1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "class_linker.h" 18 19 #include <algorithm> 20 #include <deque> 21 #include <iostream> 22 #include <map> 23 #include <memory> 24 #include <queue> 25 #include <string> 26 #include <tuple> 27 #include <unistd.h> 28 #include <unordered_map> 29 #include <utility> 30 #include <vector> 31 32 #include "android-base/stringprintf.h" 33 34 #include "art_field-inl.h" 35 #include "art_method-inl.h" 36 #include "base/arena_allocator.h" 37 #include "base/casts.h" 38 #include "base/logging.h" 39 #include "base/scoped_arena_containers.h" 40 #include "base/scoped_flock.h" 41 #include "base/stl_util.h" 42 #include "base/systrace.h" 43 #include "base/time_utils.h" 44 #include "base/unix_file/fd_file.h" 45 #include "base/value_object.h" 46 #include "cha.h" 47 #include "class_linker-inl.h" 48 #include "class_table-inl.h" 49 #include "compiler_callbacks.h" 50 #include "debugger.h" 51 #include "dex_file-inl.h" 52 #include "entrypoints/entrypoint_utils.h" 53 #include "entrypoints/runtime_asm_entrypoints.h" 54 #include "experimental_flags.h" 55 #include "gc_root-inl.h" 56 #include "gc/accounting/card_table-inl.h" 57 #include "gc/accounting/heap_bitmap-inl.h" 58 #include "gc/heap.h" 59 #include "gc/scoped_gc_critical_section.h" 60 #include "gc/space/image_space.h" 61 #include "gc/space/space-inl.h" 62 #include "handle_scope-inl.h" 63 #include "image-inl.h" 64 #include "imt_conflict_table.h" 65 #include "imtable-inl.h" 66 #include "intern_table.h" 67 #include "interpreter/interpreter.h" 68 #include "java_vm_ext.h" 69 #include "jit/jit.h" 70 #include "jit/jit_code_cache.h" 71 #include "jit/profile_compilation_info.h" 72 #include "jni_internal.h" 73 #include "leb128.h" 74 #include "linear_alloc.h" 75 #include "mirror/call_site.h" 76 #include "mirror/class.h" 77 #include "mirror/class-inl.h" 78 #include "mirror/class_ext.h" 79 #include "mirror/class_loader.h" 80 #include "mirror/dex_cache.h" 81 #include "mirror/dex_cache-inl.h" 82 #include "mirror/emulated_stack_frame.h" 83 #include "mirror/field.h" 84 #include "mirror/iftable-inl.h" 85 #include "mirror/method.h" 86 #include "mirror/method_type.h" 87 #include "mirror/method_handle_impl.h" 88 #include "mirror/method_handles_lookup.h" 89 #include "mirror/object-inl.h" 90 #include "mirror/object_array-inl.h" 91 #include "mirror/proxy.h" 92 #include "mirror/reference-inl.h" 93 #include "mirror/stack_trace_element.h" 94 #include "mirror/string-inl.h" 95 #include "native/dalvik_system_DexFile.h" 96 #include "oat.h" 97 #include "oat_file.h" 98 #include "oat_file-inl.h" 99 #include "oat_file_assistant.h" 100 #include "oat_file_manager.h" 101 #include "object_lock.h" 102 #include "os.h" 103 #include "runtime.h" 104 #include "runtime_callbacks.h" 105 #include "ScopedLocalRef.h" 106 #include "scoped_thread_state_change-inl.h" 107 #include "thread-inl.h" 108 #include "thread_list.h" 109 #include "trace.h" 110 #include "utils.h" 111 #include "utils/dex_cache_arrays_layout-inl.h" 112 #include "verifier/method_verifier.h" 113 #include "well_known_classes.h" 114 115 namespace art { 116 117 using android::base::StringPrintf; 118 119 static constexpr bool kSanityCheckObjects = kIsDebugBuild; 120 static constexpr bool kVerifyArtMethodDeclaringClasses = kIsDebugBuild; 121 122 static void ThrowNoClassDefFoundError(const char* fmt, ...) 123 __attribute__((__format__(__printf__, 1, 2))) 124 REQUIRES_SHARED(Locks::mutator_lock_); 125 static void ThrowNoClassDefFoundError(const char* fmt, ...) { 126 va_list args; 127 va_start(args, fmt); 128 Thread* self = Thread::Current(); 129 self->ThrowNewExceptionV("Ljava/lang/NoClassDefFoundError;", fmt, args); 130 va_end(args); 131 } 132 133 static bool HasInitWithString(Thread* self, ClassLinker* class_linker, const char* descriptor) 134 REQUIRES_SHARED(Locks::mutator_lock_) { 135 ArtMethod* method = self->GetCurrentMethod(nullptr); 136 StackHandleScope<1> hs(self); 137 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(method != nullptr ? 138 method->GetDeclaringClass()->GetClassLoader() : nullptr)); 139 ObjPtr<mirror::Class> exception_class = class_linker->FindClass(self, descriptor, class_loader); 140 141 if (exception_class == nullptr) { 142 // No exc class ~ no <init>-with-string. 143 CHECK(self->IsExceptionPending()); 144 self->ClearException(); 145 return false; 146 } 147 148 ArtMethod* exception_init_method = exception_class->FindDeclaredDirectMethod( 149 "<init>", "(Ljava/lang/String;)V", class_linker->GetImagePointerSize()); 150 return exception_init_method != nullptr; 151 } 152 153 static mirror::Object* GetVerifyError(ObjPtr<mirror::Class> c) 154 REQUIRES_SHARED(Locks::mutator_lock_) { 155 ObjPtr<mirror::ClassExt> ext(c->GetExtData()); 156 if (ext == nullptr) { 157 return nullptr; 158 } else { 159 return ext->GetVerifyError(); 160 } 161 } 162 163 // Helper for ThrowEarlierClassFailure. Throws the stored error. 164 static void HandleEarlierVerifyError(Thread* self, 165 ClassLinker* class_linker, 166 ObjPtr<mirror::Class> c) 167 REQUIRES_SHARED(Locks::mutator_lock_) { 168 ObjPtr<mirror::Object> obj = GetVerifyError(c); 169 DCHECK(obj != nullptr); 170 self->AssertNoPendingException(); 171 if (obj->IsClass()) { 172 // Previous error has been stored as class. Create a new exception of that type. 173 174 // It's possible the exception doesn't have a <init>(String). 175 std::string temp; 176 const char* descriptor = obj->AsClass()->GetDescriptor(&temp); 177 178 if (HasInitWithString(self, class_linker, descriptor)) { 179 self->ThrowNewException(descriptor, c->PrettyDescriptor().c_str()); 180 } else { 181 self->ThrowNewException(descriptor, nullptr); 182 } 183 } else { 184 // Previous error has been stored as an instance. Just rethrow. 185 ObjPtr<mirror::Class> throwable_class = 186 self->DecodeJObject(WellKnownClasses::java_lang_Throwable)->AsClass(); 187 ObjPtr<mirror::Class> error_class = obj->GetClass(); 188 CHECK(throwable_class->IsAssignableFrom(error_class)); 189 self->SetException(obj->AsThrowable()); 190 } 191 self->AssertPendingException(); 192 } 193 194 void ClassLinker::ThrowEarlierClassFailure(ObjPtr<mirror::Class> c, bool wrap_in_no_class_def) { 195 // The class failed to initialize on a previous attempt, so we want to throw 196 // a NoClassDefFoundError (v2 2.17.5). The exception to this rule is if we 197 // failed in verification, in which case v2 5.4.1 says we need to re-throw 198 // the previous error. 199 Runtime* const runtime = Runtime::Current(); 200 if (!runtime->IsAotCompiler()) { // Give info if this occurs at runtime. 201 std::string extra; 202 if (GetVerifyError(c) != nullptr) { 203 ObjPtr<mirror::Object> verify_error = GetVerifyError(c); 204 if (verify_error->IsClass()) { 205 extra = mirror::Class::PrettyDescriptor(verify_error->AsClass()); 206 } else { 207 extra = verify_error->AsThrowable()->Dump(); 208 } 209 } 210 LOG(INFO) << "Rejecting re-init on previously-failed class " << c->PrettyClass() 211 << ": " << extra; 212 } 213 214 CHECK(c->IsErroneous()) << c->PrettyClass() << " " << c->GetStatus(); 215 Thread* self = Thread::Current(); 216 if (runtime->IsAotCompiler()) { 217 // At compile time, accurate errors and NCDFE are disabled to speed compilation. 218 ObjPtr<mirror::Throwable> pre_allocated = runtime->GetPreAllocatedNoClassDefFoundError(); 219 self->SetException(pre_allocated); 220 } else { 221 if (GetVerifyError(c) != nullptr) { 222 // Rethrow stored error. 223 HandleEarlierVerifyError(self, this, c); 224 } 225 // TODO This might be wrong if we hit an OOME while allocating the ClassExt. In that case we 226 // might have meant to go down the earlier if statement with the original error but it got 227 // swallowed by the OOM so we end up here. 228 if (GetVerifyError(c) == nullptr || wrap_in_no_class_def) { 229 // If there isn't a recorded earlier error, or this is a repeat throw from initialization, 230 // the top-level exception must be a NoClassDefFoundError. The potentially already pending 231 // exception will be a cause. 232 self->ThrowNewWrappedException("Ljava/lang/NoClassDefFoundError;", 233 c->PrettyDescriptor().c_str()); 234 } 235 } 236 } 237 238 static void VlogClassInitializationFailure(Handle<mirror::Class> klass) 239 REQUIRES_SHARED(Locks::mutator_lock_) { 240 if (VLOG_IS_ON(class_linker)) { 241 std::string temp; 242 LOG(INFO) << "Failed to initialize class " << klass->GetDescriptor(&temp) << " from " 243 << klass->GetLocation() << "\n" << Thread::Current()->GetException()->Dump(); 244 } 245 } 246 247 static void WrapExceptionInInitializer(Handle<mirror::Class> klass) 248 REQUIRES_SHARED(Locks::mutator_lock_) { 249 Thread* self = Thread::Current(); 250 JNIEnv* env = self->GetJniEnv(); 251 252 ScopedLocalRef<jthrowable> cause(env, env->ExceptionOccurred()); 253 CHECK(cause.get() != nullptr); 254 255 // Boot classpath classes should not fail initialization. This is a sanity debug check. This 256 // cannot in general be guaranteed, but in all likelihood leads to breakage down the line. 257 if (klass->GetClassLoader() == nullptr && !Runtime::Current()->IsAotCompiler()) { 258 std::string tmp; 259 LOG(kIsDebugBuild ? FATAL : WARNING) << klass->GetDescriptor(&tmp) << " failed initialization"; 260 } 261 262 env->ExceptionClear(); 263 bool is_error = env->IsInstanceOf(cause.get(), WellKnownClasses::java_lang_Error); 264 env->Throw(cause.get()); 265 266 // We only wrap non-Error exceptions; an Error can just be used as-is. 267 if (!is_error) { 268 self->ThrowNewWrappedException("Ljava/lang/ExceptionInInitializerError;", nullptr); 269 } 270 VlogClassInitializationFailure(klass); 271 } 272 273 // Gap between two fields in object layout. 274 struct FieldGap { 275 uint32_t start_offset; // The offset from the start of the object. 276 uint32_t size; // The gap size of 1, 2, or 4 bytes. 277 }; 278 struct FieldGapsComparator { 279 explicit FieldGapsComparator() { 280 } 281 bool operator() (const FieldGap& lhs, const FieldGap& rhs) 282 NO_THREAD_SAFETY_ANALYSIS { 283 // Sort by gap size, largest first. Secondary sort by starting offset. 284 // Note that the priority queue returns the largest element, so operator() 285 // should return true if lhs is less than rhs. 286 return lhs.size < rhs.size || (lhs.size == rhs.size && lhs.start_offset > rhs.start_offset); 287 } 288 }; 289 typedef std::priority_queue<FieldGap, std::vector<FieldGap>, FieldGapsComparator> FieldGaps; 290 291 // Adds largest aligned gaps to queue of gaps. 292 static void AddFieldGap(uint32_t gap_start, uint32_t gap_end, FieldGaps* gaps) { 293 DCHECK(gaps != nullptr); 294 295 uint32_t current_offset = gap_start; 296 while (current_offset != gap_end) { 297 size_t remaining = gap_end - current_offset; 298 if (remaining >= sizeof(uint32_t) && IsAligned<4>(current_offset)) { 299 gaps->push(FieldGap {current_offset, sizeof(uint32_t)}); 300 current_offset += sizeof(uint32_t); 301 } else if (remaining >= sizeof(uint16_t) && IsAligned<2>(current_offset)) { 302 gaps->push(FieldGap {current_offset, sizeof(uint16_t)}); 303 current_offset += sizeof(uint16_t); 304 } else { 305 gaps->push(FieldGap {current_offset, sizeof(uint8_t)}); 306 current_offset += sizeof(uint8_t); 307 } 308 DCHECK_LE(current_offset, gap_end) << "Overran gap"; 309 } 310 } 311 // Shuffle fields forward, making use of gaps whenever possible. 312 template<int n> 313 static void ShuffleForward(size_t* current_field_idx, 314 MemberOffset* field_offset, 315 std::deque<ArtField*>* grouped_and_sorted_fields, 316 FieldGaps* gaps) 317 REQUIRES_SHARED(Locks::mutator_lock_) { 318 DCHECK(current_field_idx != nullptr); 319 DCHECK(grouped_and_sorted_fields != nullptr); 320 DCHECK(gaps != nullptr); 321 DCHECK(field_offset != nullptr); 322 323 DCHECK(IsPowerOfTwo(n)); 324 while (!grouped_and_sorted_fields->empty()) { 325 ArtField* field = grouped_and_sorted_fields->front(); 326 Primitive::Type type = field->GetTypeAsPrimitiveType(); 327 if (Primitive::ComponentSize(type) < n) { 328 break; 329 } 330 if (!IsAligned<n>(field_offset->Uint32Value())) { 331 MemberOffset old_offset = *field_offset; 332 *field_offset = MemberOffset(RoundUp(field_offset->Uint32Value(), n)); 333 AddFieldGap(old_offset.Uint32Value(), field_offset->Uint32Value(), gaps); 334 } 335 CHECK(type != Primitive::kPrimNot) << field->PrettyField(); // should be primitive types 336 grouped_and_sorted_fields->pop_front(); 337 if (!gaps->empty() && gaps->top().size >= n) { 338 FieldGap gap = gaps->top(); 339 gaps->pop(); 340 DCHECK_ALIGNED(gap.start_offset, n); 341 field->SetOffset(MemberOffset(gap.start_offset)); 342 if (gap.size > n) { 343 AddFieldGap(gap.start_offset + n, gap.start_offset + gap.size, gaps); 344 } 345 } else { 346 DCHECK_ALIGNED(field_offset->Uint32Value(), n); 347 field->SetOffset(*field_offset); 348 *field_offset = MemberOffset(field_offset->Uint32Value() + n); 349 } 350 ++(*current_field_idx); 351 } 352 } 353 354 ClassLinker::ClassLinker(InternTable* intern_table) 355 : failed_dex_cache_class_lookups_(0), 356 class_roots_(nullptr), 357 array_iftable_(nullptr), 358 find_array_class_cache_next_victim_(0), 359 init_done_(false), 360 log_new_roots_(false), 361 intern_table_(intern_table), 362 quick_resolution_trampoline_(nullptr), 363 quick_imt_conflict_trampoline_(nullptr), 364 quick_generic_jni_trampoline_(nullptr), 365 quick_to_interpreter_bridge_trampoline_(nullptr), 366 image_pointer_size_(kRuntimePointerSize) { 367 CHECK(intern_table_ != nullptr); 368 static_assert(kFindArrayCacheSize == arraysize(find_array_class_cache_), 369 "Array cache size wrong."); 370 std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot<mirror::Class>(nullptr)); 371 } 372 373 void ClassLinker::CheckSystemClass(Thread* self, Handle<mirror::Class> c1, const char* descriptor) { 374 ObjPtr<mirror::Class> c2 = FindSystemClass(self, descriptor); 375 if (c2 == nullptr) { 376 LOG(FATAL) << "Could not find class " << descriptor; 377 UNREACHABLE(); 378 } 379 if (c1.Get() != c2) { 380 std::ostringstream os1, os2; 381 c1->DumpClass(os1, mirror::Class::kDumpClassFullDetail); 382 c2->DumpClass(os2, mirror::Class::kDumpClassFullDetail); 383 LOG(FATAL) << "InitWithoutImage: Class mismatch for " << descriptor 384 << ". This is most likely the result of a broken build. Make sure that " 385 << "libcore and art projects match.\n\n" 386 << os1.str() << "\n\n" << os2.str(); 387 UNREACHABLE(); 388 } 389 } 390 391 bool ClassLinker::InitWithoutImage(std::vector<std::unique_ptr<const DexFile>> boot_class_path, 392 std::string* error_msg) { 393 VLOG(startup) << "ClassLinker::Init"; 394 395 Thread* const self = Thread::Current(); 396 Runtime* const runtime = Runtime::Current(); 397 gc::Heap* const heap = runtime->GetHeap(); 398 399 CHECK(!heap->HasBootImageSpace()) << "Runtime has image. We should use it."; 400 CHECK(!init_done_); 401 402 // Use the pointer size from the runtime since we are probably creating the image. 403 image_pointer_size_ = InstructionSetPointerSize(runtime->GetInstructionSet()); 404 405 // java_lang_Class comes first, it's needed for AllocClass 406 // The GC can't handle an object with a null class since we can't get the size of this object. 407 heap->IncrementDisableMovingGC(self); 408 StackHandleScope<64> hs(self); // 64 is picked arbitrarily. 409 auto class_class_size = mirror::Class::ClassClassSize(image_pointer_size_); 410 Handle<mirror::Class> java_lang_Class(hs.NewHandle(down_cast<mirror::Class*>( 411 heap->AllocNonMovableObject<true>(self, nullptr, class_class_size, VoidFunctor())))); 412 CHECK(java_lang_Class != nullptr); 413 mirror::Class::SetClassClass(java_lang_Class.Get()); 414 java_lang_Class->SetClass(java_lang_Class.Get()); 415 if (kUseBakerReadBarrier) { 416 java_lang_Class->AssertReadBarrierState(); 417 } 418 java_lang_Class->SetClassSize(class_class_size); 419 java_lang_Class->SetPrimitiveType(Primitive::kPrimNot); 420 heap->DecrementDisableMovingGC(self); 421 // AllocClass(ObjPtr<mirror::Class>) can now be used 422 423 // Class[] is used for reflection support. 424 auto class_array_class_size = mirror::ObjectArray<mirror::Class>::ClassSize(image_pointer_size_); 425 Handle<mirror::Class> class_array_class(hs.NewHandle( 426 AllocClass(self, java_lang_Class.Get(), class_array_class_size))); 427 class_array_class->SetComponentType(java_lang_Class.Get()); 428 429 // java_lang_Object comes next so that object_array_class can be created. 430 Handle<mirror::Class> java_lang_Object(hs.NewHandle( 431 AllocClass(self, java_lang_Class.Get(), mirror::Object::ClassSize(image_pointer_size_)))); 432 CHECK(java_lang_Object != nullptr); 433 // backfill Object as the super class of Class. 434 java_lang_Class->SetSuperClass(java_lang_Object.Get()); 435 mirror::Class::SetStatus(java_lang_Object, mirror::Class::kStatusLoaded, self); 436 437 java_lang_Object->SetObjectSize(sizeof(mirror::Object)); 438 // Allocate in non-movable so that it's possible to check if a JNI weak global ref has been 439 // cleared without triggering the read barrier and unintentionally mark the sentinel alive. 440 runtime->SetSentinel(heap->AllocNonMovableObject<true>(self, 441 java_lang_Object.Get(), 442 java_lang_Object->GetObjectSize(), 443 VoidFunctor())); 444 445 // Object[] next to hold class roots. 446 Handle<mirror::Class> object_array_class(hs.NewHandle( 447 AllocClass(self, java_lang_Class.Get(), 448 mirror::ObjectArray<mirror::Object>::ClassSize(image_pointer_size_)))); 449 object_array_class->SetComponentType(java_lang_Object.Get()); 450 451 // Setup the char (primitive) class to be used for char[]. 452 Handle<mirror::Class> char_class(hs.NewHandle( 453 AllocClass(self, java_lang_Class.Get(), 454 mirror::Class::PrimitiveClassSize(image_pointer_size_)))); 455 // The primitive char class won't be initialized by 456 // InitializePrimitiveClass until line 459, but strings (and 457 // internal char arrays) will be allocated before that and the 458 // component size, which is computed from the primitive type, needs 459 // to be set here. 460 char_class->SetPrimitiveType(Primitive::kPrimChar); 461 462 // Setup the char[] class to be used for String. 463 Handle<mirror::Class> char_array_class(hs.NewHandle( 464 AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_)))); 465 char_array_class->SetComponentType(char_class.Get()); 466 mirror::CharArray::SetArrayClass(char_array_class.Get()); 467 468 // Setup String. 469 Handle<mirror::Class> java_lang_String(hs.NewHandle( 470 AllocClass(self, java_lang_Class.Get(), mirror::String::ClassSize(image_pointer_size_)))); 471 java_lang_String->SetStringClass(); 472 mirror::String::SetClass(java_lang_String.Get()); 473 mirror::Class::SetStatus(java_lang_String, mirror::Class::kStatusResolved, self); 474 475 // Setup java.lang.ref.Reference. 476 Handle<mirror::Class> java_lang_ref_Reference(hs.NewHandle( 477 AllocClass(self, java_lang_Class.Get(), mirror::Reference::ClassSize(image_pointer_size_)))); 478 mirror::Reference::SetClass(java_lang_ref_Reference.Get()); 479 java_lang_ref_Reference->SetObjectSize(mirror::Reference::InstanceSize()); 480 mirror::Class::SetStatus(java_lang_ref_Reference, mirror::Class::kStatusResolved, self); 481 482 // Create storage for root classes, save away our work so far (requires descriptors). 483 class_roots_ = GcRoot<mirror::ObjectArray<mirror::Class>>( 484 mirror::ObjectArray<mirror::Class>::Alloc(self, object_array_class.Get(), 485 kClassRootsMax)); 486 CHECK(!class_roots_.IsNull()); 487 SetClassRoot(kJavaLangClass, java_lang_Class.Get()); 488 SetClassRoot(kJavaLangObject, java_lang_Object.Get()); 489 SetClassRoot(kClassArrayClass, class_array_class.Get()); 490 SetClassRoot(kObjectArrayClass, object_array_class.Get()); 491 SetClassRoot(kCharArrayClass, char_array_class.Get()); 492 SetClassRoot(kJavaLangString, java_lang_String.Get()); 493 SetClassRoot(kJavaLangRefReference, java_lang_ref_Reference.Get()); 494 495 // Fill in the empty iftable. Needs to be done after the kObjectArrayClass root is set. 496 java_lang_Object->SetIfTable(AllocIfTable(self, 0)); 497 498 // Setup the primitive type classes. 499 SetClassRoot(kPrimitiveBoolean, CreatePrimitiveClass(self, Primitive::kPrimBoolean)); 500 SetClassRoot(kPrimitiveByte, CreatePrimitiveClass(self, Primitive::kPrimByte)); 501 SetClassRoot(kPrimitiveShort, CreatePrimitiveClass(self, Primitive::kPrimShort)); 502 SetClassRoot(kPrimitiveInt, CreatePrimitiveClass(self, Primitive::kPrimInt)); 503 SetClassRoot(kPrimitiveLong, CreatePrimitiveClass(self, Primitive::kPrimLong)); 504 SetClassRoot(kPrimitiveFloat, CreatePrimitiveClass(self, Primitive::kPrimFloat)); 505 SetClassRoot(kPrimitiveDouble, CreatePrimitiveClass(self, Primitive::kPrimDouble)); 506 SetClassRoot(kPrimitiveVoid, CreatePrimitiveClass(self, Primitive::kPrimVoid)); 507 508 // Create array interface entries to populate once we can load system classes. 509 array_iftable_ = GcRoot<mirror::IfTable>(AllocIfTable(self, 2)); 510 511 // Create int array type for AllocDexCache (done in AppendToBootClassPath). 512 Handle<mirror::Class> int_array_class(hs.NewHandle( 513 AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_)))); 514 int_array_class->SetComponentType(GetClassRoot(kPrimitiveInt)); 515 mirror::IntArray::SetArrayClass(int_array_class.Get()); 516 SetClassRoot(kIntArrayClass, int_array_class.Get()); 517 518 // Create long array type for AllocDexCache (done in AppendToBootClassPath). 519 Handle<mirror::Class> long_array_class(hs.NewHandle( 520 AllocClass(self, java_lang_Class.Get(), mirror::Array::ClassSize(image_pointer_size_)))); 521 long_array_class->SetComponentType(GetClassRoot(kPrimitiveLong)); 522 mirror::LongArray::SetArrayClass(long_array_class.Get()); 523 SetClassRoot(kLongArrayClass, long_array_class.Get()); 524 525 // now that these are registered, we can use AllocClass() and AllocObjectArray 526 527 // Set up DexCache. This cannot be done later since AppendToBootClassPath calls AllocDexCache. 528 Handle<mirror::Class> java_lang_DexCache(hs.NewHandle( 529 AllocClass(self, java_lang_Class.Get(), mirror::DexCache::ClassSize(image_pointer_size_)))); 530 SetClassRoot(kJavaLangDexCache, java_lang_DexCache.Get()); 531 java_lang_DexCache->SetDexCacheClass(); 532 java_lang_DexCache->SetObjectSize(mirror::DexCache::InstanceSize()); 533 mirror::Class::SetStatus(java_lang_DexCache, mirror::Class::kStatusResolved, self); 534 535 536 // Setup dalvik.system.ClassExt 537 Handle<mirror::Class> dalvik_system_ClassExt(hs.NewHandle( 538 AllocClass(self, java_lang_Class.Get(), mirror::ClassExt::ClassSize(image_pointer_size_)))); 539 SetClassRoot(kDalvikSystemClassExt, dalvik_system_ClassExt.Get()); 540 mirror::ClassExt::SetClass(dalvik_system_ClassExt.Get()); 541 mirror::Class::SetStatus(dalvik_system_ClassExt, mirror::Class::kStatusResolved, self); 542 543 // Set up array classes for string, field, method 544 Handle<mirror::Class> object_array_string(hs.NewHandle( 545 AllocClass(self, java_lang_Class.Get(), 546 mirror::ObjectArray<mirror::String>::ClassSize(image_pointer_size_)))); 547 object_array_string->SetComponentType(java_lang_String.Get()); 548 SetClassRoot(kJavaLangStringArrayClass, object_array_string.Get()); 549 550 LinearAlloc* linear_alloc = runtime->GetLinearAlloc(); 551 // Create runtime resolution and imt conflict methods. 552 runtime->SetResolutionMethod(runtime->CreateResolutionMethod()); 553 runtime->SetImtConflictMethod(runtime->CreateImtConflictMethod(linear_alloc)); 554 runtime->SetImtUnimplementedMethod(runtime->CreateImtConflictMethod(linear_alloc)); 555 556 // Setup boot_class_path_ and register class_path now that we can use AllocObjectArray to create 557 // DexCache instances. Needs to be after String, Field, Method arrays since AllocDexCache uses 558 // these roots. 559 if (boot_class_path.empty()) { 560 *error_msg = "Boot classpath is empty."; 561 return false; 562 } 563 for (auto& dex_file : boot_class_path) { 564 if (dex_file.get() == nullptr) { 565 *error_msg = "Null dex file."; 566 return false; 567 } 568 AppendToBootClassPath(self, *dex_file); 569 boot_dex_files_.push_back(std::move(dex_file)); 570 } 571 572 // now we can use FindSystemClass 573 574 // run char class through InitializePrimitiveClass to finish init 575 InitializePrimitiveClass(char_class.Get(), Primitive::kPrimChar); 576 SetClassRoot(kPrimitiveChar, char_class.Get()); // needs descriptor 577 578 // Set up GenericJNI entrypoint. That is mainly a hack for common_compiler_test.h so that 579 // we do not need friend classes or a publicly exposed setter. 580 quick_generic_jni_trampoline_ = GetQuickGenericJniStub(); 581 if (!runtime->IsAotCompiler()) { 582 // We need to set up the generic trampolines since we don't have an image. 583 quick_resolution_trampoline_ = GetQuickResolutionStub(); 584 quick_imt_conflict_trampoline_ = GetQuickImtConflictStub(); 585 quick_to_interpreter_bridge_trampoline_ = GetQuickToInterpreterBridge(); 586 } 587 588 // Object, String, ClassExt and DexCache need to be rerun through FindSystemClass to finish init 589 mirror::Class::SetStatus(java_lang_Object, mirror::Class::kStatusNotReady, self); 590 CheckSystemClass(self, java_lang_Object, "Ljava/lang/Object;"); 591 CHECK_EQ(java_lang_Object->GetObjectSize(), mirror::Object::InstanceSize()); 592 mirror::Class::SetStatus(java_lang_String, mirror::Class::kStatusNotReady, self); 593 CheckSystemClass(self, java_lang_String, "Ljava/lang/String;"); 594 mirror::Class::SetStatus(java_lang_DexCache, mirror::Class::kStatusNotReady, self); 595 CheckSystemClass(self, java_lang_DexCache, "Ljava/lang/DexCache;"); 596 CHECK_EQ(java_lang_DexCache->GetObjectSize(), mirror::DexCache::InstanceSize()); 597 mirror::Class::SetStatus(dalvik_system_ClassExt, mirror::Class::kStatusNotReady, self); 598 CheckSystemClass(self, dalvik_system_ClassExt, "Ldalvik/system/ClassExt;"); 599 CHECK_EQ(dalvik_system_ClassExt->GetObjectSize(), mirror::ClassExt::InstanceSize()); 600 601 // Setup the primitive array type classes - can't be done until Object has a vtable. 602 SetClassRoot(kBooleanArrayClass, FindSystemClass(self, "[Z")); 603 mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass)); 604 605 SetClassRoot(kByteArrayClass, FindSystemClass(self, "[B")); 606 mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass)); 607 608 CheckSystemClass(self, char_array_class, "[C"); 609 610 SetClassRoot(kShortArrayClass, FindSystemClass(self, "[S")); 611 mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass)); 612 613 CheckSystemClass(self, int_array_class, "[I"); 614 CheckSystemClass(self, long_array_class, "[J"); 615 616 SetClassRoot(kFloatArrayClass, FindSystemClass(self, "[F")); 617 mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass)); 618 619 SetClassRoot(kDoubleArrayClass, FindSystemClass(self, "[D")); 620 mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass)); 621 622 // Run Class through FindSystemClass. This initializes the dex_cache_ fields and register it 623 // in class_table_. 624 CheckSystemClass(self, java_lang_Class, "Ljava/lang/Class;"); 625 626 CheckSystemClass(self, class_array_class, "[Ljava/lang/Class;"); 627 CheckSystemClass(self, object_array_class, "[Ljava/lang/Object;"); 628 629 // Setup the single, global copy of "iftable". 630 auto java_lang_Cloneable = hs.NewHandle(FindSystemClass(self, "Ljava/lang/Cloneable;")); 631 CHECK(java_lang_Cloneable != nullptr); 632 auto java_io_Serializable = hs.NewHandle(FindSystemClass(self, "Ljava/io/Serializable;")); 633 CHECK(java_io_Serializable != nullptr); 634 // We assume that Cloneable/Serializable don't have superinterfaces -- normally we'd have to 635 // crawl up and explicitly list all of the supers as well. 636 array_iftable_.Read()->SetInterface(0, java_lang_Cloneable.Get()); 637 array_iftable_.Read()->SetInterface(1, java_io_Serializable.Get()); 638 639 // Sanity check Class[] and Object[]'s interfaces. GetDirectInterface may cause thread 640 // suspension. 641 CHECK_EQ(java_lang_Cloneable.Get(), 642 mirror::Class::GetDirectInterface(self, class_array_class.Get(), 0)); 643 CHECK_EQ(java_io_Serializable.Get(), 644 mirror::Class::GetDirectInterface(self, class_array_class.Get(), 1)); 645 CHECK_EQ(java_lang_Cloneable.Get(), 646 mirror::Class::GetDirectInterface(self, object_array_class.Get(), 0)); 647 CHECK_EQ(java_io_Serializable.Get(), 648 mirror::Class::GetDirectInterface(self, object_array_class.Get(), 1)); 649 650 CHECK_EQ(object_array_string.Get(), 651 FindSystemClass(self, GetClassRootDescriptor(kJavaLangStringArrayClass))); 652 653 // End of special init trickery, all subsequent classes may be loaded via FindSystemClass. 654 655 // Create java.lang.reflect.Proxy root. 656 SetClassRoot(kJavaLangReflectProxy, FindSystemClass(self, "Ljava/lang/reflect/Proxy;")); 657 658 // Create java.lang.reflect.Field.class root. 659 auto* class_root = FindSystemClass(self, "Ljava/lang/reflect/Field;"); 660 CHECK(class_root != nullptr); 661 SetClassRoot(kJavaLangReflectField, class_root); 662 mirror::Field::SetClass(class_root); 663 664 // Create java.lang.reflect.Field array root. 665 class_root = FindSystemClass(self, "[Ljava/lang/reflect/Field;"); 666 CHECK(class_root != nullptr); 667 SetClassRoot(kJavaLangReflectFieldArrayClass, class_root); 668 mirror::Field::SetArrayClass(class_root); 669 670 // Create java.lang.reflect.Constructor.class root and array root. 671 class_root = FindSystemClass(self, "Ljava/lang/reflect/Constructor;"); 672 CHECK(class_root != nullptr); 673 SetClassRoot(kJavaLangReflectConstructor, class_root); 674 mirror::Constructor::SetClass(class_root); 675 class_root = FindSystemClass(self, "[Ljava/lang/reflect/Constructor;"); 676 CHECK(class_root != nullptr); 677 SetClassRoot(kJavaLangReflectConstructorArrayClass, class_root); 678 mirror::Constructor::SetArrayClass(class_root); 679 680 // Create java.lang.reflect.Method.class root and array root. 681 class_root = FindSystemClass(self, "Ljava/lang/reflect/Method;"); 682 CHECK(class_root != nullptr); 683 SetClassRoot(kJavaLangReflectMethod, class_root); 684 mirror::Method::SetClass(class_root); 685 class_root = FindSystemClass(self, "[Ljava/lang/reflect/Method;"); 686 CHECK(class_root != nullptr); 687 SetClassRoot(kJavaLangReflectMethodArrayClass, class_root); 688 mirror::Method::SetArrayClass(class_root); 689 690 // Create java.lang.invoke.MethodType.class root 691 class_root = FindSystemClass(self, "Ljava/lang/invoke/MethodType;"); 692 CHECK(class_root != nullptr); 693 SetClassRoot(kJavaLangInvokeMethodType, class_root); 694 mirror::MethodType::SetClass(class_root); 695 696 // Create java.lang.invoke.MethodHandleImpl.class root 697 class_root = FindSystemClass(self, "Ljava/lang/invoke/MethodHandleImpl;"); 698 CHECK(class_root != nullptr); 699 SetClassRoot(kJavaLangInvokeMethodHandleImpl, class_root); 700 mirror::MethodHandleImpl::SetClass(class_root); 701 702 // Create java.lang.invoke.MethodHandles.Lookup.class root 703 class_root = FindSystemClass(self, "Ljava/lang/invoke/MethodHandles$Lookup;"); 704 CHECK(class_root != nullptr); 705 SetClassRoot(kJavaLangInvokeMethodHandlesLookup, class_root); 706 mirror::MethodHandlesLookup::SetClass(class_root); 707 708 // Create java.lang.invoke.CallSite.class root 709 class_root = FindSystemClass(self, "Ljava/lang/invoke/CallSite;"); 710 CHECK(class_root != nullptr); 711 SetClassRoot(kJavaLangInvokeCallSite, class_root); 712 mirror::CallSite::SetClass(class_root); 713 714 class_root = FindSystemClass(self, "Ldalvik/system/EmulatedStackFrame;"); 715 CHECK(class_root != nullptr); 716 SetClassRoot(kDalvikSystemEmulatedStackFrame, class_root); 717 mirror::EmulatedStackFrame::SetClass(class_root); 718 719 // java.lang.ref classes need to be specially flagged, but otherwise are normal classes 720 // finish initializing Reference class 721 mirror::Class::SetStatus(java_lang_ref_Reference, mirror::Class::kStatusNotReady, self); 722 CheckSystemClass(self, java_lang_ref_Reference, "Ljava/lang/ref/Reference;"); 723 CHECK_EQ(java_lang_ref_Reference->GetObjectSize(), mirror::Reference::InstanceSize()); 724 CHECK_EQ(java_lang_ref_Reference->GetClassSize(), 725 mirror::Reference::ClassSize(image_pointer_size_)); 726 class_root = FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;"); 727 CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal); 728 class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagFinalizerReference); 729 class_root = FindSystemClass(self, "Ljava/lang/ref/PhantomReference;"); 730 CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal); 731 class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagPhantomReference); 732 class_root = FindSystemClass(self, "Ljava/lang/ref/SoftReference;"); 733 CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal); 734 class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagSoftReference); 735 class_root = FindSystemClass(self, "Ljava/lang/ref/WeakReference;"); 736 CHECK_EQ(class_root->GetClassFlags(), mirror::kClassFlagNormal); 737 class_root->SetClassFlags(class_root->GetClassFlags() | mirror::kClassFlagWeakReference); 738 739 // Setup the ClassLoader, verifying the object_size_. 740 class_root = FindSystemClass(self, "Ljava/lang/ClassLoader;"); 741 class_root->SetClassLoaderClass(); 742 CHECK_EQ(class_root->GetObjectSize(), mirror::ClassLoader::InstanceSize()); 743 SetClassRoot(kJavaLangClassLoader, class_root); 744 745 // Set up java.lang.Throwable, java.lang.ClassNotFoundException, and 746 // java.lang.StackTraceElement as a convenience. 747 SetClassRoot(kJavaLangThrowable, FindSystemClass(self, "Ljava/lang/Throwable;")); 748 mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable)); 749 SetClassRoot(kJavaLangClassNotFoundException, 750 FindSystemClass(self, "Ljava/lang/ClassNotFoundException;")); 751 SetClassRoot(kJavaLangStackTraceElement, FindSystemClass(self, "Ljava/lang/StackTraceElement;")); 752 SetClassRoot(kJavaLangStackTraceElementArrayClass, 753 FindSystemClass(self, "[Ljava/lang/StackTraceElement;")); 754 mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement)); 755 756 // Create conflict tables that depend on the class linker. 757 runtime->FixupConflictTables(); 758 759 FinishInit(self); 760 761 VLOG(startup) << "ClassLinker::InitFromCompiler exiting"; 762 763 return true; 764 } 765 766 void ClassLinker::FinishInit(Thread* self) { 767 VLOG(startup) << "ClassLinker::FinishInit entering"; 768 769 // Let the heap know some key offsets into java.lang.ref instances 770 // Note: we hard code the field indexes here rather than using FindInstanceField 771 // as the types of the field can't be resolved prior to the runtime being 772 // fully initialized 773 StackHandleScope<2> hs(self); 774 Handle<mirror::Class> java_lang_ref_Reference = hs.NewHandle(GetClassRoot(kJavaLangRefReference)); 775 Handle<mirror::Class> java_lang_ref_FinalizerReference = 776 hs.NewHandle(FindSystemClass(self, "Ljava/lang/ref/FinalizerReference;")); 777 778 ArtField* pendingNext = java_lang_ref_Reference->GetInstanceField(0); 779 CHECK_STREQ(pendingNext->GetName(), "pendingNext"); 780 CHECK_STREQ(pendingNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;"); 781 782 ArtField* queue = java_lang_ref_Reference->GetInstanceField(1); 783 CHECK_STREQ(queue->GetName(), "queue"); 784 CHECK_STREQ(queue->GetTypeDescriptor(), "Ljava/lang/ref/ReferenceQueue;"); 785 786 ArtField* queueNext = java_lang_ref_Reference->GetInstanceField(2); 787 CHECK_STREQ(queueNext->GetName(), "queueNext"); 788 CHECK_STREQ(queueNext->GetTypeDescriptor(), "Ljava/lang/ref/Reference;"); 789 790 ArtField* referent = java_lang_ref_Reference->GetInstanceField(3); 791 CHECK_STREQ(referent->GetName(), "referent"); 792 CHECK_STREQ(referent->GetTypeDescriptor(), "Ljava/lang/Object;"); 793 794 ArtField* zombie = java_lang_ref_FinalizerReference->GetInstanceField(2); 795 CHECK_STREQ(zombie->GetName(), "zombie"); 796 CHECK_STREQ(zombie->GetTypeDescriptor(), "Ljava/lang/Object;"); 797 798 // ensure all class_roots_ are initialized 799 for (size_t i = 0; i < kClassRootsMax; i++) { 800 ClassRoot class_root = static_cast<ClassRoot>(i); 801 ObjPtr<mirror::Class> klass = GetClassRoot(class_root); 802 CHECK(klass != nullptr); 803 DCHECK(klass->IsArrayClass() || klass->IsPrimitive() || klass->GetDexCache() != nullptr); 804 // note SetClassRoot does additional validation. 