CopyEnvironmentFromWithLoopPhiAdjustment(env, vector_header_);
    688       }
    689     }
    690   }
    691   // Finalize increment and phi.
    692   HInstruction* inc = new (global_allocator_) HAdd(induc_type, vector_phi_, step);
    693   vector_phi_->AddInput(lo);
    694   vector_phi_->AddInput(Insert(vector_body_, inc));
    695 }
    696 
    697 // TODO: accept reductions at left-hand-side, mixed-type store idioms, etc.
    698 bool HLoopOptimization::VectorizeDef(LoopNode* node,
    699                                      HInstruction* instruction,
    700                                      bool generate_code) {
    701   // Accept a left-hand-side array base[index] for
    702   // (1) supported vector type,
    703   // (2) loop-invariant base,
    704   // (3) unit stride index,
    705   // (4) vectorizable right-hand-side value.
    706   uint64_t restrictions = kNone;
    707   if (instruction->IsArraySet()) {
    708     Primitive::Type type = instruction->AsArraySet()->GetComponentType();
    709     HInstruction* base = instruction->InputAt(0);
    710     HInstruction* index = instruction->InputAt(1);
    711     HInstruction* value = instruction->InputAt(2);
    712     HInstruction* offset = nullptr;
    713     if (TrySetVectorType(type, &restrictions) &&
    714         node->loop_info->IsDefinedOutOfTheLoop(base) &&
    715         induction_range_.IsUnitStride(instruction, index, &offset) &&
    716         VectorizeUse(node, value, generate_code, type, restrictions)) {
    717       if (generate_code) {
    718         GenerateVecSub(index, offset);
    719         GenerateVecMem(instruction, vector_map_->Get(index), vector_map_->Get(value), type);
    720       } else {
    721         vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ true));
    722       }
    723       return true;
    724     }
    725     return false;
    726   }
    727   // Branch back okay.
    728   if (instruction->IsGoto()) {
    729     return true;
    730   }
    731   // Otherwise accept only expressions with no effects outside the immediate loop-body.
    732   // Note that actual uses are inspected during right-hand-side tree traversal.
    733   return !IsUsedOutsideLoop(node->loop_info, instruction) && !instruction->DoesAnyWrite();
    734 }
    735 
    736 // TODO: more operations and intrinsics, detect saturation arithmetic, etc.
    737 bool HLoopOptimization::VectorizeUse(LoopNode* node,
    738                                      HInstruction* instruction,
    739                                      bool generate_code,
    740                                      Primitive::Type type,
    741                                      uint64_t restrictions) {
    742   // Accept anything for which code has already been generated.
    743   if (generate_code) {
    744     if (vector_map_->find(instruction) != vector_map_->end()) {
    745       return true;
    746     }
    747   }
    748   // Continue the right-hand-side tree traversal, passing in proper
    749   // types and vector restrictions along the way. During code generation,
    750   // all new nodes are drawn from the global allocator.
    751   if (node->loop_info->IsDefinedOutOfTheLoop(instruction)) {
    752     // Accept invariant use, using scalar expansion.
    753     if (generate_code) {
    754       GenerateVecInv(instruction, type);
    755     }
    756     return true;
    757   } else if (instruction->IsArrayGet()) {
    758     // Strings are different, with a different offset to the actual data
    759     // and some compressed to save memory. For now, all cases are rejected
    760     // to avoid the complexity.
    761     if (instruction->AsArrayGet()->IsStringCharAt()) {
    762       return false;
    763     }
    764     // Accept a right-hand-side array base[index] for
    765     // (1) exact matching vector type,
    766     // (2) loop-invariant base,
    767     // (3) unit stride index,
    768     // (4) vectorizable right-hand-side value.
    769     HInstruction* base = instruction->InputAt(0);
    770     HInstruction* index = instruction->InputAt(1);
    771     HInstruction* offset = nullptr;
    772     if (type == instruction->GetType() &&
    773         node->loop_info->IsDefinedOutOfTheLoop(base) &&
    774         induction_range_.IsUnitStride(instruction, index, &offset)) {
    775       if (generate_code) {
    776         GenerateVecSub(index, offset);
    777         GenerateVecMem(instruction, vector_map_->Get(index), nullptr, type);
    778       } else {
    779         vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ false));
    780       }
    781       return true;
    782     }
    783   } else if (instruction->IsTypeConversion()) {
    784     // Accept particular type conversions.
    785     HTypeConversion* conversion = instruction->AsTypeConversion();
    786     HInstruction* opa = conversion->InputAt(0);
    787     Primitive::Type from = conversion->GetInputType();
    788     Primitive::Type to = conversion->GetResultType();
    789     if ((to == Primitive::kPrimByte ||
    790          to == Primitive::kPrimChar ||
    791          to == Primitive::kPrimShort) && from == Primitive::kPrimInt) {
    792       // Accept a "narrowing" type conversion from a "wider" computation for
    793       // (1) conversion into final required type,
    794       // (2) vectorizable operand,
    795       // (3) "wider" operations cannot bring in higher order bits.
    796       if (to == type && VectorizeUse(node, opa, generate_code, type, restrictions | kNoHiBits)) {
    797         if (generate_code) {
    798           if (vector_mode_ == kVector) {
    799             vector_map_->Put(instruction, vector_map_->Get(opa));  // operand pass-through
    800           } else {
    801             GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
    802           }
    803         }
    804         return true;
    805       }
    806     } else if (to == Primitive::kPrimFloat && from == Primitive::kPrimInt) {
    807       DCHECK_EQ(to, type);
    808       // Accept int to float conversion for
    809       // (1) supported int,
    810       // (2) vectorizable operand.
    811       if (TrySetVectorType(from, &restrictions) &&
    812           VectorizeUse(node, opa, generate_code, from, restrictions)) {
    813         if (generate_code) {
    814           GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
    815         }
    816         return true;
    817       }
    818     }
    819     return false;
    820   } else if (instruction->IsNeg() || instruction->IsNot() || instruction->IsBooleanNot()) {
    821     // Accept unary operator for vectorizable operand.
    822     HInstruction* opa = instruction->InputAt(0);
    823     if (VectorizeUse(node, opa, generate_code, type, restrictions)) {
    824       if (generate_code) {
    825         GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
    826       }
    827       return true;
    828     }
    829   } else if (instruction->IsAdd() || instruction->IsSub() ||
    830              instruction->IsMul() || instruction->IsDiv() ||
    831              instruction->IsAnd() || instruction->IsOr()  || instruction->IsXor()) {
    832     // Deal with vector restrictions.
    833     if ((instruction->IsMul() && HasVectorRestrictions(restrictions, kNoMul)) ||
    834         (instruction->IsDiv() && HasVectorRestrictions(restrictions, kNoDiv))) {
    835       return false;
    836     }
    837     // Accept binary operator for vectorizable operands.
    838     HInstruction* opa = instruction->InputAt(0);
    839     HInstruction* opb = instruction->InputAt(1);
    840     if (VectorizeUse(node, opa, generate_code, type, restrictions) &&
    841         VectorizeUse(node, opb, generate_code, type, restrictions)) {
    842       if (generate_code) {
    843         GenerateVecOp(instruction, vector_map_->Get(opa), vector_map_->Get(opb), type);
    844       }
    845       return true;
    846     }
    847   } else if (instruction->IsShl() || instruction->IsShr() || instruction->IsUShr()) {
    848     // Recognize vectorization idioms.
    849     if (VectorizeHalvingAddIdiom(node, instruction, generate_code, type, restrictions)) {
    850       return true;
    851     }
    852     // Deal with vector restrictions.
    853     if ((HasVectorRestrictions(restrictions, kNoShift)) ||
    854         (instruction->IsShr() && HasVectorRestrictions(restrictions, kNoShr))) {
    855       return false;  // unsupported instruction
    856     } else if ((instruction->IsShr() || instruction->IsUShr()) &&
    857                HasVectorRestrictions(restrictions, kNoHiBits)) {
    858       return false;  // hibits may impact lobits; TODO: we can do better!
    859     }
    860     // Accept shift operator for vectorizable/invariant operands.
    861     // TODO: accept symbolic, albeit loop invariant shift factors.
    862     HInstruction* opa = instruction->InputAt(0);
    863     HInstruction* opb = instruction->InputAt(1);
    864     int64_t value = 0;
    865     if (VectorizeUse(node, opa, generate_code, type, restrictions) && IsInt64AndGet(opb, &value)) {
    866       // Make sure shift distance only looks at lower bits, as defined for sequential shifts.
    867       int64_t mask = (instruction->GetType() == Primitive::kPrimLong)
    868           ? kMaxLongShiftDistance
    869           : kMaxIntShiftDistance;
    870       int64_t distance = value & mask;
    871       // Restrict shift distance to packed data type width.