805 // if possible add new checks there to catch errors early 806 } 807 808 CHECK(!array_iftable_.IsNull()); 809 810 // disable the slow paths in FindClass and CreatePrimitiveClass now 811 // that Object, Class, and Object[] are setup 812 init_done_ = true; 813 814 VLOG(startup) << "ClassLinker::FinishInit exiting"; 815 } 816 817 void ClassLinker::RunRootClinits() { 818 Thread* self = Thread::Current(); 819 for (size_t i = 0; i < ClassLinker::kClassRootsMax; ++i) { 820 ObjPtr<mirror::Class> c = GetClassRoot(ClassRoot(i)); 821 if (!c->IsArrayClass() && !c->IsPrimitive()) { 822 StackHandleScope<1> hs(self); 823 Handle<mirror::Class> h_class(hs.NewHandle(GetClassRoot(ClassRoot(i)))); 824 EnsureInitialized(self, h_class, true, true); 825 self->AssertNoPendingException(); 826 } 827 } 828 } 829 830 // Set image methods' entry point to interpreter. 831 class SetInterpreterEntrypointArtMethodVisitor : public ArtMethodVisitor { 832 public: 833 explicit SetInterpreterEntrypointArtMethodVisitor(PointerSize image_pointer_size) 834 : image_pointer_size_(image_pointer_size) {} 835 836 void Visit(ArtMethod* method) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { 837 if (kIsDebugBuild && !method->IsRuntimeMethod()) { 838 CHECK(method->GetDeclaringClass() != nullptr); 839 } 840 if (!method->IsNative() && !method->IsRuntimeMethod() && !method->IsResolutionMethod()) { 841 method->SetEntryPointFromQuickCompiledCodePtrSize(GetQuickToInterpreterBridge(), 842 image_pointer_size_); 843 } 844 } 845 846 private: 847 const PointerSize image_pointer_size_; 848 849 DISALLOW_COPY_AND_ASSIGN(SetInterpreterEntrypointArtMethodVisitor); 850 }; 851 852 struct TrampolineCheckData { 853 const void* quick_resolution_trampoline; 854 const void* quick_imt_conflict_trampoline; 855 const void* quick_generic_jni_trampoline; 856 const void* quick_to_interpreter_bridge_trampoline; 857 PointerSize pointer_size; 858 ArtMethod* m; 859 bool error; 860 }; 861 862 static void CheckTrampolines(mirror::Object* obj, void* arg) NO_THREAD_SAFETY_ANALYSIS { 863 if (obj->IsClass()) { 864 ObjPtr<mirror::Class> klass = obj->AsClass(); 865 TrampolineCheckData* d = reinterpret_cast<TrampolineCheckData*>(arg); 866 for (ArtMethod& m : klass->GetMethods(d->pointer_size)) { 867 const void* entrypoint = m.GetEntryPointFromQuickCompiledCodePtrSize(d->pointer_size); 868 if (entrypoint == d->quick_resolution_trampoline || 869 entrypoint == d->quick_imt_conflict_trampoline || 870 entrypoint == d->quick_generic_jni_trampoline || 871 entrypoint == d->quick_to_interpreter_bridge_trampoline) { 872 d->m = &m; 873 d->error = true; 874 return; 875 } 876 } 877 } 878 } 879 880 bool ClassLinker::InitFromBootImage(std::string* error_msg) { 881 VLOG(startup) << __FUNCTION__ << " entering"; 882 CHECK(!init_done_); 883 884 Runtime* const runtime = Runtime::Current(); 885 Thread* const self = Thread::Current(); 886 gc::Heap* const heap = runtime->GetHeap(); 887 std::vector<gc::space::ImageSpace*> spaces = heap->GetBootImageSpaces(); 888 CHECK(!spaces.empty()); 889 uint32_t pointer_size_unchecked = spaces[0]->GetImageHeader().GetPointerSizeUnchecked(); 890 if (!ValidPointerSize(pointer_size_unchecked)) { 891 *error_msg = StringPrintf("Invalid image pointer size: %u", pointer_size_unchecked); 892 return false; 893 } 894 image_pointer_size_ = spaces[0]->GetImageHeader().GetPointerSize(); 895 if (!runtime->IsAotCompiler()) { 896 // Only the Aot compiler supports having an image with a different pointer size than the 897 // runtime. This happens on the host for compiling 32 bit tests since we use a 64 bit libart 898 // compiler. We may also use 32 bit dex2oat on a system with 64 bit apps. 899 if (image_pointer_size_ != kRuntimePointerSize) { 900 *error_msg = StringPrintf("Runtime must use current image pointer size: %zu vs %zu", 901 static_cast<size_t>(image_pointer_size_), 902 sizeof(void*)); 903 return false; 904 } 905 } 906 std::vector<const OatFile*> oat_files = 907 runtime->GetOatFileManager().RegisterImageOatFiles(spaces); 908 DCHECK(!oat_files.empty()); 909 const OatHeader& default_oat_header = oat_files[0]->GetOatHeader(); 910 CHECK_EQ(default_oat_header.GetImageFileLocationOatDataBegin(), 0U); 911 const char* image_file_location = oat_files[0]->GetOatHeader(). 912 GetStoreValueByKey(OatHeader::kImageLocationKey); 913 CHECK(image_file_location == nullptr || *image_file_location == 0); 914 quick_resolution_trampoline_ = default_oat_header.GetQuickResolutionTrampoline(); 915 quick_imt_conflict_trampoline_ = default_oat_header.GetQuickImtConflictTrampoline(); 916 quick_generic_jni_trampoline_ = default_oat_header.GetQuickGenericJniTrampoline(); 917 quick_to_interpreter_bridge_trampoline_ = default_oat_header.GetQuickToInterpreterBridge(); 918 if (kIsDebugBuild) { 919 // Check that the other images use the same trampoline. 920 for (size_t i = 1; i < oat_files.size(); ++i) { 921 const OatHeader& ith_oat_header = oat_files[i]->GetOatHeader(); 922 const void* ith_quick_resolution_trampoline = 923 ith_oat_header.GetQuickResolutionTrampoline(); 924 const void* ith_quick_imt_conflict_trampoline = 925 ith_oat_header.GetQuickImtConflictTrampoline(); 926 const void* ith_quick_generic_jni_trampoline = 927 ith_oat_header.GetQuickGenericJniTrampoline(); 928 const void* ith_quick_to_interpreter_bridge_trampoline = 929 ith_oat_header.GetQuickToInterpreterBridge(); 930 if (ith_quick_resolution_trampoline != quick_resolution_trampoline_ || 931 ith_quick_imt_conflict_trampoline != quick_imt_conflict_trampoline_ || 932 ith_quick_generic_jni_trampoline != quick_generic_jni_trampoline_ || 933 ith_quick_to_interpreter_bridge_trampoline != quick_to_interpreter_bridge_trampoline_) { 934 // Make sure that all methods in this image do not contain those trampolines as 935 // entrypoints. Otherwise the class-linker won't be able to work with a single set. 936 TrampolineCheckData data; 937 data.error = false; 938 data.pointer_size = GetImagePointerSize(); 939 data.quick_resolution_trampoline = ith_quick_resolution_trampoline; 940 data.quick_imt_conflict_trampoline = ith_quick_imt_conflict_trampoline; 941 data.quick_generic_jni_trampoline = ith_quick_generic_jni_trampoline; 942 data.quick_to_interpreter_bridge_trampoline = ith_quick_to_interpreter_bridge_trampoline; 943 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); 944 spaces[i]->GetLiveBitmap()->Walk(CheckTrampolines, &data); 945 if (data.error) { 946 ArtMethod* m = data.m; 947 LOG(ERROR) << "Found a broken ArtMethod: " << ArtMethod::PrettyMethod(m); 948 *error_msg = "Found an ArtMethod with a bad entrypoint"; 949 return false; 950 } 951 } 952 } 953 } 954 955 class_roots_ = GcRoot<mirror::ObjectArray<mirror::Class>>( 956 down_cast<mirror::ObjectArray<mirror::Class>*>( 957 spaces[0]->GetImageHeader().GetImageRoot(ImageHeader::kClassRoots))); 958 mirror::Class::SetClassClass(class_roots_.Read()->Get(kJavaLangClass)); 959 960 // Special case of setting up the String class early so that we can test arbitrary objects 961 // as being Strings or not 962 mirror::String::SetClass(GetClassRoot(kJavaLangString)); 963 964 ObjPtr<mirror::Class> java_lang_Object = GetClassRoot(kJavaLangObject); 965 java_lang_Object->SetObjectSize(sizeof(mirror::Object)); 966 // Allocate in non-movable so that it's possible to check if a JNI weak global ref has been 967 // cleared without triggering the read barrier and unintentionally mark the sentinel alive. 968 runtime->SetSentinel(heap->AllocNonMovableObject<true>( 969 self, java_lang_Object, java_lang_Object->GetObjectSize(), VoidFunctor())); 970 971 // reinit array_iftable_ from any array class instance, they should be == 972 array_iftable_ = GcRoot<mirror::IfTable>(GetClassRoot(kObjectArrayClass)->GetIfTable()); 973 DCHECK_EQ(array_iftable_.Read(), GetClassRoot(kBooleanArrayClass)->GetIfTable()); 974 // String class root was set above 975 mirror::Field::SetClass(GetClassRoot(kJavaLangReflectField)); 976 mirror::Field::SetArrayClass(GetClassRoot(kJavaLangReflectFieldArrayClass)); 977 mirror::Constructor::SetClass(GetClassRoot(kJavaLangReflectConstructor)); 978 mirror::Constructor::SetArrayClass(GetClassRoot(kJavaLangReflectConstructorArrayClass)); 979 mirror::Method::SetClass(GetClassRoot(kJavaLangReflectMethod)); 980 mirror::Method::SetArrayClass(GetClassRoot(kJavaLangReflectMethodArrayClass)); 981 mirror::MethodType::SetClass(GetClassRoot(kJavaLangInvokeMethodType)); 982 mirror::MethodHandleImpl::SetClass(GetClassRoot(kJavaLangInvokeMethodHandleImpl)); 983 mirror::MethodHandlesLookup::SetClass(GetClassRoot(kJavaLangInvokeMethodHandlesLookup)); 984 mirror::CallSite::SetClass(GetClassRoot(kJavaLangInvokeCallSite)); 985 mirror::Reference::SetClass(GetClassRoot(kJavaLangRefReference)); 986 mirror::BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass)); 987 mirror::ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass)); 988 mirror::CharArray::SetArrayClass(GetClassRoot(kCharArrayClass)); 989 mirror::DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass)); 990 mirror::FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass)); 991 mirror::IntArray::SetArrayClass(GetClassRoot(kIntArrayClass)); 992 mirror::LongArray::SetArrayClass(GetClassRoot(kLongArrayClass)); 993 mirror::ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass)); 994 mirror::Throwable::SetClass(GetClassRoot(kJavaLangThrowable)); 995 mirror::StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement)); 996 mirror::EmulatedStackFrame::SetClass(GetClassRoot(kDalvikSystemEmulatedStackFrame)); 997 mirror::ClassExt::SetClass(GetClassRoot(kDalvikSystemClassExt)); 998 999 for (gc::space::ImageSpace* image_space : spaces) { 1000 // Boot class loader, use a null handle. 1001 std::vector<std::unique_ptr<const DexFile>> dex_files; 1002 if (!AddImageSpace(image_space, 1003 ScopedNullHandle<mirror::ClassLoader>(), 1004 /*dex_elements*/nullptr, 1005 /*dex_location*/nullptr, 1006 /*out*/&dex_files, 1007 error_msg)) { 1008 return false; 1009 } 1010 // Append opened dex files at the end. 1011 boot_dex_files_.insert(boot_dex_files_.end(), 1012 std::make_move_iterator(dex_files.begin()), 1013 std::make_move_iterator(dex_files.end())); 1014 } 1015 FinishInit(self); 1016 1017 VLOG(startup) << __FUNCTION__ << " exiting"; 1018 return true; 1019 } 1020 1021 bool ClassLinker::IsBootClassLoader(ScopedObjectAccessAlreadyRunnable& soa, 1022 ObjPtr<mirror::ClassLoader> class_loader) { 1023 return class_loader == nullptr || 1024 soa.Decode<mirror::Class>(WellKnownClasses::java_lang_BootClassLoader) == 1025 class_loader->GetClass(); 1026 } 1027 1028 static bool GetDexPathListElementName(ObjPtr<mirror::Object> element, 1029 ObjPtr<mirror::String>* out_name) 1030 REQUIRES_SHARED(Locks::mutator_lock_) { 1031 ArtField* const dex_file_field = 1032 jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile); 1033 ArtField* const dex_file_name_field = 1034 jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_fileName); 1035 DCHECK(dex_file_field != nullptr); 1036 DCHECK(dex_file_name_field != nullptr); 1037 DCHECK(element != nullptr); 1038 CHECK_EQ(dex_file_field->GetDeclaringClass(), element->GetClass()) << element->PrettyTypeOf(); 1039 ObjPtr<mirror::Object> dex_file = dex_file_field->GetObject(element); 1040 if (dex_file == nullptr) { 1041 // Null dex file means it was probably a jar with no dex files, return a null string. 1042 *out_name = nullptr; 1043 return true; 1044 } 1045 ObjPtr<mirror::Object> name_object = dex_file_name_field->GetObject(dex_file); 1046 if (name_object != nullptr) { 1047 *out_name = name_object->AsString(); 1048 return true; 1049 } 1050 return false; 1051 } 1052 1053 static bool FlattenPathClassLoader(ObjPtr<mirror::ClassLoader> class_loader, 1054 std::list<ObjPtr<mirror::String>>* out_dex_file_names, 1055 std::string* error_msg) 1056 REQUIRES_SHARED(Locks::mutator_lock_) { 1057 DCHECK(out_dex_file_names != nullptr); 1058 DCHECK(error_msg != nullptr); 1059 ScopedObjectAccessUnchecked soa(Thread::Current()); 1060 ArtField* const dex_path_list_field = 1061 jni::DecodeArtField(WellKnownClasses::dalvik_system_BaseDexClassLoader_pathList); 1062 ArtField* const dex_elements_field = 1063 jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList_dexElements); 1064 CHECK(dex_path_list_field != nullptr); 1065 CHECK(dex_elements_field != nullptr); 1066 while (!ClassLinker::IsBootClassLoader(soa, class_loader)) { 1067 if (soa.Decode<mirror::Class>(WellKnownClasses::dalvik_system_PathClassLoader) != 1068 class_loader->GetClass()) { 1069 *error_msg = StringPrintf("Unknown class loader type %s", 1070 class_loader->PrettyTypeOf().c_str()); 1071 // Unsupported class loader. 1072 return false; 1073 } 1074 ObjPtr<mirror::Object> dex_path_list = dex_path_list_field->GetObject(class_loader); 1075 if (dex_path_list != nullptr) { 1076 // DexPathList has an array dexElements of Elements[] which each contain a dex file. 1077 ObjPtr<mirror::Object> dex_elements_obj = dex_elements_field->GetObject(dex_path_list); 1078 // Loop through each dalvik.system.DexPathList$Element's dalvik.system.DexFile and look 1079 // at the mCookie which is a DexFile vector. 1080 if (dex_elements_obj != nullptr) { 1081 ObjPtr<mirror::ObjectArray<mirror::Object>> dex_elements = 1082 dex_elements_obj->AsObjectArray<mirror::Object>(); 1083 // Reverse order since we insert the parent at the front. 1084 for (int32_t i = dex_elements->GetLength() - 1; i >= 0; --i) { 1085 ObjPtr<mirror::Object> element = dex_elements->GetWithoutChecks(i); 1086 if (element == nullptr) { 1087 *error_msg = StringPrintf("Null dex element at index %d", i); 1088 return false; 1089 } 1090 ObjPtr<mirror::String> name; 1091 if (!GetDexPathListElementName(element, &name)) { 1092 *error_msg = StringPrintf("Invalid dex path list element at index %d", i); 1093 return false; 1094 } 1095 if (name != nullptr) { 1096 out_dex_file_names->push_front(name.Ptr()); 1097 } 1098 } 1099 } 1100 } 1101 class_loader = class_loader->GetParent(); 1102 } 1103 return true; 1104 } 1105 1106 class FixupArtMethodArrayVisitor : public ArtMethodVisitor { 1107 public: 1108 explicit FixupArtMethodArrayVisitor(const ImageHeader& header) : header_(header) {} 1109 1110 virtual void Visit(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { 1111 const bool is_copied = method->IsCopied(); 1112 ArtMethod** resolved_methods = method->GetDexCacheResolvedMethods(kRuntimePointerSize); 1113 if (resolved_methods != nullptr) { 1114 bool in_image_space = false; 1115 if (kIsDebugBuild || is_copied) { 1116 in_image_space = header_.GetImageSection(ImageHeader::kSectionDexCacheArrays).Contains( 1117 reinterpret_cast<const uint8_t*>(resolved_methods) - header_.GetImageBegin()); 1118 } 1119 // Must be in image space for non-miranda method. 1120 DCHECK(is_copied || in_image_space) 1121 << resolved_methods << " is not in image starting at " 1122 << reinterpret_cast<void*>(header_.GetImageBegin()); 1123 if (!is_copied || in_image_space) { 1124 method->SetDexCacheResolvedMethods(method->GetDexCache()->GetResolvedMethods(), 1125 kRuntimePointerSize); 1126 } 1127 } 1128 } 1129 1130 private: 1131 const ImageHeader& header_; 1132 }; 1133 1134 class VerifyClassInTableArtMethodVisitor : public ArtMethodVisitor { 1135 public: 1136 explicit VerifyClassInTableArtMethodVisitor(ClassTable* table) : table_(table) {} 1137 1138 virtual void Visit(ArtMethod* method) 1139 REQUIRES_SHARED(Locks::mutator_lock_, Locks::classlinker_classes_lock_) { 1140 ObjPtr<mirror::Class> klass = method->GetDeclaringClass(); 1141 if (klass != nullptr && !Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) { 1142 CHECK_EQ(table_->LookupByDescriptor(klass), klass) << mirror::Class::PrettyClass(klass); 1143 } 1144 } 1145 1146 private: 1147 ClassTable* const table_; 1148 }; 1149 1150 class VerifyDirectInterfacesInTableClassVisitor { 1151 public: 1152 explicit VerifyDirectInterfacesInTableClassVisitor(ObjPtr<mirror::ClassLoader> class_loader) 1153 : class_loader_(class_loader), self_(Thread::Current()) { } 1154 1155 bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) { 1156 if (!klass->IsPrimitive() && klass->GetClassLoader() == class_loader_) { 1157 classes_.push_back(klass); 1158 } 1159 return true; 1160 } 1161 1162 void Check() const REQUIRES_SHARED(Locks::mutator_lock_) { 1163 for (ObjPtr<mirror::Class> klass : classes_) { 1164 for (uint32_t i = 0, num = klass->NumDirectInterfaces(); i != num; ++i) { 1165 CHECK(klass->GetDirectInterface(self_, klass, i) != nullptr) 1166 << klass->PrettyDescriptor() << " iface #" << i; 1167 } 1168 } 1169 } 1170 1171 private: 1172 ObjPtr<mirror::ClassLoader> class_loader_; 1173 Thread* self_; 1174 std::vector<ObjPtr<mirror::Class>> classes_; 1175 }; 1176 1177 class VerifyDeclaringClassVisitor : public ArtMethodVisitor { 1178 public: 1179 VerifyDeclaringClassVisitor() REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) 1180 : live_bitmap_(Runtime::Current()->GetHeap()->GetLiveBitmap()) {} 1181 1182 virtual void Visit(ArtMethod* method) 1183 REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { 1184 ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked(); 1185 if (klass != nullptr) { 1186 CHECK(live_bitmap_->Test(klass.Ptr())) << "Image method has unmarked declaring class"; 1187 } 1188 } 1189 1190 private: 1191 gc::accounting::HeapBitmap* const live_bitmap_; 1192 }; 1193 1194 // Copies data from one array to another array at the same position 1195 // if pred returns false. If there is a page of continuous data in 1196 // the src array for which pred consistently returns true then 1197 // corresponding page in the dst array will not be touched. 1198 // This should reduce number of allocated physical pages. 1199 template <class T, class NullPred> 1200 static void CopyNonNull(const T* src, size_t count, T* dst, const NullPred& pred) { 1201 for (size_t i = 0; i < count; ++i) { 1202 if (!pred(src[i])) { 1203 dst[i] = src[i]; 1204 } 1205 } 1206 } 1207 1208 template <typename T> 1209 static void CopyDexCachePairs(const std::atomic<mirror::DexCachePair<T>>* src, 1210 size_t count, 1211 std::atomic<mirror::DexCachePair<T>>* dst) { 1212 DCHECK_NE(count, 0u); 1213 DCHECK(!src[0].load(std::memory_order_relaxed).object.IsNull() || 1214 src[0].load(std::memory_order_relaxed).index != 0u); 1215 for (size_t i = 0; i < count; ++i) { 1216 DCHECK_EQ(dst[i].load(std::memory_order_relaxed).index, 0u); 1217 DCHECK(dst[i].load(std::memory_order_relaxed).object.IsNull()); 1218 mirror::DexCachePair<T> source = src[i].load(std::memory_order_relaxed); 1219 if (source.index != 0u || !source.object.IsNull()) { 1220 dst[i].store(source, std::memory_order_relaxed); 1221 } 1222 } 1223 } 1224 1225 bool ClassLinker::UpdateAppImageClassLoadersAndDexCaches( 1226 gc::space::ImageSpace* space, 1227 Handle<mirror::ClassLoader> class_loader, 1228 Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches, 1229 ClassTable::ClassSet* new_class_set, 1230 bool* out_forward_dex_cache_array, 1231 std::string* out_error_msg) { 1232 DCHECK(out_forward_dex_cache_array != nullptr); 1233 DCHECK(out_error_msg != nullptr); 1234 Thread* const self = Thread::Current(); 1235 gc::Heap* const heap = Runtime::Current()->GetHeap(); 1236 const ImageHeader& header = space->GetImageHeader(); 1237 { 1238 // Add image classes into the class table for the class loader, and fixup the dex caches and 1239 // class loader fields. 1240 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); 1241 // Dex cache array fixup is all or nothing, we must reject app images that have mixed since we 1242 // rely on clobering the dex cache arrays in the image to forward to bss. 1243 size_t num_dex_caches_with_bss_arrays = 0; 1244 const size_t num_dex_caches = dex_caches->GetLength(); 1245 for (size_t i = 0; i < num_dex_caches; i++) { 1246 ObjPtr<mirror::DexCache> const dex_cache = dex_caches->Get(i); 1247 const DexFile* const dex_file = dex_cache->GetDexFile(); 1248 const OatFile::OatDexFile* oat_dex_file = dex_file->GetOatDexFile(); 1249 if (oat_dex_file != nullptr && oat_dex_file->GetDexCacheArrays() != nullptr) { 1250 ++num_dex_caches_with_bss_arrays; 1251 } 1252 } 1253 *out_forward_dex_cache_array = num_dex_caches_with_bss_arrays != 0; 1254 if (*out_forward_dex_cache_array) { 1255 if (num_dex_caches_with_bss_arrays != num_dex_caches) { 1256 // Reject application image since we cannot forward only some of the dex cache arrays. 1257 // TODO: We could get around this by having a dedicated forwarding slot. It should be an 1258 // uncommon case. 1259 *out_error_msg = StringPrintf("Dex caches in bss does not match total: %zu vs %zu", 1260 num_dex_caches_with_bss_arrays, 1261 num_dex_caches); 1262 return false; 1263 } 1264 } 1265 // Only add the classes to the class loader after the points where we can return false. 1266 for (size_t i = 0; i < num_dex_caches; i++) { 1267 ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i); 1268 const DexFile* const dex_file = dex_cache->GetDexFile(); 1269 const OatFile::OatDexFile* oat_dex_file = dex_file->GetOatDexFile(); 1270 if (oat_dex_file != nullptr && oat_dex_file->GetDexCacheArrays() != nullptr) { 1271 // If the oat file expects the dex cache arrays to be in the BSS, then allocate there and 1272 // copy over the arrays. 1273 DCHECK(dex_file != nullptr); 1274 size_t num_strings = mirror::DexCache::kDexCacheStringCacheSize; 1275 if (dex_file->NumStringIds() < num_strings) { 1276 num_strings = dex_file->NumStringIds(); 1277 } 1278 size_t num_types = mirror::DexCache::kDexCacheTypeCacheSize; 1279 if (dex_file->NumTypeIds() < num_types) { 1280 num_types = dex_file->NumTypeIds(); 1281 } 1282 const size_t num_methods = dex_file->NumMethodIds(); 1283 size_t num_fields = mirror::DexCache::kDexCacheFieldCacheSize; 1284 if (dex_file->NumFieldIds() < num_fields) { 1285 num_fields = dex_file->NumFieldIds(); 1286 } 1287 size_t num_method_types = mirror::DexCache::kDexCacheMethodTypeCacheSize; 1288 if (dex_file->NumProtoIds() < num_method_types) { 1289 num_method_types = dex_file->NumProtoIds(); 1290 } 1291 const size_t num_call_sites = dex_file->NumCallSiteIds(); 1292 CHECK_EQ(num_strings, dex_cache->NumStrings()); 1293 CHECK_EQ(num_types, dex_cache->NumResolvedTypes()); 1294 CHECK_EQ(num_methods, dex_cache->NumResolvedMethods()); 1295 CHECK_EQ(num_fields, dex_cache->NumResolvedFields()); 1296 CHECK_EQ(num_method_types, dex_cache->NumResolvedMethodTypes()); 1297 CHECK_EQ(num_call_sites, dex_cache->NumResolvedCallSites()); 1298 DexCacheArraysLayout layout(image_pointer_size_, dex_file); 1299 uint8_t* const raw_arrays = oat_dex_file->GetDexCacheArrays(); 1300 if (num_strings != 0u) { 1301 mirror::StringDexCacheType* const image_resolved_strings = dex_cache->GetStrings(); 1302 mirror::StringDexCacheType* const strings = 1303 reinterpret_cast<mirror::StringDexCacheType*>(raw_arrays + layout.StringsOffset()); 1304 CopyDexCachePairs(image_resolved_strings, num_strings, strings); 1305 dex_cache->SetStrings(strings); 1306 } 1307 if (num_types != 0u) { 1308 mirror::TypeDexCacheType* const image_resolved_types = dex_cache->GetResolvedTypes(); 1309 mirror::TypeDexCacheType* const types = 1310 reinterpret_cast<mirror::TypeDexCacheType*>(raw_arrays + layout.TypesOffset()); 1311 CopyDexCachePairs(image_resolved_types, num_types, types); 1312 dex_cache->SetResolvedTypes(types); 1313 } 1314 if (num_methods != 0u) { 1315 ArtMethod** const methods = reinterpret_cast<ArtMethod**>( 1316 raw_arrays + layout.MethodsOffset()); 1317 ArtMethod** const image_resolved_methods = dex_cache->GetResolvedMethods(); 1318 for (size_t j = 0; kIsDebugBuild && j < num_methods; ++j) { 1319 DCHECK(methods[j] == nullptr); 1320 } 1321 CopyNonNull(image_resolved_methods, 1322 num_methods, 1323 methods, 1324 [] (const ArtMethod* method) { 1325 return method == nullptr; 1326 }); 1327 dex_cache->SetResolvedMethods(methods); 1328 } 1329 if (num_fields != 0u) { 1330 mirror::FieldDexCacheType* const image_resolved_fields = dex_cache->GetResolvedFields(); 1331 mirror::FieldDexCacheType* const fields = 1332 reinterpret_cast<mirror::FieldDexCacheType*>(raw_arrays + layout.FieldsOffset()); 1333 for (size_t j = 0; j < num_fields; ++j) { 1334 DCHECK_EQ(mirror::DexCache::GetNativePairPtrSize(fields, j, image_pointer_size_).index, 1335 0u); 1336 DCHECK(mirror::DexCache::GetNativePairPtrSize(fields, j, image_pointer_size_).object == 1337 nullptr); 1338 mirror::DexCache::SetNativePairPtrSize( 1339 fields, 1340 j, 1341 mirror::DexCache::GetNativePairPtrSize(image_resolved_fields, 1342 j, 1343 image_pointer_size_), 1344 image_pointer_size_); 1345 } 1346 dex_cache->SetResolvedFields(fields); 1347 } 1348 if (num_method_types != 0u) { 1349 // NOTE: We currently (Sep 2016) do not resolve any method types at 1350 // compile time, but plan to in the future. This code exists for the 1351 // sake of completeness. 1352 mirror::MethodTypeDexCacheType* const image_resolved_method_types = 1353 dex_cache->GetResolvedMethodTypes(); 1354 mirror::MethodTypeDexCacheType* const method_types = 1355 reinterpret_cast<mirror::MethodTypeDexCacheType*>( 1356 raw_arrays + layout.MethodTypesOffset()); 1357 CopyDexCachePairs(image_resolved_method_types, num_method_types, method_types); 1358 dex_cache->SetResolvedMethodTypes(method_types); 1359 } 1360 if (num_call_sites != 0u) { 1361 GcRoot<mirror::CallSite>* const image_resolved_call_sites = 1362 dex_cache->GetResolvedCallSites(); 1363 GcRoot<mirror::CallSite>* const call_sites = 1364 reinterpret_cast<GcRoot<mirror::CallSite>*>(raw_arrays + layout.CallSitesOffset()); 1365 for (size_t j = 0; kIsDebugBuild && j < num_call_sites; ++j) { 1366 DCHECK(call_sites[j].IsNull()); 1367 } 1368 CopyNonNull(image_resolved_call_sites, 1369 num_call_sites, 1370 call_sites, 1371 [](const GcRoot<mirror::CallSite>& elem) { 1372 return elem.IsNull(); 1373 }); 1374 dex_cache->SetResolvedCallSites(call_sites); 1375 } 1376 } 1377 { 1378 WriterMutexLock mu2(self, *Locks::dex_lock_); 1379 // Make sure to do this after we update the arrays since we store the resolved types array 1380 // in DexCacheData in RegisterDexFileLocked. We need the array pointer to be the one in the 1381 // BSS. 1382 CHECK(!FindDexCacheDataLocked(*dex_file).IsValid()); 1383 RegisterDexFileLocked(*dex_file, dex_cache, class_loader.Get()); 1384 } 1385 if (kIsDebugBuild) { 1386 CHECK(new_class_set != nullptr); 1387 mirror::TypeDexCacheType* const types = dex_cache->GetResolvedTypes(); 1388 const size_t num_types = dex_cache->NumResolvedTypes(); 1389 for (size_t j = 0; j != num_types; ++j) { 1390 // The image space is not yet added to the heap, avoid read barriers. 1391 ObjPtr<mirror::Class> klass = types[j].load(std::memory_order_relaxed).object.Read(); 1392 if (space->HasAddress(klass.Ptr())) { 1393 DCHECK(!klass->IsErroneous()) << klass->GetStatus(); 1394 auto it = new_class_set->Find(ClassTable::TableSlot(klass)); 1395 DCHECK(it != new_class_set->end()); 1396 DCHECK_EQ(it->Read(), klass); 1397 ObjPtr<mirror::Class> super_class = klass->GetSuperClass(); 1398 if (super_class != nullptr && !heap->ObjectIsInBootImageSpace(super_class)) { 1399 auto it2 = new_class_set->Find(ClassTable::TableSlot(super_class)); 1400 DCHECK(it2 != new_class_set->end()); 1401 DCHECK_EQ(it2->Read(), super_class); 1402 } 1403 for (ArtMethod& m : klass->GetDirectMethods(kRuntimePointerSize)) { 1404 const void* code = m.GetEntryPointFromQuickCompiledCode(); 1405 const void* oat_code = m.IsInvokable() ? GetQuickOatCodeFor(&m) : code; 1406 if (!IsQuickResolutionStub(code) && 1407 !IsQuickGenericJniStub(code) && 1408 !IsQuickToInterpreterBridge(code) && 1409 !m.IsNative()) { 1410 DCHECK_EQ(code, oat_code) << m.PrettyMethod(); 1411 } 1412 } 1413 for (ArtMethod& m : klass->GetVirtualMethods(kRuntimePointerSize)) { 1414 const void* code = m.GetEntryPointFromQuickCompiledCode(); 1415 const void* oat_code = m.IsInvokable() ? GetQuickOatCodeFor(&m) : code; 1416 if (!IsQuickResolutionStub(code) && 1417 !IsQuickGenericJniStub(code) && 1418 !IsQuickToInterpreterBridge(code) && 1419 !m.IsNative()) { 1420 DCHECK_EQ(code, oat_code) << m.PrettyMethod(); 1421 } 1422 } 1423 } 1424 } 1425 } 1426 } 1427 } 1428 if (*out_forward_dex_cache_array) { 1429 ScopedTrace timing("Fixup ArtMethod dex cache arrays"); 1430 FixupArtMethodArrayVisitor visitor(header); 1431 header.VisitPackedArtMethods(&visitor, space->Begin(), kRuntimePointerSize); 1432 Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader.Get()); 1433 } 1434 if (kVerifyArtMethodDeclaringClasses) { 1435 ScopedTrace timing("Verify declaring classes"); 1436 ReaderMutexLock rmu(self, *Locks::heap_bitmap_lock_); 1437 VerifyDeclaringClassVisitor visitor; 1438 header.VisitPackedArtMethods(&visitor, space->Begin(), kRuntimePointerSize); 1439 } 1440 return true; 1441 } 1442 1443 // Update the class loader. Should only be used on classes in the image space. 1444 class UpdateClassLoaderVisitor { 1445 public: 1446 UpdateClassLoaderVisitor(gc::space::ImageSpace* space, ObjPtr<mirror::ClassLoader> class_loader) 1447 : space_(space), 1448 class_loader_(class_loader) {} 1449 1450 bool operator()(ObjPtr<mirror::Class> klass) const REQUIRES_SHARED(Locks::mutator_lock_) { 1451 // Do not update class loader for boot image classes where the app image 1452 // class loader is only the initiating loader but not the defining loader. 1453 if (klass->GetClassLoader() != nullptr) { 1454 klass->SetClassLoader(class_loader_); 1455 } 1456 return true; 1457 } 1458 1459 gc::space::ImageSpace* const space_; 1460 ObjPtr<mirror::ClassLoader> const class_loader_; 1461 }; 1462 1463 static std::unique_ptr<const DexFile> OpenOatDexFile(const OatFile* oat_file, 1464 const char* location, 1465 std::string* error_msg) 1466 REQUIRES_SHARED(Locks::mutator_lock_) { 1467 DCHECK(error_msg != nullptr); 1468 std::unique_ptr<const DexFile> dex_file; 1469 const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(location, nullptr, error_msg); 1470 if (oat_dex_file == nullptr) { 1471 return std::unique_ptr<const DexFile>(); 1472 } 1473 std::string inner_error_msg; 1474 dex_file = oat_dex_file->OpenDexFile(&inner_error_msg); 1475 if (dex_file == nullptr) { 1476 *error_msg = StringPrintf("Failed to open dex file %s from within oat file %s error '%s'", 1477 location, 1478 oat_file->GetLocation().c_str(), 1479 inner_error_msg.c_str()); 1480 return std::unique_ptr<const DexFile>(); 1481 } 1482 1483 if (dex_file->GetLocationChecksum() != oat_dex_file->GetDexFileLocationChecksum()) { 1484 *error_msg = StringPrintf("Checksums do not match for %s: %x vs %x", 1485 location, 1486 dex_file->GetLocationChecksum(), 1487 oat_dex_file->GetDexFileLocationChecksum()); 1488 return std::unique_ptr<const DexFile>(); 1489 } 1490 return dex_file; 1491 } 1492 1493 bool ClassLinker::OpenImageDexFiles(gc::space::ImageSpace* space, 1494 std::vector<std::unique_ptr<const DexFile>>* out_dex_files, 1495 std::string* error_msg) { 1496 ScopedAssertNoThreadSuspension nts(__FUNCTION__); 1497 const ImageHeader& header = space->GetImageHeader(); 1498 ObjPtr<mirror::Object> dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches); 1499 DCHECK(dex_caches_object != nullptr); 1500 mirror::ObjectArray<mirror::DexCache>* dex_caches = 1501 dex_caches_object->AsObjectArray<mirror::DexCache>(); 1502 const OatFile* oat_file = space->GetOatFile(); 1503 for (int32_t i = 0; i < dex_caches->GetLength(); i++) { 1504 ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i); 1505 std::string dex_file_location(dex_cache->GetLocation()->ToModifiedUtf8()); 1506 std::unique_ptr<const DexFile> dex_file = OpenOatDexFile(oat_file, 1507 dex_file_location.c_str(), 1508 error_msg); 1509 if (dex_file == nullptr) { 1510 return false; 1511 } 1512 dex_cache->SetDexFile(dex_file.get()); 1513 out_dex_files->push_back(std::move(dex_file)); 1514 } 1515 return true; 1516 } 1517 1518 // Helper class for ArtMethod checks when adding an image. Keeps all required functionality 1519 // together and caches some intermediate results. 1520 class ImageSanityChecks FINAL { 1521 public: 1522 static void CheckObjects(gc::Heap* heap, ClassLinker* class_linker) 1523 REQUIRES_SHARED(Locks::mutator_lock_) { 1524 ImageSanityChecks isc(heap, class_linker); 1525 heap->VisitObjects(ImageSanityChecks::SanityCheckObjectsCallback, &isc); 1526 } 1527 1528 static void CheckPointerArray(gc::Heap* heap, 1529 ClassLinker* class_linker, 1530 ArtMethod** arr, 1531 size_t size) 1532 REQUIRES_SHARED(Locks::mutator_lock_) { 1533 ImageSanityChecks isc(heap, class_linker); 1534 isc.SanityCheckArtMethodPointerArray(arr, size); 1535 } 1536 1537 static void SanityCheckObjectsCallback(mirror::Object* obj, void* arg) 1538 REQUIRES_SHARED(Locks::mutator_lock_) { 1539 DCHECK(obj != nullptr); 1540 CHECK(obj->GetClass() != nullptr) << "Null class in object " << obj; 1541 CHECK(obj->GetClass()->GetClass() != nullptr) << "Null class class " << obj; 1542 if (obj->IsClass()) { 1543 ImageSanityChecks* isc = reinterpret_cast<ImageSanityChecks*>(arg); 1544 1545 auto klass = obj->AsClass(); 1546 for (ArtField& field : klass->GetIFields()) { 1547 CHECK_EQ(field.GetDeclaringClass(), klass); 1548 } 1549 for (ArtField& field : klass->GetSFields()) { 1550 CHECK_EQ(field.GetDeclaringClass(), klass); 1551 } 1552 const auto pointer_size = isc->pointer_size_; 1553 for (auto& m : klass->GetMethods(pointer_size)) { 1554 isc->SanityCheckArtMethod(&m, klass); 1555 } 1556 auto* vtable = klass->GetVTable(); 1557 if (vtable != nullptr) { 1558 isc->SanityCheckArtMethodPointerArray(vtable, nullptr); 1559 } 1560 if (klass->ShouldHaveImt()) { 1561 ImTable* imt = klass->GetImt(pointer_size); 1562 for (size_t i = 0; i < ImTable::kSize; ++i) { 1563 isc->SanityCheckArtMethod(imt->Get(i, pointer_size), nullptr); 1564 } 1565 } 1566 if (klass->ShouldHaveEmbeddedVTable()) { 1567 for (int32_t i = 0; i < klass->GetEmbeddedVTableLength(); ++i) { 1568 isc->SanityCheckArtMethod(klass->GetEmbeddedVTableEntry(i, pointer_size), nullptr); 1569 } 1570 } 1571 mirror::IfTable* iftable = klass->GetIfTable(); 1572 for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) { 1573 if (iftable->GetMethodArrayCount(i) > 0) { 1574 isc->SanityCheckArtMethodPointerArray(iftable->GetMethodArray(i), nullptr); 1575 } 1576 } 1577 } 1578 } 1579 1580 private: 1581 ImageSanityChecks(gc::Heap* heap, ClassLinker* class_linker) 1582 : spaces_(heap->GetBootImageSpaces()), 1583 pointer_size_(class_linker->GetImagePointerSize()) { 1584 space_begin_.reserve(spaces_.size()); 1585 method_sections_.reserve(spaces_.size()); 1586 runtime_method_sections_.reserve(spaces_.size()); 1587 for (gc::space::ImageSpace* space : spaces_) { 1588 space_begin_.push_back(space->Begin()); 1589 auto& header = space->GetImageHeader(); 1590 method_sections_.push_back(&header.GetMethodsSection()); 1591 runtime_method_sections_.push_back(&header.GetRuntimeMethodsSection()); 1592 } 1593 } 1594 1595 void SanityCheckArtMethod(ArtMethod* m, ObjPtr<mirror::Class> expected_class) 1596 REQUIRES_SHARED(Locks::mutator_lock_) { 1597 if (m->IsRuntimeMethod()) { 1598 ObjPtr<mirror::Class> declaring_class = m->GetDeclaringClassUnchecked(); 1599 CHECK(declaring_class == nullptr) << declaring_class << " " << m->PrettyMethod(); 1600 } else if (m->IsCopied()) { 1601 CHECK(m->GetDeclaringClass() != nullptr) << m->PrettyMethod(); 1602 } else if (expected_class != nullptr) { 1603 CHECK_EQ(m->GetDeclaringClassUnchecked(), expected_class) << m->PrettyMethod(); 1604 } 1605 if (!spaces_.empty()) { 1606 bool contains = false; 1607 for (size_t i = 0; !contains && i != space_begin_.size(); ++i) { 1608 const size_t offset = reinterpret_cast<uint8_t*>(m) - space_begin_[i]; 1609 contains = method_sections_[i]->Contains(offset) || 1610 runtime_method_sections_[i]->Contains(offset); 1611 } 1612 CHECK(contains) << m << " not found"; 1613 } 1614 } 1615 1616 void SanityCheckArtMethodPointerArray(ObjPtr<mirror::PointerArray> arr, 1617 ObjPtr<mirror::Class> expected_class) 1618 REQUIRES_SHARED(Locks::mutator_lock_) { 1619 CHECK(arr != nullptr); 1620 for (int32_t j = 0; j < arr->GetLength(); ++j) { 1621 auto* method = arr->GetElementPtrSize<ArtMethod*>(j, pointer_size_); 1622 // expected_class == null means we are a dex cache. 1623 if (expected_class != nullptr) { 1624 CHECK(method != nullptr); 1625 } 1626 if (method != nullptr) { 1627 SanityCheckArtMethod(method, expected_class); 1628 } 1629 } 1630 } 1631 1632 void SanityCheckArtMethodPointerArray(ArtMethod** arr, size_t size) 1633 REQUIRES_SHARED(Locks::mutator_lock_) { 1634 CHECK_EQ(arr != nullptr, size != 0u); 1635 if (arr != nullptr) { 1636 bool contains = false; 1637 for (auto space : spaces_) { 1638 auto offset = reinterpret_cast<uint8_t*>(arr) - space->Begin(); 1639 if (space->GetImageHeader().GetImageSection( 1640 ImageHeader::kSectionDexCacheArrays).Contains(offset)) { 1641 contains = true; 1642 break; 1643 } 1644 } 1645 CHECK(contains); 1646 } 1647 for (size_t j = 0; j < size; ++j) { 1648 ArtMethod* method = mirror::DexCache::GetElementPtrSize(arr, j, pointer_size_); 1649 // expected_class == null means we are a dex cache. 1650 if (method != nullptr) { 1651 SanityCheckArtMethod(method, nullptr); 1652 } 1653 } 1654 } 1655 1656 const std::vector<gc::space::ImageSpace*>& spaces_; 1657 const PointerSize pointer_size_; 1658 1659 // Cached sections from the spaces. 1660 std::vector<const uint8_t*> space_begin_; 1661 std::vector<const ImageSection*> method_sections_; 1662 std::vector<const ImageSection*> runtime_method_sections_; 1663 }; 1664 1665 bool ClassLinker::AddImageSpace( 1666 gc::space::ImageSpace* space, 1667 Handle<mirror::ClassLoader> class_loader, 1668 jobjectArray dex_elements, 1669 const char* dex_location, 1670 std::vector<std::unique_ptr<const DexFile>>* out_dex_files, 1671 std::string* error_msg) { 1672 DCHECK(out_dex_files != nullptr); 1673 DCHECK(error_msg != nullptr); 1674 const uint64_t start_time = NanoTime(); 1675 const bool app_image = class_loader != nullptr; 1676 const ImageHeader& header = space->GetImageHeader(); 1677 ObjPtr<mirror::Object> dex_caches_object = header.GetImageRoot(ImageHeader::kDexCaches); 1678 DCHECK(dex_caches_object != nullptr); 1679 Runtime* const runtime = Runtime::Current(); 1680 gc::Heap* const heap = runtime->GetHeap(); 1681 Thread* const self = Thread::Current(); 1682 // Check that the image is what we are expecting. 1683 if (image_pointer_size_ != space->GetImageHeader().GetPointerSize()) { 1684 *error_msg = StringPrintf("Application image pointer size does not match runtime: %zu vs %zu", 1685 static_cast<size_t>(space->GetImageHeader().GetPointerSize()), 1686 image_pointer_size_); 1687 return false; 1688 } 1689 size_t expected_image_roots = ImageHeader::NumberOfImageRoots(app_image); 1690 if (static_cast<size_t>(header.GetImageRoots()->GetLength()) != expected_image_roots) { 1691 *error_msg = StringPrintf("Expected %zu image roots but got %d", 1692 expected_image_roots, 1693 header.GetImageRoots()->GetLength()); 1694 return false; 1695 } 1696 StackHandleScope<3> hs(self); 1697 Handle<mirror::ObjectArray<mirror::DexCache>> dex_caches( 1698 hs.NewHandle(dex_caches_object->AsObjectArray<mirror::DexCache>())); 1699 Handle<mirror::ObjectArray<mirror::Class>> class_roots(hs.NewHandle( 1700 header.GetImageRoot(ImageHeader::kClassRoots)->AsObjectArray<mirror::Class>())); 1701 static_assert(ImageHeader::kClassLoader + 1u == ImageHeader::kImageRootsMax, 1702 "Class loader should be the last image root."); 1703 MutableHandle<mirror::ClassLoader> image_class_loader(hs.NewHandle( 1704 app_image ? header.GetImageRoot(ImageHeader::kClassLoader)->AsClassLoader() : nullptr)); 1705 DCHECK(class_roots != nullptr); 1706 if (class_roots->GetLength() != static_cast<int32_t>(kClassRootsMax)) { 1707 *error_msg = StringPrintf("Expected %d class roots but got %d", 1708 class_roots->GetLength(), 1709 static_cast<int32_t>(kClassRootsMax)); 1710 return false; 1711 } 1712 // Check against existing class roots to make sure they match the ones in the boot image. 1713 for (size_t i = 0; i < kClassRootsMax; i++) { 1714 if (class_roots->Get(i) != GetClassRoot(static_cast<ClassRoot>(i))) { 1715 *error_msg = "App image class roots must have pointer equality with runtime ones."; 1716 return false; 1717 } 1718 } 1719 const OatFile* oat_file = space->GetOatFile(); 1720 if (oat_file->GetOatHeader().GetDexFileCount() != 1721 static_cast<uint32_t>(dex_caches->GetLength())) { 1722 *error_msg = "Dex cache count and dex file count mismatch while trying to initialize from " 1723 "image"; 1724 return false; 1725 } 1726 1727 for (int32_t i = 0; i < dex_caches->GetLength(); i++) { 1728 ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i); 1729 std::string dex_file_location(dex_cache->GetLocation()->ToModifiedUtf8()); 1730 // TODO: Only store qualified paths. 1731 // If non qualified, qualify it. 1732 if (dex_file_location.find('/') == std::string::npos) { 1733 std::string dex_location_path = dex_location; 1734 const size_t pos = dex_location_path.find_last_of('/'); 1735 CHECK_NE(pos, std::string::npos); 1736 dex_location_path = dex_location_path.substr(0, pos + 1); // Keep trailing '/' 1737 dex_file_location = dex_location_path + dex_file_location; 1738 } 1739 std::unique_ptr<const DexFile> dex_file = OpenOatDexFile(oat_file, 1740 dex_file_location.c_str(), 1741 error_msg); 1742 if (dex_file == nullptr) { 1743 return false; 1744 } 1745 1746 if (app_image) { 1747 // The current dex file field is bogus, overwrite it so that we can get the dex file in the 1748 // loop below. 1749 dex_cache->SetDexFile(dex_file.get()); 1750 mirror::TypeDexCacheType* const types = dex_cache->GetResolvedTypes(); 1751 for (int32_t j = 0, num_types = dex_cache->NumResolvedTypes(); j < num_types; j++) { 1752 ObjPtr<mirror::Class> klass = types[j].load(std::memory_order_relaxed).object.Read(); 1753 if (klass != nullptr) { 1754 DCHECK(!klass->IsErroneous()) << klass->GetStatus(); 1755 } 1756 } 1757 } else { 1758 if (kSanityCheckObjects) { 1759 ImageSanityChecks::CheckPointerArray(heap, 1760 this, 1761 dex_cache->GetResolvedMethods(), 1762 dex_cache->NumResolvedMethods()); 1763 } 1764 // Register dex files, keep track of existing ones that are conflicts. 1765 AppendToBootClassPath(*dex_file.get(), dex_cache); 1766 } 1767 out_dex_files->push_back(std::move(dex_file)); 1768 } 1769 1770 if (app_image) { 1771 ScopedObjectAccessUnchecked soa(Thread::Current()); 1772 // Check that the class loader resolves the same way as the ones in the image. 1773 // Image class loader [A][B][C][image dex files] 1774 // Class loader = [???][dex_elements][image dex files] 1775 // Need to ensure that [???][dex_elements] == [A][B][C]. 1776 // For each class loader, PathClassLoader, the laoder checks the parent first. Also the logic 1777 // for PathClassLoader does this by looping through the array of dex files. To ensure they 1778 // resolve the same way, simply flatten the hierarchy in the way the resolution order would be, 1779 // and check that the dex file names are the same. 1780 if (IsBootClassLoader(soa, image_class_loader.Get())) { 1781 *error_msg = "Unexpected BootClassLoader in app image"; 1782 return false; 1783 } 1784 std::list<ObjPtr<mirror::String>> image_dex_file_names; 1785 std::string temp_error_msg; 1786 if (!FlattenPathClassLoader(image_class_loader.Get(), &image_dex_file_names, &temp_error_msg)) { 1787 *error_msg = StringPrintf("Failed to flatten image class loader hierarchy '%s'", 1788 temp_error_msg.c_str()); 1789 return false; 1790 } 1791 std::list<ObjPtr<mirror::String>> loader_dex_file_names; 1792 if (!FlattenPathClassLoader(class_loader.Get(), &loader_dex_file_names, &temp_error_msg)) { 1793 *error_msg = StringPrintf("Failed to flatten class loader hierarchy '%s'", 1794 temp_error_msg.c_str()); 1795 return false; 1796 } 1797 // Add the temporary dex path list elements at the end. 1798 auto elements = soa.Decode<mirror::ObjectArray<mirror::Object>>(dex_elements); 1799 for (size_t i = 0, num_elems = elements->GetLength(); i < num_elems; ++i) { 1800 ObjPtr<mirror::Object> element = elements->GetWithoutChecks(i); 1801 if (element != nullptr) { 1802 // If we are somewhere in the middle of the array, there may be nulls at the end. 1803 ObjPtr<mirror::String> name; 1804 if (GetDexPathListElementName(element, &name) && name != nullptr) { 1805 loader_dex_file_names.push_back(name); 1806 } 1807 } 1808 } 1809 // Ignore the number of image dex files since we are adding those to the class loader anyways. 1810 CHECK_GE(static_cast<size_t>(image_dex_file_names.size()), 1811 static_cast<size_t>(dex_caches->GetLength())); 1812 size_t image_count = image_dex_file_names.size() - dex_caches->GetLength(); 1813 // Check that the dex file names match. 1814 bool equal = image_count == loader_dex_file_names.size(); 1815 if (equal) { 1816 auto it1 = image_dex_file_names.begin(); 1817 auto it2 = loader_dex_file_names.begin(); 1818 for (size_t i = 0; equal && i < image_count; ++i, ++it1, ++it2) { 1819 equal = equal && (*it1)->Equals(*it2); 1820 } 1821 } 1822 if (!equal) { 1823 VLOG(image) << "Image dex files " << image_dex_file_names.size(); 1824 for (ObjPtr<mirror::String> name : image_dex_file_names) { 1825 VLOG(image) << name->ToModifiedUtf8(); 1826 } 1827 VLOG(image) << "Loader dex files " << loader_dex_file_names.size(); 1828 for (ObjPtr<mirror::String> name : loader_dex_file_names) { 1829 VLOG(image) << name->ToModifiedUtf8(); 1830 } 1831 *error_msg = "Rejecting application image due to class loader mismatch"; 1832 // Ignore class loader mismatch for now since these would just use possibly incorrect 1833 // oat code anyways. The structural class check should be done in the parent. 1834 } 1835 } 1836 1837 if (kSanityCheckObjects) { 1838 for (int32_t i = 0; i < dex_caches->GetLength(); i++) { 1839 auto* dex_cache = dex_caches->Get(i); 1840 for (size_t j = 0; j < dex_cache->NumResolvedFields(); ++j) { 1841 auto* field = dex_cache->GetResolvedField(j, image_pointer_size_); 1842 if (field != nullptr) { 1843 CHECK(field->GetDeclaringClass()->GetClass() != nullptr); 1844 } 1845 } 1846 } 1847 if (!app_image) { 1848 ImageSanityChecks::CheckObjects(heap, this); 1849 } 1850 } 1851 1852 // Set entry point to interpreter if in InterpretOnly mode. 1853 if (!runtime->IsAotCompiler() && runtime->GetInstrumentation()->InterpretOnly()) { 1854 SetInterpreterEntrypointArtMethodVisitor visitor(image_pointer_size_); 1855 header.VisitPackedArtMethods(&visitor, space->Begin(), image_pointer_size_); 1856 } 1857 1858 ClassTable* class_table = nullptr; 1859 { 1860 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); 1861 class_table = InsertClassTableForClassLoader(class_loader.Get()); 1862 } 1863 // If we have a class table section, read it and use it for verification in 1864 // UpdateAppImageClassLoadersAndDexCaches. 1865 ClassTable::ClassSet temp_set; 1866 const ImageSection& class_table_section = header.GetImageSection(ImageHeader::kSectionClassTable); 1867 const bool added_class_table = class_table_section.Size() > 0u; 1868 if (added_class_table) { 1869 const uint64_t start_time2 = NanoTime(); 1870 size_t read_count = 0; 1871 temp_set = ClassTable::ClassSet(space->Begin() + class_table_section.Offset(), 1872 /*make copy*/false, 1873 &read_count); 1874 VLOG(image) << "Adding class table classes took " << PrettyDuration(NanoTime() - start_time2); 1875 } 1876 if (app_image) { 1877 bool forward_dex_cache_arrays = false; 1878 if (!UpdateAppImageClassLoadersAndDexCaches(space, 1879 class_loader, 1880 dex_caches, 1881 &temp_set, 1882 /*out*/&forward_dex_cache_arrays, 1883 /*out*/error_msg)) { 1884 return false; 1885 } 1886 // Update class loader and resolved strings. If added_class_table is false, the resolved 1887 // strings were forwarded UpdateAppImageClassLoadersAndDexCaches. 1888 UpdateClassLoaderVisitor visitor(space, class_loader.Get()); 1889 for (const ClassTable::TableSlot& root : temp_set) { 1890 visitor(root.Read()); 1891 } 1892 // forward_dex_cache_arrays is true iff we copied all of the dex cache arrays into the .bss. 1893 // In this case, madvise away the dex cache arrays section of the image to reduce RAM usage and 1894 // mark as PROT_NONE to catch any invalid accesses. 1895 if (forward_dex_cache_arrays) { 1896 const ImageSection& dex_cache_section = header.GetImageSection( 1897 ImageHeader::kSectionDexCacheArrays); 1898 uint8_t* section_begin = AlignUp(space->Begin() + dex_cache_section.Offset(), kPageSize); 1899 uint8_t* section_end = AlignDown(space->Begin() + dex_cache_section.End(), kPageSize); 1900 if (section_begin < section_end) { 1901 madvise(section_begin, section_end - section_begin, MADV_DONTNEED); 1902 mprotect(section_begin, section_end - section_begin, PROT_NONE); 1903 VLOG(image) << "Released and protected dex cache array image section from " 1904 << reinterpret_cast<const void*>(section_begin) << "-" 1905 << reinterpret_cast<const void*>(section_end); 1906 } 1907 } 1908 } 1909 if (!oat_file->GetBssGcRoots().empty()) { 1910 // Insert oat file to class table for visiting .bss GC roots. 1911 class_table->InsertOatFile(oat_file); 1912 } 1913 if (added_class_table) { 1914 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); 1915 class_table->AddClassSet(std::move(temp_set)); 1916 } 1917 if (kIsDebugBuild && app_image) { 1918 // This verification needs to happen after the classes have been added to the class loader. 1919 // Since it ensures classes are in the class table. 1920 VerifyClassInTableArtMethodVisitor visitor2(class_table); 1921 header.VisitPackedArtMethods(&visitor2, space->Begin(), kRuntimePointerSize); 1922 // Verify that all direct interfaces of classes in the class table are also resolved. 1923 VerifyDirectInterfacesInTableClassVisitor visitor(class_loader.Get()); 1924 class_table->Visit(visitor); 1925 visitor.Check(); 1926 // Check that all non-primitive classes in dex caches are also in the class table. 1927 for (int32_t i = 0; i < dex_caches->GetLength(); i++) { 1928 ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i); 1929 mirror::TypeDexCacheType* const types = dex_cache->GetResolvedTypes(); 1930 for (int32_t j = 0, num_types = dex_cache->NumResolvedTypes(); j < num_types; j++) { 1931 ObjPtr<mirror::Class> klass = types[j].load(std::memory_order_relaxed).object.Read(); 1932 if (klass != nullptr && !klass->IsPrimitive()) { 1933 CHECK(class_table->Contains(klass)) << klass->PrettyDescriptor() 1934 << " " << dex_cache->GetDexFile()->GetLocation(); 1935 } 1936 } 1937 } 1938 } 1939 VLOG(class_linker) << "Adding image space took " << PrettyDuration(NanoTime() - start_time); 1940 return true; 1941 } 1942 1943 bool ClassLinker::ClassInClassTable(ObjPtr<mirror::Class> klass) { 1944 ClassTable* const class_table = ClassTableForClassLoader(klass->GetClassLoader()); 1945 return class_table != nullptr && class_table->Contains(klass); 1946 } 1947 1948 void ClassLinker::VisitClassRoots(RootVisitor* visitor, VisitRootFlags flags) { 1949 // Acquire tracing_enabled before locking class linker lock to prevent lock order violation. Since 1950 // enabling tracing requires the mutator lock, there are no race conditions here. 1951 const bool tracing_enabled = Trace::IsTracingEnabled(); 1952 Thread* const self = Thread::Current(); 1953 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); 1954 if (kUseReadBarrier) { 1955 // We do not track new roots for CC. 1956 DCHECK_EQ(0, flags & (kVisitRootFlagNewRoots | 1957 kVisitRootFlagClearRootLog | 1958 kVisitRootFlagStartLoggingNewRoots | 1959 kVisitRootFlagStopLoggingNewRoots)); 1960 } 1961 if ((flags & kVisitRootFlagAllRoots) != 0) { 1962 // Argument for how root visiting deals with ArtField and ArtMethod roots. 1963 // There is 3 GC cases to handle: 1964 // Non moving concurrent: 1965 // This case is easy to handle since the reference members of ArtMethod and ArtFields are held 1966 // live by the class and class roots. 1967 // 1968 // Moving non-concurrent: 1969 // This case needs to call visit VisitNativeRoots in case the classes or dex cache arrays move. 1970 // To prevent missing roots, this case needs to ensure that there is no 1971 // suspend points between the point which we allocate ArtMethod arrays and place them in a 1972 // class which is in the class table. 1973 // 1974 // Moving concurrent: 1975 // Need to make sure to not copy ArtMethods without doing read barriers since the roots are 1976 // marked concurrently and we don't hold the classlinker_classes_lock_ when we do the copy. 1977 // 1978 // Use an unbuffered visitor since the class table uses a temporary GcRoot for holding decoded 1979 // ClassTable::TableSlot. The buffered root visiting would access a stale stack location for 1980 // these objects. 1981 UnbufferedRootVisitor root_visitor(visitor, RootInfo(kRootStickyClass)); 1982 boot_class_table_.VisitRoots(root_visitor); 1983 // If tracing is enabled, then mark all the class loaders to prevent unloading. 1984 if ((flags & kVisitRootFlagClassLoader) != 0 || tracing_enabled) { 1985 for (const ClassLoaderData& data : class_loaders_) { 1986 GcRoot<mirror::Object> root(GcRoot<mirror::Object>(self->DecodeJObject(data.weak_root))); 1987 root.VisitRoot(visitor, RootInfo(kRootVMInternal)); 1988 } 1989 } 1990 } else if (!kUseReadBarrier && (flags & kVisitRootFlagNewRoots) != 0) { 1991 for (auto& root : new_class_roots_) { 1992 ObjPtr<mirror::Class> old_ref = root.Read<kWithoutReadBarrier>(); 1993 root.VisitRoot(visitor, RootInfo(kRootStickyClass)); 1994 ObjPtr<mirror::Class> new_ref = root.Read<kWithoutReadBarrier>(); 1995 // Concurrent moving GC marked new roots through the to-space invariant. 1996 CHECK_EQ(new_ref, old_ref); 1997 } 1998 for (const OatFile* oat_file : new_bss_roots_boot_oat_files_) { 1999 for (GcRoot<mirror::Object>& root : oat_file->GetBssGcRoots()) { 2000 ObjPtr<mirror::Object> old_ref = root.Read<kWithoutReadBarrier>(); 2001 if (old_ref != nullptr) { 2002 DCHECK(old_ref->IsClass()); 2003 root.VisitRoot(visitor, RootInfo(kRootStickyClass)); 2004 ObjPtr<mirror::Object> new_ref = root.Read<kWithoutReadBarrier>(); 2005 // Concurrent moving GC marked new roots through the to-space invariant. 2006 CHECK_EQ(new_ref, old_ref); 2007 } 2008 } 2009 } 2010 } 2011 if (!kUseReadBarrier && (flags & kVisitRootFlagClearRootLog) != 0) { 2012 new_class_roots_.clear(); 2013 new_bss_roots_boot_oat_files_.clear(); 2014 } 2015 if (!kUseReadBarrier && (flags & kVisitRootFlagStartLoggingNewRoots) != 0) { 2016 log_new_roots_ = true; 2017 } else if (!kUseReadBarrier && (flags & kVisitRootFlagStopLoggingNewRoots) != 0) { 2018 log_new_roots_ = false; 2019 } 2020 // We deliberately ignore the class roots in the image since we 2021 // handle image roots by using the MS/CMS rescanning of dirty cards. 2022 } 2023 2024 // Keep in sync with InitCallback. Anything we visit, we need to 2025 // reinit references to when reinitializing a ClassLinker from a 2026 // mapped image. 2027 void ClassLinker::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) { 2028 class_roots_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); 2029 VisitClassRoots(visitor, flags); 2030 array_iftable_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); 2031 // Instead of visiting the find_array_class_cache_ drop it so that it doesn't prevent class 2032 // unloading if we are marking roots. 2033 DropFindArrayClassCache(); 2034 } 2035 2036 class VisitClassLoaderClassesVisitor : public ClassLoaderVisitor { 2037 public: 2038 explicit VisitClassLoaderClassesVisitor(ClassVisitor* visitor) 2039 : visitor_(visitor), 2040 done_(false) {} 2041 2042 void Visit(ObjPtr<mirror::ClassLoader> class_loader) 2043 REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE { 2044 ClassTable* const class_table = class_loader->GetClassTable(); 2045 if (!done_ && class_table != nullptr) { 2046 DefiningClassLoaderFilterVisitor visitor(class_loader, visitor_); 2047 if (!class_table->Visit(visitor)) { 2048 // If the visitor ClassTable returns false it means that we don't need to continue. 2049 done_ = true; 2050 } 2051 } 2052 } 2053 2054 private: 2055 // Class visitor that limits the class visits from a ClassTable to the classes with 2056 // the provided defining class loader. This filter is used to avoid multiple visits 2057 // of the same class which can be recorded for multiple initiating class loaders. 2058 class DefiningClassLoaderFilterVisitor : public ClassVisitor { 2059 public: 2060 DefiningClassLoaderFilterVisitor(ObjPtr<mirror::ClassLoader> defining_class_loader, 2061 ClassVisitor* visitor) 2062 : defining_class_loader_(defining_class_loader), visitor_(visitor) { } 2063 2064 bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { 2065 if (klass->GetClassLoader() != defining_class_loader_) { 2066 return true; 2067 } 2068 return (*visitor_)(klass); 2069 } 2070 2071 ObjPtr<mirror::ClassLoader> const defining_class_loader_; 2072 ClassVisitor* const visitor_; 2073 }; 2074 2075 ClassVisitor* const visitor_; 2076 // If done is true then we don't need to do any more visiting. 2077 bool done_; 2078 }; 2079 2080 void ClassLinker::VisitClassesInternal(ClassVisitor* visitor) { 2081 if (boot_class_table_.Visit(*visitor)) { 2082 VisitClassLoaderClassesVisitor loader_visitor(visitor); 2083 VisitClassLoaders(&loader_visitor); 2084 } 2085 } 2086 2087 void ClassLinker::VisitClasses(ClassVisitor* visitor) { 2088 Thread* const self = Thread::Current(); 2089 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); 2090 // Not safe to have thread suspension when we are holding a lock. 2091 if (self != nullptr) { 2092 ScopedAssertNoThreadSuspension nts(__FUNCTION__); 2093 VisitClassesInternal(visitor); 2094 } else { 2095 VisitClassesInternal(visitor); 2096 } 2097 } 2098 2099 class GetClassesInToVector : public ClassVisitor { 2100 public: 2101 bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE { 2102 classes_.push_back(klass); 2103 return true; 2104 } 2105 std::vector<ObjPtr<mirror::Class>> classes_; 2106 }; 2107 2108 class GetClassInToObjectArray : public ClassVisitor { 2109 public: 2110 explicit GetClassInToObjectArray(mirror::ObjectArray<mirror::Class>* arr) 2111 : arr_(arr), index_(0) {} 2112 2113 bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { 2114 ++index_; 2115 if (index_ <= arr_->GetLength()) { 2116 arr_->Set(index_ - 1, klass); 2117 return true; 2118 } 2119 return false; 2120 } 2121 2122 bool Succeeded() const REQUIRES_SHARED(Locks::mutator_lock_) { 2123 return index_ <= arr_->GetLength(); 2124 } 2125 2126 private: 2127 mirror::ObjectArray<mirror::Class>* const arr_; 2128 int32_t index_; 2129 }; 2130 2131 void ClassLinker::VisitClassesWithoutClassesLock(ClassVisitor* visitor) { 2132 // TODO: it may be possible to avoid secondary storage if we iterate over dex caches. The problem 2133 // is avoiding duplicates. 2134 if (!kMovingClasses) { 2135 ScopedAssertNoThreadSuspension nts(__FUNCTION__); 2136 GetClassesInToVector accumulator; 2137 VisitClasses(&accumulator); 2138 for (ObjPtr<mirror::Class> klass : accumulator.classes_) { 2139 if (!visitor->operator()(klass)) { 2140 return; 2141 } 2142 } 2143 } else { 2144 Thread* const self = Thread::Current(); 2145 StackHandleScope<1> hs(self); 2146 auto classes = hs.NewHandle<mirror::ObjectArray<mirror::Class>>(nullptr); 2147 // We size the array assuming classes won't be added to the class table during the visit. 2148 // If this assumption fails we iterate again. 2149 while (true) { 2150 size_t class_table_size; 2151 { 2152 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); 2153 // Add 100 in case new classes get loaded when we are filling in the object array. 2154 class_table_size = NumZygoteClasses() + NumNonZygoteClasses() + 100; 2155 } 2156 ObjPtr<mirror::Class> class_type = mirror::Class::GetJavaLangClass(); 2157 ObjPtr<mirror::Class> array_of_class = FindArrayClass(self, &class_type); 2158 classes.Assign( 2159 mirror::ObjectArray<mirror::Class>::Alloc(self, array_of_class, class_table_size)); 2160 CHECK(classes != nullptr); // OOME. 2161 GetClassInToObjectArray accumulator(classes.Get()); 2162 VisitClasses(&accumulator); 2163 if (accumulator.Succeeded()) { 2164 break; 2165 } 2166 } 2167 for (int32_t i = 0; i < classes->GetLength(); ++i) { 2168 // If the class table shrank during creation of the clases array we expect null elements. If 2169 // the class table grew then the loop repeats. If classes are created after the loop has 2170 // finished then we don't visit. 2171 ObjPtr<mirror::Class> klass = classes->Get(i); 2172 if (klass != nullptr && !visitor->operator()(klass)) { 2173 return; 2174 } 2175 } 2176 } 2177 } 2178 2179 ClassLinker::~ClassLinker() { 2180 mirror::Class::ResetClass(); 2181 mirror::Constructor::ResetClass(); 2182 mirror::Field::ResetClass(); 2183 mirror::Method::ResetClass(); 2184 mirror::Reference::ResetClass(); 2185 mirror::StackTraceElement::ResetClass(); 2186 mirror::String::ResetClass(); 2187 mirror::Throwable::ResetClass(); 2188 mirror::BooleanArray::ResetArrayClass(); 2189 mirror::ByteArray::ResetArrayClass(); 2190 mirror::CharArray::ResetArrayClass(); 2191 mirror::Constructor::ResetArrayClass(); 2192 mirror::DoubleArray::ResetArrayClass(); 2193 mirror::Field::ResetArrayClass(); 2194 mirror::FloatArray::ResetArrayClass(); 2195 mirror::Method::ResetArrayClass(); 2196 mirror::IntArray::ResetArrayClass(); 2197 mirror::LongArray::ResetArrayClass(); 2198 mirror::ShortArray::ResetArrayClass(); 2199 mirror::MethodType::ResetClass(); 2200 mirror::MethodHandleImpl::ResetClass(); 2201 mirror::MethodHandlesLookup::ResetClass(); 2202 mirror::CallSite::ResetClass(); 2203 mirror::EmulatedStackFrame::ResetClass(); 2204 Thread* const self = Thread::Current(); 2205 for (const ClassLoaderData& data : class_loaders_) { 2206 DeleteClassLoader(self, data); 2207 } 2208 class_loaders_.clear(); 2209 } 2210 2211 void ClassLinker::DeleteClassLoader(Thread* self, const ClassLoaderData& data) { 2212 Runtime* const runtime = Runtime::Current(); 2213 JavaVMExt* const vm = runtime->GetJavaVM(); 2214 vm->DeleteWeakGlobalRef(self, data.weak_root); 2215 // Notify the JIT that we need to remove the methods and/or profiling info. 2216 if (runtime->GetJit() != nullptr) { 2217 jit::JitCodeCache* code_cache = runtime->GetJit()->GetCodeCache(); 2218 if (code_cache != nullptr) { 2219 code_cache->RemoveMethodsIn(self, *data.allocator); 2220 } 2221 } 2222 delete data.allocator; 2223 delete data.class_table; 2224 } 2225 2226 mirror::PointerArray* ClassLinker::AllocPointerArray(Thread* self, size_t length) { 2227 return down_cast<mirror::PointerArray*>( 2228 image_pointer_size_ == PointerSize::k64 2229 ? static_cast<mirror::Array*>(mirror::LongArray::Alloc(self, length)) 2230 : static_cast<mirror::Array*>(mirror::IntArray::Alloc(self, length))); 2231 } 2232 2233 mirror::DexCache* ClassLinker::AllocDexCache(ObjPtr<mirror::String>* out_location, 2234 Thread* self, 2235 const DexFile& dex_file) { 2236 StackHandleScope<1> hs(self); 2237 DCHECK(out_location != nullptr); 2238 auto dex_cache(hs.NewHandle(ObjPtr<mirror::DexCache>::DownCast( 2239 GetClassRoot(kJavaLangDexCache)->AllocObject(self)))); 2240 if (dex_cache == nullptr) { 2241 self->AssertPendingOOMException(); 2242 return nullptr; 2243 } 2244 ObjPtr<mirror::String> location = intern_table_->InternStrong(dex_file.GetLocation().c_str()); 2245 if (location == nullptr) { 2246 self->AssertPendingOOMException(); 2247 return nullptr; 2248 } 2249 *out_location = location; 2250 return dex_cache.Get(); 2251 } 2252 2253 mirror::DexCache* ClassLinker::AllocAndInitializeDexCache(Thread* self, 2254 const DexFile& dex_file, 2255 LinearAlloc* linear_alloc) { 2256 ObjPtr<mirror::String> location = nullptr; 2257 ObjPtr<mirror::DexCache> dex_cache = AllocDexCache(&location, self, dex_file); 2258 if (dex_cache != nullptr) { 2259 WriterMutexLock mu(self, *Locks::dex_lock_); 2260 DCHECK(location != nullptr); 2261 mirror::DexCache::InitializeDexCache(self, 2262 dex_cache, 2263 location, 2264 &dex_file, 2265 linear_alloc, 2266 image_pointer_size_); 2267 } 2268 return dex_cache.Ptr(); 2269 } 2270 2271 mirror::Class* ClassLinker::AllocClass(Thread* self, 2272 ObjPtr<mirror::Class> java_lang_Class, 2273 uint32_t class_size) { 2274 DCHECK_GE(class_size, sizeof(mirror::Class)); 2275 gc::Heap* heap = Runtime::Current()->GetHeap(); 2276 mirror::Class::InitializeClassVisitor visitor(class_size); 2277 ObjPtr<mirror::Object> k = kMovingClasses ? 2278 heap->AllocObject<true>(self, java_lang_Class, class_size, visitor) : 2279 heap->AllocNonMovableObject<true>(self, java_lang_Class, class_size, visitor); 2280 if (UNLIKELY(k == nullptr)) { 2281 self->AssertPendingOOMException(); 2282 return nullptr; 2283 } 2284 return k->AsClass(); 2285 } 2286 2287 mirror::Class* ClassLinker::AllocClass(Thread* self, uint32_t class_size) { 2288 return AllocClass(self, GetClassRoot(kJavaLangClass), class_size); 2289 } 2290 2291 mirror::ObjectArray<mirror::StackTraceElement>* ClassLinker::AllocStackTraceElementArray( 2292 Thread* self, 2293 size_t length) { 2294 return mirror::ObjectArray<mirror::StackTraceElement>::Alloc( 2295 self, GetClassRoot(kJavaLangStackTraceElementArrayClass), length); 2296 } 2297 2298 mirror::Class* ClassLinker::EnsureResolved(Thread* self, 2299 const char* descriptor, 2300 ObjPtr<mirror::Class> klass) { 2301 DCHECK(klass != nullptr); 2302 if (kIsDebugBuild) { 2303 StackHandleScope<1> hs(self); 2304 HandleWrapperObjPtr<mirror::Class> h = hs.NewHandleWrapper(&klass); 2305 Thread::PoisonObjectPointersIfDebug(); 2306 } 2307 2308 // For temporary classes we must wait for them to be retired. 2309 if (init_done_ && klass->IsTemp()) { 2310 CHECK(!klass->IsResolved()); 2311 if (klass->IsErroneousUnresolved()) { 2312 ThrowEarlierClassFailure(klass); 2313 return nullptr; 2314 } 2315 StackHandleScope<1> hs(self); 2316 Handle<mirror::Class> h_class(hs.NewHandle(klass)); 2317 ObjectLock<mirror::Class> lock(self, h_class); 2318 // Loop and wait for the resolving thread to retire this class. 2319 while (!h_class->IsRetired() && !h_class->IsErroneousUnresolved()) { 2320 lock.WaitIgnoringInterrupts(); 2321 } 2322 if (h_class->IsErroneousUnresolved()) { 2323 ThrowEarlierClassFailure(h_class.Get()); 2324 return nullptr; 2325 } 2326 CHECK(h_class->IsRetired()); 2327 // Get the updated class from class table. 2328 klass = LookupClass(self, descriptor, h_class.Get()->GetClassLoader()); 2329 } 2330 2331 // Wait for the class if it has not already been linked. 2332 size_t index = 0; 2333 // Maximum number of yield iterations until we start sleeping. 2334 static const size_t kNumYieldIterations = 1000; 2335 // How long each sleep is in us. 2336 static const size_t kSleepDurationUS = 1000; // 1 ms. 2337 while (!klass->IsResolved() && !klass->IsErroneousUnresolved()) { 2338 StackHandleScope<1> hs(self); 2339 HandleWrapperObjPtr<mirror::Class> h_class(hs.NewHandleWrapper(&klass)); 2340 { 2341 ObjectTryLock<mirror::Class> lock(self, h_class); 2342 // Can not use a monitor wait here since it may block when returning and deadlock if another 2343 // thread has locked klass. 2344 if (lock.Acquired()) { 2345 // Check for circular dependencies between classes, the lock is required for SetStatus. 2346 if (!h_class->IsResolved() && h_class->GetClinitThreadId() == self->GetTid()) { 2347 ThrowClassCircularityError(h_class.Get()); 2348 mirror::Class::SetStatus(h_class, mirror::Class::kStatusErrorUnresolved, self); 2349 return nullptr; 2350 } 2351 } 2352 } 2353 { 2354 // Handle wrapper deals with klass moving. 2355 ScopedThreadSuspension sts(self, kSuspended); 2356 if (index < kNumYieldIterations) { 2357 sched_yield(); 2358 } else { 2359 usleep(kSleepDurationUS); 2360 } 2361 } 2362 ++index; 2363 } 2364 2365 if (klass->IsErroneousUnresolved()) { 2366 ThrowEarlierClassFailure(klass); 2367 return nullptr; 2368 } 2369 // Return the loaded class. No exceptions should be pending. 2370 CHECK(klass->IsResolved()) << klass->PrettyClass(); 2371 self->AssertNoPendingException(); 2372 return klass.Ptr(); 2373 } 2374 2375 typedef std::pair<const DexFile*, const DexFile::ClassDef*> ClassPathEntry; 2376 2377 // Search a collection of DexFiles for a descriptor 2378 ClassPathEntry FindInClassPath(const char* descriptor, 2379 size_t hash, const std::vector<const DexFile*>& class_path) { 2380 for (const DexFile* dex_file : class_path) { 2381 const DexFile::ClassDef* dex_class_def = OatDexFile::FindClassDef(*dex_file, descriptor, hash); 2382 if (dex_class_def != nullptr) { 2383 return ClassPathEntry(dex_file, dex_class_def); 2384 } 2385 } 2386 return ClassPathEntry(nullptr, nullptr); 2387 } 2388 2389 bool ClassLinker::FindClassInBaseDexClassLoader(ScopedObjectAccessAlreadyRunnable& soa, 2390 Thread* self, 2391 const char* descriptor, 2392 size_t hash, 2393 Handle<mirror::ClassLoader> class_loader, 2394 ObjPtr<mirror::Class>* result) { 2395 // Termination case: boot class-loader. 2396 if (IsBootClassLoader(soa, class_loader.Get())) { 2397 // The boot class loader, search the boot class path. 2398 ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_); 2399 if (pair.second != nullptr) { 2400 ObjPtr<mirror::Class> klass = LookupClass(self, descriptor, hash, nullptr); 2401 if (klass != nullptr) { 2402 *result = EnsureResolved(self, descriptor, klass); 2403 } else { 2404 *result = DefineClass(self, 2405 descriptor, 2406 hash, 2407 ScopedNullHandle<mirror::ClassLoader>(), 2408 *pair.first, 2409 *pair.second); 2410 } 2411 if (*result == nullptr) { 2412 CHECK(self->IsExceptionPending()) << descriptor; 2413 self->ClearException(); 2414 } 2415 } else { 2416 *result = nullptr; 2417 } 2418 return true; 2419 } 2420 2421 // Unsupported class-loader? 2422 if (soa.Decode<mirror::Class>(WellKnownClasses::dalvik_system_PathClassLoader) != 2423 class_loader->GetClass()) { 2424 // PathClassLoader is the most common case, so it's the one we check first. For secondary dex 2425 // files, we also check DexClassLoader here. 2426 if (soa.Decode<mirror::Class>(WellKnownClasses::dalvik_system_DexClassLoader) != 2427 class_loader->GetClass()) { 2428 *result = nullptr; 2429 return false; 2430 } 2431 } 2432 2433 // Handles as RegisterDexFile may allocate dex caches (and cause thread suspension). 2434 StackHandleScope<4> hs(self); 2435 Handle<mirror::ClassLoader> h_parent(hs.NewHandle(class_loader->GetParent())); 2436 bool recursive_result = FindClassInBaseDexClassLoader(soa, 2437 self, 2438 descriptor, 2439 hash, 2440 h_parent, 2441 result); 2442 2443 if (!recursive_result) { 2444 // Something wrong up the chain. 2445 return false; 2446 } 2447 2448 if (*result != nullptr) { 2449 // Found the class up the chain. 2450 return true; 2451 } 2452 2453 // Handle this step. 2454 // Handle as if this is the child PathClassLoader. 