    872       int64_t max_distance = Primitive::ComponentSize(type) * 8;
    873       if (0 <= distance && distance < max_distance) {
    874         if (generate_code) {
    875           HInstruction* s = graph_->GetIntConstant(distance);
    876           GenerateVecOp(instruction, vector_map_->Get(opa), s, type);
    877         }
    878         return true;
    879       }
    880     }
    881   } else if (instruction->IsInvokeStaticOrDirect()) {
    882     // Accept particular intrinsics.
    883     HInvokeStaticOrDirect* invoke = instruction->AsInvokeStaticOrDirect();
    884     switch (invoke->GetIntrinsic()) {
    885       case Intrinsics::kMathAbsInt:
    886       case Intrinsics::kMathAbsLong:
    887       case Intrinsics::kMathAbsFloat:
    888       case Intrinsics::kMathAbsDouble: {
    889         // Deal with vector restrictions.
    890         if (HasVectorRestrictions(restrictions, kNoAbs) ||
    891             HasVectorRestrictions(restrictions, kNoHiBits)) {
    892           // TODO: we can do better for some hibits cases.
    893           return false;
    894         }
    895         // Accept ABS(x) for vectorizable operand.
    896         HInstruction* opa = instruction->InputAt(0);
    897         if (VectorizeUse(node, opa, generate_code, type, restrictions)) {
    898           if (generate_code) {
    899             GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
    900           }
    901           return true;
    902         }
    903         return false;
    904       }
    905       default:
    906         return false;
    907     }  // switch
    908   }
    909   return false;
    910 }
    911 
    912 bool HLoopOptimization::TrySetVectorType(Primitive::Type type, uint64_t* restrictions) {
    913   const InstructionSetFeatures* features = compiler_driver_->GetInstructionSetFeatures();
    914   switch (compiler_driver_->GetInstructionSet()) {
    915     case kArm:
    916     case kThumb2:
    917       return false;
    918     case kArm64:
    919       // Allow vectorization for all ARM devices, because Android assumes that
    920       // ARMv8 AArch64 always supports advanced SIMD.
    921       switch (type) {
    922         case Primitive::kPrimBoolean:
    923         case Primitive::kPrimByte:
    924           *restrictions |= kNoDiv | kNoAbs;
    925           return TrySetVectorLength(16);
    926         case Primitive::kPrimChar:
    927         case Primitive::kPrimShort:
    928           *restrictions |= kNoDiv | kNoAbs;
    929           return TrySetVectorLength(8);
    930         case Primitive::kPrimInt:
    931           *restrictions |= kNoDiv;
    932           return TrySetVectorLength(4);
    933         case Primitive::kPrimLong:
    934           *restrictions |= kNoDiv | kNoMul;
    935           return TrySetVectorLength(2);
    936         case Primitive::kPrimFloat:
    937           return TrySetVectorLength(4);
    938         case Primitive::kPrimDouble:
    939           return TrySetVectorLength(2);
    940         default:
    941           return false;
    942       }
    943     case kX86:
    944     case kX86_64:
    945       // Allow vectorization for SSE4-enabled X86 devices only (128-bit vectors).
    946       if (features->AsX86InstructionSetFeatures()->HasSSE4_1()) {
    947         switch (type) {
    948           case Primitive::kPrimBoolean:
    949           case Primitive::kPrimByte:
    950             *restrictions |= kNoMul | kNoDiv | kNoShift | kNoAbs | kNoSignedHAdd | kNoUnroundedHAdd;
    951             return TrySetVectorLength(16);
    952           case Primitive::kPrimChar:
    953           case Primitive::kPrimShort:
    954             *restrictions |= kNoDiv | kNoAbs | kNoSignedHAdd | kNoUnroundedHAdd;
    955             return TrySetVectorLength(8);
    956           case Primitive::kPrimInt:
    957             *restrictions |= kNoDiv;
    958             return TrySetVectorLength(4);
    959           case Primitive::kPrimLong:
    960             *restrictions |= kNoMul | kNoDiv | kNoShr | kNoAbs;
    961             return TrySetVectorLength(2);
    962           case Primitive::kPrimFloat:
    963             return TrySetVectorLength(4);
    964           case Primitive::kPrimDouble:
    965             return TrySetVectorLength(2);
    966           default:
    967             break;
    968         }  // switch type
    969       }
    970       return false;
    971     case kMips:
    972     case kMips64:
    973       // TODO: implement MIPS SIMD.
    974       return false;
    975     default:
    976       return false;
    977   }  // switch instruction set
    978 }
    979 
    980 bool HLoopOptimization::TrySetVectorLength(uint32_t length) {
    981   DCHECK(IsPowerOfTwo(length) && length >= 2u);
    982   // First time set?