2455 // The class loader is a PathClassLoader which inherits from BaseDexClassLoader. 2456 // We need to get the DexPathList and loop through it. 2457 ArtField* const cookie_field = 2458 jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie); 2459 ArtField* const dex_file_field = 2460 jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile); 2461 ObjPtr<mirror::Object> dex_path_list = 2462 jni::DecodeArtField(WellKnownClasses::dalvik_system_BaseDexClassLoader_pathList)-> 2463 GetObject(class_loader.Get()); 2464 if (dex_path_list != nullptr && dex_file_field != nullptr && cookie_field != nullptr) { 2465 // DexPathList has an array dexElements of Elements[] which each contain a dex file. 2466 ObjPtr<mirror::Object> dex_elements_obj = 2467 jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList_dexElements)-> 2468 GetObject(dex_path_list); 2469 // Loop through each dalvik.system.DexPathList$Element's dalvik.system.DexFile and look 2470 // at the mCookie which is a DexFile vector. 2471 if (dex_elements_obj != nullptr) { 2472 Handle<mirror::ObjectArray<mirror::Object>> dex_elements = 2473 hs.NewHandle(dex_elements_obj->AsObjectArray<mirror::Object>()); 2474 for (int32_t i = 0; i < dex_elements->GetLength(); ++i) { 2475 ObjPtr<mirror::Object> element = dex_elements->GetWithoutChecks(i); 2476 if (element == nullptr) { 2477 // Should never happen, fall back to java code to throw a NPE. 2478 break; 2479 } 2480 ObjPtr<mirror::Object> dex_file = dex_file_field->GetObject(element); 2481 if (dex_file != nullptr) { 2482 ObjPtr<mirror::LongArray> long_array = cookie_field->GetObject(dex_file)->AsLongArray(); 2483 if (long_array == nullptr) { 2484 // This should never happen so log a warning. 2485 LOG(WARNING) << "Null DexFile::mCookie for " << descriptor; 2486 break; 2487 } 2488 int32_t long_array_size = long_array->GetLength(); 2489 // First element is the oat file. 2490 for (int32_t j = kDexFileIndexStart; j < long_array_size; ++j) { 2491 const DexFile* cp_dex_file = reinterpret_cast<const DexFile*>(static_cast<uintptr_t>( 2492 long_array->GetWithoutChecks(j))); 2493 const DexFile::ClassDef* dex_class_def = 2494 OatDexFile::FindClassDef(*cp_dex_file, descriptor, hash); 2495 if (dex_class_def != nullptr) { 2496 ObjPtr<mirror::Class> klass = DefineClass(self, 2497 descriptor, 2498 hash, 2499 class_loader, 2500 *cp_dex_file, 2501 *dex_class_def); 2502 if (klass == nullptr) { 2503 CHECK(self->IsExceptionPending()) << descriptor; 2504 self->ClearException(); 2505 // TODO: Is it really right to break here, and not check the other dex files? 2506 return true; 2507 } 2508 *result = klass; 2509 return true; 2510 } 2511 } 2512 } 2513 } 2514 } 2515 self->AssertNoPendingException(); 2516 } 2517 2518 // Result is still null from the parent call, no need to set it again... 2519 return true; 2520 } 2521 2522 mirror::Class* ClassLinker::FindClass(Thread* self, 2523 const char* descriptor, 2524 Handle<mirror::ClassLoader> class_loader) { 2525 DCHECK_NE(*descriptor, '\0') << "descriptor is empty string"; 2526 DCHECK(self != nullptr); 2527 self->AssertNoPendingException(); 2528 self->PoisonObjectPointers(); // For DefineClass, CreateArrayClass, etc... 2529 if (descriptor[1] == '\0') { 2530 // only the descriptors of primitive types should be 1 character long, also avoid class lookup 2531 // for primitive classes that aren't backed by dex files. 2532 return FindPrimitiveClass(descriptor[0]); 2533 } 2534 const size_t hash = ComputeModifiedUtf8Hash(descriptor); 2535 // Find the class in the loaded classes table. 2536 ObjPtr<mirror::Class> klass = LookupClass(self, descriptor, hash, class_loader.Get()); 2537 if (klass != nullptr) { 2538 return EnsureResolved(self, descriptor, klass); 2539 } 2540 // Class is not yet loaded. 2541 if (descriptor[0] != '[' && class_loader == nullptr) { 2542 // Non-array class and the boot class loader, search the boot class path. 2543 ClassPathEntry pair = FindInClassPath(descriptor, hash, boot_class_path_); 2544 if (pair.second != nullptr) { 2545 return DefineClass(self, 2546 descriptor, 2547 hash, 2548 ScopedNullHandle<mirror::ClassLoader>(), 2549 *pair.first, 2550 *pair.second); 2551 } else { 2552 // The boot class loader is searched ahead of the application class loader, failures are 2553 // expected and will be wrapped in a ClassNotFoundException. Use the pre-allocated error to 2554 // trigger the chaining with a proper stack trace. 2555 ObjPtr<mirror::Throwable> pre_allocated = 2556 Runtime::Current()->GetPreAllocatedNoClassDefFoundError(); 2557 self->SetException(pre_allocated); 2558 return nullptr; 2559 } 2560 } 2561 ObjPtr<mirror::Class> result_ptr; 2562 bool descriptor_equals; 2563 if (descriptor[0] == '[') { 2564 result_ptr = CreateArrayClass(self, descriptor, hash, class_loader); 2565 DCHECK_EQ(result_ptr == nullptr, self->IsExceptionPending()); 2566 DCHECK(result_ptr == nullptr || result_ptr->DescriptorEquals(descriptor)); 2567 descriptor_equals = true; 2568 } else { 2569 ScopedObjectAccessUnchecked soa(self); 2570 bool known_hierarchy = 2571 FindClassInBaseDexClassLoader(soa, self, descriptor, hash, class_loader, &result_ptr); 2572 if (result_ptr != nullptr) { 2573 // The chain was understood and we found the class. We still need to add the class to 2574 // the class table to protect from racy programs that can try and redefine the path list 2575 // which would change the Class<?> returned for subsequent evaluation of const-class. 2576 DCHECK(known_hierarchy); 2577 DCHECK(result_ptr->DescriptorEquals(descriptor)); 2578 descriptor_equals = true; 2579 } else { 2580 // Either the chain wasn't understood or the class wasn't found. 2581 // 2582 // If the chain was understood but we did not find the class, let the Java-side 2583 // rediscover all this and throw the exception with the right stack trace. Note that 2584 // the Java-side could still succeed for racy programs if another thread is actively 2585 // modifying the class loader's path list. 2586 2587 if (!self->CanCallIntoJava()) { 2588 // Oops, we can't call into java so we can't run actual class-loader code. 2589 // This is true for e.g. for the compiler (jit or aot). 2590 ObjPtr<mirror::Throwable> pre_allocated = 2591 Runtime::Current()->GetPreAllocatedNoClassDefFoundError(); 2592 self->SetException(pre_allocated); 2593 return nullptr; 2594 } 2595 2596 // Inlined DescriptorToDot(descriptor) with extra validation. 2597 // 2598 // Throw NoClassDefFoundError early rather than potentially load a class only to fail 2599 // the DescriptorEquals() check below and give a confusing error message. For example, 2600 // when native code erroneously calls JNI GetFieldId() with signature "java/lang/String" 2601 // instead of "Ljava/lang/String;", the message below using the "dot" names would be 2602 // "class loader [...] returned class java.lang.String instead of java.lang.String". 2603 size_t descriptor_length = strlen(descriptor); 2604 if (UNLIKELY(descriptor[0] != 'L') || 2605 UNLIKELY(descriptor[descriptor_length - 1] != ';') || 2606 UNLIKELY(memchr(descriptor + 1, '.', descriptor_length - 2) != nullptr)) { 2607 ThrowNoClassDefFoundError("Invalid descriptor: %s.", descriptor); 2608 return nullptr; 2609 } 2610 std::string class_name_string(descriptor + 1, descriptor_length - 2); 2611 std::replace(class_name_string.begin(), class_name_string.end(), '/', '.'); 2612 2613 ScopedLocalRef<jobject> class_loader_object( 2614 soa.Env(), soa.AddLocalReference<jobject>(class_loader.Get())); 2615 ScopedLocalRef<jobject> result(soa.Env(), nullptr); 2616 { 2617 ScopedThreadStateChange tsc(self, kNative); 2618 ScopedLocalRef<jobject> class_name_object( 2619 soa.Env(), soa.Env()->NewStringUTF(class_name_string.c_str())); 2620 if (class_name_object.get() == nullptr) { 2621 DCHECK(self->IsExceptionPending()); // OOME. 2622 return nullptr; 2623 } 2624 CHECK(class_loader_object.get() != nullptr); 2625 result.reset(soa.Env()->CallObjectMethod(class_loader_object.get(), 2626 WellKnownClasses::java_lang_ClassLoader_loadClass, 2627 class_name_object.get())); 2628 } 2629 if (result.get() == nullptr && !self->IsExceptionPending()) { 2630 // broken loader - throw NPE to be compatible with Dalvik 2631 ThrowNullPointerException(StringPrintf("ClassLoader.loadClass returned null for %s", 2632 class_name_string.c_str()).c_str()); 2633 return nullptr; 2634 } 2635 result_ptr = soa.Decode<mirror::Class>(result.get()); 2636 // Check the name of the returned class. 2637 descriptor_equals = (result_ptr != nullptr) && result_ptr->DescriptorEquals(descriptor); 2638 } 2639 } 2640 2641 if (self->IsExceptionPending()) { 2642 // If the ClassLoader threw or array class allocation failed, pass that exception up. 2643 // However, to comply with the RI behavior, first check if another thread succeeded. 2644 result_ptr = LookupClass(self, descriptor, hash, class_loader.Get()); 2645 if (result_ptr != nullptr && !result_ptr->IsErroneous()) { 2646 self->ClearException(); 2647 return EnsureResolved(self, descriptor, result_ptr); 2648 } 2649 return nullptr; 2650 } 2651 2652 // Try to insert the class to the class table, checking for mismatch. 2653 ObjPtr<mirror::Class> old; 2654 { 2655 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); 2656 ClassTable* const class_table = InsertClassTableForClassLoader(class_loader.Get()); 2657 old = class_table->Lookup(descriptor, hash); 2658 if (old == nullptr) { 2659 old = result_ptr; // For the comparison below, after releasing the lock. 2660 if (descriptor_equals) { 2661 class_table->InsertWithHash(result_ptr.Ptr(), hash); 2662 Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader.Get()); 2663 } // else throw below, after releasing the lock. 2664 } 2665 } 2666 if (UNLIKELY(old != result_ptr)) { 2667 // Return `old` (even if `!descriptor_equals`) to mimic the RI behavior for parallel 2668 // capable class loaders. (All class loaders are considered parallel capable on Android.) 2669 mirror::Class* loader_class = class_loader->GetClass(); 2670 const char* loader_class_name = 2671 loader_class->GetDexFile().StringByTypeIdx(loader_class->GetDexTypeIndex()); 2672 LOG(WARNING) << "Initiating class loader of type " << DescriptorToDot(loader_class_name) 2673 << " is not well-behaved; it returned a different Class for racing loadClass(\"" 2674 << DescriptorToDot(descriptor) << "\")."; 2675 return EnsureResolved(self, descriptor, old); 2676 } 2677 if (UNLIKELY(!descriptor_equals)) { 2678 std::string result_storage; 2679 const char* result_name = result_ptr->GetDescriptor(&result_storage); 2680 std::string loader_storage; 2681 const char* loader_class_name = class_loader->GetClass()->GetDescriptor(&loader_storage); 2682 ThrowNoClassDefFoundError( 2683 "Initiating class loader of type %s returned class %s instead of %s.", 2684 DescriptorToDot(loader_class_name).c_str(), 2685 DescriptorToDot(result_name).c_str(), 2686 DescriptorToDot(descriptor).c_str()); 2687 return nullptr; 2688 } 2689 // success, return mirror::Class* 2690 return result_ptr.Ptr(); 2691 } 2692 2693 mirror::Class* ClassLinker::DefineClass(Thread* self, 2694 const char* descriptor, 2695 size_t hash, 2696 Handle<mirror::ClassLoader> class_loader, 2697 const DexFile& dex_file, 2698 const DexFile::ClassDef& dex_class_def) { 2699 StackHandleScope<3> hs(self); 2700 auto klass = hs.NewHandle<mirror::Class>(nullptr); 2701 2702 // Load the class from the dex file. 2703 if (UNLIKELY(!init_done_)) { 2704 // finish up init of hand crafted class_roots_ 2705 if (strcmp(descriptor, "Ljava/lang/Object;") == 0) { 2706 klass.Assign(GetClassRoot(kJavaLangObject)); 2707 } else if (strcmp(descriptor, "Ljava/lang/Class;") == 0) { 2708 klass.Assign(GetClassRoot(kJavaLangClass)); 2709 } else if (strcmp(descriptor, "Ljava/lang/String;") == 0) { 2710 klass.Assign(GetClassRoot(kJavaLangString)); 2711 } else if (strcmp(descriptor, "Ljava/lang/ref/Reference;") == 0) { 2712 klass.Assign(GetClassRoot(kJavaLangRefReference)); 2713 } else if (strcmp(descriptor, "Ljava/lang/DexCache;") == 0) { 2714 klass.Assign(GetClassRoot(kJavaLangDexCache)); 2715 } else if (strcmp(descriptor, "Ldalvik/system/ClassExt;") == 0) { 2716 klass.Assign(GetClassRoot(kDalvikSystemClassExt)); 2717 } 2718 } 2719 2720 if (klass == nullptr) { 2721 // Allocate a class with the status of not ready. 2722 // Interface object should get the right size here. Regular class will 2723 // figure out the right size later and be replaced with one of the right 2724 // size when the class becomes resolved. 2725 klass.Assign(AllocClass(self, SizeOfClassWithoutEmbeddedTables(dex_file, dex_class_def))); 2726 } 2727 if (UNLIKELY(klass == nullptr)) { 2728 self->AssertPendingOOMException(); 2729 return nullptr; 2730 } 2731 // Get the real dex file. This will return the input if there aren't any callbacks or they do 2732 // nothing. 2733 DexFile const* new_dex_file = nullptr; 2734 DexFile::ClassDef const* new_class_def = nullptr; 2735 // TODO We should ideally figure out some way to move this after we get a lock on the klass so it 2736 // will only be called once. 2737 Runtime::Current()->GetRuntimeCallbacks()->ClassPreDefine(descriptor, 2738 klass, 2739 class_loader, 2740 dex_file, 2741 dex_class_def, 2742 &new_dex_file, 2743 &new_class_def); 2744 // Check to see if an exception happened during runtime callbacks. Return if so. 2745 if (self->IsExceptionPending()) { 2746 return nullptr; 2747 } 2748 ObjPtr<mirror::DexCache> dex_cache = RegisterDexFile(*new_dex_file, class_loader.Get()); 2749 if (dex_cache == nullptr) { 2750 self->AssertPendingException(); 2751 return nullptr; 2752 } 2753 klass->SetDexCache(dex_cache); 2754 SetupClass(*new_dex_file, *new_class_def, klass, class_loader.Get()); 2755 2756 // Mark the string class by setting its access flag. 2757 if (UNLIKELY(!init_done_)) { 2758 if (strcmp(descriptor, "Ljava/lang/String;") == 0) { 2759 klass->SetStringClass(); 2760 } 2761 } 2762 2763 ObjectLock<mirror::Class> lock(self, klass); 2764 klass->SetClinitThreadId(self->GetTid()); 2765 // Make sure we have a valid empty iftable even if there are errors. 2766 klass->SetIfTable(GetClassRoot(kJavaLangObject)->GetIfTable()); 2767 2768 // Add the newly loaded class to the loaded classes table. 2769 ObjPtr<mirror::Class> existing = InsertClass(descriptor, klass.Get(), hash); 2770 if (existing != nullptr) { 2771 // We failed to insert because we raced with another thread. Calling EnsureResolved may cause 2772 // this thread to block. 2773 return EnsureResolved(self, descriptor, existing); 2774 } 2775 2776 // Load the fields and other things after we are inserted in the table. This is so that we don't 2777 // end up allocating unfree-able linear alloc resources and then lose the race condition. The 2778 // other reason is that the field roots are only visited from the class table. So we need to be 2779 // inserted before we allocate / fill in these fields. 2780 LoadClass(self, *new_dex_file, *new_class_def, klass); 2781 if (self->IsExceptionPending()) { 2782 VLOG(class_linker) << self->GetException()->Dump(); 2783 // An exception occured during load, set status to erroneous while holding klass' lock in case 2784 // notification is necessary. 2785 if (!klass->IsErroneous()) { 2786 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorUnresolved, self); 2787 } 2788 return nullptr; 2789 } 2790 2791 // Finish loading (if necessary) by finding parents 2792 CHECK(!klass->IsLoaded()); 2793 if (!LoadSuperAndInterfaces(klass, *new_dex_file)) { 2794 // Loading failed. 2795 if (!klass->IsErroneous()) { 2796 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorUnresolved, self); 2797 } 2798 return nullptr; 2799 } 2800 CHECK(klass->IsLoaded()); 2801 2802 // At this point the class is loaded. Publish a ClassLoad event. 2803 // Note: this may be a temporary class. It is a listener's responsibility to handle this. 2804 Runtime::Current()->GetRuntimeCallbacks()->ClassLoad(klass); 2805 2806 // Link the class (if necessary) 2807 CHECK(!klass->IsResolved()); 2808 // TODO: Use fast jobjects? 2809 auto interfaces = hs.NewHandle<mirror::ObjectArray<mirror::Class>>(nullptr); 2810 2811 MutableHandle<mirror::Class> h_new_class = hs.NewHandle<mirror::Class>(nullptr); 2812 if (!LinkClass(self, descriptor, klass, interfaces, &h_new_class)) { 2813 // Linking failed. 2814 if (!klass->IsErroneous()) { 2815 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorUnresolved, self); 2816 } 2817 return nullptr; 2818 } 2819 self->AssertNoPendingException(); 2820 CHECK(h_new_class != nullptr) << descriptor; 2821 CHECK(h_new_class->IsResolved() && !h_new_class->IsErroneousResolved()) << descriptor; 2822 2823 // Instrumentation may have updated entrypoints for all methods of all 2824 // classes. However it could not update methods of this class while we 2825 // were loading it. Now the class is resolved, we can update entrypoints 2826 // as required by instrumentation. 2827 if (Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()) { 2828 // We must be in the kRunnable state to prevent instrumentation from 2829 // suspending all threads to update entrypoints while we are doing it 2830 // for this class. 2831 DCHECK_EQ(self->GetState(), kRunnable); 2832 Runtime::Current()->GetInstrumentation()->InstallStubsForClass(h_new_class.Get()); 2833 } 2834 2835 /* 2836 * We send CLASS_PREPARE events to the debugger from here. The 2837 * definition of "preparation" is creating the static fields for a 2838 * class and initializing them to the standard default values, but not 2839 * executing any code (that comes later, during "initialization"). 2840 * 2841 * We did the static preparation in LinkClass. 2842 * 2843 * The class has been prepared and resolved but possibly not yet verified 2844 * at this point. 2845 */ 2846 Runtime::Current()->GetRuntimeCallbacks()->ClassPrepare(klass, h_new_class); 2847 2848 // Notify native debugger of the new class and its layout. 2849 jit::Jit::NewTypeLoadedIfUsingJit(h_new_class.Get()); 2850 2851 return h_new_class.Get(); 2852 } 2853 2854 uint32_t ClassLinker::SizeOfClassWithoutEmbeddedTables(const DexFile& dex_file, 2855 const DexFile::ClassDef& dex_class_def) { 2856 const uint8_t* class_data = dex_file.GetClassData(dex_class_def); 2857 size_t num_ref = 0; 2858 size_t num_8 = 0; 2859 size_t num_16 = 0; 2860 size_t num_32 = 0; 2861 size_t num_64 = 0; 2862 if (class_data != nullptr) { 2863 // We allow duplicate definitions of the same field in a class_data_item 2864 // but ignore the repeated indexes here, b/21868015. 2865 uint32_t last_field_idx = DexFile::kDexNoIndex; 2866 for (ClassDataItemIterator it(dex_file, class_data); it.HasNextStaticField(); it.Next()) { 2867 uint32_t field_idx = it.GetMemberIndex(); 2868 // Ordering enforced by DexFileVerifier. 2869 DCHECK(last_field_idx == DexFile::kDexNoIndex || last_field_idx <= field_idx); 2870 if (UNLIKELY(field_idx == last_field_idx)) { 2871 continue; 2872 } 2873 last_field_idx = field_idx; 2874 const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx); 2875 const char* descriptor = dex_file.GetFieldTypeDescriptor(field_id); 2876 char c = descriptor[0]; 2877 switch (c) { 2878 case 'L': 2879 case '[': 2880 num_ref++; 2881 break; 2882 case 'J': 2883 case 'D': 2884 num_64++; 2885 break; 2886 case 'I': 2887 case 'F': 2888 num_32++; 2889 break; 2890 case 'S': 2891 case 'C': 2892 num_16++; 2893 break; 2894 case 'B': 2895 case 'Z': 2896 num_8++; 2897 break; 2898 default: 2899 LOG(FATAL) << "Unknown descriptor: " << c; 2900 UNREACHABLE(); 2901 } 2902 } 2903 } 2904 return mirror::Class::ComputeClassSize(false, 2905 0, 2906 num_8, 2907 num_16, 2908 num_32, 2909 num_64, 2910 num_ref, 2911 image_pointer_size_); 2912 } 2913 2914 // Special case to get oat code without overwriting a trampoline. 2915 const void* ClassLinker::GetQuickOatCodeFor(ArtMethod* method) { 2916 CHECK(method->IsInvokable()) << method->PrettyMethod(); 2917 if (method->IsProxyMethod()) { 2918 return GetQuickProxyInvokeHandler(); 2919 } 2920 auto* code = method->GetOatMethodQuickCode(GetImagePointerSize()); 2921 if (code != nullptr) { 2922 return code; 2923 } 2924 if (method->IsNative()) { 2925 // No code and native? Use generic trampoline. 2926 return GetQuickGenericJniStub(); 2927 } 2928 return GetQuickToInterpreterBridge(); 2929 } 2930 2931 bool ClassLinker::ShouldUseInterpreterEntrypoint(ArtMethod* method, const void* quick_code) { 2932 if (UNLIKELY(method->IsNative() || method->IsProxyMethod())) { 2933 return false; 2934 } 2935 2936 if (quick_code == nullptr) { 2937 return true; 2938 } 2939 2940 Runtime* runtime = Runtime::Current(); 2941 instrumentation::Instrumentation* instr = runtime->GetInstrumentation(); 2942 if (instr->InterpretOnly()) { 2943 return true; 2944 } 2945 2946 if (runtime->GetClassLinker()->IsQuickToInterpreterBridge(quick_code)) { 2947 // Doing this check avoids doing compiled/interpreter transitions. 2948 return true; 2949 } 2950 2951 if (Dbg::IsForcedInterpreterNeededForCalling(Thread::Current(), method)) { 2952 // Force the use of interpreter when it is required by the debugger. 2953 return true; 2954 } 2955 2956 if (runtime->IsJavaDebuggable()) { 2957 // For simplicity, we ignore precompiled code and go to the interpreter 2958 // assuming we don't already have jitted code. 2959 // We could look at the oat file where `quick_code` is being defined, 2960 // and check whether it's been compiled debuggable, but we decided to 2961 // only rely on the JIT for debuggable apps. 2962 jit::Jit* jit = Runtime::Current()->GetJit(); 2963 return (jit == nullptr) || !jit->GetCodeCache()->ContainsPc(quick_code); 2964 } 2965 2966 if (runtime->IsNativeDebuggable()) { 2967 DCHECK(runtime->UseJitCompilation() && runtime->GetJit()->JitAtFirstUse()); 2968 // If we are doing native debugging, ignore application's AOT code, 2969 // since we want to JIT it (at first use) with extra stackmaps for native 2970 // debugging. We keep however all AOT code from the boot image, 2971 // since the JIT-at-first-use is blocking and would result in non-negligible 2972 // startup performance impact. 2973 return !runtime->GetHeap()->IsInBootImageOatFile(quick_code); 2974 } 2975 2976 return false; 2977 } 2978 2979 void ClassLinker::FixupStaticTrampolines(ObjPtr<mirror::Class> klass) { 2980 DCHECK(klass->IsInitialized()) << klass->PrettyDescriptor(); 2981 if (klass->NumDirectMethods() == 0) { 2982 return; // No direct methods => no static methods. 2983 } 2984 Runtime* runtime = Runtime::Current(); 2985 if (!runtime->IsStarted()) { 2986 if (runtime->IsAotCompiler() || runtime->GetHeap()->HasBootImageSpace()) { 2987 return; // OAT file unavailable. 2988 } 2989 } 2990 2991 const DexFile& dex_file = klass->GetDexFile(); 2992 const DexFile::ClassDef* dex_class_def = klass->GetClassDef(); 2993 CHECK(dex_class_def != nullptr); 2994 const uint8_t* class_data = dex_file.GetClassData(*dex_class_def); 2995 // There should always be class data if there were direct methods. 2996 CHECK(class_data != nullptr) << klass->PrettyDescriptor(); 2997 ClassDataItemIterator it(dex_file, class_data); 2998 // Skip fields 2999 while (it.HasNextStaticField()) { 3000 it.Next(); 3001 } 3002 while (it.HasNextInstanceField()) { 3003 it.Next(); 3004 } 3005 bool has_oat_class; 3006 OatFile::OatClass oat_class = OatFile::FindOatClass(dex_file, 3007 klass->GetDexClassDefIndex(), 3008 &has_oat_class); 3009 // Link the code of methods skipped by LinkCode. 3010 for (size_t method_index = 0; it.HasNextDirectMethod(); ++method_index, it.Next()) { 3011 ArtMethod* method = klass->GetDirectMethod(method_index, image_pointer_size_); 3012 if (!method->IsStatic()) { 3013 // Only update static methods. 3014 continue; 3015 } 3016 const void* quick_code = nullptr; 3017 if (has_oat_class) { 3018 OatFile::OatMethod oat_method = oat_class.GetOatMethod(method_index); 3019 quick_code = oat_method.GetQuickCode(); 3020 } 3021 // Check whether the method is native, in which case it's generic JNI. 3022 if (quick_code == nullptr && method->IsNative()) { 3023 quick_code = GetQuickGenericJniStub(); 3024 } else if (ShouldUseInterpreterEntrypoint(method, quick_code)) { 3025 // Use interpreter entry point. 3026 quick_code = GetQuickToInterpreterBridge(); 3027 } 3028 runtime->GetInstrumentation()->UpdateMethodsCode(method, quick_code); 3029 } 3030 // Ignore virtual methods on the iterator. 3031 } 3032 3033 // Does anything needed to make sure that the compiler will not generate a direct invoke to this 3034 // method. Should only be called on non-invokable methods. 3035 inline void EnsureThrowsInvocationError(ClassLinker* class_linker, ArtMethod* method) { 3036 DCHECK(method != nullptr); 3037 DCHECK(!method->IsInvokable()); 3038 method->SetEntryPointFromQuickCompiledCodePtrSize( 3039 class_linker->GetQuickToInterpreterBridgeTrampoline(), 3040 class_linker->GetImagePointerSize()); 3041 } 3042 3043 static void LinkCode(ClassLinker* class_linker, 3044 ArtMethod* method, 3045 const OatFile::OatClass* oat_class, 3046 uint32_t class_def_method_index) REQUIRES_SHARED(Locks::mutator_lock_) { 3047 Runtime* const runtime = Runtime::Current(); 3048 if (runtime->IsAotCompiler()) { 3049 // The following code only applies to a non-compiler runtime. 3050 return; 3051 } 3052 // Method shouldn't have already been linked. 3053 DCHECK(method->GetEntryPointFromQuickCompiledCode() == nullptr); 3054 if (oat_class != nullptr) { 3055 // Every kind of method should at least get an invoke stub from the oat_method. 3056 // non-abstract methods also get their code pointers. 3057 const OatFile::OatMethod oat_method = oat_class->GetOatMethod(class_def_method_index); 3058 oat_method.LinkMethod(method); 3059 } 3060 3061 // Install entry point from interpreter. 3062 const void* quick_code = method->GetEntryPointFromQuickCompiledCode(); 3063 bool enter_interpreter = class_linker->ShouldUseInterpreterEntrypoint(method, quick_code); 3064 3065 if (!method->IsInvokable()) { 3066 EnsureThrowsInvocationError(class_linker, method); 3067 return; 3068 } 3069 3070 if (method->IsStatic() && !method->IsConstructor()) { 3071 // For static methods excluding the class initializer, install the trampoline. 3072 // It will be replaced by the proper entry point by ClassLinker::FixupStaticTrampolines 3073 // after initializing class (see ClassLinker::InitializeClass method). 3074 method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub()); 3075 } else if (quick_code == nullptr && method->IsNative()) { 3076 method->SetEntryPointFromQuickCompiledCode(GetQuickGenericJniStub()); 3077 } else if (enter_interpreter) { 3078 // Set entry point from compiled code if there's no code or in interpreter only mode. 3079 method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge()); 3080 } 3081 3082 if (method->IsNative()) { 3083 // Unregistering restores the dlsym lookup stub. 3084 method->UnregisterNative(); 3085 3086 if (enter_interpreter || quick_code == nullptr) { 3087 // We have a native method here without code. Then it should have either the generic JNI 3088 // trampoline as entrypoint (non-static), or the resolution trampoline (static). 3089 // TODO: this doesn't handle all the cases where trampolines may be installed. 3090 const void* entry_point = method->GetEntryPointFromQuickCompiledCode(); 3091 DCHECK(class_linker->IsQuickGenericJniStub(entry_point) || 3092 class_linker->IsQuickResolutionStub(entry_point)); 3093 } 3094 } 3095 } 3096 3097 void ClassLinker::SetupClass(const DexFile& dex_file, 3098 const DexFile::ClassDef& dex_class_def, 3099 Handle<mirror::Class> klass, 3100 ObjPtr<mirror::ClassLoader> class_loader) { 3101 CHECK(klass != nullptr); 3102 CHECK(klass->GetDexCache() != nullptr); 3103 CHECK_EQ(mirror::Class::kStatusNotReady, klass->GetStatus()); 3104 const char* descriptor = dex_file.GetClassDescriptor(dex_class_def); 3105 CHECK(descriptor != nullptr); 3106 3107 klass->SetClass(GetClassRoot(kJavaLangClass)); 3108 uint32_t access_flags = dex_class_def.GetJavaAccessFlags(); 3109 CHECK_EQ(access_flags & ~kAccJavaFlagsMask, 0U); 3110 klass->SetAccessFlags(access_flags); 3111 klass->SetClassLoader(class_loader); 3112 DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot); 3113 mirror::Class::SetStatus(klass, mirror::Class::kStatusIdx, nullptr); 3114 3115 klass->SetDexClassDefIndex(dex_file.GetIndexForClassDef(dex_class_def)); 3116 klass->SetDexTypeIndex(dex_class_def.class_idx_); 3117 } 3118 3119 void ClassLinker::LoadClass(Thread* self, 3120 const DexFile& dex_file, 3121 const DexFile::ClassDef& dex_class_def, 3122 Handle<mirror::Class> klass) { 3123 const uint8_t* class_data = dex_file.GetClassData(dex_class_def); 3124 if (class_data == nullptr) { 3125 return; // no fields or methods - for example a marker interface 3126 } 3127 LoadClassMembers(self, dex_file, class_data, klass); 3128 } 3129 3130 LengthPrefixedArray<ArtField>* ClassLinker::AllocArtFieldArray(Thread* self, 3131 LinearAlloc* allocator, 3132 size_t length) { 3133 if (length == 0) { 3134 return nullptr; 3135 } 3136 // If the ArtField alignment changes, review all uses of LengthPrefixedArray<ArtField>. 3137 static_assert(alignof(ArtField) == 4, "ArtField alignment is expected to be 4."); 3138 size_t storage_size = LengthPrefixedArray<ArtField>::ComputeSize(length); 3139 void* array_storage = allocator->Alloc(self, storage_size); 3140 auto* ret = new(array_storage) LengthPrefixedArray<ArtField>(length); 3141 CHECK(ret != nullptr); 3142 std::uninitialized_fill_n(&ret->At(0), length, ArtField()); 3143 return ret; 3144 } 3145 3146 LengthPrefixedArray<ArtMethod>* ClassLinker::AllocArtMethodArray(Thread* self, 3147 LinearAlloc* allocator, 3148 size_t length) { 3149 if (length == 0) { 3150 return nullptr; 3151 } 3152 const size_t method_alignment = ArtMethod::Alignment(image_pointer_size_); 3153 const size_t method_size = ArtMethod::Size(image_pointer_size_); 3154 const size_t storage_size = 3155 LengthPrefixedArray<ArtMethod>::ComputeSize(length, method_size, method_alignment); 3156 void* array_storage = allocator->Alloc(self, storage_size); 3157 auto* ret = new (array_storage) LengthPrefixedArray<ArtMethod>(length); 3158 CHECK(ret != nullptr); 3159 for (size_t i = 0; i < length; ++i) { 3160 new(reinterpret_cast<void*>(&ret->At(i, method_size, method_alignment))) ArtMethod; 3161 } 3162 return ret; 3163 } 3164 3165 LinearAlloc* ClassLinker::GetAllocatorForClassLoader(ObjPtr<mirror::ClassLoader> class_loader) { 3166 if (class_loader == nullptr) { 3167 return Runtime::Current()->GetLinearAlloc(); 3168 } 3169 LinearAlloc* allocator = class_loader->GetAllocator(); 3170 DCHECK(allocator != nullptr); 3171 return allocator; 3172 } 3173 3174 LinearAlloc* ClassLinker::GetOrCreateAllocatorForClassLoader(ObjPtr<mirror::ClassLoader> class_loader) { 3175 if (class_loader == nullptr) { 3176 return Runtime::Current()->GetLinearAlloc(); 3177 } 3178 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); 3179 LinearAlloc* allocator = class_loader->GetAllocator(); 3180 if (allocator == nullptr) { 3181 RegisterClassLoader(class_loader); 3182 allocator = class_loader->GetAllocator(); 3183 CHECK(allocator != nullptr); 3184 } 3185 return allocator; 3186 } 3187 3188 void ClassLinker::LoadClassMembers(Thread* self, 3189 const DexFile& dex_file, 3190 const uint8_t* class_data, 3191 Handle<mirror::Class> klass) { 3192 { 3193 // Note: We cannot have thread suspension until the field and method arrays are setup or else 3194 // Class::VisitFieldRoots may miss some fields or methods. 3195 ScopedAssertNoThreadSuspension nts(__FUNCTION__); 3196 // Load static fields. 3197 // We allow duplicate definitions of the same field in a class_data_item 3198 // but ignore the repeated indexes here, b/21868015. 3199 LinearAlloc* const allocator = GetAllocatorForClassLoader(klass->GetClassLoader()); 3200 ClassDataItemIterator it(dex_file, class_data); 3201 LengthPrefixedArray<ArtField>* sfields = AllocArtFieldArray(self, 3202 allocator, 3203 it.NumStaticFields()); 3204 size_t num_sfields = 0; 3205 uint32_t last_field_idx = 0u; 3206 for (; it.HasNextStaticField(); it.Next()) { 3207 uint32_t field_idx = it.GetMemberIndex(); 3208 DCHECK_GE(field_idx, last_field_idx); // Ordering enforced by DexFileVerifier. 3209 if (num_sfields == 0 || LIKELY(field_idx > last_field_idx)) { 3210 DCHECK_LT(num_sfields, it.NumStaticFields()); 3211 LoadField(it, klass, &sfields->At(num_sfields)); 3212 ++num_sfields; 3213 last_field_idx = field_idx; 3214 } 3215 } 3216 3217 // Load instance fields. 3218 LengthPrefixedArray<ArtField>* ifields = AllocArtFieldArray(self, 3219 allocator, 3220 it.NumInstanceFields()); 3221 size_t num_ifields = 0u; 3222 last_field_idx = 0u; 3223 for (; it.HasNextInstanceField(); it.Next()) { 3224 uint32_t field_idx = it.GetMemberIndex(); 3225 DCHECK_GE(field_idx, last_field_idx); // Ordering enforced by DexFileVerifier. 3226 if (num_ifields == 0 || LIKELY(field_idx > last_field_idx)) { 3227 DCHECK_LT(num_ifields, it.NumInstanceFields()); 3228 LoadField(it, klass, &ifields->At(num_ifields)); 3229 ++num_ifields; 3230 last_field_idx = field_idx; 3231 } 3232 } 3233 3234 if (UNLIKELY(num_sfields != it.NumStaticFields()) || 3235 UNLIKELY(num_ifields != it.NumInstanceFields())) { 3236 LOG(WARNING) << "Duplicate fields in class " << klass->PrettyDescriptor() 3237 << " (unique static fields: " << num_sfields << "/" << it.NumStaticFields() 3238 << ", unique instance fields: " << num_ifields << "/" << it.NumInstanceFields() << ")"; 3239 // NOTE: Not shrinking the over-allocated sfields/ifields, just setting size. 3240 if (sfields != nullptr) { 3241 sfields->SetSize(num_sfields); 3242 } 3243 if (ifields != nullptr) { 3244 ifields->SetSize(num_ifields); 3245 } 3246 } 3247 // Set the field arrays. 3248 klass->SetSFieldsPtr(sfields); 3249 DCHECK_EQ(klass->NumStaticFields(), num_sfields); 3250 klass->SetIFieldsPtr(ifields); 3251 DCHECK_EQ(klass->NumInstanceFields(), num_ifields); 3252 // Load methods. 3253 bool has_oat_class = false; 3254 const OatFile::OatClass oat_class = 3255 (Runtime::Current()->IsStarted() && !Runtime::Current()->IsAotCompiler()) 3256 ? OatFile::FindOatClass(dex_file, klass->GetDexClassDefIndex(), &has_oat_class) 3257 : OatFile::OatClass::Invalid(); 3258 const OatFile::OatClass* oat_class_ptr = has_oat_class ? &oat_class : nullptr; 3259 klass->SetMethodsPtr( 3260 AllocArtMethodArray(self, allocator, it.NumDirectMethods() + it.NumVirtualMethods()), 3261 it.NumDirectMethods(), 3262 it.NumVirtualMethods()); 3263 size_t class_def_method_index = 0; 3264 uint32_t last_dex_method_index = DexFile::kDexNoIndex; 3265 size_t last_class_def_method_index = 0; 3266 // TODO These should really use the iterators. 3267 for (size_t i = 0; it.HasNextDirectMethod(); i++, it.Next()) { 3268 ArtMethod* method = klass->GetDirectMethodUnchecked(i, image_pointer_size_); 3269 LoadMethod(dex_file, it, klass, method); 3270 LinkCode(this, method, oat_class_ptr, class_def_method_index); 3271 uint32_t it_method_index = it.GetMemberIndex(); 3272 if (last_dex_method_index == it_method_index) { 3273 // duplicate case 3274 method->SetMethodIndex(last_class_def_method_index); 3275 } else { 3276 method->SetMethodIndex(class_def_method_index); 3277 last_dex_method_index = it_method_index; 3278 last_class_def_method_index = class_def_method_index; 3279 } 3280 class_def_method_index++; 3281 } 3282 for (size_t i = 0; it.HasNextVirtualMethod(); i++, it.Next()) { 3283 ArtMethod* method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_); 3284 LoadMethod(dex_file, it, klass, method); 3285 DCHECK_EQ(class_def_method_index, it.NumDirectMethods() + i); 3286 LinkCode(this, method, oat_class_ptr, class_def_method_index); 3287 class_def_method_index++; 3288 } 3289 DCHECK(!it.HasNext()); 3290 } 3291 // Ensure that the card is marked so that remembered sets pick up native roots. 