    983   if (vector_length_ == 0) {
    984     vector_length_ = length;
    985   }
    986   // Different types are acceptable within a loop-body, as long as all the corresponding vector
    987   // lengths match exactly to obtain a uniform traversal through the vector iteration space
    988   // (idiomatic exceptions to this rule can be handled by further unrolling sub-expressions).
    989   return vector_length_ == length;
    990 }
    991 
    992 void HLoopOptimization::GenerateVecInv(HInstruction* org, Primitive::Type type) {
    993   if (vector_map_->find(org) == vector_map_->end()) {
    994     // In scalar code, just use a self pass-through for scalar invariants
    995     // (viz. expression remains itself).
    996     if (vector_mode_ == kSequential) {
    997       vector_map_->Put(org, org);
    998       return;
    999     }
   1000     // In vector code, explicit scalar expansion is needed.
   1001     HInstruction* vector = new (global_allocator_) HVecReplicateScalar(
   1002         global_allocator_, org, type, vector_length_);
   1003     vector_map_->Put(org, Insert(vector_preheader_, vector));
   1004   }
   1005 }
   1006 
   1007 void HLoopOptimization::GenerateVecSub(HInstruction* org, HInstruction* offset) {
   1008   if (vector_map_->find(org) == vector_map_->end()) {
   1009     HInstruction* subscript = vector_phi_;
   1010     if (offset != nullptr) {
   1011       subscript = new (global_allocator_) HAdd(Primitive::kPrimInt, subscript, offset);
   1012       if (org->IsPhi()) {
   1013         Insert(vector_body_, subscript);  // lacks layout placeholder
   1014       }
   1015     }
   1016     vector_map_->Put(org, subscript);
   1017   }
   1018 }
   1019 
   1020 void HLoopOptimization::GenerateVecMem(HInstruction* org,
   1021                                        HInstruction* opa,
   1022                                        HInstruction* opb,
   1023                                        Primitive::Type type) {
   1024   HInstruction* vector = nullptr;
   1025   if (vector_mode_ == kVector) {
   1026     // Vector store or load.
   1027     if (opb != nullptr) {
   1028       vector = new (global_allocator_) HVecStore(
   1029           global_allocator_, org->InputAt(0), opa, opb, type, vector_length_);
   1030     } else  {
   1031       bool is_string_char_at = org->AsArrayGet()->IsStringCharAt();
   1032       vector = new (global_allocator_) HVecLoad(
   1033           global_allocator_, org->InputAt(0), opa, type, vector_length_, is_string_char_at);
   1034     }
   1035   } else {
   1036     // Scalar store or load.
   1037     DCHECK(vector_mode_ == kSequential);
   1038     if (opb != nullptr) {
   1039       vector = new (global_allocator_) HArraySet(org->InputAt(0), opa, opb, type, kNoDexPc);
   1040     } else  {
   1041       bool is_string_char_at = org->AsArrayGet()->IsStringCharAt();
   1042       vector = new (global_allocator_) HArrayGet(
   1043           org->InputAt(0), opa, type, kNoDexPc, is_string_char_at);
   1044     }
   1045   }
   1046   vector_map_->Put(org, vector);
   1047 }
   1048 
   1049 #define GENERATE_VEC(x, y) \
   1050   if (vector_mode_ == kVector) { \
   1051     vector = (x); \
   1052   } else { \
   1053     DCHECK(vector_mode_ == kSequential); \
   1054     vector = (y); \
   1055   } \
   1056   break;
   1057 
   1058 void HLoopOptimization::GenerateVecOp(HInstruction* org,
   1059                                       HInstruction* opa,
   1060                                       HInstruction* opb,
   1061                                       Primitive::Type type) {
   1062   if (vector_mode_ == kSequential) {
   1063     // Scalar code follows implicit integral promotion.