3292 Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(klass.Get()); 3293 self->AllowThreadSuspension(); 3294 } 3295 3296 void ClassLinker::LoadField(const ClassDataItemIterator& it, 3297 Handle<mirror::Class> klass, 3298 ArtField* dst) { 3299 const uint32_t field_idx = it.GetMemberIndex(); 3300 dst->SetDexFieldIndex(field_idx); 3301 dst->SetDeclaringClass(klass.Get()); 3302 dst->SetAccessFlags(it.GetFieldAccessFlags()); 3303 } 3304 3305 void ClassLinker::LoadMethod(const DexFile& dex_file, 3306 const ClassDataItemIterator& it, 3307 Handle<mirror::Class> klass, 3308 ArtMethod* dst) { 3309 uint32_t dex_method_idx = it.GetMemberIndex(); 3310 const DexFile::MethodId& method_id = dex_file.GetMethodId(dex_method_idx); 3311 const char* method_name = dex_file.StringDataByIdx(method_id.name_idx_); 3312 3313 ScopedAssertNoThreadSuspension ants("LoadMethod"); 3314 dst->SetDexMethodIndex(dex_method_idx); 3315 dst->SetDeclaringClass(klass.Get()); 3316 dst->SetCodeItemOffset(it.GetMethodCodeItemOffset()); 3317 3318 dst->SetDexCacheResolvedMethods(klass->GetDexCache()->GetResolvedMethods(), image_pointer_size_); 3319 3320 uint32_t access_flags = it.GetMethodAccessFlags(); 3321 3322 if (UNLIKELY(strcmp("finalize", method_name) == 0)) { 3323 // Set finalizable flag on declaring class. 3324 if (strcmp("V", dex_file.GetShorty(method_id.proto_idx_)) == 0) { 3325 // Void return type. 3326 if (klass->GetClassLoader() != nullptr) { // All non-boot finalizer methods are flagged. 3327 klass->SetFinalizable(); 3328 } else { 3329 std::string temp; 3330 const char* klass_descriptor = klass->GetDescriptor(&temp); 3331 // The Enum class declares a "final" finalize() method to prevent subclasses from 3332 // introducing a finalizer. We don't want to set the finalizable flag for Enum or its 3333 // subclasses, so we exclude it here. 3334 // We also want to avoid setting the flag on Object, where we know that finalize() is 3335 // empty. 3336 if (strcmp(klass_descriptor, "Ljava/lang/Object;") != 0 && 3337 strcmp(klass_descriptor, "Ljava/lang/Enum;") != 0) { 3338 klass->SetFinalizable(); 3339 } 3340 } 3341 } 3342 } else if (method_name[0] == '<') { 3343 // Fix broken access flags for initializers. Bug 11157540. 3344 bool is_init = (strcmp("<init>", method_name) == 0); 3345 bool is_clinit = !is_init && (strcmp("<clinit>", method_name) == 0); 3346 if (UNLIKELY(!is_init && !is_clinit)) { 3347 LOG(WARNING) << "Unexpected '<' at start of method name " << method_name; 3348 } else { 3349 if (UNLIKELY((access_flags & kAccConstructor) == 0)) { 3350 LOG(WARNING) << method_name << " didn't have expected constructor access flag in class " 3351 << klass->PrettyDescriptor() << " in dex file " << dex_file.GetLocation(); 3352 access_flags |= kAccConstructor; 3353 } 3354 } 3355 } 3356 dst->SetAccessFlags(access_flags); 3357 } 3358 3359 void ClassLinker::AppendToBootClassPath(Thread* self, const DexFile& dex_file) { 3360 ObjPtr<mirror::DexCache> dex_cache = AllocAndInitializeDexCache( 3361 self, 3362 dex_file, 3363 Runtime::Current()->GetLinearAlloc()); 3364 CHECK(dex_cache != nullptr) << "Failed to allocate dex cache for " << dex_file.GetLocation(); 3365 AppendToBootClassPath(dex_file, dex_cache); 3366 } 3367 3368 void ClassLinker::AppendToBootClassPath(const DexFile& dex_file, 3369 ObjPtr<mirror::DexCache> dex_cache) { 3370 CHECK(dex_cache != nullptr) << dex_file.GetLocation(); 3371 boot_class_path_.push_back(&dex_file); 3372 RegisterBootClassPathDexFile(dex_file, dex_cache); 3373 } 3374 3375 void ClassLinker::RegisterDexFileLocked(const DexFile& dex_file, 3376 ObjPtr<mirror::DexCache> dex_cache, 3377 ObjPtr<mirror::ClassLoader> class_loader) { 3378 Thread* const self = Thread::Current(); 3379 Locks::dex_lock_->AssertExclusiveHeld(self); 3380 CHECK(dex_cache != nullptr) << dex_file.GetLocation(); 3381 // For app images, the dex cache location may be a suffix of the dex file location since the 3382 // dex file location is an absolute path. 3383 const std::string dex_cache_location = dex_cache->GetLocation()->ToModifiedUtf8(); 3384 const size_t dex_cache_length = dex_cache_location.length(); 3385 CHECK_GT(dex_cache_length, 0u) << dex_file.GetLocation(); 3386 std::string dex_file_location = dex_file.GetLocation(); 3387 CHECK_GE(dex_file_location.length(), dex_cache_length) 3388 << dex_cache_location << " " << dex_file.GetLocation(); 3389 // Take suffix. 3390 const std::string dex_file_suffix = dex_file_location.substr( 3391 dex_file_location.length() - dex_cache_length, 3392 dex_cache_length); 3393 // Example dex_cache location is SettingsProvider.apk and 3394 // dex file location is /system/priv-app/SettingsProvider/SettingsProvider.apk 3395 CHECK_EQ(dex_cache_location, dex_file_suffix); 3396 // Clean up pass to remove null dex caches. 3397 // Null dex caches can occur due to class unloading and we are lazily removing null entries. 3398 JavaVMExt* const vm = self->GetJniEnv()->vm; 3399 for (auto it = dex_caches_.begin(); it != dex_caches_.end(); ) { 3400 DexCacheData data = *it; 3401 if (self->IsJWeakCleared(data.weak_root)) { 3402 vm->DeleteWeakGlobalRef(self, data.weak_root); 3403 it = dex_caches_.erase(it); 3404 } else { 3405 ++it; 3406 } 3407 } 3408 jweak dex_cache_jweak = vm->AddWeakGlobalRef(self, dex_cache); 3409 dex_cache->SetDexFile(&dex_file); 3410 DexCacheData data; 3411 data.weak_root = dex_cache_jweak; 3412 data.dex_file = dex_cache->GetDexFile(); 3413 data.resolved_methods = dex_cache->GetResolvedMethods(); 3414 data.class_table = ClassTableForClassLoader(class_loader); 3415 DCHECK(data.class_table != nullptr); 3416 dex_caches_.push_back(data); 3417 } 3418 3419 ObjPtr<mirror::DexCache> ClassLinker::DecodeDexCache(Thread* self, const DexCacheData& data) { 3420 return data.IsValid() 3421 ? ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root)) 3422 : nullptr; 3423 } 3424 3425 ObjPtr<mirror::DexCache> ClassLinker::EnsureSameClassLoader( 3426 Thread* self, 3427 ObjPtr<mirror::DexCache> dex_cache, 3428 const DexCacheData& data, 3429 ObjPtr<mirror::ClassLoader> class_loader) { 3430 DCHECK_EQ(dex_cache->GetDexFile(), data.dex_file); 3431 if (data.class_table != ClassTableForClassLoader(class_loader)) { 3432 self->ThrowNewExceptionF("Ljava/lang/InternalError;", 3433 "Attempt to register dex file %s with multiple class loaders", 3434 data.dex_file->GetLocation().c_str()); 3435 return nullptr; 3436 } 3437 return dex_cache; 3438 } 3439 3440 ObjPtr<mirror::DexCache> ClassLinker::RegisterDexFile(const DexFile& dex_file, 3441 ObjPtr<mirror::ClassLoader> class_loader) { 3442 Thread* self = Thread::Current(); 3443 DexCacheData old_data; 3444 { 3445 ReaderMutexLock mu(self, *Locks::dex_lock_); 3446 old_data = FindDexCacheDataLocked(dex_file); 3447 } 3448 ObjPtr<mirror::DexCache> old_dex_cache = DecodeDexCache(self, old_data); 3449 if (old_dex_cache != nullptr) { 3450 return EnsureSameClassLoader(self, old_dex_cache, old_data, class_loader); 3451 } 3452 LinearAlloc* const linear_alloc = GetOrCreateAllocatorForClassLoader(class_loader); 3453 DCHECK(linear_alloc != nullptr); 3454 ClassTable* table; 3455 { 3456 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); 3457 table = InsertClassTableForClassLoader(class_loader); 3458 } 3459 // Don't alloc while holding the lock, since allocation may need to 3460 // suspend all threads and another thread may need the dex_lock_ to 3461 // get to a suspend point. 3462 StackHandleScope<3> hs(self); 3463 Handle<mirror::ClassLoader> h_class_loader(hs.NewHandle(class_loader)); 3464 ObjPtr<mirror::String> location; 3465 Handle<mirror::DexCache> h_dex_cache(hs.NewHandle(AllocDexCache(/*out*/&location, 3466 self, 3467 dex_file))); 3468 Handle<mirror::String> h_location(hs.NewHandle(location)); 3469 { 3470 WriterMutexLock mu(self, *Locks::dex_lock_); 3471 old_data = FindDexCacheDataLocked(dex_file); 3472 old_dex_cache = DecodeDexCache(self, old_data); 3473 if (old_dex_cache == nullptr && h_dex_cache != nullptr) { 3474 // Do InitializeDexCache while holding dex lock to make sure two threads don't call it at the 3475 // same time with the same dex cache. Since the .bss is shared this can cause failing DCHECK 3476 // that the arrays are null. 3477 mirror::DexCache::InitializeDexCache(self, 3478 h_dex_cache.Get(), 3479 h_location.Get(), 3480 &dex_file, 3481 linear_alloc, 3482 image_pointer_size_); 3483 RegisterDexFileLocked(dex_file, h_dex_cache.Get(), h_class_loader.Get()); 3484 } 3485 } 3486 if (old_dex_cache != nullptr) { 3487 // Another thread managed to initialize the dex cache faster, so use that DexCache. 3488 // If this thread encountered OOME, ignore it. 3489 DCHECK_EQ(h_dex_cache == nullptr, self->IsExceptionPending()); 3490 self->ClearException(); 3491 // We cannot call EnsureSameClassLoader() while holding the dex_lock_. 3492 return EnsureSameClassLoader(self, old_dex_cache, old_data, h_class_loader.Get()); 3493 } 3494 if (h_dex_cache == nullptr) { 3495 self->AssertPendingOOMException(); 3496 return nullptr; 3497 } 3498 table->InsertStrongRoot(h_dex_cache.Get()); 3499 if (h_class_loader.Get() != nullptr) { 3500 // Since we added a strong root to the class table, do the write barrier as required for 3501 // remembered sets and generational GCs. 3502 Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(h_class_loader.Get()); 3503 } 3504 return h_dex_cache.Get(); 3505 } 3506 3507 void ClassLinker::RegisterBootClassPathDexFile(const DexFile& dex_file, 3508 ObjPtr<mirror::DexCache> dex_cache) { 3509 WriterMutexLock mu(Thread::Current(), *Locks::dex_lock_); 3510 RegisterDexFileLocked(dex_file, dex_cache, /* class_loader */ nullptr); 3511 } 3512 3513 bool ClassLinker::IsDexFileRegistered(Thread* self, const DexFile& dex_file) { 3514 ReaderMutexLock mu(self, *Locks::dex_lock_); 3515 return DecodeDexCache(self, FindDexCacheDataLocked(dex_file)) != nullptr; 3516 } 3517 3518 ObjPtr<mirror::DexCache> ClassLinker::FindDexCache(Thread* self, const DexFile& dex_file) { 3519 ReaderMutexLock mu(self, *Locks::dex_lock_); 3520 ObjPtr<mirror::DexCache> dex_cache = DecodeDexCache(self, FindDexCacheDataLocked(dex_file)); 3521 if (dex_cache != nullptr) { 3522 return dex_cache; 3523 } 3524 // Failure, dump diagnostic and abort. 3525 for (const DexCacheData& data : dex_caches_) { 3526 if (DecodeDexCache(self, data) != nullptr) { 3527 LOG(FATAL_WITHOUT_ABORT) << "Registered dex file " << data.dex_file->GetLocation(); 3528 } 3529 } 3530 LOG(FATAL) << "Failed to find DexCache for DexFile " << dex_file.GetLocation(); 3531 UNREACHABLE(); 3532 } 3533 3534 ClassTable* ClassLinker::FindClassTable(Thread* self, ObjPtr<mirror::DexCache> dex_cache) { 3535 const DexFile* dex_file = dex_cache->GetDexFile(); 3536 DCHECK(dex_file != nullptr); 3537 ReaderMutexLock mu(self, *Locks::dex_lock_); 3538 // Search assuming unique-ness of dex file. 3539 for (const DexCacheData& data : dex_caches_) { 3540 // Avoid decoding (and read barriers) other unrelated dex caches. 3541 if (data.dex_file == dex_file) { 3542 ObjPtr<mirror::DexCache> registered_dex_cache = DecodeDexCache(self, data); 3543 if (registered_dex_cache != nullptr) { 3544 CHECK_EQ(registered_dex_cache, dex_cache) << dex_file->GetLocation(); 3545 return data.class_table; 3546 } 3547 } 3548 } 3549 return nullptr; 3550 } 3551 3552 ClassLinker::DexCacheData ClassLinker::FindDexCacheDataLocked(const DexFile& dex_file) { 3553 // Search assuming unique-ness of dex file. 3554 for (const DexCacheData& data : dex_caches_) { 3555 // Avoid decoding (and read barriers) other unrelated dex caches. 3556 if (data.dex_file == &dex_file) { 3557 return data; 3558 } 3559 } 3560 return DexCacheData(); 3561 } 3562 3563 void ClassLinker::FixupDexCaches(ArtMethod* resolution_method) { 3564 Thread* const self = Thread::Current(); 3565 ReaderMutexLock mu(self, *Locks::dex_lock_); 3566 for (const DexCacheData& data : dex_caches_) { 3567 if (!self->IsJWeakCleared(data.weak_root)) { 3568 ObjPtr<mirror::DexCache> dex_cache = ObjPtr<mirror::DexCache>::DownCast( 3569 self->DecodeJObject(data.weak_root)); 3570 if (dex_cache != nullptr) { 3571 dex_cache->Fixup(resolution_method, image_pointer_size_); 3572 } 3573 } 3574 } 3575 } 3576 3577 mirror::Class* ClassLinker::CreatePrimitiveClass(Thread* self, Primitive::Type type) { 3578 ObjPtr<mirror::Class> klass = 3579 AllocClass(self, mirror::Class::PrimitiveClassSize(image_pointer_size_)); 3580 if (UNLIKELY(klass == nullptr)) { 3581 self->AssertPendingOOMException(); 3582 return nullptr; 3583 } 3584 return InitializePrimitiveClass(klass, type); 3585 } 3586 3587 mirror::Class* ClassLinker::InitializePrimitiveClass(ObjPtr<mirror::Class> primitive_class, 3588 Primitive::Type type) { 3589 CHECK(primitive_class != nullptr); 3590 // Must hold lock on object when initializing. 3591 Thread* self = Thread::Current(); 3592 StackHandleScope<1> hs(self); 3593 Handle<mirror::Class> h_class(hs.NewHandle(primitive_class)); 3594 ObjectLock<mirror::Class> lock(self, h_class); 3595 h_class->SetAccessFlags(kAccPublic | kAccFinal | kAccAbstract); 3596 h_class->SetPrimitiveType(type); 3597 h_class->SetIfTable(GetClassRoot(kJavaLangObject)->GetIfTable()); 3598 mirror::Class::SetStatus(h_class, mirror::Class::kStatusInitialized, self); 3599 const char* descriptor = Primitive::Descriptor(type); 3600 ObjPtr<mirror::Class> existing = InsertClass(descriptor, 3601 h_class.Get(), 3602 ComputeModifiedUtf8Hash(descriptor)); 3603 CHECK(existing == nullptr) << "InitPrimitiveClass(" << type << ") failed"; 3604 return h_class.Get(); 3605 } 3606 3607 // Create an array class (i.e. the class object for the array, not the 3608 // array itself). "descriptor" looks like "[C" or "[[[[B" or 3609 // "[Ljava/lang/String;". 3610 // 3611 // If "descriptor" refers to an array of primitives, look up the 3612 // primitive type's internally-generated class object. 3613 // 3614 // "class_loader" is the class loader of the class that's referring to 3615 // us. It's used to ensure that we're looking for the element type in 3616 // the right context. It does NOT become the class loader for the 3617 // array class; that always comes from the base element class. 3618 // 3619 // Returns null with an exception raised on failure. 3620 mirror::Class* ClassLinker::CreateArrayClass(Thread* self, const char* descriptor, size_t hash, 3621 Handle<mirror::ClassLoader> class_loader) { 3622 // Identify the underlying component type 3623 CHECK_EQ('[', descriptor[0]); 3624 StackHandleScope<2> hs(self); 3625 MutableHandle<mirror::Class> component_type(hs.NewHandle(FindClass(self, descriptor + 1, 3626 class_loader))); 3627 if (component_type == nullptr) { 3628 DCHECK(self->IsExceptionPending()); 3629 // We need to accept erroneous classes as component types. 3630 const size_t component_hash = ComputeModifiedUtf8Hash(descriptor + 1); 3631 component_type.Assign(LookupClass(self, descriptor + 1, component_hash, class_loader.Get())); 3632 if (component_type == nullptr) { 3633 DCHECK(self->IsExceptionPending()); 3634 return nullptr; 3635 } else { 3636 self->ClearException(); 3637 } 3638 } 3639 if (UNLIKELY(component_type->IsPrimitiveVoid())) { 3640 ThrowNoClassDefFoundError("Attempt to create array of void primitive type"); 3641 return nullptr; 3642 } 3643 // See if the component type is already loaded. Array classes are 3644 // always associated with the class loader of their underlying 3645 // element type -- an array of Strings goes with the loader for 3646 // java/lang/String -- so we need to look for it there. (The 3647 // caller should have checked for the existence of the class 3648 // before calling here, but they did so with *their* class loader, 3649 // not the component type's loader.) 3650 // 3651 // If we find it, the caller adds "loader" to the class' initiating 3652 // loader list, which should prevent us from going through this again. 3653 // 3654 // This call is unnecessary if "loader" and "component_type->GetClassLoader()" 3655 // are the same, because our caller (FindClass) just did the 3656 // lookup. (Even if we get this wrong we still have correct behavior, 3657 // because we effectively do this lookup again when we add the new 3658 // class to the hash table --- necessary because of possible races with 3659 // other threads.) 3660 if (class_loader.Get() != component_type->GetClassLoader()) { 3661 ObjPtr<mirror::Class> new_class = 3662 LookupClass(self, descriptor, hash, component_type->GetClassLoader()); 3663 if (new_class != nullptr) { 3664 return new_class.Ptr(); 3665 } 3666 } 3667 3668 // Fill out the fields in the Class. 3669 // 3670 // It is possible to execute some methods against arrays, because 3671 // all arrays are subclasses of java_lang_Object_, so we need to set 3672 // up a vtable. We can just point at the one in java_lang_Object_. 3673 // 3674 // Array classes are simple enough that we don't need to do a full 3675 // link step. 3676 auto new_class = hs.NewHandle<mirror::Class>(nullptr); 3677 if (UNLIKELY(!init_done_)) { 3678 // Classes that were hand created, ie not by FindSystemClass 3679 if (strcmp(descriptor, "[Ljava/lang/Class;") == 0) { 3680 new_class.Assign(GetClassRoot(kClassArrayClass)); 3681 } else if (strcmp(descriptor, "[Ljava/lang/Object;") == 0) { 3682 new_class.Assign(GetClassRoot(kObjectArrayClass)); 3683 } else if (strcmp(descriptor, GetClassRootDescriptor(kJavaLangStringArrayClass)) == 0) { 3684 new_class.Assign(GetClassRoot(kJavaLangStringArrayClass)); 3685 } else if (strcmp(descriptor, "[C") == 0) { 3686 new_class.Assign(GetClassRoot(kCharArrayClass)); 3687 } else if (strcmp(descriptor, "[I") == 0) { 3688 new_class.Assign(GetClassRoot(kIntArrayClass)); 3689 } else if (strcmp(descriptor, "[J") == 0) { 3690 new_class.Assign(GetClassRoot(kLongArrayClass)); 3691 } 3692 } 3693 if (new_class == nullptr) { 3694 new_class.Assign(AllocClass(self, mirror::Array::ClassSize(image_pointer_size_))); 3695 if (new_class == nullptr) { 3696 self->AssertPendingOOMException(); 3697 return nullptr; 3698 } 3699 new_class->SetComponentType(component_type.Get()); 3700 } 3701 ObjectLock<mirror::Class> lock(self, new_class); // Must hold lock on object when initializing. 3702 DCHECK(new_class->GetComponentType() != nullptr); 3703 ObjPtr<mirror::Class> java_lang_Object = GetClassRoot(kJavaLangObject); 3704 new_class->SetSuperClass(java_lang_Object); 3705 new_class->SetVTable(java_lang_Object->GetVTable()); 3706 new_class->SetPrimitiveType(Primitive::kPrimNot); 3707 new_class->SetClassLoader(component_type->GetClassLoader()); 3708 if (component_type->IsPrimitive()) { 3709 new_class->SetClassFlags(mirror::kClassFlagNoReferenceFields); 3710 } else { 3711 new_class->SetClassFlags(mirror::kClassFlagObjectArray); 3712 } 3713 mirror::Class::SetStatus(new_class, mirror::Class::kStatusLoaded, self); 3714 new_class->PopulateEmbeddedVTable(image_pointer_size_); 3715 ImTable* object_imt = java_lang_Object->GetImt(image_pointer_size_); 3716 new_class->SetImt(object_imt, image_pointer_size_); 3717 mirror::Class::SetStatus(new_class, mirror::Class::kStatusInitialized, self); 3718 // don't need to set new_class->SetObjectSize(..) 3719 // because Object::SizeOf delegates to Array::SizeOf 3720 3721 // All arrays have java/lang/Cloneable and java/io/Serializable as 3722 // interfaces. We need to set that up here, so that stuff like 3723 // "instanceof" works right. 3724 // 3725 // Note: The GC could run during the call to FindSystemClass, 3726 // so we need to make sure the class object is GC-valid while we're in 3727 // there. Do this by clearing the interface list so the GC will just 3728 // think that the entries are null. 3729 3730 3731 // Use the single, global copies of "interfaces" and "iftable" 3732 // (remember not to free them for arrays). 3733 { 3734 ObjPtr<mirror::IfTable> array_iftable = array_iftable_.Read(); 3735 CHECK(array_iftable != nullptr); 3736 new_class->SetIfTable(array_iftable); 3737 } 3738 3739 // Inherit access flags from the component type. 3740 int access_flags = new_class->GetComponentType()->GetAccessFlags(); 3741 // Lose any implementation detail flags; in particular, arrays aren't finalizable. 3742 access_flags &= kAccJavaFlagsMask; 3743 // Arrays can't be used as a superclass or interface, so we want to add "abstract final" 3744 // and remove "interface". 3745 access_flags |= kAccAbstract | kAccFinal; 3746 access_flags &= ~kAccInterface; 3747 3748 new_class->SetAccessFlags(access_flags); 3749 3750 ObjPtr<mirror::Class> existing = InsertClass(descriptor, new_class.Get(), hash); 3751 if (existing == nullptr) { 3752 // We postpone ClassLoad and ClassPrepare events to this point in time to avoid 3753 // duplicate events in case of races. Array classes don't really follow dedicated 3754 // load and prepare, anyways. 3755 Runtime::Current()->GetRuntimeCallbacks()->ClassLoad(new_class); 3756 Runtime::Current()->GetRuntimeCallbacks()->ClassPrepare(new_class, new_class); 3757 3758 jit::Jit::NewTypeLoadedIfUsingJit(new_class.Get()); 3759 return new_class.Get(); 3760 } 3761 // Another thread must have loaded the class after we 3762 // started but before we finished. Abandon what we've 3763 // done. 3764 // 3765 // (Yes, this happens.) 3766 3767 return existing.Ptr(); 3768 } 3769 3770 mirror::Class* ClassLinker::FindPrimitiveClass(char type) { 3771 switch (type) { 3772 case 'B': 3773 return GetClassRoot(kPrimitiveByte); 3774 case 'C': 3775 return GetClassRoot(kPrimitiveChar); 3776 case 'D': 3777 return GetClassRoot(kPrimitiveDouble); 3778 case 'F': 3779 return GetClassRoot(kPrimitiveFloat); 3780 case 'I': 3781 return GetClassRoot(kPrimitiveInt); 3782 case 'J': 3783 return GetClassRoot(kPrimitiveLong); 3784 case 'S': 3785 return GetClassRoot(kPrimitiveShort); 3786 case 'Z': 3787 return GetClassRoot(kPrimitiveBoolean); 3788 case 'V': 3789 return GetClassRoot(kPrimitiveVoid); 3790 default: 3791 break; 3792 } 3793 std::string printable_type(PrintableChar(type)); 3794 ThrowNoClassDefFoundError("Not a primitive type: %s", printable_type.c_str()); 3795 return nullptr; 3796 } 3797 3798 mirror::Class* ClassLinker::InsertClass(const char* descriptor, ObjPtr<mirror::Class> klass, size_t hash) { 3799 if (VLOG_IS_ON(class_linker)) { 3800 ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache(); 3801 std::string source; 3802 if (dex_cache != nullptr) { 3803 source += " from "; 3804 source += dex_cache->GetLocation()->ToModifiedUtf8(); 3805 } 3806 LOG(INFO) << "Loaded class " << descriptor << source; 3807 } 3808 { 3809 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); 3810 ObjPtr<mirror::ClassLoader> const class_loader = klass->GetClassLoader(); 3811 ClassTable* const class_table = InsertClassTableForClassLoader(class_loader); 3812 ObjPtr<mirror::Class> existing = class_table->Lookup(descriptor, hash); 3813 if (existing != nullptr) { 3814 return existing.Ptr(); 3815 } 3816 VerifyObject(klass); 3817 class_table->InsertWithHash(klass, hash); 3818 if (class_loader != nullptr) { 3819 // This is necessary because we need to have the card dirtied for remembered sets. 3820 Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader); 3821 } 3822 if (log_new_roots_) { 3823 new_class_roots_.push_back(GcRoot<mirror::Class>(klass)); 3824 } 3825 } 3826 if (kIsDebugBuild) { 3827 // Test that copied methods correctly can find their holder. 3828 for (ArtMethod& method : klass->GetCopiedMethods(image_pointer_size_)) { 3829 CHECK_EQ(GetHoldingClassOfCopiedMethod(&method), klass); 3830 } 3831 } 3832 return nullptr; 3833 } 3834 3835 void ClassLinker::WriteBarrierForBootOatFileBssRoots(const OatFile* oat_file) { 3836 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); 3837 DCHECK(!oat_file->GetBssGcRoots().empty()) << oat_file->GetLocation(); 3838 if (log_new_roots_ && !ContainsElement(new_bss_roots_boot_oat_files_, oat_file)) { 3839 new_bss_roots_boot_oat_files_.push_back(oat_file); 3840 } 3841 } 3842 3843 // TODO This should really be in mirror::Class. 3844 void ClassLinker::UpdateClassMethods(ObjPtr<mirror::Class> klass, 3845 LengthPrefixedArray<ArtMethod>* new_methods) { 3846 klass->SetMethodsPtrUnchecked(new_methods, 3847 klass->NumDirectMethods(), 3848 klass->NumDeclaredVirtualMethods()); 3849 // Need to mark the card so that the remembered sets and mod union tables get updated. 3850 Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(klass); 3851 } 3852 3853 mirror::Class* ClassLinker::LookupClass(Thread* self, 3854 const char* descriptor, 3855 size_t hash, 3856 ObjPtr<mirror::ClassLoader> class_loader) { 3857 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); 3858 ClassTable* const class_table = ClassTableForClassLoader(class_loader); 3859 if (class_table != nullptr) { 3860 ObjPtr<mirror::Class> result = class_table->Lookup(descriptor, hash); 3861 if (result != nullptr) { 3862 return result.Ptr(); 3863 } 3864 } 3865 return nullptr; 3866 } 3867 3868 class MoveClassTableToPreZygoteVisitor : public ClassLoaderVisitor { 3869 public: 3870 explicit MoveClassTableToPreZygoteVisitor() {} 3871 3872 void Visit(ObjPtr<mirror::ClassLoader> class_loader) 3873 REQUIRES(Locks::classlinker_classes_lock_) 3874 REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE { 3875 ClassTable* const class_table = class_loader->GetClassTable(); 3876 if (class_table != nullptr) { 3877 class_table->FreezeSnapshot(); 3878 } 3879 } 3880 }; 3881 3882 void ClassLinker::MoveClassTableToPreZygote() { 3883 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); 3884 boot_class_table_.FreezeSnapshot(); 3885 MoveClassTableToPreZygoteVisitor visitor; 3886 VisitClassLoaders(&visitor); 3887 } 3888 3889 // Look up classes by hash and descriptor and put all matching ones in the result array. 3890 class LookupClassesVisitor : public ClassLoaderVisitor { 3891 public: 3892 LookupClassesVisitor(const char* descriptor, 3893 size_t hash, 3894 std::vector<ObjPtr<mirror::Class>>* result) 3895 : descriptor_(descriptor), 3896 hash_(hash), 3897 result_(result) {} 3898 3899 void Visit(ObjPtr<mirror::ClassLoader> class_loader) 3900 REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE { 3901 ClassTable* const class_table = class_loader->GetClassTable(); 3902 ObjPtr<mirror::Class> klass = class_table->Lookup(descriptor_, hash_); 3903 // Add `klass` only if `class_loader` is its defining (not just initiating) class loader. 3904 if (klass != nullptr && klass->GetClassLoader() == class_loader) { 3905 result_->push_back(klass); 3906 } 3907 } 3908 3909 private: 3910 const char* const descriptor_; 3911 const size_t hash_; 3912 std::vector<ObjPtr<mirror::Class>>* const result_; 3913 }; 3914 3915 void ClassLinker::LookupClasses(const char* descriptor, 3916 std::vector<ObjPtr<mirror::Class>>& result) { 3917 result.clear(); 3918 Thread* const self = Thread::Current(); 3919 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_); 3920 const size_t hash = ComputeModifiedUtf8Hash(descriptor); 3921 ObjPtr<mirror::Class> klass = boot_class_table_.Lookup(descriptor, hash); 3922 if (klass != nullptr) { 3923 DCHECK(klass->GetClassLoader() == nullptr); 3924 result.push_back(klass); 3925 } 3926 LookupClassesVisitor visitor(descriptor, hash, &result); 3927 VisitClassLoaders(&visitor); 3928 } 3929 3930 bool ClassLinker::AttemptSupertypeVerification(Thread* self, 3931 Handle<mirror::Class> klass, 3932 Handle<mirror::Class> supertype) { 3933 DCHECK(self != nullptr); 3934 DCHECK(klass != nullptr); 3935 DCHECK(supertype != nullptr); 3936 3937 if (!supertype->IsVerified() && !supertype->IsErroneous()) { 3938 VerifyClass(self, supertype); 3939 } 3940 3941 if (supertype->IsVerified() || supertype->ShouldVerifyAtRuntime()) { 3942 // The supertype is either verified, or we soft failed at AOT time. 3943 DCHECK(supertype->IsVerified() || Runtime::Current()->IsAotCompiler()); 3944 return true; 3945 } 3946 // If we got this far then we have a hard failure. 3947 std::string error_msg = 3948 StringPrintf("Rejecting class %s that attempts to sub-type erroneous class %s", 3949 klass->PrettyDescriptor().c_str(), 3950 supertype->PrettyDescriptor().c_str()); 3951 LOG(WARNING) << error_msg << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8(); 3952 StackHandleScope<1> hs(self); 3953 Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException())); 3954 if (cause != nullptr) { 3955 // Set during VerifyClass call (if at all). 3956 self->ClearException(); 3957 } 3958 // Change into a verify error. 3959 ThrowVerifyError(klass.Get(), "%s", error_msg.c_str()); 3960 if (cause != nullptr) { 3961 self->GetException()->SetCause(cause.Get()); 3962 } 3963 ClassReference ref(klass->GetDexCache()->GetDexFile(), klass->GetDexClassDefIndex()); 3964 if (Runtime::Current()->IsAotCompiler()) { 3965 Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref); 3966 } 3967 // Need to grab the lock to change status. 3968 ObjectLock<mirror::Class> super_lock(self, klass); 3969 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self); 3970 return false; 3971 } 3972 3973 // Ensures that methods have the kAccSkipAccessChecks bit set. We use the 3974 // kAccVerificationAttempted bit on the class access flags to determine whether this has been done 3975 // before. 3976 static void EnsureSkipAccessChecksMethods(Handle<mirror::Class> klass, PointerSize pointer_size) 3977 REQUIRES_SHARED(Locks::mutator_lock_) { 3978 if (!klass->WasVerificationAttempted()) { 3979 klass->SetSkipAccessChecksFlagOnAllMethods(pointer_size); 3980 klass->SetVerificationAttempted(); 3981 } 3982 } 3983 3984 verifier::FailureKind ClassLinker::VerifyClass( 3985 Thread* self, Handle<mirror::Class> klass, verifier::HardFailLogMode log_level) { 3986 { 3987 // TODO: assert that the monitor on the Class is held 3988 ObjectLock<mirror::Class> lock(self, klass); 3989 3990 // Is somebody verifying this now? 3991 mirror::Class::Status old_status = klass->GetStatus(); 3992 while (old_status == mirror::Class::kStatusVerifying || 3993 old_status == mirror::Class::kStatusVerifyingAtRuntime) { 3994 lock.WaitIgnoringInterrupts(); 3995 CHECK(klass->IsErroneous() || (klass->GetStatus() > old_status)) 3996 << "Class '" << klass->PrettyClass() 3997 << "' performed an illegal verification state transition from " << old_status 3998 << " to " << klass->GetStatus(); 3999 old_status = klass->GetStatus(); 4000 } 4001 4002 // The class might already be erroneous, for example at compile time if we attempted to verify 4003 // this class as a parent to another. 4004 if (klass->IsErroneous()) { 4005 ThrowEarlierClassFailure(klass.Get()); 4006 return verifier::FailureKind::kHardFailure; 4007 } 4008 4009 // Don't attempt to re-verify if already verified. 4010 if (klass->IsVerified()) { 4011 EnsureSkipAccessChecksMethods(klass, image_pointer_size_); 4012 return verifier::FailureKind::kNoFailure; 4013 } 4014 4015 // For AOT, don't attempt to re-verify if we have already found we should 4016 // verify at runtime. 4017 if (Runtime::Current()->IsAotCompiler() && klass->ShouldVerifyAtRuntime()) { 4018 return verifier::FailureKind::kSoftFailure; 4019 } 4020 4021 if (klass->GetStatus() == mirror::Class::kStatusResolved) { 4022 mirror::Class::SetStatus(klass, mirror::Class::kStatusVerifying, self); 4023 } else { 4024 CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime) 4025 << klass->PrettyClass(); 4026 CHECK(!Runtime::Current()->IsAotCompiler()); 4027 mirror::Class::SetStatus(klass, mirror::Class::kStatusVerifyingAtRuntime, self); 4028 } 4029 4030 // Skip verification if disabled. 4031 if (!Runtime::Current()->IsVerificationEnabled()) { 4032 mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self); 4033 EnsureSkipAccessChecksMethods(klass, image_pointer_size_); 4034 return verifier::FailureKind::kNoFailure; 4035 } 4036 } 4037 4038 // Verify super class. 4039 StackHandleScope<2> hs(self); 4040 MutableHandle<mirror::Class> supertype(hs.NewHandle(klass->GetSuperClass())); 4041 // If we have a superclass and we get a hard verification failure we can return immediately. 4042 if (supertype != nullptr && !AttemptSupertypeVerification(self, klass, supertype)) { 4043 CHECK(self->IsExceptionPending()) << "Verification error should be pending."; 4044 return verifier::FailureKind::kHardFailure; 4045 } 4046 4047 // Verify all default super-interfaces. 4048 // 4049 // (1) Don't bother if the superclass has already had a soft verification failure. 4050 // 4051 // (2) Interfaces shouldn't bother to do this recursive verification because they cannot cause 4052 // recursive initialization by themselves. This is because when an interface is initialized 4053 // directly it must not initialize its superinterfaces. We are allowed to verify regardless 4054 // but choose not to for an optimization. If the interfaces is being verified due to a class 4055 // initialization (which would need all the default interfaces to be verified) the class code 4056 // will trigger the recursive verification anyway. 4057 if ((supertype == nullptr || supertype->IsVerified()) // See (1) 4058 && !klass->IsInterface()) { // See (2) 4059 int32_t iftable_count = klass->GetIfTableCount(); 4060 MutableHandle<mirror::Class> iface(hs.NewHandle<mirror::Class>(nullptr)); 4061 // Loop through all interfaces this class has defined. It doesn't matter the order. 4062 for (int32_t i = 0; i < iftable_count; i++) { 4063 iface.Assign(klass->GetIfTable()->GetInterface(i)); 4064 DCHECK(iface != nullptr); 4065 // We only care if we have default interfaces and can skip if we are already verified... 4066 if (LIKELY(!iface->HasDefaultMethods() || iface->IsVerified())) { 4067 continue; 4068 } else if (UNLIKELY(!AttemptSupertypeVerification(self, klass, iface))) { 4069 // We had a hard failure while verifying this interface. Just return immediately. 4070 CHECK(self->IsExceptionPending()) << "Verification error should be pending."; 4071 return verifier::FailureKind::kHardFailure; 4072 } else if (UNLIKELY(!iface->IsVerified())) { 4073 // We softly failed to verify the iface. Stop checking and clean up. 4074 // Put the iface into the supertype handle so we know what caused us to fail. 4075 supertype.Assign(iface.Get()); 4076 break; 4077 } 4078 } 4079 } 4080 4081 // At this point if verification failed, then supertype is the "first" supertype that failed 4082 // verification (without a specific order). If verification succeeded, then supertype is either 4083 // null or the original superclass of klass and is verified. 4084 DCHECK(supertype == nullptr || 4085 supertype.Get() == klass->GetSuperClass() || 4086 !supertype->IsVerified()); 4087 4088 // Try to use verification information from the oat file, otherwise do runtime verification. 4089 const DexFile& dex_file = *klass->GetDexCache()->GetDexFile(); 4090 mirror::Class::Status oat_file_class_status(mirror::Class::kStatusNotReady); 4091 bool preverified = VerifyClassUsingOatFile(dex_file, klass.Get(), oat_file_class_status); 4092 // If the oat file says the class had an error, re-run the verifier. That way we will get a 4093 // precise error message. To ensure a rerun, test: 4094 // mirror::Class::IsErroneous(oat_file_class_status) => !preverified 4095 DCHECK(!mirror::Class::IsErroneous(oat_file_class_status) || !preverified); 4096 4097 std::string error_msg; 4098 verifier::FailureKind verifier_failure = verifier::FailureKind::kNoFailure; 4099 if (!preverified) { 4100 Runtime* runtime = Runtime::Current(); 4101 verifier_failure = verifier::MethodVerifier::VerifyClass(self, 4102 klass.Get(), 4103 runtime->GetCompilerCallbacks(), 4104 runtime->IsAotCompiler(), 4105 log_level, 4106 &error_msg); 4107 } 4108 4109 // Verification is done, grab the lock again. 4110 ObjectLock<mirror::Class> lock(self, klass); 4111 4112 if (preverified || verifier_failure != verifier::FailureKind::kHardFailure) { 4113 if (!preverified && verifier_failure != verifier::FailureKind::kNoFailure) { 4114 VLOG(class_linker) << "Soft verification failure in class " 4115 << klass->PrettyDescriptor() 4116 << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8() 4117 << " because: " << error_msg; 4118 } 4119 self->AssertNoPendingException(); 4120 // Make sure all classes referenced by catch blocks are resolved. 4121 ResolveClassExceptionHandlerTypes(klass); 4122 if (verifier_failure == verifier::FailureKind::kNoFailure) { 4123 // Even though there were no verifier failures we need to respect whether the super-class and 4124 // super-default-interfaces were verified or requiring runtime reverification. 4125 if (supertype == nullptr || supertype->IsVerified()) { 4126 mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self); 4127 } else { 4128 CHECK_EQ(supertype->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime); 4129 mirror::Class::SetStatus(klass, mirror::Class::kStatusRetryVerificationAtRuntime, self); 4130 // Pretend a soft failure occurred so that we don't consider the class verified below. 4131 verifier_failure = verifier::FailureKind::kSoftFailure; 4132 } 4133 } else { 4134 CHECK_EQ(verifier_failure, verifier::FailureKind::kSoftFailure); 4135 // Soft failures at compile time should be retried at runtime. Soft 4136 // failures at runtime will be handled by slow paths in the generated 4137 // code. Set status accordingly. 4138 if (Runtime::Current()->IsAotCompiler()) { 4139 mirror::Class::SetStatus(klass, mirror::Class::kStatusRetryVerificationAtRuntime, self); 4140 } else { 4141 mirror::Class::SetStatus(klass, mirror::Class::kStatusVerified, self); 4142 // As this is a fake verified status, make sure the methods are _not_ marked 4143 // kAccSkipAccessChecks later. 4144 klass->SetVerificationAttempted(); 4145 } 4146 } 4147 } else { 4148 VLOG(verifier) << "Verification failed on class " << klass->PrettyDescriptor() 4149 << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8() 4150 << " because: " << error_msg; 4151 self->AssertNoPendingException(); 4152 ThrowVerifyError(klass.Get(), "%s", error_msg.c_str()); 4153 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self); 4154 } 4155 if (preverified || verifier_failure == verifier::FailureKind::kNoFailure) { 4156 // Class is verified so we don't need to do any access check on its methods. 4157 // Let the interpreter know it by setting the kAccSkipAccessChecks flag onto each 4158 // method. 4159 // Note: we're going here during compilation and at runtime. When we set the 4160 // kAccSkipAccessChecks flag when compiling image classes, the flag is recorded 4161 // in the image and is set when loading the image. 4162 4163 if (UNLIKELY(Runtime::Current()->IsVerificationSoftFail())) { 4164 // Never skip access checks if the verification soft fail is forced. 4165 // Mark the class as having a verification attempt to avoid re-running the verifier. 4166 klass->SetVerificationAttempted(); 4167 } else { 4168 EnsureSkipAccessChecksMethods(klass, image_pointer_size_); 4169 } 4170 } 4171 return verifier_failure; 4172 } 4173 4174 bool ClassLinker::VerifyClassUsingOatFile(const DexFile& dex_file, 4175 ObjPtr<mirror::Class> klass, 4176 mirror::Class::Status& oat_file_class_status) { 4177 // If we're compiling, we can only verify the class using the oat file if 4178 // we are not compiling the image or if the class we're verifying is not part of 4179 // the app. In other words, we will only check for preverification of bootclasspath 4180 // classes. 4181 if (Runtime::Current()->IsAotCompiler()) { 4182 // Are we compiling the bootclasspath? 4183 if (Runtime::Current()->GetCompilerCallbacks()->IsBootImage()) { 4184 return false; 4185 } 4186 // We are compiling an app (not the image). 4187 4188 // Is this an app class? (I.e. not a bootclasspath class) 4189 if (klass->GetClassLoader() != nullptr) { 4190 return false; 4191 } 4192 } 4193 4194 const OatFile::OatDexFile* oat_dex_file = dex_file.GetOatDexFile(); 4195 // In case we run without an image there won't be a backing oat file. 4196 if (oat_dex_file == nullptr || oat_dex_file->GetOatFile() == nullptr) { 4197 return false; 4198 } 4199 4200 uint16_t class_def_index = klass->GetDexClassDefIndex(); 4201 oat_file_class_status = oat_dex_file->GetOatClass(class_def_index).GetStatus(); 4202 if (oat_file_class_status == mirror::Class::kStatusVerified || 4203 oat_file_class_status == mirror::Class::kStatusInitialized) { 4204 return true; 4205 } 4206 // If we only verified a subset of the classes at compile time, we can end up with classes that 4207 // were resolved by the verifier. 4208 if (oat_file_class_status == mirror::Class::kStatusResolved) { 4209 return false; 4210 } 4211 if (oat_file_class_status == mirror::Class::kStatusRetryVerificationAtRuntime) { 4212 // Compile time verification failed with a soft error. Compile time verification can fail 4213 // because we have incomplete type information. Consider the following: 4214 // class ... { 4215 // Foo x; 4216 // .... () { 4217 // if (...) { 4218 // v1 gets assigned a type of resolved class Foo 4219 // } else { 4220 // v1 gets assigned a type of unresolved class Bar 4221 // } 4222 // iput x = v1 4223 // } } 4224 // when we merge v1 following the if-the-else it results in Conflict 4225 // (see verifier::RegType::Merge) as we can't know the type of Bar and we could possibly be 4226 // allowing an unsafe assignment to the field x in the iput (javac may have compiled this as 4227 // it knew Bar was a sub-class of Foo, but for us this may have been moved into a separate apk 4228 // at compile time). 4229 return false; 4230 } 4231 if (mirror::Class::IsErroneous(oat_file_class_status)) { 4232 // Compile time verification failed with a hard error. This is caused by invalid instructions 4233 // in the class. These errors are unrecoverable. 4234 return false; 4235 } 4236 if (oat_file_class_status == mirror::Class::kStatusNotReady) { 4237 // Status is uninitialized if we couldn't determine the status at compile time, for example, 4238 // not loading the class. 4239 // TODO: when the verifier doesn't rely on Class-es failing to resolve/load the type hierarchy 4240 // isn't a problem and this case shouldn't occur 4241 return false; 4242 } 4243 std::string temp; 4244 LOG(FATAL) << "Unexpected class status: " << oat_file_class_status 4245 << " " << dex_file.GetLocation() << " " << klass->PrettyClass() << " " 4246 << klass->GetDescriptor(&temp); 4247 UNREACHABLE(); 4248 } 4249 4250 void ClassLinker::ResolveClassExceptionHandlerTypes(Handle<mirror::Class> klass) { 4251 for (ArtMethod& method : klass->GetMethods(image_pointer_size_)) { 4252 ResolveMethodExceptionHandlerTypes(&method); 4253 } 4254 } 4255 4256 void ClassLinker::ResolveMethodExceptionHandlerTypes(ArtMethod* method) { 4257 // similar to DexVerifier::ScanTryCatchBlocks and dex2oat's ResolveExceptionsForMethod. 4258 const DexFile::CodeItem* code_item = 4259 method->GetDexFile()->GetCodeItem(method->GetCodeItemOffset()); 4260 if (code_item == nullptr) { 4261 return; // native or abstract method 4262 } 4263 if (code_item->tries_size_ == 0) { 4264 return; // nothing to process 4265 } 4266 const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item, 0); 4267 uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); 4268 for (uint32_t idx = 0; idx < handlers_size; idx++) { 4269 CatchHandlerIterator iterator(handlers_ptr); 4270 for (; iterator.HasNext(); iterator.Next()) { 4271 // Ensure exception types are resolved so that they don't need resolution to be delivered, 4272 // unresolved exception types will be ignored by exception delivery 4273 if (iterator.GetHandlerTypeIndex().IsValid()) { 4274 ObjPtr<mirror::Class> exception_type = ResolveType(iterator.GetHandlerTypeIndex(), method); 4275 if (exception_type == nullptr) { 4276 DCHECK(Thread::Current()->IsExceptionPending()); 4277 Thread::Current()->ClearException(); 4278 } 4279 } 4280 } 4281 handlers_ptr = iterator.EndDataPointer(); 4282 } 4283 } 4284 4285 mirror::Class* ClassLinker::CreateProxyClass(ScopedObjectAccessAlreadyRunnable& soa, 4286 jstring name, 4287 jobjectArray interfaces, 4288 jobject loader, 4289 jobjectArray methods, 4290 jobjectArray throws) { 4291 Thread* self = soa.Self(); 4292 StackHandleScope<10> hs(self); 4293 MutableHandle<mirror::Class> temp_klass(hs.NewHandle( 4294 AllocClass(self, GetClassRoot(kJavaLangClass), sizeof(mirror::Class)))); 4295 if (temp_klass == nullptr) { 4296 CHECK(self->IsExceptionPending()); // OOME. 4297 return nullptr; 4298 } 4299 DCHECK(temp_klass->GetClass() != nullptr); 4300 temp_klass->SetObjectSize(sizeof(mirror::Proxy)); 4301 // Set the class access flags incl. VerificationAttempted, so we do not try to set the flag on 4302 // the methods. 4303 temp_klass->SetAccessFlags(kAccClassIsProxy | kAccPublic | kAccFinal | kAccVerificationAttempted); 4304 temp_klass->SetClassLoader(soa.Decode<mirror::ClassLoader>(loader)); 4305 DCHECK_EQ(temp_klass->GetPrimitiveType(), Primitive::kPrimNot); 4306 temp_klass->SetName(soa.Decode<mirror::String>(name)); 4307 temp_klass->SetDexCache(GetClassRoot(kJavaLangReflectProxy)->GetDexCache()); 4308 // Object has an empty iftable, copy it for that reason. 4309 temp_klass->SetIfTable(GetClassRoot(kJavaLangObject)->GetIfTable()); 4310 mirror::Class::SetStatus(temp_klass, mirror::Class::kStatusIdx, self); 4311 std::string descriptor(GetDescriptorForProxy(temp_klass.Get())); 4312 const size_t hash = ComputeModifiedUtf8Hash(descriptor.c_str()); 4313 4314 // Needs to be before we insert the class so that the allocator field is set. 4315 LinearAlloc* const allocator = GetOrCreateAllocatorForClassLoader(temp_klass->GetClassLoader()); 4316 4317 // Insert the class before loading the fields as the field roots 4318 // (ArtField::declaring_class_) are only visited from the class 4319 // table. There can't be any suspend points between inserting the 4320 // class and setting the field arrays below. 4321 ObjPtr<mirror::Class> existing = InsertClass(descriptor.c_str(), temp_klass.Get(), hash); 4322 CHECK(existing == nullptr); 4323 4324 // Instance fields are inherited, but we add a couple of static fields... 4325 const size_t num_fields = 2; 4326 LengthPrefixedArray<ArtField>* sfields = AllocArtFieldArray(self, allocator, num_fields); 4327 temp_klass->SetSFieldsPtr(sfields); 4328 4329 // 1. Create a static field 'interfaces' that holds the _declared_ interfaces implemented by 4330 // our proxy, so Class.getInterfaces doesn't return the flattened set. 4331 ArtField& interfaces_sfield = sfields->At(0); 4332 interfaces_sfield.SetDexFieldIndex(0); 4333 interfaces_sfield.SetDeclaringClass(temp_klass.Get()); 4334 interfaces_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal); 4335 4336 // 2. Create a static field 'throws' that holds exceptions thrown by our methods. 4337 ArtField& throws_sfield = sfields->At(1); 4338 throws_sfield.SetDexFieldIndex(1); 4339 throws_sfield.SetDeclaringClass(temp_klass.Get()); 4340 throws_sfield.SetAccessFlags(kAccStatic | kAccPublic | kAccFinal); 4341 4342 // Proxies have 1 direct method, the constructor 4343 const size_t num_direct_methods = 1; 4344 4345 // They have as many virtual methods as the array 4346 auto h_methods = hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Method>>(methods)); 4347 DCHECK_EQ(h_methods->GetClass(), mirror::Method::ArrayClass()) 4348 << mirror::Class::PrettyClass(h_methods->GetClass()); 4349 const size_t num_virtual_methods = h_methods->GetLength(); 4350 4351 // Create the methods array. 4352 LengthPrefixedArray<ArtMethod>* proxy_class_methods = AllocArtMethodArray( 4353 self, allocator, num_direct_methods + num_virtual_methods); 4354 // Currently AllocArtMethodArray cannot return null, but the OOM logic is left there in case we 4355 // want to throw OOM in the future. 4356 if (UNLIKELY(proxy_class_methods == nullptr)) { 4357 self->AssertPendingOOMException(); 4358 return nullptr; 4359 } 4360 temp_klass->SetMethodsPtr(proxy_class_methods, num_direct_methods, num_virtual_methods); 4361 4362 // Create the single direct method. 4363 CreateProxyConstructor(temp_klass, temp_klass->GetDirectMethodUnchecked(0, image_pointer_size_)); 4364 4365 // Create virtual method using specified prototypes. 4366 // TODO These should really use the iterators. 4367 for (size_t i = 0; i < num_virtual_methods; ++i) { 4368 auto* virtual_method = temp_klass->GetVirtualMethodUnchecked(i, image_pointer_size_); 4369 auto* prototype = h_methods->Get(i)->GetArtMethod(); 4370 CreateProxyMethod(temp_klass, prototype, virtual_method); 4371 DCHECK(virtual_method->GetDeclaringClass() != nullptr); 4372 DCHECK(prototype->GetDeclaringClass() != nullptr); 4373 } 4374 4375 // The super class is java.lang.reflect.Proxy 4376 temp_klass->SetSuperClass(GetClassRoot(kJavaLangReflectProxy)); 4377 // Now effectively in the loaded state. 4378 mirror::Class::SetStatus(temp_klass, mirror::Class::kStatusLoaded, self); 4379 self->AssertNoPendingException(); 4380 4381 // At this point the class is loaded. Publish a ClassLoad event. 4382 // Note: this may be a temporary class. It is a listener's responsibility to handle this. 4383 Runtime::Current()->GetRuntimeCallbacks()->ClassLoad(temp_klass); 4384 4385 MutableHandle<mirror::Class> klass = hs.NewHandle<mirror::Class>(nullptr); 4386 { 4387 // Must hold lock on object when resolved. 4388 ObjectLock<mirror::Class> resolution_lock(self, temp_klass); 4389 // Link the fields and virtual methods, creating vtable and iftables. 4390 // The new class will replace the old one in the class table. 4391 Handle<mirror::ObjectArray<mirror::Class>> h_interfaces( 4392 hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Class>>(interfaces))); 4393 if (!LinkClass(self, descriptor.c_str(), temp_klass, h_interfaces, &klass)) { 4394 mirror::Class::SetStatus(temp_klass, mirror::Class::kStatusErrorUnresolved, self); 4395 return nullptr; 4396 } 4397 } 4398 CHECK(temp_klass->IsRetired()); 4399 CHECK_NE(temp_klass.Get(), klass.Get()); 4400 4401 CHECK_EQ(interfaces_sfield.GetDeclaringClass(), klass.Get()); 4402 interfaces_sfield.SetObject<false>( 4403 klass.Get(), 4404 soa.Decode<mirror::ObjectArray<mirror::Class>>(interfaces)); 4405 CHECK_EQ(throws_sfield.GetDeclaringClass(), klass.Get()); 4406 throws_sfield.SetObject<false>( 4407 klass.Get(), 4408 soa.Decode<mirror::ObjectArray<mirror::ObjectArray<mirror::Class>>>(throws)); 4409 4410 Runtime::Current()->GetRuntimeCallbacks()->ClassPrepare(temp_klass, klass); 4411 4412 { 4413 // Lock on klass is released. Lock new class object. 4414 ObjectLock<mirror::Class> initialization_lock(self, klass); 4415 mirror::Class::SetStatus(klass, mirror::Class::kStatusInitialized, self); 4416 } 4417 4418 // sanity checks 4419 if (kIsDebugBuild) { 4420 CHECK(klass->GetIFieldsPtr() == nullptr); 4421 CheckProxyConstructor(klass->GetDirectMethod(0, image_pointer_size_)); 4422 4423 for (size_t i = 0; i < num_virtual_methods; ++i) { 4424 auto* virtual_method = klass->GetVirtualMethodUnchecked(i, image_pointer_size_); 4425 auto* prototype = h_methods->Get(i++)->GetArtMethod(); 4426 CheckProxyMethod(virtual_method, prototype); 4427 } 4428 4429 StackHandleScope<1> hs2(self); 4430 Handle<mirror::String> decoded_name = hs2.NewHandle(soa.Decode<mirror::String>(name)); 4431 std::string interfaces_field_name(StringPrintf("java.lang.Class[] %s.interfaces", 4432 decoded_name->ToModifiedUtf8().c_str())); 4433 CHECK_EQ(ArtField::PrettyField(klass->GetStaticField(0)), interfaces_field_name); 4434 4435 std::string throws_field_name(StringPrintf("java.lang.Class[][] %s.throws", 4436 decoded_name->ToModifiedUtf8().c_str())); 4437 CHECK_EQ(ArtField::PrettyField(klass->GetStaticField(1)), throws_field_name); 4438 4439 CHECK_EQ(klass.Get()->GetProxyInterfaces(), 4440 soa.Decode<mirror::ObjectArray<mirror::Class>>(interfaces)); 4441 CHECK_EQ(klass.Get()->GetProxyThrows(), 4442 soa.Decode<mirror::ObjectArray<mirror::ObjectArray<mirror::Class>>>(throws)); 4443 } 4444 return klass.Get(); 4445 } 4446 4447 std::string ClassLinker::GetDescriptorForProxy(ObjPtr<mirror::Class> proxy_class) { 4448 DCHECK(proxy_class->IsProxyClass()); 4449 ObjPtr<mirror::String> name = proxy_class->GetName(); 4450 DCHECK(name != nullptr); 4451 return DotToDescriptor(name->ToModifiedUtf8().c_str()); 4452 } 4453 4454 void ClassLinker::CreateProxyConstructor(Handle<mirror::Class> klass, ArtMethod* out) { 4455 // Create constructor for Proxy that must initialize the method. 4456 CHECK_EQ(GetClassRoot(kJavaLangReflectProxy)->NumDirectMethods(), 23u); 4457 4458 // Find the <init>(InvocationHandler)V method. The exact method offset varies depending 4459 // on which front-end compiler was used to build the libcore DEX files. 4460 ArtMethod* proxy_constructor = GetClassRoot(kJavaLangReflectProxy)-> 4461 FindDeclaredDirectMethod("<init>", 4462 "(Ljava/lang/reflect/InvocationHandler;)V", 4463 image_pointer_size_); 4464 DCHECK(proxy_constructor != nullptr) 4465 << "Could not find <init> method in java.lang.reflect.Proxy"; 4466 4467 // Ensure constructor is in dex cache so that we can use the dex cache to look up the overridden 4468 // constructor method. 4469 GetClassRoot(kJavaLangReflectProxy)->GetDexCache()->SetResolvedMethod( 4470 proxy_constructor->GetDexMethodIndex(), proxy_constructor, image_pointer_size_); 4471 // Clone the existing constructor of Proxy (our constructor would just invoke it so steal its 4472 // code_ too) 4473 DCHECK(out != nullptr); 4474 out->CopyFrom(proxy_constructor, image_pointer_size_); 4475 // Make this constructor public and fix the class to be our Proxy version 4476 out->SetAccessFlags((out->GetAccessFlags() & ~kAccProtected) | kAccPublic); 4477 out->SetDeclaringClass(klass.Get()); 4478 } 4479 4480 void ClassLinker::CheckProxyConstructor(ArtMethod* constructor) const { 4481 CHECK(constructor->IsConstructor()); 4482 auto* np = constructor->GetInterfaceMethodIfProxy(image_pointer_size_); 4483 CHECK_STREQ(np->GetName(), "<init>"); 4484 CHECK_STREQ(np->GetSignature().ToString().c_str(), "(Ljava/lang/reflect/InvocationHandler;)V"); 4485 DCHECK(constructor->IsPublic()); 4486 } 4487 4488 void ClassLinker::CreateProxyMethod(Handle<mirror::Class> klass, ArtMethod* prototype, 4489 ArtMethod* out) { 4490 // Ensure prototype is in dex cache so that we can use the dex cache to look up the overridden 4491 // prototype method 4492 auto* dex_cache = prototype->GetDeclaringClass()->GetDexCache(); 4493 // Avoid dirtying the dex cache unless we need to. 4494 if (dex_cache->GetResolvedMethod(prototype->GetDexMethodIndex(), image_pointer_size_) != 4495 prototype) { 4496 dex_cache->SetResolvedMethod( 4497 prototype->GetDexMethodIndex(), prototype, image_pointer_size_); 4498 } 4499 // We steal everything from the prototype (such as DexCache, invoke stub, etc.) then specialize 4500 // as necessary 4501 DCHECK(out != nullptr); 4502 out->CopyFrom(prototype, image_pointer_size_); 4503 4504 // Set class to be the concrete proxy class. 4505 out->SetDeclaringClass(klass.Get()); 4506 // Clear the abstract, default and conflict flags to ensure that defaults aren't picked in 4507 // preference to the invocation handler. 4508 const uint32_t kRemoveFlags = kAccAbstract | kAccDefault | kAccDefaultConflict; 4509 // Make the method final. 4510 const uint32_t kAddFlags = kAccFinal; 4511 out->SetAccessFlags((out->GetAccessFlags() & ~kRemoveFlags) | kAddFlags); 4512 4513 // Clear the dex_code_item_offset_. It needs to be 0 since proxy methods have no CodeItems but the 4514 // method they copy might (if it's a default method). 4515 out->SetCodeItemOffset(0); 4516 4517 // At runtime the method looks like a reference and argument saving method, clone the code 4518 // related parameters from this method. 4519 out->SetEntryPointFromQuickCompiledCode(GetQuickProxyInvokeHandler()); 4520 } 4521 4522 void ClassLinker::CheckProxyMethod(ArtMethod* method, ArtMethod* prototype) const { 4523 // Basic sanity 4524 CHECK(!prototype->IsFinal()); 4525 CHECK(method->IsFinal()); 4526 CHECK(method->IsInvokable()); 4527 4528 // The proxy method doesn't have its own dex cache or dex file and so it steals those of its 4529 // interface prototype. The exception to this are Constructors and the Class of the Proxy itself. 4530 CHECK(prototype->HasSameDexCacheResolvedMethods(method, image_pointer_size_)); 4531 auto* np = method->GetInterfaceMethodIfProxy(image_pointer_size_); 4532 CHECK_EQ(prototype->GetDeclaringClass()->GetDexCache(), np->GetDexCache()); 4533 CHECK_EQ(prototype->GetDexMethodIndex(), method->GetDexMethodIndex()); 4534 4535 CHECK_STREQ(np->GetName(), prototype->GetName()); 4536 CHECK_STREQ(np->GetShorty(), prototype->GetShorty()); 4537 // More complex sanity - via dex cache 4538 CHECK_EQ(np->GetReturnType(true /* resolve */), prototype->GetReturnType(true /* resolve */)); 4539 } 4540 4541 bool ClassLinker::CanWeInitializeClass(ObjPtr<mirror::Class> klass, bool can_init_statics, 4542 bool can_init_parents) { 4543 if (can_init_statics && can_init_parents) { 4544 return true; 4545 } 4546 if (!can_init_statics) { 4547 // Check if there's a class initializer. 4548 ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_); 4549 if (clinit != nullptr) { 4550 return false; 4551 } 4552 // Check if there are encoded static values needing initialization. 4553 if (klass->NumStaticFields() != 0) { 4554 const DexFile::ClassDef* dex_class_def = klass->GetClassDef(); 4555 DCHECK(dex_class_def != nullptr); 4556 if (dex_class_def->static_values_off_ != 0) { 4557 return false; 4558 } 4559 } 4560 // If we are a class we need to initialize all interfaces with default methods when we are 4561 // initialized. Check all of them. 4562 if (!klass->IsInterface()) { 4563 size_t num_interfaces = klass->GetIfTableCount(); 4564 for (size_t i = 0; i < num_interfaces; i++) { 4565 ObjPtr<mirror::Class> iface = klass->GetIfTable()->GetInterface(i); 4566 if (iface->HasDefaultMethods() && 4567 !CanWeInitializeClass(iface, can_init_statics, can_init_parents)) { 4568 return false; 4569 } 4570 } 4571 } 4572 } 4573 if (klass->IsInterface() || !klass->HasSuperClass()) { 4574 return true; 4575 } 4576 ObjPtr<mirror::Class> super_class = klass->GetSuperClass(); 4577 if (!can_init_parents && !super_class->IsInitialized()) { 4578 return false; 4579 } 4580 return CanWeInitializeClass(super_class, can_init_statics, can_init_parents); 4581 } 4582 4583 bool ClassLinker::InitializeClass(Thread* self, Handle<mirror::Class> klass, 4584 bool can_init_statics, bool can_init_parents) { 4585 // see JLS 3rd edition, 12.4.2 "Detailed Initialization Procedure" for the locking protocol 4586 4587 // Are we already initialized and therefore done? 4588 // Note: we differ from the JLS here as we don't do this under the lock, this is benign as 4589 // an initialized class will never change its state. 4590 if (klass->IsInitialized()) { 4591 return true; 4592 } 4593 4594 // Fast fail if initialization requires a full runtime. Not part of the JLS. 4595 if (!CanWeInitializeClass(klass.Get(), can_init_statics, can_init_parents)) { 4596 return false; 4597 } 4598 4599 self->AllowThreadSuspension(); 4600 uint64_t t0; 4601 { 4602 ObjectLock<mirror::Class> lock(self, klass); 4603 4604 // Re-check under the lock in case another thread initialized ahead of us. 4605 if (klass->IsInitialized()) { 4606 return true; 4607 } 4608 4609 // Was the class already found to be erroneous? Done under the lock to match the JLS. 4610 if (klass->IsErroneous()) { 4611 ThrowEarlierClassFailure(klass.Get(), true); 4612 VlogClassInitializationFailure(klass); 4613 return false; 4614 } 4615 4616 CHECK(klass->IsResolved() && !klass->IsErroneousResolved()) 4617 << klass->PrettyClass() << ": state=" << klass->GetStatus(); 4618 4619 if (!klass->IsVerified()) { 4620 VerifyClass(self, klass); 4621 if (!klass->IsVerified()) { 4622 // We failed to verify, expect either the klass to be erroneous or verification failed at 4623 // compile time. 4624 if (klass->IsErroneous()) { 4625 // The class is erroneous. This may be a verifier error, or another thread attempted 4626 // verification and/or initialization and failed. We can distinguish those cases by 4627 // whether an exception is already pending. 4628 if (self->IsExceptionPending()) { 4629 // Check that it's a VerifyError. 4630 DCHECK_EQ("java.lang.Class<java.lang.VerifyError>", 4631 mirror::Class::PrettyClass(self->GetException()->GetClass())); 4632 } else { 4633 // Check that another thread attempted initialization. 4634 DCHECK_NE(0, klass->GetClinitThreadId()); 4635 DCHECK_NE(self->GetTid(), klass->GetClinitThreadId()); 4636 // Need to rethrow the previous failure now. 4637 ThrowEarlierClassFailure(klass.Get(), true); 4638 } 4639 VlogClassInitializationFailure(klass); 4640 } else { 4641 CHECK(Runtime::Current()->IsAotCompiler()); 4642 CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusRetryVerificationAtRuntime); 4643 } 4644 return false; 4645 } else { 4646 self->AssertNoPendingException(); 4647 } 4648 4649 // A separate thread could have moved us all the way to initialized. A "simple" example 4650 // involves a subclass of the current class being initialized at the same time (which 4651 // will implicitly initialize the superclass, if scheduled that way). b/28254258 4652 DCHECK(!klass->IsErroneous()) << klass->GetStatus(); 4653 if (klass->IsInitialized()) { 4654 return true; 4655 } 4656 } 4657 4658 // If the class is kStatusInitializing, either this thread is 4659 // initializing higher up the stack or another thread has beat us 4660 // to initializing and we need to wait. Either way, this 4661 // invocation of InitializeClass will not be responsible for 4662 // running <clinit> and will return. 4663 if (klass->GetStatus() == mirror::Class::kStatusInitializing) { 4664 // Could have got an exception during verification. 4665 if (self->IsExceptionPending()) { 4666 VlogClassInitializationFailure(klass); 4667 return false; 4668 } 4669 // We caught somebody else in the act; was it us? 4670 if (klass->GetClinitThreadId() == self->GetTid()) { 4671 // Yes. That's fine. Return so we can continue initializing. 4672 return true; 4673 } 4674 // No. That's fine. Wait for another thread to finish initializing. 4675 return WaitForInitializeClass(klass, self, lock); 4676 } 4677 4678 if (!ValidateSuperClassDescriptors(klass)) { 4679 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self); 4680 return false; 4681 } 4682 self->AllowThreadSuspension(); 4683 4684 CHECK_EQ(klass->GetStatus(), mirror::Class::kStatusVerified) << klass->PrettyClass() 4685 << " self.tid=" << self->GetTid() << " clinit.tid=" << klass->GetClinitThreadId(); 4686 4687 // From here out other threads may observe that we're initializing and so changes of state 4688 // require the a notification. 4689 klass->SetClinitThreadId(self->GetTid()); 4690 mirror::Class::SetStatus(klass, mirror::Class::kStatusInitializing, self); 4691 4692 t0 = NanoTime(); 4693 } 4694 4695 // Initialize super classes, must be done while initializing for the JLS. 4696 if (!klass->IsInterface() && klass->HasSuperClass()) { 4697 ObjPtr<mirror::Class> super_class = klass->GetSuperClass(); 4698 if (!super_class->IsInitialized()) { 4699 CHECK(!super_class->IsInterface()); 4700 CHECK(can_init_parents); 4701 StackHandleScope<1> hs(self); 4702 Handle<mirror::Class> handle_scope_super(hs.NewHandle(super_class)); 4703 bool super_initialized = InitializeClass(self, handle_scope_super, can_init_statics, true); 4704 if (!super_initialized) { 4705 // The super class was verified ahead of entering initializing, we should only be here if 4706 // the super class became erroneous due to initialization. 4707 CHECK(handle_scope_super->IsErroneous() && self->IsExceptionPending()) 4708 << "Super class initialization failed for " 4709 << handle_scope_super->PrettyDescriptor() 4710 << " that has unexpected status " << handle_scope_super->GetStatus() 4711 << "\nPending exception:\n" 4712 << (self->GetException() != nullptr ? self->GetException()->Dump() : ""); 4713 ObjectLock<mirror::Class> lock(self, klass); 4714 // Initialization failed because the super-class is erroneous. 4715 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self); 4716 return false; 4717 } 4718 } 4719 } 4720 4721 if (!klass->IsInterface()) { 4722 // Initialize interfaces with default methods for the JLS. 4723 size_t num_direct_interfaces = klass->NumDirectInterfaces(); 4724 // Only setup the (expensive) handle scope if we actually need to. 4725 if (UNLIKELY(num_direct_interfaces > 0)) { 4726 StackHandleScope<1> hs_iface(self); 4727 MutableHandle<mirror::Class> handle_scope_iface(hs_iface.NewHandle<mirror::Class>(nullptr)); 4728 for (size_t i = 0; i < num_direct_interfaces; i++) { 4729 handle_scope_iface.Assign(mirror::Class::GetDirectInterface(self, klass.Get(), i)); 4730 CHECK(handle_scope_iface != nullptr) << klass->PrettyDescriptor() << " iface #" << i; 4731 CHECK(handle_scope_iface->IsInterface()); 4732 if (handle_scope_iface->HasBeenRecursivelyInitialized()) { 4733 // We have already done this for this interface. Skip it. 4734 continue; 4735 } 4736 // We cannot just call initialize class directly because we need to ensure that ALL 4737 // interfaces with default methods are initialized. Non-default interface initialization 4738 // will not affect other non-default super-interfaces. 4739 bool iface_initialized = InitializeDefaultInterfaceRecursive(self, 4740 handle_scope_iface, 4741 can_init_statics, 4742 can_init_parents); 4743 if (!iface_initialized) { 4744 ObjectLock<mirror::Class> lock(self, klass); 4745 // Initialization failed because one of our interfaces with default methods is erroneous. 4746 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self); 4747 return false; 4748 } 4749 } 4750 } 4751 } 4752 4753 const size_t num_static_fields = klass->NumStaticFields(); 4754 if (num_static_fields > 0) { 4755 const DexFile::ClassDef* dex_class_def = klass->GetClassDef(); 4756 CHECK(dex_class_def != nullptr); 4757 const DexFile& dex_file = klass->GetDexFile(); 4758 StackHandleScope<3> hs(self); 4759 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader())); 4760 Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache())); 4761 4762 // Eagerly fill in static fields so that the we don't have to do as many expensive 4763 // Class::FindStaticField in ResolveField. 4764 for (size_t i = 0; i < num_static_fields; ++i) { 4765 ArtField* field = klass->GetStaticField(i); 4766 const uint32_t field_idx = field->GetDexFieldIndex(); 4767 ArtField* resolved_field = dex_cache->GetResolvedField(field_idx, image_pointer_size_); 4768 if (resolved_field == nullptr) { 4769 dex_cache->SetResolvedField(field_idx, field, image_pointer_size_); 4770 } else { 4771 DCHECK_EQ(field, resolved_field); 4772 } 4773 } 4774 4775 annotations::RuntimeEncodedStaticFieldValueIterator value_it(dex_file, 4776 &dex_cache, 4777 &class_loader, 4778 this, 4779 *dex_class_def); 4780 const uint8_t* class_data = dex_file.GetClassData(*dex_class_def); 4781 ClassDataItemIterator field_it(dex_file, class_data); 4782 if (value_it.HasNext()) { 4783 DCHECK(field_it.HasNextStaticField()); 4784 CHECK(can_init_statics); 4785 for ( ; value_it.HasNext(); value_it.Next(), field_it.Next()) { 4786 ArtField* field = ResolveField( 4787 dex_file, field_it.GetMemberIndex(), dex_cache, class_loader, true); 4788 if (Runtime::Current()->IsActiveTransaction()) { 4789 value_it.ReadValueToField<true>(field); 4790 } else { 4791 value_it.ReadValueToField<false>(field); 4792 } 4793 if (self->IsExceptionPending()) { 4794 break; 4795 } 4796 DCHECK(!value_it.HasNext() || field_it.HasNextStaticField()); 4797 } 4798 } 4799 } 4800 4801 4802 if (!self->IsExceptionPending()) { 4803 ArtMethod* clinit = klass->FindClassInitializer(image_pointer_size_); 4804 if (clinit != nullptr) { 4805 CHECK(can_init_statics); 4806 JValue result; 4807 clinit->Invoke(self, nullptr, 0, &result, "V"); 4808 } 4809 } 4810 self->AllowThreadSuspension(); 4811 uint64_t t1 = NanoTime(); 4812 4813 bool success = true; 4814 { 4815 ObjectLock<mirror::Class> lock(self, klass); 4816 4817 if (self->IsExceptionPending()) { 4818 WrapExceptionInInitializer(klass); 4819 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self); 4820 success = false; 4821 } else if (Runtime::Current()->IsTransactionAborted()) { 4822 // The exception thrown when the transaction aborted has been caught and cleared 4823 // so we need to throw it again now. 4824 VLOG(compiler) << "Return from class initializer of " 4825 << mirror::Class::PrettyDescriptor(klass.Get()) 4826 << " without exception while transaction was aborted: re-throw it now."; 4827 Runtime::Current()->ThrowTransactionAbortError(self); 4828 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self); 4829 success = false; 4830 } else { 4831 RuntimeStats* global_stats = Runtime::Current()->GetStats(); 4832 RuntimeStats* thread_stats = self->GetStats(); 4833 ++global_stats->class_init_count; 4834 ++thread_stats->class_init_count; 4835 global_stats->class_init_time_ns += (t1 - t0); 4836 thread_stats->class_init_time_ns += (t1 - t0); 4837 // Set the class as initialized except if failed to initialize static fields. 4838 mirror::Class::SetStatus(klass, mirror::Class::kStatusInitialized, self); 4839 if (VLOG_IS_ON(class_linker)) { 4840 std::string temp; 4841 LOG(INFO) << "Initialized class " << klass->GetDescriptor(&temp) << " from " << 4842 klass->GetLocation(); 4843 } 4844 // Opportunistically set static method trampolines to their destination. 4845 FixupStaticTrampolines(klass.Get()); 4846 } 4847 } 4848 return success; 4849 } 4850 4851 // We recursively run down the tree of interfaces. We need to do this in the order they are declared 4852 // and perform the initialization only on those interfaces that contain default methods. 4853 bool ClassLinker::InitializeDefaultInterfaceRecursive(Thread* self, 4854 Handle<mirror::Class> iface, 4855 bool can_init_statics, 4856 bool can_init_parents) { 4857 CHECK(iface->IsInterface()); 4858 size_t num_direct_ifaces = iface->NumDirectInterfaces(); 4859 // Only create the (expensive) handle scope if we need it. 4860 if (UNLIKELY(num_direct_ifaces > 0)) { 4861 StackHandleScope<1> hs(self); 4862 MutableHandle<mirror::Class> handle_super_iface(hs.NewHandle<mirror::Class>(nullptr)); 4863 // First we initialize all of iface's super-interfaces recursively. 4864 for (size_t i = 0; i < num_direct_ifaces; i++) { 4865 ObjPtr<mirror::Class> super_iface = mirror::Class::GetDirectInterface(self, iface.Get(), i); 4866 CHECK(super_iface != nullptr) << iface->PrettyDescriptor() << " iface #" << i; 4867 if (!super_iface->HasBeenRecursivelyInitialized()) { 4868 // Recursive step 4869 handle_super_iface.Assign(super_iface); 4870 if (!InitializeDefaultInterfaceRecursive(self, 4871 handle_super_iface, 4872 can_init_statics, 4873 can_init_parents)) { 4874 return false; 4875 } 4876 } 4877 } 4878 } 4879 4880 bool result = true; 4881 // Then we initialize 'iface' if it has default methods. We do not need to (and in fact must not) 4882 // initialize if we don't have default methods. 4883 if (iface->HasDefaultMethods()) { 4884 result = EnsureInitialized(self, iface, can_init_statics, can_init_parents); 4885 } 4886 4887 // Mark that this interface has undergone recursive default interface initialization so we know we 4888 // can skip it on any later class initializations. We do this even if we are not a default 4889 // interface since we can still avoid the traversal. This is purely a performance optimization. 