   1064     if (type == Primitive::kPrimBoolean ||
   1065         type == Primitive::kPrimByte ||
   1066         type == Primitive::kPrimChar ||
   1067         type == Primitive::kPrimShort) {
   1068       type = Primitive::kPrimInt;
   1069     }
   1070   }
   1071   HInstruction* vector = nullptr;
   1072   switch (org->GetKind()) {
   1073     case HInstruction::kNeg:
   1074       DCHECK(opb == nullptr);
   1075       GENERATE_VEC(
   1076           new (global_allocator_) HVecNeg(global_allocator_, opa, type, vector_length_),
   1077           new (global_allocator_) HNeg(type, opa));
   1078     case HInstruction::kNot:
   1079       DCHECK(opb == nullptr);
   1080       GENERATE_VEC(
   1081           new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_),
   1082           new (global_allocator_) HNot(type, opa));
   1083     case HInstruction::kBooleanNot:
   1084       DCHECK(opb == nullptr);
   1085       GENERATE_VEC(
   1086           new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_),
   1087           new (global_allocator_) HBooleanNot(opa));
   1088     case HInstruction::kTypeConversion:
   1089       DCHECK(opb == nullptr);
   1090       GENERATE_VEC(
   1091           new (global_allocator_) HVecCnv(global_allocator_, opa, type, vector_length_),
   1092           new (global_allocator_) HTypeConversion(type, opa, kNoDexPc));
   1093     case HInstruction::kAdd:
   1094       GENERATE_VEC(
   1095           new (global_allocator_) HVecAdd(global_allocator_, opa, opb, type, vector_length_),
   1096           new (global_allocator_) HAdd(type, opa, opb));
   1097     case HInstruction::kSub:
   1098       GENERATE_VEC(
   1099           new (global_allocator_) HVecSub(global_allocator_, opa, opb, type, vector_length_),
   1100           new (global_allocator_) HSub(type, opa, opb));
   1101     case HInstruction::kMul:
   1102       GENERATE_VEC(
   1103           new (global_allocator_) HVecMul(global_allocator_, opa, opb, type, vector_length_),
   1104           new (global_allocator_) HMul(type, opa, opb));
   1105     case HInstruction::kDiv:
   1106       GENERATE_VEC(
   1107           new (global_allocator_) HVecDiv(global_allocator_, opa, opb, type, vector_length_),
   1108           new (global_allocator_) HDiv(type, opa, opb, kNoDexPc));
   1109     case HInstruction::kAnd:
   1110       GENERATE_VEC(
   1111           new (global_allocator_) HVecAnd(global_allocator_, opa, opb, type, vector_length_),
   1112           new (global_allocator_) HAnd(type, opa, opb));
   1113     case HInstruction::kOr:
   1114       GENERATE_VEC(
   1115           new (global_allocator_) HVecOr(global_allocator_, opa, opb, type, vector_length_),
   1116           new (global_allocator_) HOr(type, opa, opb));
   1117     case HInstruction::kXor:
   1118       GENERATE_VEC(
   1119           new (global_allocator_) HVecXor(global_allocator_, opa, opb, type, vector_length_),
   1120           new (global_allocator_) HXor(type, opa, opb));
   1121     case HInstruction::kShl:
   1122       GENERATE_VEC(
   1123           new (global_allocator_) HVecShl(global_allocator_, opa, opb, type, vector_length_),
   1124           new (global_allocator_) HShl(type, opa, opb));
   1125     case HInstruction::kShr:
   1126       GENERATE_VEC(
   1127           new (global_allocator_) HVecShr(global_allocator_, opa, opb, type, vector_length_),
   1128           new (global_allocator_) HShr(type, opa, opb));
   1129     case HInstruction::kUShr:
   1130       GENERATE_VEC(
   1131           new (global_allocator_) HVecUShr(global_allocator_, opa, opb, type, vector_length_),
   1132           new (global_allocator_) HUShr(type, opa, opb));
   1133     case HInstruction::kInvokeStaticOrDirect: {
   1134       HInvokeStaticOrDirect* invoke = org->AsInvokeStaticOrDirect();
   1135       if (vector_mode_ == kVector) {
   1136         switch (invoke->GetIntrinsic()) {
   1137           case Intrinsics::kMathAbsInt:
   1138           case Intrinsics::kMathAbsLong:
   1139           case Intrinsics::kMathAbsFloat:
   1140           case Intrinsics::kMathAbsDouble:
   1141             DCHECK(opb == nullptr);
   1142             vector = new (global_allocator_) HVecAbs(global_allocator_, opa, type, vector_length_);
   1143             break;
   1144           default:
   1145             LOG(FATAL) << "Unsupported SIMD intrinsic";
   1146             UNREACHABLE();
   1147         }  // switch invoke
   1148       } else {
   1149         // In scalar code, simply clone the method invoke, and replace its operands with the
   1150         // corresponding new scalar instructions in the loop. The instruction will get an
   1151         // environment while being inserted from the instruction map in original program order.
   1152         DCHECK(vector_mode_ == kSequential);
   1153         HInvokeStaticOrDirect* new_invoke = new (global_allocator_) HInvokeStaticOrDirect(
   1154             global_allocator_,
   1155             invoke->GetNumberOfArguments(),
   1156             invoke->GetType(),
   1157             invoke->GetDexPc(),
   1158             invoke->GetDexMethodIndex(),
   1159             invoke->GetResolvedMethod(),
   1160             invoke->GetDispatchInfo(),
   1161             invoke->GetInvokeType(),
   1162             invoke->GetTargetMethod(),
   1163             invoke->GetClinitCheckRequirement());
   1164         HInputsRef inputs = invoke->GetInputs();
   1165         for (size_t index = 0; index < inputs.size(); ++index) {
   1166           new_invoke->SetArgumentAt(index, vector_map_->Get(inputs[index]));
   1167         }
   1168         new_invoke->SetIntrinsic(invoke->GetIntrinsic(),
   1169                                  kNeedsEnvironmentOrCache,
   1170                                  kNoSideEffects,
   1171                                  kNoThrow);
   1172         vector = new_invoke;
   1173       }
   1174       break;
   1175     }
   1176     default:
   1177       break;
   1178   }  // switch
   1179   CHECK(vector != nullptr) << "Unsupported SIMD operator";
   1180   vector_map_->Put(org, vector);
   1181 }
   1182 
   1183 #undef GENERATE_VEC
   1184 
   1185 //
   1186 // Vectorization idioms.
   1187 //
   1188 
   1189 // Method recognizes the following idioms:
   1190 //   rounding halving add (a + b + 1) >> 1 for unsigned/signed operands a, b
   1191 //   regular  halving add (a + b)     >> 1 for unsigned/signed operands a, b
   1192 // Provided that the operands are promoted to a wider form to do the arithmetic and
   1193 // then cast back to narrower form, the idioms can be mapped into efficient SIMD
   1194 // implementation that operates directly in narrower form (plus one extra bit).
   1195 // TODO: current version recognizes implicit byte/short/char widening only;
   1196 //       explicit widening from int to long could be added later.
   1197 bool HLoopOptimization::VectorizeHalvingAddIdiom(LoopNode* node,
   1198                                                  HInstruction* instruction,
   1199                                                  bool generate_code,
   1200                                                  Primitive::Type type,
   1201                                                  uint64_t restrictions) {
   1202   // Test for top level arithmetic shift right x >> 1 or logical shift right x >>> 1
   1203   // (note whether the sign bit in higher precision is shifted in has no effect
   1204   // on the narrow precision computed by the idiom).
   1205   int64_t value = 0;
   1206   if ((instruction->IsShr() ||
   1207        instruction->IsUShr()) &&
   1208       IsInt64AndGet(instruction->InputAt(1), &value) && value == 1) {
   1209     //
   1210     // TODO: make following code less sensitive to associativity and commutativity differences.
   1211     //
   1212     HInstruction* x = instruction->InputAt(0);
   1213     // Test for an optional rounding part (x + 1) >> 1.
   1214     bool is_rounded = false;
   1215     if (x->IsAdd() && IsInt64AndGet(x->InputAt(1), &value) && value == 1) {
   1216       x = x->InputAt(0);
   1217       is_rounded = true;
   1218     }
   1219     // Test for a core addition (a + b) >> 1 (possibly rounded), either unsigned or signed.
   1220     if (x->IsAdd()) {
   1221       HInstruction* a = x->InputAt(0);
   1222       HInstruction* b = x->InputAt(1);
   1223       HInstruction* r = nullptr;
   1224       HInstruction* s = nullptr;
   1225       bool is_unsigned = false;
   1226       if (IsZeroExtensionAndGet(a, type, &r) && IsZeroExtensionAndGet(b, type, &s)) {
   1227         is_unsigned = true;
   1228       } else if (IsSignExtensionAndGet(a, type, &r) && IsSignExtensionAndGet(b, type, &s)) {
   1229         is_unsigned = false;
   1230       } else {
   1231         return false;
   1232       }
   1233       // Deal with vector restrictions.
   1234       if ((!is_unsigned && HasVectorRestrictions(restrictions, kNoSignedHAdd)) ||
   1235           (!is_rounded && HasVectorRestrictions(restrictions, kNoUnroundedHAdd))) {
   1236         return false;
   1237       }
   1238       // Accept recognized halving add for vectorizable operands. Vectorized code uses the
   1239       // shorthand idiomatic operation. Sequential code uses the original scalar expressions.