4890 if (result) { 4891 // TODO This should be done in a better way 4892 ObjectLock<mirror::Class> lock(self, iface); 4893 iface->SetRecursivelyInitialized(); 4894 } 4895 return result; 4896 } 4897 4898 bool ClassLinker::WaitForInitializeClass(Handle<mirror::Class> klass, 4899 Thread* self, 4900 ObjectLock<mirror::Class>& lock) 4901 REQUIRES_SHARED(Locks::mutator_lock_) { 4902 while (true) { 4903 self->AssertNoPendingException(); 4904 CHECK(!klass->IsInitialized()); 4905 lock.WaitIgnoringInterrupts(); 4906 4907 // When we wake up, repeat the test for init-in-progress. If 4908 // there's an exception pending (only possible if 4909 // we were not using WaitIgnoringInterrupts), bail out. 4910 if (self->IsExceptionPending()) { 4911 WrapExceptionInInitializer(klass); 4912 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorResolved, self); 4913 return false; 4914 } 4915 // Spurious wakeup? Go back to waiting. 4916 if (klass->GetStatus() == mirror::Class::kStatusInitializing) { 4917 continue; 4918 } 4919 if (klass->GetStatus() == mirror::Class::kStatusVerified && 4920 Runtime::Current()->IsAotCompiler()) { 4921 // Compile time initialization failed. 4922 return false; 4923 } 4924 if (klass->IsErroneous()) { 4925 // The caller wants an exception, but it was thrown in a 4926 // different thread. Synthesize one here. 4927 ThrowNoClassDefFoundError("<clinit> failed for class %s; see exception in other thread", 4928 klass->PrettyDescriptor().c_str()); 4929 VlogClassInitializationFailure(klass); 4930 return false; 4931 } 4932 if (klass->IsInitialized()) { 4933 return true; 4934 } 4935 LOG(FATAL) << "Unexpected class status. " << klass->PrettyClass() << " is " 4936 << klass->GetStatus(); 4937 } 4938 UNREACHABLE(); 4939 } 4940 4941 static void ThrowSignatureCheckResolveReturnTypeException(Handle<mirror::Class> klass, 4942 Handle<mirror::Class> super_klass, 4943 ArtMethod* method, 4944 ArtMethod* m) 4945 REQUIRES_SHARED(Locks::mutator_lock_) { 4946 DCHECK(Thread::Current()->IsExceptionPending()); 4947 DCHECK(!m->IsProxyMethod()); 4948 const DexFile* dex_file = m->GetDexFile(); 4949 const DexFile::MethodId& method_id = dex_file->GetMethodId(m->GetDexMethodIndex()); 4950 const DexFile::ProtoId& proto_id = dex_file->GetMethodPrototype(method_id); 4951 dex::TypeIndex return_type_idx = proto_id.return_type_idx_; 4952 std::string return_type = dex_file->PrettyType(return_type_idx); 4953 std::string class_loader = mirror::Object::PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader()); 4954 ThrowWrappedLinkageError(klass.Get(), 4955 "While checking class %s method %s signature against %s %s: " 4956 "Failed to resolve return type %s with %s", 4957 mirror::Class::PrettyDescriptor(klass.Get()).c_str(), 4958 ArtMethod::PrettyMethod(method).c_str(), 4959 super_klass->IsInterface() ? "interface" : "superclass", 4960 mirror::Class::PrettyDescriptor(super_klass.Get()).c_str(), 4961 return_type.c_str(), class_loader.c_str()); 4962 } 4963 4964 static void ThrowSignatureCheckResolveArgException(Handle<mirror::Class> klass, 4965 Handle<mirror::Class> super_klass, 4966 ArtMethod* method, 4967 ArtMethod* m, 4968 uint32_t index, 4969 dex::TypeIndex arg_type_idx) 4970 REQUIRES_SHARED(Locks::mutator_lock_) { 4971 DCHECK(Thread::Current()->IsExceptionPending()); 4972 DCHECK(!m->IsProxyMethod()); 4973 const DexFile* dex_file = m->GetDexFile(); 4974 std::string arg_type = dex_file->PrettyType(arg_type_idx); 4975 std::string class_loader = mirror::Object::PrettyTypeOf(m->GetDeclaringClass()->GetClassLoader()); 4976 ThrowWrappedLinkageError(klass.Get(), 4977 "While checking class %s method %s signature against %s %s: " 4978 "Failed to resolve arg %u type %s with %s", 4979 mirror::Class::PrettyDescriptor(klass.Get()).c_str(), 4980 ArtMethod::PrettyMethod(method).c_str(), 4981 super_klass->IsInterface() ? "interface" : "superclass", 4982 mirror::Class::PrettyDescriptor(super_klass.Get()).c_str(), 4983 index, arg_type.c_str(), class_loader.c_str()); 4984 } 4985 4986 static void ThrowSignatureMismatch(Handle<mirror::Class> klass, 4987 Handle<mirror::Class> super_klass, 4988 ArtMethod* method, 4989 const std::string& error_msg) 4990 REQUIRES_SHARED(Locks::mutator_lock_) { 4991 ThrowLinkageError(klass.Get(), 4992 "Class %s method %s resolves differently in %s %s: %s", 4993 mirror::Class::PrettyDescriptor(klass.Get()).c_str(), 4994 ArtMethod::PrettyMethod(method).c_str(), 4995 super_klass->IsInterface() ? "interface" : "superclass", 4996 mirror::Class::PrettyDescriptor(super_klass.Get()).c_str(), 4997 error_msg.c_str()); 4998 } 4999 5000 static bool HasSameSignatureWithDifferentClassLoaders(Thread* self, 5001 Handle<mirror::Class> klass, 5002 Handle<mirror::Class> super_klass, 5003 ArtMethod* method1, 5004 ArtMethod* method2) 5005 REQUIRES_SHARED(Locks::mutator_lock_) { 5006 { 5007 StackHandleScope<1> hs(self); 5008 Handle<mirror::Class> return_type(hs.NewHandle(method1->GetReturnType(true /* resolve */))); 5009 if (UNLIKELY(return_type == nullptr)) { 5010 ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method1); 5011 return false; 5012 } 5013 ObjPtr<mirror::Class> other_return_type = method2->GetReturnType(true /* resolve */); 5014 if (UNLIKELY(other_return_type == nullptr)) { 5015 ThrowSignatureCheckResolveReturnTypeException(klass, super_klass, method1, method2); 5016 return false; 5017 } 5018 if (UNLIKELY(other_return_type != return_type.Get())) { 5019 ThrowSignatureMismatch(klass, super_klass, method1, 5020 StringPrintf("Return types mismatch: %s(%p) vs %s(%p)", 5021 return_type->PrettyClassAndClassLoader().c_str(), 5022 return_type.Get(), 5023 other_return_type->PrettyClassAndClassLoader().c_str(), 5024 other_return_type.Ptr())); 5025 return false; 5026 } 5027 } 5028 const DexFile::TypeList* types1 = method1->GetParameterTypeList(); 5029 const DexFile::TypeList* types2 = method2->GetParameterTypeList(); 5030 if (types1 == nullptr) { 5031 if (types2 != nullptr && types2->Size() != 0) { 5032 ThrowSignatureMismatch(klass, super_klass, method1, 5033 StringPrintf("Type list mismatch with %s", 5034 method2->PrettyMethod(true).c_str())); 5035 return false; 5036 } 5037 return true; 5038 } else if (UNLIKELY(types2 == nullptr)) { 5039 if (types1->Size() != 0) { 5040 ThrowSignatureMismatch(klass, super_klass, method1, 5041 StringPrintf("Type list mismatch with %s", 5042 method2->PrettyMethod(true).c_str())); 5043 return false; 5044 } 5045 return true; 5046 } 5047 uint32_t num_types = types1->Size(); 5048 if (UNLIKELY(num_types != types2->Size())) { 5049 ThrowSignatureMismatch(klass, super_klass, method1, 5050 StringPrintf("Type list mismatch with %s", 5051 method2->PrettyMethod(true).c_str())); 5052 return false; 5053 } 5054 for (uint32_t i = 0; i < num_types; ++i) { 5055 StackHandleScope<1> hs(self); 5056 dex::TypeIndex param_type_idx = types1->GetTypeItem(i).type_idx_; 5057 Handle<mirror::Class> param_type(hs.NewHandle( 5058 method1->GetClassFromTypeIndex(param_type_idx, true /* resolve */))); 5059 if (UNLIKELY(param_type == nullptr)) { 5060 ThrowSignatureCheckResolveArgException(klass, super_klass, method1, 5061 method1, i, param_type_idx); 5062 return false; 5063 } 5064 dex::TypeIndex other_param_type_idx = types2->GetTypeItem(i).type_idx_; 5065 ObjPtr<mirror::Class> other_param_type = 5066 method2->GetClassFromTypeIndex(other_param_type_idx, true /* resolve */); 5067 if (UNLIKELY(other_param_type == nullptr)) { 5068 ThrowSignatureCheckResolveArgException(klass, super_klass, method1, 5069 method2, i, other_param_type_idx); 5070 return false; 5071 } 5072 if (UNLIKELY(param_type.Get() != other_param_type)) { 5073 ThrowSignatureMismatch(klass, super_klass, method1, 5074 StringPrintf("Parameter %u type mismatch: %s(%p) vs %s(%p)", 5075 i, 5076 param_type->PrettyClassAndClassLoader().c_str(), 5077 param_type.Get(), 5078 other_param_type->PrettyClassAndClassLoader().c_str(), 5079 other_param_type.Ptr())); 5080 return false; 5081 } 5082 } 5083 return true; 5084 } 5085 5086 5087 bool ClassLinker::ValidateSuperClassDescriptors(Handle<mirror::Class> klass) { 5088 if (klass->IsInterface()) { 5089 return true; 5090 } 5091 // Begin with the methods local to the superclass. 5092 Thread* self = Thread::Current(); 5093 StackHandleScope<1> hs(self); 5094 MutableHandle<mirror::Class> super_klass(hs.NewHandle<mirror::Class>(nullptr)); 5095 if (klass->HasSuperClass() && 5096 klass->GetClassLoader() != klass->GetSuperClass()->GetClassLoader()) { 5097 super_klass.Assign(klass->GetSuperClass()); 5098 for (int i = klass->GetSuperClass()->GetVTableLength() - 1; i >= 0; --i) { 5099 auto* m = klass->GetVTableEntry(i, image_pointer_size_); 5100 auto* super_m = klass->GetSuperClass()->GetVTableEntry(i, image_pointer_size_); 5101 if (m != super_m) { 5102 if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self, 5103 klass, 5104 super_klass, 5105 m, 5106 super_m))) { 5107 self->AssertPendingException(); 5108 return false; 5109 } 5110 } 5111 } 5112 } 5113 for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) { 5114 super_klass.Assign(klass->GetIfTable()->GetInterface(i)); 5115 if (klass->GetClassLoader() != super_klass->GetClassLoader()) { 5116 uint32_t num_methods = super_klass->NumVirtualMethods(); 5117 for (uint32_t j = 0; j < num_methods; ++j) { 5118 auto* m = klass->GetIfTable()->GetMethodArray(i)->GetElementPtrSize<ArtMethod*>( 5119 j, image_pointer_size_); 5120 auto* super_m = super_klass->GetVirtualMethod(j, image_pointer_size_); 5121 if (m != super_m) { 5122 if (UNLIKELY(!HasSameSignatureWithDifferentClassLoaders(self, 5123 klass, 5124 super_klass, 5125 m, 5126 super_m))) { 5127 self->AssertPendingException(); 5128 return false; 5129 } 5130 } 5131 } 5132 } 5133 } 5134 return true; 5135 } 5136 5137 bool ClassLinker::EnsureInitialized(Thread* self, 5138 Handle<mirror::Class> c, 5139 bool can_init_fields, 5140 bool can_init_parents) { 5141 DCHECK(c != nullptr); 5142 if (c->IsInitialized()) { 5143 EnsureSkipAccessChecksMethods(c, image_pointer_size_); 5144 self->AssertNoPendingException(); 5145 return true; 5146 } 5147 const bool success = InitializeClass(self, c, can_init_fields, can_init_parents); 5148 if (!success) { 5149 if (can_init_fields && can_init_parents) { 5150 CHECK(self->IsExceptionPending()) << c->PrettyClass(); 5151 } 5152 } else { 5153 self->AssertNoPendingException(); 5154 } 5155 return success; 5156 } 5157 5158 void ClassLinker::FixupTemporaryDeclaringClass(ObjPtr<mirror::Class> temp_class, 5159 ObjPtr<mirror::Class> new_class) { 5160 DCHECK_EQ(temp_class->NumInstanceFields(), 0u); 5161 for (ArtField& field : new_class->GetIFields()) { 5162 if (field.GetDeclaringClass() == temp_class) { 5163 field.SetDeclaringClass(new_class); 5164 } 5165 } 5166 5167 DCHECK_EQ(temp_class->NumStaticFields(), 0u); 5168 for (ArtField& field : new_class->GetSFields()) { 5169 if (field.GetDeclaringClass() == temp_class) { 5170 field.SetDeclaringClass(new_class); 5171 } 5172 } 5173 5174 DCHECK_EQ(temp_class->NumDirectMethods(), 0u); 5175 DCHECK_EQ(temp_class->NumVirtualMethods(), 0u); 5176 for (auto& method : new_class->GetMethods(image_pointer_size_)) { 5177 if (method.GetDeclaringClass() == temp_class) { 5178 method.SetDeclaringClass(new_class); 5179 } 5180 } 5181 5182 // Make sure the remembered set and mod-union tables know that we updated some of the native 5183 // roots. 5184 Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(new_class); 5185 } 5186 5187 void ClassLinker::RegisterClassLoader(ObjPtr<mirror::ClassLoader> class_loader) { 5188 CHECK(class_loader->GetAllocator() == nullptr); 5189 CHECK(class_loader->GetClassTable() == nullptr); 5190 Thread* const self = Thread::Current(); 5191 ClassLoaderData data; 5192 data.weak_root = self->GetJniEnv()->vm->AddWeakGlobalRef(self, class_loader); 5193 // Create and set the class table. 5194 data.class_table = new ClassTable; 5195 class_loader->SetClassTable(data.class_table); 5196 // Create and set the linear allocator. 5197 data.allocator = Runtime::Current()->CreateLinearAlloc(); 5198 class_loader->SetAllocator(data.allocator); 5199 // Add to the list so that we know to free the data later. 5200 class_loaders_.push_back(data); 5201 } 5202 5203 ClassTable* ClassLinker::InsertClassTableForClassLoader(ObjPtr<mirror::ClassLoader> class_loader) { 5204 if (class_loader == nullptr) { 5205 return &boot_class_table_; 5206 } 5207 ClassTable* class_table = class_loader->GetClassTable(); 5208 if (class_table == nullptr) { 5209 RegisterClassLoader(class_loader); 5210 class_table = class_loader->GetClassTable(); 5211 DCHECK(class_table != nullptr); 5212 } 5213 return class_table; 5214 } 5215 5216 ClassTable* ClassLinker::ClassTableForClassLoader(ObjPtr<mirror::ClassLoader> class_loader) { 5217 return class_loader == nullptr ? &boot_class_table_ : class_loader->GetClassTable(); 5218 } 5219 5220 static ImTable* FindSuperImt(ObjPtr<mirror::Class> klass, PointerSize pointer_size) 5221 REQUIRES_SHARED(Locks::mutator_lock_) { 5222 while (klass->HasSuperClass()) { 5223 klass = klass->GetSuperClass(); 5224 if (klass->ShouldHaveImt()) { 5225 return klass->GetImt(pointer_size); 5226 } 5227 } 5228 return nullptr; 5229 } 5230 5231 bool ClassLinker::LinkClass(Thread* self, 5232 const char* descriptor, 5233 Handle<mirror::Class> klass, 5234 Handle<mirror::ObjectArray<mirror::Class>> interfaces, 5235 MutableHandle<mirror::Class>* h_new_class_out) { 5236 CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus()); 5237 5238 if (!LinkSuperClass(klass)) { 5239 return false; 5240 } 5241 ArtMethod* imt_data[ImTable::kSize]; 5242 // If there are any new conflicts compared to super class. 5243 bool new_conflict = false; 5244 std::fill_n(imt_data, arraysize(imt_data), Runtime::Current()->GetImtUnimplementedMethod()); 5245 if (!LinkMethods(self, klass, interfaces, &new_conflict, imt_data)) { 5246 return false; 5247 } 5248 if (!LinkInstanceFields(self, klass)) { 5249 return false; 5250 } 5251 size_t class_size; 5252 if (!LinkStaticFields(self, klass, &class_size)) { 5253 return false; 5254 } 5255 CreateReferenceInstanceOffsets(klass); 5256 CHECK_EQ(mirror::Class::kStatusLoaded, klass->GetStatus()); 5257 5258 ImTable* imt = nullptr; 5259 if (klass->ShouldHaveImt()) { 5260 // If there are any new conflicts compared to the super class we can not make a copy. There 5261 // can be cases where both will have a conflict method at the same slot without having the same 5262 // set of conflicts. In this case, we can not share the IMT since the conflict table slow path 5263 // will possibly create a table that is incorrect for either of the classes. 5264 // Same IMT with new_conflict does not happen very often. 5265 if (!new_conflict) { 5266 ImTable* super_imt = FindSuperImt(klass.Get(), image_pointer_size_); 5267 if (super_imt != nullptr) { 5268 bool imt_equals = true; 5269 for (size_t i = 0; i < ImTable::kSize && imt_equals; ++i) { 5270 imt_equals = imt_equals && (super_imt->Get(i, image_pointer_size_) == imt_data[i]); 5271 } 5272 if (imt_equals) { 5273 imt = super_imt; 5274 } 5275 } 5276 } 5277 if (imt == nullptr) { 5278 LinearAlloc* allocator = GetAllocatorForClassLoader(klass->GetClassLoader()); 5279 imt = reinterpret_cast<ImTable*>( 5280 allocator->Alloc(self, ImTable::SizeInBytes(image_pointer_size_))); 5281 if (imt == nullptr) { 5282 return false; 5283 } 5284 imt->Populate(imt_data, image_pointer_size_); 5285 } 5286 } 5287 5288 if (!klass->IsTemp() || (!init_done_ && klass->GetClassSize() == class_size)) { 5289 // We don't need to retire this class as it has no embedded tables or it was created the 5290 // correct size during class linker initialization. 5291 CHECK_EQ(klass->GetClassSize(), class_size) << klass->PrettyDescriptor(); 5292 5293 if (klass->ShouldHaveEmbeddedVTable()) { 5294 klass->PopulateEmbeddedVTable(image_pointer_size_); 5295 } 5296 if (klass->ShouldHaveImt()) { 5297 klass->SetImt(imt, image_pointer_size_); 5298 } 5299 5300 // Update CHA info based on whether we override methods. 5301 // Have to do this before setting the class as resolved which allows 5302 // instantiation of klass. 5303 Runtime::Current()->GetClassHierarchyAnalysis()->UpdateAfterLoadingOf(klass); 5304 5305 // This will notify waiters on klass that saw the not yet resolved 5306 // class in the class_table_ during EnsureResolved. 5307 mirror::Class::SetStatus(klass, mirror::Class::kStatusResolved, self); 5308 h_new_class_out->Assign(klass.Get()); 5309 } else { 5310 CHECK(!klass->IsResolved()); 5311 // Retire the temporary class and create the correctly sized resolved class. 5312 StackHandleScope<1> hs(self); 5313 auto h_new_class = hs.NewHandle(klass->CopyOf(self, class_size, imt, image_pointer_size_)); 5314 // Set arrays to null since we don't want to have multiple classes with the same ArtField or 5315 // ArtMethod array pointers. If this occurs, it causes bugs in remembered sets since the GC 5316 // may not see any references to the target space and clean the card for a class if another 5317 // class had the same array pointer. 5318 klass->SetMethodsPtrUnchecked(nullptr, 0, 0); 5319 klass->SetSFieldsPtrUnchecked(nullptr); 5320 klass->SetIFieldsPtrUnchecked(nullptr); 5321 if (UNLIKELY(h_new_class == nullptr)) { 5322 self->AssertPendingOOMException(); 5323 mirror::Class::SetStatus(klass, mirror::Class::kStatusErrorUnresolved, self); 5324 return false; 5325 } 5326 5327 CHECK_EQ(h_new_class->GetClassSize(), class_size); 5328 ObjectLock<mirror::Class> lock(self, h_new_class); 5329 FixupTemporaryDeclaringClass(klass.Get(), h_new_class.Get()); 5330 5331 { 5332 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); 5333 ObjPtr<mirror::ClassLoader> const class_loader = h_new_class.Get()->GetClassLoader(); 5334 ClassTable* const table = InsertClassTableForClassLoader(class_loader); 5335 ObjPtr<mirror::Class> existing = table->UpdateClass(descriptor, h_new_class.Get(), 5336 ComputeModifiedUtf8Hash(descriptor)); 5337 if (class_loader != nullptr) { 5338 // We updated the class in the class table, perform the write barrier so that the GC knows 5339 // about the change. 5340 Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader); 5341 } 5342 CHECK_EQ(existing, klass.Get()); 5343 if (log_new_roots_) { 5344 new_class_roots_.push_back(GcRoot<mirror::Class>(h_new_class.Get())); 5345 } 5346 } 5347 5348 // Update CHA info based on whether we override methods. 5349 // Have to do this before setting the class as resolved which allows 5350 // instantiation of klass. 5351 Runtime::Current()->GetClassHierarchyAnalysis()->UpdateAfterLoadingOf(h_new_class); 5352 5353 // This will notify waiters on temp class that saw the not yet resolved class in the 5354 // class_table_ during EnsureResolved. 5355 mirror::Class::SetStatus(klass, mirror::Class::kStatusRetired, self); 5356 5357 CHECK_EQ(h_new_class->GetStatus(), mirror::Class::kStatusResolving); 5358 // This will notify waiters on new_class that saw the not yet resolved 5359 // class in the class_table_ during EnsureResolved. 5360 mirror::Class::SetStatus(h_new_class, mirror::Class::kStatusResolved, self); 5361 // Return the new class. 5362 h_new_class_out->Assign(h_new_class.Get()); 5363 } 5364 return true; 5365 } 5366 5367 static void CountMethodsAndFields(ClassDataItemIterator& dex_data, 5368 size_t* virtual_methods, 5369 size_t* direct_methods, 5370 size_t* static_fields, 5371 size_t* instance_fields) { 5372 *virtual_methods = *direct_methods = *static_fields = *instance_fields = 0; 5373 5374 while (dex_data.HasNextStaticField()) { 5375 dex_data.Next(); 5376 (*static_fields)++; 5377 } 5378 while (dex_data.HasNextInstanceField()) { 5379 dex_data.Next(); 5380 (*instance_fields)++; 5381 } 5382 while (dex_data.HasNextDirectMethod()) { 5383 (*direct_methods)++; 5384 dex_data.Next(); 5385 } 5386 while (dex_data.HasNextVirtualMethod()) { 5387 (*virtual_methods)++; 5388 dex_data.Next(); 5389 } 5390 DCHECK(!dex_data.HasNext()); 5391 } 5392 5393 static void DumpClass(std::ostream& os, 5394 const DexFile& dex_file, const DexFile::ClassDef& dex_class_def, 5395 const char* suffix) { 5396 ClassDataItemIterator dex_data(dex_file, dex_file.GetClassData(dex_class_def)); 5397 os << dex_file.GetClassDescriptor(dex_class_def) << suffix << ":\n"; 5398 os << " Static fields:\n"; 5399 while (dex_data.HasNextStaticField()) { 5400 const DexFile::FieldId& id = dex_file.GetFieldId(dex_data.GetMemberIndex()); 5401 os << " " << dex_file.GetFieldTypeDescriptor(id) << " " << dex_file.GetFieldName(id) << "\n"; 5402 dex_data.Next(); 5403 } 5404 os << " Instance fields:\n"; 5405 while (dex_data.HasNextInstanceField()) { 5406 const DexFile::FieldId& id = dex_file.GetFieldId(dex_data.GetMemberIndex()); 5407 os << " " << dex_file.GetFieldTypeDescriptor(id) << " " << dex_file.GetFieldName(id) << "\n"; 5408 dex_data.Next(); 5409 } 5410 os << " Direct methods:\n"; 5411 while (dex_data.HasNextDirectMethod()) { 5412 const DexFile::MethodId& id = dex_file.GetMethodId(dex_data.GetMemberIndex()); 5413 os << " " << dex_file.GetMethodName(id) << dex_file.GetMethodSignature(id).ToString() << "\n"; 5414 dex_data.Next(); 5415 } 5416 os << " Virtual methods:\n"; 5417 while (dex_data.HasNextVirtualMethod()) { 5418 const DexFile::MethodId& id = dex_file.GetMethodId(dex_data.GetMemberIndex()); 5419 os << " " << dex_file.GetMethodName(id) << dex_file.GetMethodSignature(id).ToString() << "\n"; 5420 dex_data.Next(); 5421 } 5422 } 5423 5424 static std::string DumpClasses(const DexFile& dex_file1, 5425 const DexFile::ClassDef& dex_class_def1, 5426 const DexFile& dex_file2, 5427 const DexFile::ClassDef& dex_class_def2) { 5428 std::ostringstream os; 5429 DumpClass(os, dex_file1, dex_class_def1, " (Compile time)"); 5430 DumpClass(os, dex_file2, dex_class_def2, " (Runtime)"); 5431 return os.str(); 5432 } 5433 5434 5435 // Very simple structural check on whether the classes match. Only compares the number of 5436 // methods and fields. 5437 static bool SimpleStructuralCheck(const DexFile& dex_file1, 5438 const DexFile::ClassDef& dex_class_def1, 5439 const DexFile& dex_file2, 5440 const DexFile::ClassDef& dex_class_def2, 5441 std::string* error_msg) { 5442 ClassDataItemIterator dex_data1(dex_file1, dex_file1.GetClassData(dex_class_def1)); 5443 ClassDataItemIterator dex_data2(dex_file2, dex_file2.GetClassData(dex_class_def2)); 5444 5445 // Counters for current dex file. 5446 size_t dex_virtual_methods1, dex_direct_methods1, dex_static_fields1, dex_instance_fields1; 5447 CountMethodsAndFields(dex_data1, 5448 &dex_virtual_methods1, 5449 &dex_direct_methods1, 5450 &dex_static_fields1, 5451 &dex_instance_fields1); 5452 // Counters for compile-time dex file. 5453 size_t dex_virtual_methods2, dex_direct_methods2, dex_static_fields2, dex_instance_fields2; 5454 CountMethodsAndFields(dex_data2, 5455 &dex_virtual_methods2, 5456 &dex_direct_methods2, 5457 &dex_static_fields2, 5458 &dex_instance_fields2); 5459 5460 if (dex_virtual_methods1 != dex_virtual_methods2) { 5461 std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2); 5462 *error_msg = StringPrintf("Virtual method count off: %zu vs %zu\n%s", 5463 dex_virtual_methods1, 5464 dex_virtual_methods2, 5465 class_dump.c_str()); 5466 return false; 5467 } 5468 if (dex_direct_methods1 != dex_direct_methods2) { 5469 std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2); 5470 *error_msg = StringPrintf("Direct method count off: %zu vs %zu\n%s", 5471 dex_direct_methods1, 5472 dex_direct_methods2, 5473 class_dump.c_str()); 5474 return false; 5475 } 5476 if (dex_static_fields1 != dex_static_fields2) { 5477 std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2); 5478 *error_msg = StringPrintf("Static field count off: %zu vs %zu\n%s", 5479 dex_static_fields1, 5480 dex_static_fields2, 5481 class_dump.c_str()); 5482 return false; 5483 } 5484 if (dex_instance_fields1 != dex_instance_fields2) { 5485 std::string class_dump = DumpClasses(dex_file1, dex_class_def1, dex_file2, dex_class_def2); 5486 *error_msg = StringPrintf("Instance field count off: %zu vs %zu\n%s", 5487 dex_instance_fields1, 5488 dex_instance_fields2, 5489 class_dump.c_str()); 5490 return false; 5491 } 5492 5493 return true; 5494 } 5495 5496 // Checks whether a the super-class changed from what we had at compile-time. This would 5497 // invalidate quickening. 5498 static bool CheckSuperClassChange(Handle<mirror::Class> klass, 5499 const DexFile& dex_file, 5500 const DexFile::ClassDef& class_def, 5501 ObjPtr<mirror::Class> super_class) 5502 REQUIRES_SHARED(Locks::mutator_lock_) { 5503 // Check for unexpected changes in the superclass. 5504 // Quick check 1) is the super_class class-loader the boot class loader? This always has 5505 // precedence. 5506 if (super_class->GetClassLoader() != nullptr && 5507 // Quick check 2) different dex cache? Breaks can only occur for different dex files, 5508 // which is implied by different dex cache. 5509 klass->GetDexCache() != super_class->GetDexCache()) { 5510 // Now comes the expensive part: things can be broken if (a) the klass' dex file has a 5511 // definition for the super-class, and (b) the files are in separate oat files. The oat files 5512 // are referenced from the dex file, so do (b) first. Only relevant if we have oat files. 5513 const OatDexFile* class_oat_dex_file = dex_file.GetOatDexFile(); 5514 const OatFile* class_oat_file = nullptr; 5515 if (class_oat_dex_file != nullptr) { 5516 class_oat_file = class_oat_dex_file->GetOatFile(); 5517 } 5518 5519 if (class_oat_file != nullptr) { 5520 const OatDexFile* loaded_super_oat_dex_file = super_class->GetDexFile().GetOatDexFile(); 5521 const OatFile* loaded_super_oat_file = nullptr; 5522 if (loaded_super_oat_dex_file != nullptr) { 5523 loaded_super_oat_file = loaded_super_oat_dex_file->GetOatFile(); 5524 } 5525 5526 if (loaded_super_oat_file != nullptr && class_oat_file != loaded_super_oat_file) { 5527 // Now check (a). 5528 const DexFile::ClassDef* super_class_def = dex_file.FindClassDef(class_def.superclass_idx_); 5529 if (super_class_def != nullptr) { 5530 // Uh-oh, we found something. Do our check. 5531 std::string error_msg; 5532 if (!SimpleStructuralCheck(dex_file, *super_class_def, 5533 super_class->GetDexFile(), *super_class->GetClassDef(), 5534 &error_msg)) { 5535 // Print a warning to the log. This exception might be caught, e.g., as common in test 5536 // drivers. When the class is later tried to be used, we re-throw a new instance, as we 5537 // only save the type of the exception. 5538 LOG(WARNING) << "Incompatible structural change detected: " << 5539 StringPrintf( 5540 "Structural change of %s is hazardous (%s at compile time, %s at runtime): %s", 5541 dex_file.PrettyType(super_class_def->class_idx_).c_str(), 5542 class_oat_file->GetLocation().c_str(), 5543 loaded_super_oat_file->GetLocation().c_str(), 5544 error_msg.c_str()); 5545 ThrowIncompatibleClassChangeError(klass.Get(), 5546 "Structural change of %s is hazardous (%s at compile time, %s at runtime): %s", 5547 dex_file.PrettyType(super_class_def->class_idx_).c_str(), 5548 class_oat_file->GetLocation().c_str(), 5549 loaded_super_oat_file->GetLocation().c_str(), 5550 error_msg.c_str()); 5551 return false; 5552 } 5553 } 5554 } 5555 } 5556 } 5557 return true; 5558 } 5559 5560 bool ClassLinker::LoadSuperAndInterfaces(Handle<mirror::Class> klass, const DexFile& dex_file) { 5561 CHECK_EQ(mirror::Class::kStatusIdx, klass->GetStatus()); 5562 const DexFile::ClassDef& class_def = dex_file.GetClassDef(klass->GetDexClassDefIndex()); 5563 dex::TypeIndex super_class_idx = class_def.superclass_idx_; 5564 if (super_class_idx.IsValid()) { 5565 // Check that a class does not inherit from itself directly. 5566 // 5567 // TODO: This is a cheap check to detect the straightforward case 5568 // of a class extending itself (b/28685551), but we should do a 5569 // proper cycle detection on loaded classes, to detect all cases 5570 // of class circularity errors (b/28830038). 5571 if (super_class_idx == class_def.class_idx_) { 5572 ThrowClassCircularityError(klass.Get(), 5573 "Class %s extends itself", 5574 klass->PrettyDescriptor().c_str()); 5575 return false; 5576 } 5577 5578 ObjPtr<mirror::Class> super_class = ResolveType(dex_file, super_class_idx, klass.Get()); 5579 if (super_class == nullptr) { 5580 DCHECK(Thread::Current()->IsExceptionPending()); 5581 return false; 5582 } 5583 // Verify 5584 if (!klass->CanAccess(super_class)) { 5585 ThrowIllegalAccessError(klass.Get(), "Class %s extended by class %s is inaccessible", 5586 super_class->PrettyDescriptor().c_str(), 5587 klass->PrettyDescriptor().c_str()); 5588 return false; 5589 } 5590 CHECK(super_class->IsResolved()); 5591 klass->SetSuperClass(super_class); 5592 5593 if (!CheckSuperClassChange(klass, dex_file, class_def, super_class)) { 5594 DCHECK(Thread::Current()->IsExceptionPending()); 5595 return false; 5596 } 5597 } 5598 const DexFile::TypeList* interfaces = dex_file.GetInterfacesList(class_def); 5599 if (interfaces != nullptr) { 5600 for (size_t i = 0; i < interfaces->Size(); i++) { 5601 dex::TypeIndex idx = interfaces->GetTypeItem(i).type_idx_; 5602 ObjPtr<mirror::Class> interface = ResolveType(dex_file, idx, klass.Get()); 5603 if (interface == nullptr) { 5604 DCHECK(Thread::Current()->IsExceptionPending()); 5605 return false; 5606 } 5607 // Verify 5608 if (!klass->CanAccess(interface)) { 5609 // TODO: the RI seemed to ignore this in my testing. 5610 ThrowIllegalAccessError(klass.Get(), 5611 "Interface %s implemented by class %s is inaccessible", 5612 interface->PrettyDescriptor().c_str(), 5613 klass->PrettyDescriptor().c_str()); 5614 return false; 5615 } 5616 } 5617 } 5618 // Mark the class as loaded. 5619 mirror::Class::SetStatus(klass, mirror::Class::kStatusLoaded, nullptr); 5620 return true; 5621 } 5622 5623 bool ClassLinker::LinkSuperClass(Handle<mirror::Class> klass) { 5624 CHECK(!klass->IsPrimitive()); 5625 ObjPtr<mirror::Class> super = klass->GetSuperClass(); 5626 if (klass.Get() == GetClassRoot(kJavaLangObject)) { 5627 if (super != nullptr) { 5628 ThrowClassFormatError(klass.Get(), "java.lang.Object must not have a superclass"); 5629 return false; 5630 } 5631 return true; 5632 } 5633 if (super == nullptr) { 5634 ThrowLinkageError(klass.Get(), "No superclass defined for class %s", 5635 klass->PrettyDescriptor().c_str()); 5636 return false; 5637 } 5638 // Verify 5639 if (super->IsFinal() || super->IsInterface()) { 5640 ThrowIncompatibleClassChangeError(klass.Get(), 5641 "Superclass %s of %s is %s", 5642 super->PrettyDescriptor().c_str(), 5643 klass->PrettyDescriptor().c_str(), 5644 super->IsFinal() ? "declared final" : "an interface"); 5645 return false; 5646 } 5647 if (!klass->CanAccess(super)) { 5648 ThrowIllegalAccessError(klass.Get(), "Superclass %s is inaccessible to class %s", 5649 super->PrettyDescriptor().c_str(), 5650 klass->PrettyDescriptor().c_str()); 5651 return false; 5652 } 5653 5654 // Inherit kAccClassIsFinalizable from the superclass in case this 5655 // class doesn't override finalize. 5656 if (super->IsFinalizable()) { 5657 klass->SetFinalizable(); 5658 } 5659 5660 // Inherit class loader flag form super class. 5661 if (super->IsClassLoaderClass()) { 5662 klass->SetClassLoaderClass(); 5663 } 5664 5665 // Inherit reference flags (if any) from the superclass. 5666 uint32_t reference_flags = (super->GetClassFlags() & mirror::kClassFlagReference); 5667 if (reference_flags != 0) { 5668 CHECK_EQ(klass->GetClassFlags(), 0u); 5669 klass->SetClassFlags(klass->GetClassFlags() | reference_flags); 5670 } 5671 // Disallow custom direct subclasses of java.lang.ref.Reference. 5672 if (init_done_ && super == GetClassRoot(kJavaLangRefReference)) { 5673 ThrowLinkageError(klass.Get(), 5674 "Class %s attempts to subclass java.lang.ref.Reference, which is not allowed", 5675 klass->PrettyDescriptor().c_str()); 5676 return false; 5677 } 5678 5679 if (kIsDebugBuild) { 5680 // Ensure super classes are fully resolved prior to resolving fields.. 5681 while (super != nullptr) { 5682 CHECK(super->IsResolved()); 5683 super = super->GetSuperClass(); 5684 } 5685 } 5686 return true; 5687 } 5688 5689 // Populate the class vtable and itable. Compute return type indices. 5690 bool ClassLinker::LinkMethods(Thread* self, 5691 Handle<mirror::Class> klass, 5692 Handle<mirror::ObjectArray<mirror::Class>> interfaces, 5693 bool* out_new_conflict, 5694 ArtMethod** out_imt) { 5695 self->AllowThreadSuspension(); 5696 // A map from vtable indexes to the method they need to be updated to point to. Used because we 5697 // need to have default methods be in the virtuals array of each class but we don't set that up 5698 // until LinkInterfaceMethods. 5699 std::unordered_map<size_t, ClassLinker::MethodTranslation> default_translations; 5700 // Link virtual methods then interface methods. 5701 // We set up the interface lookup table first because we need it to determine if we need to update 5702 // any vtable entries with new default method implementations. 5703 return SetupInterfaceLookupTable(self, klass, interfaces) 5704 && LinkVirtualMethods(self, klass, /*out*/ &default_translations) 5705 && LinkInterfaceMethods(self, klass, default_translations, out_new_conflict, out_imt); 5706 } 5707 5708 // Comparator for name and signature of a method, used in finding overriding methods. Implementation 5709 // avoids the use of handles, if it didn't then rather than compare dex files we could compare dex 5710 // caches in the implementation below. 5711 class MethodNameAndSignatureComparator FINAL : public ValueObject { 5712 public: 5713 explicit MethodNameAndSignatureComparator(ArtMethod* method) 5714 REQUIRES_SHARED(Locks::mutator_lock_) : 5715 dex_file_(method->GetDexFile()), mid_(&dex_file_->GetMethodId(method->GetDexMethodIndex())), 5716 name_(nullptr), name_len_(0) { 5717 DCHECK(!method->IsProxyMethod()) << method->PrettyMethod(); 5718 } 5719 5720 const char* GetName() { 5721 if (name_ == nullptr) { 5722 name_ = dex_file_->StringDataAndUtf16LengthByIdx(mid_->name_idx_, &name_len_); 5723 } 5724 return name_; 5725 } 5726 5727 bool HasSameNameAndSignature(ArtMethod* other) 5728 REQUIRES_SHARED(Locks::mutator_lock_) { 5729 DCHECK(!other->IsProxyMethod()) << other->PrettyMethod(); 5730 const DexFile* other_dex_file = other->GetDexFile(); 5731 const DexFile::MethodId& other_mid = other_dex_file->GetMethodId(other->GetDexMethodIndex()); 5732 if (dex_file_ == other_dex_file) { 5733 return mid_->name_idx_ == other_mid.name_idx_ && mid_->proto_idx_ == other_mid.proto_idx_; 5734 } 5735 GetName(); // Only used to make sure its calculated. 5736 uint32_t other_name_len; 5737 const char* other_name = other_dex_file->StringDataAndUtf16LengthByIdx(other_mid.name_idx_, 5738 &other_name_len); 5739 if (name_len_ != other_name_len || strcmp(name_, other_name) != 0) { 5740 return false; 5741 } 5742 return dex_file_->GetMethodSignature(*mid_) == other_dex_file->GetMethodSignature(other_mid); 5743 } 5744 5745 private: 5746 // Dex file for the method to compare against. 5747 const DexFile* const dex_file_; 5748 // MethodId for the method to compare against. 5749 const DexFile::MethodId* const mid_; 5750 // Lazily computed name from the dex file's strings. 5751 const char* name_; 5752 // Lazily computed name length. 