   1240       DCHECK(r != nullptr && s != nullptr);
   1241       if (VectorizeUse(node, r, generate_code, type, restrictions) &&
   1242           VectorizeUse(node, s, generate_code, type, restrictions)) {
   1243         if (generate_code) {
   1244           if (vector_mode_ == kVector) {
   1245             vector_map_->Put(instruction, new (global_allocator_) HVecHalvingAdd(
   1246                 global_allocator_,
   1247                 vector_map_->Get(r),
   1248                 vector_map_->Get(s),
   1249                 type,
   1250                 vector_length_,
   1251                 is_unsigned,
   1252                 is_rounded));
   1253           } else {
   1254             VectorizeUse(node, instruction->InputAt(0), generate_code, type, restrictions);
   1255             VectorizeUse(node, instruction->InputAt(1), generate_code, type, restrictions);
   1256             GenerateVecOp(instruction,
   1257                           vector_map_->Get(instruction->InputAt(0)),
   1258                           vector_map_->Get(instruction->InputAt(1)),
   1259                           type);
   1260           }
   1261         }
   1262         return true;
   1263       }
   1264     }
   1265   }
   1266   return false;
   1267 }
   1268 
   1269 //
   1270 // Helpers.
   1271 //
   1272 
   1273 bool HLoopOptimization::TrySetPhiInduction(HPhi* phi, bool restrict_uses) {
   1274   DCHECK(iset_->empty());
   1275   ArenaSet<HInstruction*>* set = induction_range_.LookupCycle(phi);
   1276   if (set != nullptr) {
   1277     for (HInstruction* i : *set) {
   1278       // Check that, other than instructions that are no longer in the graph (removed earlier)
   1279       // each instruction is removable and, when restrict uses are requested, other than for phi,
   1280       // all uses are contained within the cycle.
   1281       if (!i->IsInBlock()) {
   1282         continue;
   1283       } else if (!i->IsRemovable()) {
   1284         return false;
   1285       } else if (i != phi && restrict_uses) {
   1286         for (const HUseListNode<HInstruction*>& use : i->GetUses()) {
   1287           if (set->find(use.GetUser()) == set->end()) {
   1288             return false;
   1289           }
   1290         }
   1291       }
   1292       iset_->insert(i);  // copy
   1293     }
   1294     return true;
   1295   }
   1296   return false;
   1297 }
   1298 
   1299 // Find: phi: Phi(init, addsub)
   1300 //       s:   SuspendCheck
   1301 //       c:   Condition(phi, bound)
   1302 //       i:   If(c)
   1303 // TODO: Find a less pattern matching approach?
   1304 bool HLoopOptimization::TrySetSimpleLoopHeader(HBasicBlock* block) {
   1305   DCHECK(iset_->empty());
   1306   HInstruction* phi = block->GetFirstPhi();
   1307   if (phi != nullptr &&
   1308       phi->GetNext() == nullptr &&
   1309       TrySetPhiInduction(phi->AsPhi(), /*restrict_uses*/ false)) {
   1310     HInstruction* s = block->GetFirstInstruction();
   1311     if (s != nullptr && s->IsSuspendCheck()) {
   1312       HInstruction* c = s->GetNext();
   1313       if (c != nullptr &&
   1314           c->IsCondition() &&
   1315           c->GetUses().HasExactlyOneElement() &&  // only used for termination
   1316           !c->HasEnvironmentUses()) {  // unlikely, but not impossible
   1317         HInstruction* i = c->GetNext();
   1318         if (i != nullptr && i->IsIf() && i->InputAt(0) == c) {
   1319           iset_->insert(c);
   1320           iset_->insert(s);
   1321           return true;
   1322         }
   1323       }
   1324     }
   1325   }
   1326   return false;
   1327 }
   1328 
   1329 bool HLoopOptimization::IsEmptyBody(HBasicBlock* block) {
   1330   if (!block->GetPhis().IsEmpty()) {
   1331     return false;
   1332   }
   1333   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
   1334     HInstruction* instruction = it.Current();
   1335     if (!instruction->IsGoto() && iset_->find(instruction) == iset_->end()) {
   1336       return false;
   1337     }
   1338   }
   1339   return true;
   1340 }
   1341 
   1342 bool HLoopOptimization::IsUsedOutsideLoop(HLoopInformation* loop_info,
   1343                                           HInstruction* instruction) {
   1344   for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
   1345     if (use.GetUser()->GetBlock()->GetLoopInformation() != loop_info) {
   1346       return true;
   1347     }
   1348   }
   1349   return false;
   1350 }
   1351 
   1352 bool HLoopOptimization::IsOnlyUsedAfterLoop(HLoopInformation* loop_info,
   1353                                             HInstruction* instruction,
   1354                                             bool collect_loop_uses,
   1355                                             /*out*/ int32_t* use_count) {
   1356   for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
   1357     HInstruction* user = use.GetUser();
   1358     if (iset_->find(user) == iset_->end()) {  // not excluded?
   1359       HLoopInformation* other_loop_info = user->GetBlock()->GetLoopInformation();
   1360       if (other_loop_info != nullptr && other_loop_info->IsIn(*loop_info)) {
   1361         // If collect_loop_uses is set, simply keep adding those uses to the set.
   1362         // Otherwise, reject uses inside the loop that were not already in the set.
   1363         if (collect_loop_uses) {
   1364           iset_->insert(user);
   1365           continue;
   1366         }
   1367         return false;
   1368       }
   1369       ++*use_count;
   1370     }
   1371   }
   1372   return true;
   1373 }
   1374 
   1375 bool HLoopOptimization::TryReplaceWithLastValue(HLoopInformation* loop_info,
   1376                                                 HInstruction* instruction,
   1377                                                 HBasicBlock* block) {
   1378   // Try to replace outside uses with the last value.
   1379   if (induction_range_.CanGenerateLastValue(instruction)) {
   1380     HInstruction* replacement = induction_range_.GenerateLastValue(instruction, graph_, block);
   1381     const HUseList<HInstruction*>& uses = instruction->GetUses();
   1382     for (auto it = uses.begin(), end = uses.end(); it != end;) {
   1383       HInstruction* user = it->GetUser();
   1384       size_t index = it->GetIndex();
   1385       ++it;  // increment before replacing
   1386       if (iset_->find(user) == iset_->end()) {  // not excluded?
   1387         if (kIsDebugBuild) {
   1388           // We have checked earlier in 'IsOnlyUsedAfterLoop' that the use is after the loop.
   1389           HLoopInformation* other_loop_info = user->GetBlock()->GetLoopInformation();
   1390           CHECK(other_loop_info == nullptr || !other_loop_info->IsIn(*loop_info));
   1391         }
   1392         user->ReplaceInput(replacement, index);
   1393         induction_range_.Replace(user, instruction, replacement);  // update induction
   1394       }
   1395     }
   1396     const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
   1397     for (auto it = env_uses.begin(), end = env_uses.end(); it != end;) {
   1398       HEnvironment* user = it->GetUser();
   1399       size_t index = it->GetIndex();
   1400       ++it;  // increment before replacing
   1401       if (iset_->find(user->GetHolder()) == iset_->end()) {  // not excluded?
   1402         HLoopInformation* other_loop_info = user->GetHolder()->GetBlock()->GetLoopInformation();
   1403         // Only update environment uses after the loop.
   1404         if (other_loop_info == nullptr || !other_loop_info->IsIn(*loop_info)) {
   1405           user->RemoveAsUserOfInput(index);
   1406           user->SetRawEnvAt(index, replacement);
   1407           replacement->AddEnvUseAt(user, index);
   1408         }
   1409       }
   1410     }
   1411     induction_simplication_count_++;
   1412     return true;
   1413   }
   1414   return false;
   1415 }
   1416 
   1417 bool HLoopOptimization::TryAssignLastValue(HLoopInformation* loop_info,
   1418                                            HInstruction* instruction,
   1419                                            HBasicBlock* block,
   1420                                            bool collect_loop_uses) {
   1421   // Assigning the last value is always successful if there are no uses.
   1422   // Otherwise, it succeeds in a no early-exit loop by generating the
   1423   // proper last value assignment.
   1424   int32_t use_count = 0;
   1425   return IsOnlyUsedAfterLoop(loop_info, instruction, collect_loop_uses, &use_count) &&
   1426       (use_count == 0 ||
   1427        (!IsEarlyExit(loop_info) && TryReplaceWithLastValue(loop_info, instruction, block)));
   1428 }
   1429 
   1430 void HLoopOptimization::RemoveDeadInstructions(const HInstructionList& list) {
   1431   for (HBackwardInstructionIterator i(list); !i.Done(); i.Advance()) {
   1432     HInstruction* instruction = i.Current();
   1433     if (instruction->IsDeadAndRemovable()) {
   1434       simplified_ = true;
   1435       instruction->GetBlock()->RemoveInstructionOrPhi(instruction);
   1436     }
   1437   }
   1438 }
   1439 
   1440 }  // namespace art
   1441