5753 uint32_t name_len_; 5754 }; 5755 5756 class LinkVirtualHashTable { 5757 public: 5758 LinkVirtualHashTable(Handle<mirror::Class> klass, 5759 size_t hash_size, 5760 uint32_t* hash_table, 5761 PointerSize image_pointer_size) 5762 : klass_(klass), 5763 hash_size_(hash_size), 5764 hash_table_(hash_table), 5765 image_pointer_size_(image_pointer_size) { 5766 std::fill(hash_table_, hash_table_ + hash_size_, invalid_index_); 5767 } 5768 5769 void Add(uint32_t virtual_method_index) REQUIRES_SHARED(Locks::mutator_lock_) { 5770 ArtMethod* local_method = klass_->GetVirtualMethodDuringLinking( 5771 virtual_method_index, image_pointer_size_); 5772 const char* name = local_method->GetInterfaceMethodIfProxy(image_pointer_size_)->GetName(); 5773 uint32_t hash = ComputeModifiedUtf8Hash(name); 5774 uint32_t index = hash % hash_size_; 5775 // Linear probe until we have an empty slot. 5776 while (hash_table_[index] != invalid_index_) { 5777 if (++index == hash_size_) { 5778 index = 0; 5779 } 5780 } 5781 hash_table_[index] = virtual_method_index; 5782 } 5783 5784 uint32_t FindAndRemove(MethodNameAndSignatureComparator* comparator) 5785 REQUIRES_SHARED(Locks::mutator_lock_) { 5786 const char* name = comparator->GetName(); 5787 uint32_t hash = ComputeModifiedUtf8Hash(name); 5788 size_t index = hash % hash_size_; 5789 while (true) { 5790 const uint32_t value = hash_table_[index]; 5791 // Since linear probe makes continuous blocks, hitting an invalid index means we are done 5792 // the block and can safely assume not found. 5793 if (value == invalid_index_) { 5794 break; 5795 } 5796 if (value != removed_index_) { // This signifies not already overriden. 5797 ArtMethod* virtual_method = 5798 klass_->GetVirtualMethodDuringLinking(value, image_pointer_size_); 5799 if (comparator->HasSameNameAndSignature( 5800 virtual_method->GetInterfaceMethodIfProxy(image_pointer_size_))) { 5801 hash_table_[index] = removed_index_; 5802 return value; 5803 } 5804 } 5805 if (++index == hash_size_) { 5806 index = 0; 5807 } 5808 } 5809 return GetNotFoundIndex(); 5810 } 5811 5812 static uint32_t GetNotFoundIndex() { 5813 return invalid_index_; 5814 } 5815 5816 private: 5817 static const uint32_t invalid_index_; 5818 static const uint32_t removed_index_; 5819 5820 Handle<mirror::Class> klass_; 5821 const size_t hash_size_; 5822 uint32_t* const hash_table_; 5823 const PointerSize image_pointer_size_; 5824 }; 5825 5826 const uint32_t LinkVirtualHashTable::invalid_index_ = std::numeric_limits<uint32_t>::max(); 5827 const uint32_t LinkVirtualHashTable::removed_index_ = std::numeric_limits<uint32_t>::max() - 1; 5828 5829 bool ClassLinker::LinkVirtualMethods( 5830 Thread* self, 5831 Handle<mirror::Class> klass, 5832 /*out*/std::unordered_map<size_t, ClassLinker::MethodTranslation>* default_translations) { 5833 const size_t num_virtual_methods = klass->NumVirtualMethods(); 5834 if (klass->IsInterface()) { 5835 // No vtable. 5836 if (!IsUint<16>(num_virtual_methods)) { 5837 ThrowClassFormatError(klass.Get(), "Too many methods on interface: %zu", num_virtual_methods); 5838 return false; 5839 } 5840 bool has_defaults = false; 5841 // Assign each method an IMT index and set the default flag. 5842 for (size_t i = 0; i < num_virtual_methods; ++i) { 5843 ArtMethod* m = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_); 5844 m->SetMethodIndex(i); 5845 if (!m->IsAbstract()) { 5846 m->SetAccessFlags(m->GetAccessFlags() | kAccDefault); 5847 has_defaults = true; 5848 } 5849 } 5850 // Mark that we have default methods so that we won't need to scan the virtual_methods_ array 5851 // during initialization. This is a performance optimization. We could simply traverse the 5852 // virtual_methods_ array again during initialization. 5853 if (has_defaults) { 5854 klass->SetHasDefaultMethods(); 5855 } 5856 return true; 5857 } else if (klass->HasSuperClass()) { 5858 const size_t super_vtable_length = klass->GetSuperClass()->GetVTableLength(); 5859 const size_t max_count = num_virtual_methods + super_vtable_length; 5860 StackHandleScope<2> hs(self); 5861 Handle<mirror::Class> super_class(hs.NewHandle(klass->GetSuperClass())); 5862 MutableHandle<mirror::PointerArray> vtable; 5863 if (super_class->ShouldHaveEmbeddedVTable()) { 5864 vtable = hs.NewHandle(AllocPointerArray(self, max_count)); 5865 if (UNLIKELY(vtable == nullptr)) { 5866 self->AssertPendingOOMException(); 5867 return false; 5868 } 5869 for (size_t i = 0; i < super_vtable_length; i++) { 5870 vtable->SetElementPtrSize( 5871 i, super_class->GetEmbeddedVTableEntry(i, image_pointer_size_), image_pointer_size_); 5872 } 5873 // We might need to change vtable if we have new virtual methods or new interfaces (since that 5874 // might give us new default methods). If no new interfaces then we can skip the rest since 5875 // the class cannot override any of the super-class's methods. This is required for 5876 // correctness since without it we might not update overridden default method vtable entries 5877 // correctly. 5878 if (num_virtual_methods == 0 && super_class->GetIfTableCount() == klass->GetIfTableCount()) { 5879 klass->SetVTable(vtable.Get()); 5880 return true; 5881 } 5882 } else { 5883 DCHECK(super_class->IsAbstract() && !super_class->IsArrayClass()); 5884 auto* super_vtable = super_class->GetVTable(); 5885 CHECK(super_vtable != nullptr) << super_class->PrettyClass(); 5886 // We might need to change vtable if we have new virtual methods or new interfaces (since that 5887 // might give us new default methods). See comment above. 5888 if (num_virtual_methods == 0 && super_class->GetIfTableCount() == klass->GetIfTableCount()) { 5889 klass->SetVTable(super_vtable); 5890 return true; 5891 } 5892 vtable = hs.NewHandle(down_cast<mirror::PointerArray*>( 5893 super_vtable->CopyOf(self, max_count))); 5894 if (UNLIKELY(vtable == nullptr)) { 5895 self->AssertPendingOOMException(); 5896 return false; 5897 } 5898 } 5899 // How the algorithm works: 5900 // 1. Populate hash table by adding num_virtual_methods from klass. The values in the hash 5901 // table are: invalid_index for unused slots, index super_vtable_length + i for a virtual 5902 // method which has not been matched to a vtable method, and j if the virtual method at the 5903 // index overrode the super virtual method at index j. 5904 // 2. Loop through super virtual methods, if they overwrite, update hash table to j 5905 // (j < super_vtable_length) to avoid redundant checks. (TODO maybe use this info for reducing 5906 // the need for the initial vtable which we later shrink back down). 5907 // 3. Add non overridden methods to the end of the vtable. 5908 static constexpr size_t kMaxStackHash = 250; 5909 // + 1 so that even if we only have new default methods we will still be able to use this hash 5910 // table (i.e. it will never have 0 size). 5911 const size_t hash_table_size = num_virtual_methods * 3 + 1; 5912 uint32_t* hash_table_ptr; 5913 std::unique_ptr<uint32_t[]> hash_heap_storage; 5914 if (hash_table_size <= kMaxStackHash) { 5915 hash_table_ptr = reinterpret_cast<uint32_t*>( 5916 alloca(hash_table_size * sizeof(*hash_table_ptr))); 5917 } else { 5918 hash_heap_storage.reset(new uint32_t[hash_table_size]); 5919 hash_table_ptr = hash_heap_storage.get(); 5920 } 5921 LinkVirtualHashTable hash_table(klass, hash_table_size, hash_table_ptr, image_pointer_size_); 5922 // Add virtual methods to the hash table. 5923 for (size_t i = 0; i < num_virtual_methods; ++i) { 5924 DCHECK(klass->GetVirtualMethodDuringLinking( 5925 i, image_pointer_size_)->GetDeclaringClass() != nullptr); 5926 hash_table.Add(i); 5927 } 5928 // Loop through each super vtable method and see if they are overridden by a method we added to 5929 // the hash table. 5930 for (size_t j = 0; j < super_vtable_length; ++j) { 5931 // Search the hash table to see if we are overridden by any method. 5932 ArtMethod* super_method = vtable->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_); 5933 if (!klass->CanAccessMember(super_method->GetDeclaringClass(), 5934 super_method->GetAccessFlags())) { 5935 // Continue on to the next method since this one is package private and canot be overridden. 5936 // Before Android 4.1, the package-private method super_method might have been incorrectly 5937 // overridden. 5938 continue; 5939 } 5940 MethodNameAndSignatureComparator super_method_name_comparator( 5941 super_method->GetInterfaceMethodIfProxy(image_pointer_size_)); 5942 // We remove the method so that subsequent lookups will be faster by making the hash-map 5943 // smaller as we go on. 5944 uint32_t hash_index = hash_table.FindAndRemove(&super_method_name_comparator); 5945 if (hash_index != hash_table.GetNotFoundIndex()) { 5946 ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking( 5947 hash_index, image_pointer_size_); 5948 if (super_method->IsFinal()) { 5949 ThrowLinkageError(klass.Get(), "Method %s overrides final method in class %s", 5950 virtual_method->PrettyMethod().c_str(), 5951 super_method->GetDeclaringClassDescriptor()); 5952 return false; 5953 } 5954 vtable->SetElementPtrSize(j, virtual_method, image_pointer_size_); 5955 virtual_method->SetMethodIndex(j); 5956 } else if (super_method->IsOverridableByDefaultMethod()) { 5957 // We didn't directly override this method but we might through default methods... 5958 // Check for default method update. 5959 ArtMethod* default_method = nullptr; 5960 switch (FindDefaultMethodImplementation(self, 5961 super_method, 5962 klass, 5963 /*out*/&default_method)) { 5964 case DefaultMethodSearchResult::kDefaultConflict: { 5965 // A conflict was found looking for default methods. Note this (assuming it wasn't 5966 // pre-existing) in the translations map. 5967 if (UNLIKELY(!super_method->IsDefaultConflicting())) { 5968 // Don't generate another conflict method to reduce memory use as an optimization. 5969 default_translations->insert( 5970 {j, ClassLinker::MethodTranslation::CreateConflictingMethod()}); 5971 } 5972 break; 5973 } 5974 case DefaultMethodSearchResult::kAbstractFound: { 5975 // No conflict but method is abstract. 5976 // We note that this vtable entry must be made abstract. 5977 if (UNLIKELY(!super_method->IsAbstract())) { 5978 default_translations->insert( 5979 {j, ClassLinker::MethodTranslation::CreateAbstractMethod()}); 5980 } 5981 break; 5982 } 5983 case DefaultMethodSearchResult::kDefaultFound: { 5984 if (UNLIKELY(super_method->IsDefaultConflicting() || 5985 default_method->GetDeclaringClass() != super_method->GetDeclaringClass())) { 5986 // Found a default method implementation that is new. 5987 // TODO Refactor this add default methods to virtuals here and not in 5988 // LinkInterfaceMethods maybe. 5989 // The problem is default methods might override previously present 5990 // default-method or miranda-method vtable entries from the superclass. 5991 // Unfortunately we need these to be entries in this class's virtuals. We do not 5992 // give these entries there until LinkInterfaceMethods so we pass this map around 5993 // to let it know which vtable entries need to be updated. 5994 // Make a note that vtable entry j must be updated, store what it needs to be updated 5995 // to. We will allocate a virtual method slot in LinkInterfaceMethods and fix it up 5996 // then. 5997 default_translations->insert( 5998 {j, ClassLinker::MethodTranslation::CreateTranslatedMethod(default_method)}); 5999 VLOG(class_linker) << "Method " << super_method->PrettyMethod() 6000 << " overridden by default " 6001 << default_method->PrettyMethod() 6002 << " in " << mirror::Class::PrettyClass(klass.Get()); 6003 } 6004 break; 6005 } 6006 } 6007 } 6008 } 6009 size_t actual_count = super_vtable_length; 6010 // Add the non-overridden methods at the end. 6011 for (size_t i = 0; i < num_virtual_methods; ++i) { 6012 ArtMethod* local_method = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_); 6013 size_t method_idx = local_method->GetMethodIndexDuringLinking(); 6014 if (method_idx < super_vtable_length && 6015 local_method == vtable->GetElementPtrSize<ArtMethod*>(method_idx, image_pointer_size_)) { 6016 continue; 6017 } 6018 vtable->SetElementPtrSize(actual_count, local_method, image_pointer_size_); 6019 local_method->SetMethodIndex(actual_count); 6020 ++actual_count; 6021 } 6022 if (!IsUint<16>(actual_count)) { 6023 ThrowClassFormatError(klass.Get(), "Too many methods defined on class: %zd", actual_count); 6024 return false; 6025 } 6026 // Shrink vtable if possible 6027 CHECK_LE(actual_count, max_count); 6028 if (actual_count < max_count) { 6029 vtable.Assign(down_cast<mirror::PointerArray*>(vtable->CopyOf(self, actual_count))); 6030 if (UNLIKELY(vtable == nullptr)) { 6031 self->AssertPendingOOMException(); 6032 return false; 6033 } 6034 } 6035 klass->SetVTable(vtable.Get()); 6036 } else { 6037 CHECK_EQ(klass.Get(), GetClassRoot(kJavaLangObject)); 6038 if (!IsUint<16>(num_virtual_methods)) { 6039 ThrowClassFormatError(klass.Get(), "Too many methods: %d", 6040 static_cast<int>(num_virtual_methods)); 6041 return false; 6042 } 6043 auto* vtable = AllocPointerArray(self, num_virtual_methods); 6044 if (UNLIKELY(vtable == nullptr)) { 6045 self->AssertPendingOOMException(); 6046 return false; 6047 } 6048 for (size_t i = 0; i < num_virtual_methods; ++i) { 6049 ArtMethod* virtual_method = klass->GetVirtualMethodDuringLinking(i, image_pointer_size_); 6050 vtable->SetElementPtrSize(i, virtual_method, image_pointer_size_); 6051 virtual_method->SetMethodIndex(i & 0xFFFF); 6052 } 6053 klass->SetVTable(vtable); 6054 } 6055 return true; 6056 } 6057 6058 // Determine if the given iface has any subinterface in the given list that declares the method 6059 // specified by 'target'. 6060 // 6061 // Arguments 6062 // - self: The thread we are running on 6063 // - target: A comparator that will match any method that overrides the method we are checking for 6064 // - iftable: The iftable we are searching for an overriding method on. 6065 // - ifstart: The index of the interface we are checking to see if anything overrides 6066 // - iface: The interface we are checking to see if anything overrides. 6067 // - image_pointer_size: 6068 // The image pointer size. 6069 // 6070 // Returns 6071 // - True: There is some method that matches the target comparator defined in an interface that 6072 // is a subtype of iface. 6073 // - False: There is no method that matches the target comparator in any interface that is a subtype 6074 // of iface. 6075 static bool ContainsOverridingMethodOf(Thread* self, 6076 MethodNameAndSignatureComparator& target, 6077 Handle<mirror::IfTable> iftable, 6078 size_t ifstart, 6079 Handle<mirror::Class> iface, 6080 PointerSize image_pointer_size) 6081 REQUIRES_SHARED(Locks::mutator_lock_) { 6082 DCHECK(self != nullptr); 6083 DCHECK(iface != nullptr); 6084 DCHECK(iftable != nullptr); 6085 DCHECK_GE(ifstart, 0u); 6086 DCHECK_LT(ifstart, iftable->Count()); 6087 DCHECK_EQ(iface.Get(), iftable->GetInterface(ifstart)); 6088 DCHECK(iface->IsInterface()); 6089 6090 size_t iftable_count = iftable->Count(); 6091 StackHandleScope<1> hs(self); 6092 MutableHandle<mirror::Class> current_iface(hs.NewHandle<mirror::Class>(nullptr)); 6093 for (size_t k = ifstart + 1; k < iftable_count; k++) { 6094 // Skip ifstart since our current interface obviously cannot override itself. 6095 current_iface.Assign(iftable->GetInterface(k)); 6096 // Iterate through every method on this interface. The order does not matter. 6097 for (ArtMethod& current_method : current_iface->GetDeclaredVirtualMethods(image_pointer_size)) { 6098 if (UNLIKELY(target.HasSameNameAndSignature( 6099 current_method.GetInterfaceMethodIfProxy(image_pointer_size)))) { 6100 // Check if the i'th interface is a subtype of this one. 6101 if (iface->IsAssignableFrom(current_iface.Get())) { 6102 return true; 6103 } 6104 break; 6105 } 6106 } 6107 } 6108 return false; 6109 } 6110 6111 // Find the default method implementation for 'interface_method' in 'klass'. Stores it into 6112 // out_default_method and returns kDefaultFound on success. If no default method was found return 6113 // kAbstractFound and store nullptr into out_default_method. If an error occurs (such as a 6114 // default_method conflict) it will return kDefaultConflict. 6115 ClassLinker::DefaultMethodSearchResult ClassLinker::FindDefaultMethodImplementation( 6116 Thread* self, 6117 ArtMethod* target_method, 6118 Handle<mirror::Class> klass, 6119 /*out*/ArtMethod** out_default_method) const { 6120 DCHECK(self != nullptr); 6121 DCHECK(target_method != nullptr); 6122 DCHECK(out_default_method != nullptr); 6123 6124 *out_default_method = nullptr; 6125 6126 // We organize the interface table so that, for interface I any subinterfaces J follow it in the 6127 // table. This lets us walk the table backwards when searching for default methods. The first one 6128 // we encounter is the best candidate since it is the most specific. Once we have found it we keep 6129 // track of it and then continue checking all other interfaces, since we need to throw an error if 6130 // we encounter conflicting default method implementations (one is not a subtype of the other). 6131 // 6132 // The order of unrelated interfaces does not matter and is not defined. 6133 size_t iftable_count = klass->GetIfTableCount(); 6134 if (iftable_count == 0) { 6135 // No interfaces. We have already reset out to null so just return kAbstractFound. 6136 return DefaultMethodSearchResult::kAbstractFound; 6137 } 6138 6139 StackHandleScope<3> hs(self); 6140 MutableHandle<mirror::Class> chosen_iface(hs.NewHandle<mirror::Class>(nullptr)); 6141 MutableHandle<mirror::IfTable> iftable(hs.NewHandle(klass->GetIfTable())); 6142 MutableHandle<mirror::Class> iface(hs.NewHandle<mirror::Class>(nullptr)); 6143 MethodNameAndSignatureComparator target_name_comparator( 6144 target_method->GetInterfaceMethodIfProxy(image_pointer_size_)); 6145 // Iterates over the klass's iftable in reverse 6146 for (size_t k = iftable_count; k != 0; ) { 6147 --k; 6148 6149 DCHECK_LT(k, iftable->Count()); 6150 6151 iface.Assign(iftable->GetInterface(k)); 6152 // Iterate through every declared method on this interface. The order does not matter. 6153 for (auto& method_iter : iface->GetDeclaredVirtualMethods(image_pointer_size_)) { 6154 ArtMethod* current_method = &method_iter; 6155 // Skip abstract methods and methods with different names. 6156 if (current_method->IsAbstract() || 6157 !target_name_comparator.HasSameNameAndSignature( 6158 current_method->GetInterfaceMethodIfProxy(image_pointer_size_))) { 6159 continue; 6160 } else if (!current_method->IsPublic()) { 6161 // The verifier should have caught the non-public method for dex version 37. Just warn and 6162 // skip it since this is from before default-methods so we don't really need to care that it 6163 // has code. 6164 LOG(WARNING) << "Interface method " << current_method->PrettyMethod() 6165 << " is not public! " 6166 << "This will be a fatal error in subsequent versions of android. " 6167 << "Continuing anyway."; 6168 } 6169 if (UNLIKELY(chosen_iface != nullptr)) { 6170 // We have multiple default impls of the same method. This is a potential default conflict. 6171 // We need to check if this possibly conflicting method is either a superclass of the chosen 6172 // default implementation or is overridden by a non-default interface method. In either case 6173 // there is no conflict. 6174 if (!iface->IsAssignableFrom(chosen_iface.Get()) && 6175 !ContainsOverridingMethodOf(self, 6176 target_name_comparator, 6177 iftable, 6178 k, 6179 iface, 6180 image_pointer_size_)) { 6181 VLOG(class_linker) << "Conflicting default method implementations found: " 6182 << current_method->PrettyMethod() << " and " 6183 << ArtMethod::PrettyMethod(*out_default_method) << " in class " 6184 << klass->PrettyClass() << " conflict."; 6185 *out_default_method = nullptr; 6186 return DefaultMethodSearchResult::kDefaultConflict; 6187 } else { 6188 break; // Continue checking at the next interface. 6189 } 6190 } else { 6191 // chosen_iface == null 6192 if (!ContainsOverridingMethodOf(self, 6193 target_name_comparator, 6194 iftable, 6195 k, 6196 iface, 6197 image_pointer_size_)) { 6198 // Don't set this as the chosen interface if something else is overriding it (because that 6199 // other interface would be potentially chosen instead if it was default). If the other 6200 // interface was abstract then we wouldn't select this interface as chosen anyway since 6201 // the abstract method masks it. 6202 *out_default_method = current_method; 6203 chosen_iface.Assign(iface.Get()); 6204 // We should now finish traversing the graph to find if we have default methods that 6205 // conflict. 6206 } else { 6207 VLOG(class_linker) << "A default method '" << current_method->PrettyMethod() 6208 << "' was " 6209 << "skipped because it was overridden by an abstract method in a " 6210 << "subinterface on class '" << klass->PrettyClass() << "'"; 6211 } 6212 } 6213 break; 6214 } 6215 } 6216 if (*out_default_method != nullptr) { 6217 VLOG(class_linker) << "Default method '" << (*out_default_method)->PrettyMethod() 6218 << "' selected " 6219 << "as the implementation for '" << target_method->PrettyMethod() 6220 << "' in '" << klass->PrettyClass() << "'"; 6221 return DefaultMethodSearchResult::kDefaultFound; 6222 } else { 6223 return DefaultMethodSearchResult::kAbstractFound; 6224 } 6225 } 6226 6227 ArtMethod* ClassLinker::AddMethodToConflictTable(ObjPtr<mirror::Class> klass, 6228 ArtMethod* conflict_method, 6229 ArtMethod* interface_method, 6230 ArtMethod* method, 6231 bool force_new_conflict_method) { 6232 ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize); 6233 Runtime* const runtime = Runtime::Current(); 6234 LinearAlloc* linear_alloc = GetAllocatorForClassLoader(klass->GetClassLoader()); 6235 bool new_entry = conflict_method == runtime->GetImtConflictMethod() || force_new_conflict_method; 6236 6237 // Create a new entry if the existing one is the shared conflict method. 6238 ArtMethod* new_conflict_method = new_entry 6239 ? runtime->CreateImtConflictMethod(linear_alloc) 6240 : conflict_method; 6241 6242 // Allocate a new table. Note that we will leak this table at the next conflict, 6243 // but that's a tradeoff compared to making the table fixed size. 6244 void* data = linear_alloc->Alloc( 6245 Thread::Current(), ImtConflictTable::ComputeSizeWithOneMoreEntry(current_table, 6246 image_pointer_size_)); 6247 if (data == nullptr) { 6248 LOG(ERROR) << "Failed to allocate conflict table"; 6249 return conflict_method; 6250 } 6251 ImtConflictTable* new_table = new (data) ImtConflictTable(current_table, 6252 interface_method, 6253 method, 6254 image_pointer_size_); 6255 6256 // Do a fence to ensure threads see the data in the table before it is assigned 6257 // to the conflict method. 6258 // Note that there is a race in the presence of multiple threads and we may leak 6259 // memory from the LinearAlloc, but that's a tradeoff compared to using 6260 // atomic operations. 6261 QuasiAtomic::ThreadFenceRelease(); 6262 new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_); 6263 return new_conflict_method; 6264 } 6265 6266 bool ClassLinker::AllocateIfTableMethodArrays(Thread* self, 6267 Handle<mirror::Class> klass, 6268 Handle<mirror::IfTable> iftable) { 6269 DCHECK(!klass->IsInterface()); 6270 const bool has_superclass = klass->HasSuperClass(); 6271 const bool extend_super_iftable = has_superclass; 6272 const size_t ifcount = klass->GetIfTableCount(); 6273 const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U; 6274 for (size_t i = 0; i < ifcount; ++i) { 6275 size_t num_methods = iftable->GetInterface(i)->NumDeclaredVirtualMethods(); 6276 if (num_methods > 0) { 6277 const bool is_super = i < super_ifcount; 6278 // This is an interface implemented by a super-class. Therefore we can just copy the method 6279 // array from the superclass. 6280 const bool super_interface = is_super && extend_super_iftable; 6281 ObjPtr<mirror::PointerArray> method_array; 6282 if (super_interface) { 6283 ObjPtr<mirror::IfTable> if_table = klass->GetSuperClass()->GetIfTable(); 6284 DCHECK(if_table != nullptr); 6285 DCHECK(if_table->GetMethodArray(i) != nullptr); 6286 // If we are working on a super interface, try extending the existing method array. 6287 method_array = down_cast<mirror::PointerArray*>(if_table->GetMethodArray(i)->Clone(self)); 6288 } else { 6289 method_array = AllocPointerArray(self, num_methods); 6290 } 6291 if (UNLIKELY(method_array == nullptr)) { 6292 self->AssertPendingOOMException(); 6293 return false; 6294 } 6295 iftable->SetMethodArray(i, method_array); 6296 } 6297 } 6298 return true; 6299 } 6300 6301 void ClassLinker::SetIMTRef(ArtMethod* unimplemented_method, 6302 ArtMethod* imt_conflict_method, 6303 ArtMethod* current_method, 6304 /*out*/bool* new_conflict, 6305 /*out*/ArtMethod** imt_ref) { 6306 // Place method in imt if entry is empty, place conflict otherwise. 6307 if (*imt_ref == unimplemented_method) { 6308 *imt_ref = current_method; 6309 } else if (!(*imt_ref)->IsRuntimeMethod()) { 6310 // If we are not a conflict and we have the same signature and name as the imt 6311 // entry, it must be that we overwrote a superclass vtable entry. 6312 // Note that we have checked IsRuntimeMethod, as there may be multiple different 6313 // conflict methods. 6314 MethodNameAndSignatureComparator imt_comparator( 6315 (*imt_ref)->GetInterfaceMethodIfProxy(image_pointer_size_)); 6316 if (imt_comparator.HasSameNameAndSignature( 6317 current_method->GetInterfaceMethodIfProxy(image_pointer_size_))) { 6318 *imt_ref = current_method; 6319 } else { 6320 *imt_ref = imt_conflict_method; 6321 *new_conflict = true; 6322 } 6323 } else { 6324 // Place the default conflict method. Note that there may be an existing conflict 6325 // method in the IMT, but it could be one tailored to the super class, with a 6326 // specific ImtConflictTable. 6327 *imt_ref = imt_conflict_method; 6328 *new_conflict = true; 6329 } 6330 } 6331 6332 void ClassLinker::FillIMTAndConflictTables(ObjPtr<mirror::Class> klass) { 6333 DCHECK(klass->ShouldHaveImt()) << klass->PrettyClass(); 6334 DCHECK(!klass->IsTemp()) << klass->PrettyClass(); 6335 ArtMethod* imt_data[ImTable::kSize]; 6336 Runtime* const runtime = Runtime::Current(); 6337 ArtMethod* const unimplemented_method = runtime->GetImtUnimplementedMethod(); 6338 ArtMethod* const conflict_method = runtime->GetImtConflictMethod(); 6339 std::fill_n(imt_data, arraysize(imt_data), unimplemented_method); 6340 if (klass->GetIfTable() != nullptr) { 6341 bool new_conflict = false; 6342 FillIMTFromIfTable(klass->GetIfTable(), 6343 unimplemented_method, 6344 conflict_method, 6345 klass, 6346 /*create_conflict_tables*/true, 6347 /*ignore_copied_methods*/false, 6348 &new_conflict, 6349 &imt_data[0]); 6350 } 6351 if (!klass->ShouldHaveImt()) { 6352 return; 6353 } 6354 // Compare the IMT with the super class including the conflict methods. If they are equivalent, 6355 // we can just use the same pointer. 6356 ImTable* imt = nullptr; 6357 ObjPtr<mirror::Class> super_class = klass->GetSuperClass(); 6358 if (super_class != nullptr && super_class->ShouldHaveImt()) { 6359 ImTable* super_imt = super_class->GetImt(image_pointer_size_); 6360 bool same = true; 6361 for (size_t i = 0; same && i < ImTable::kSize; ++i) { 6362 ArtMethod* method = imt_data[i]; 6363 ArtMethod* super_method = super_imt->Get(i, image_pointer_size_); 6364 if (method != super_method) { 6365 bool is_conflict_table = method->IsRuntimeMethod() && 6366 method != unimplemented_method && 6367 method != conflict_method; 6368 // Verify conflict contents. 6369 bool super_conflict_table = super_method->IsRuntimeMethod() && 6370 super_method != unimplemented_method && 6371 super_method != conflict_method; 6372 if (!is_conflict_table || !super_conflict_table) { 6373 same = false; 6374 } else { 6375 ImtConflictTable* table1 = method->GetImtConflictTable(image_pointer_size_); 6376 ImtConflictTable* table2 = super_method->GetImtConflictTable(image_pointer_size_); 6377 same = same && table1->Equals(table2, image_pointer_size_); 6378 } 6379 } 6380 } 6381 if (same) { 6382 imt = super_imt; 6383 } 6384 } 6385 if (imt == nullptr) { 6386 imt = klass->GetImt(image_pointer_size_); 6387 DCHECK(imt != nullptr); 6388 imt->Populate(imt_data, image_pointer_size_); 6389 } else { 6390 klass->SetImt(imt, image_pointer_size_); 6391 } 6392 } 6393 6394 ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count, 6395 LinearAlloc* linear_alloc, 6396 PointerSize image_pointer_size) { 6397 void* data = linear_alloc->Alloc(Thread::Current(), 6398 ImtConflictTable::ComputeSize(count, 6399 image_pointer_size)); 6400 return (data != nullptr) ? new (data) ImtConflictTable(count, image_pointer_size) : nullptr; 6401 } 6402 6403 ImtConflictTable* ClassLinker::CreateImtConflictTable(size_t count, LinearAlloc* linear_alloc) { 6404 return CreateImtConflictTable(count, linear_alloc, image_pointer_size_); 6405 } 6406 6407 void ClassLinker::FillIMTFromIfTable(ObjPtr<mirror::IfTable> if_table, 6408 ArtMethod* unimplemented_method, 6409 ArtMethod* imt_conflict_method, 6410 ObjPtr<mirror::Class> klass, 6411 bool create_conflict_tables, 6412 bool ignore_copied_methods, 6413 /*out*/bool* new_conflict, 6414 /*out*/ArtMethod** imt) { 6415 uint32_t conflict_counts[ImTable::kSize] = {}; 6416 for (size_t i = 0, length = if_table->Count(); i < length; ++i) { 6417 ObjPtr<mirror::Class> interface = if_table->GetInterface(i); 6418 const size_t num_virtuals = interface->NumVirtualMethods(); 6419 const size_t method_array_count = if_table->GetMethodArrayCount(i); 6420 // Virtual methods can be larger than the if table methods if there are default methods. 6421 DCHECK_GE(num_virtuals, method_array_count); 6422 if (kIsDebugBuild) { 6423 if (klass->IsInterface()) { 6424 DCHECK_EQ(method_array_count, 0u); 6425 } else { 6426 DCHECK_EQ(interface->NumDeclaredVirtualMethods(), method_array_count); 6427 } 6428 } 6429 if (method_array_count == 0) { 6430 continue; 6431 } 6432 auto* method_array = if_table->GetMethodArray(i); 6433 for (size_t j = 0; j < method_array_count; ++j) { 6434 ArtMethod* implementation_method = 6435 method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_); 6436 if (ignore_copied_methods && implementation_method->IsCopied()) { 6437 continue; 6438 } 6439 DCHECK(implementation_method != nullptr); 6440 // Miranda methods cannot be used to implement an interface method, but they are safe to put 6441 // in the IMT since their entrypoint is the interface trampoline. If we put any copied methods 6442 // or interface methods in the IMT here they will not create extra conflicts since we compare 6443 // names and signatures in SetIMTRef. 6444 ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_); 6445 const uint32_t imt_index = ImTable::GetImtIndex(interface_method); 6446 6447 // There is only any conflicts if all of the interface methods for an IMT slot don't have 6448 // the same implementation method, keep track of this to avoid creating a conflict table in 6449 // this case. 6450 6451 // Conflict table size for each IMT slot. 6452 ++conflict_counts[imt_index]; 6453 6454 SetIMTRef(unimplemented_method, 6455 imt_conflict_method, 6456 implementation_method, 6457 /*out*/new_conflict, 6458 /*out*/&imt[imt_index]); 6459 } 6460 } 6461 6462 if (create_conflict_tables) { 6463 // Create the conflict tables. 6464 LinearAlloc* linear_alloc = GetAllocatorForClassLoader(klass->GetClassLoader()); 6465 for (size_t i = 0; i < ImTable::kSize; ++i) { 6466 size_t conflicts = conflict_counts[i]; 6467 if (imt[i] == imt_conflict_method) { 6468 ImtConflictTable* new_table = CreateImtConflictTable(conflicts, linear_alloc); 6469 if (new_table != nullptr) { 6470 ArtMethod* new_conflict_method = 6471 Runtime::Current()->CreateImtConflictMethod(linear_alloc); 6472 new_conflict_method->SetImtConflictTable(new_table, image_pointer_size_); 6473 imt[i] = new_conflict_method; 6474 } else { 6475 LOG(ERROR) << "Failed to allocate conflict table"; 6476 imt[i] = imt_conflict_method; 6477 } 6478 } else { 6479 DCHECK_NE(imt[i], imt_conflict_method); 6480 } 6481 } 6482 6483 for (size_t i = 0, length = if_table->Count(); i < length; ++i) { 6484 ObjPtr<mirror::Class> interface = if_table->GetInterface(i); 6485 const size_t method_array_count = if_table->GetMethodArrayCount(i); 6486 // Virtual methods can be larger than the if table methods if there are default methods. 6487 if (method_array_count == 0) { 6488 continue; 6489 } 6490 auto* method_array = if_table->GetMethodArray(i); 6491 for (size_t j = 0; j < method_array_count; ++j) { 6492 ArtMethod* implementation_method = 6493 method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_); 6494 if (ignore_copied_methods && implementation_method->IsCopied()) { 6495 continue; 6496 } 6497 DCHECK(implementation_method != nullptr); 6498 ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size_); 6499 const uint32_t imt_index = ImTable::GetImtIndex(interface_method); 6500 if (!imt[imt_index]->IsRuntimeMethod() || 6501 imt[imt_index] == unimplemented_method || 6502 imt[imt_index] == imt_conflict_method) { 6503 continue; 6504 } 6505 ImtConflictTable* table = imt[imt_index]->GetImtConflictTable(image_pointer_size_); 6506 const size_t num_entries = table->NumEntries(image_pointer_size_); 6507 table->SetInterfaceMethod(num_entries, image_pointer_size_, interface_method); 6508 table->SetImplementationMethod(num_entries, image_pointer_size_, implementation_method); 6509 } 6510 } 6511 } 6512 } 6513 6514 // Simple helper function that checks that no subtypes of 'val' are contained within the 'classes' 6515 // set. 6516 static bool NotSubinterfaceOfAny( 6517 const std::unordered_set<ObjPtr<mirror::Class>, HashObjPtr>& classes, 6518 ObjPtr<mirror::Class> val) 6519 REQUIRES(Roles::uninterruptible_) 6520 REQUIRES_SHARED(Locks::mutator_lock_) { 6521 DCHECK(val != nullptr); 6522 for (ObjPtr<mirror::Class> c : classes) { 6523 if (val->IsAssignableFrom(c)) { 6524 return false; 6525 } 6526 } 6527 return true; 6528 } 6529 6530 // Fills in and flattens the interface inheritance hierarchy. 6531 // 6532 // By the end of this function all interfaces in the transitive closure of to_process are added to 6533 // the iftable and every interface precedes all of its sub-interfaces in this list. 6534 // 6535 // all I, J: Interface | I <: J implies J precedes I 6536 // 6537 // (note A <: B means that A is a subtype of B) 6538 // 6539 // This returns the total number of items in the iftable. The iftable might be resized down after 6540 // this call. 6541 // 6542 // We order this backwards so that we do not need to reorder superclass interfaces when new 6543 // interfaces are added in subclass's interface tables. 6544 // 6545 // Upon entry into this function iftable is a copy of the superclass's iftable with the first 6546 // super_ifcount entries filled in with the transitive closure of the interfaces of the superclass. 6547 // The other entries are uninitialized. We will fill in the remaining entries in this function. The 6548 // iftable must be large enough to hold all interfaces without changing its size. 6549 static size_t FillIfTable(ObjPtr<mirror::IfTable> iftable, 6550 size_t super_ifcount, 6551 std::vector<mirror::Class*> to_process) 6552 REQUIRES(Roles::uninterruptible_) 6553 REQUIRES_SHARED(Locks::mutator_lock_) { 6554 // This is the set of all class's already in the iftable. Used to make checking if a class has 6555 // already been added quicker. 6556 std::unordered_set<ObjPtr<mirror::Class>, HashObjPtr> classes_in_iftable; 6557 // The first super_ifcount elements are from the superclass. We note that they are already added. 6558 for (size_t i = 0; i < super_ifcount; i++) { 6559 ObjPtr<mirror::Class> iface = iftable->GetInterface(i); 6560 DCHECK(NotSubinterfaceOfAny(classes_in_iftable, iface)) << "Bad ordering."; 6561 classes_in_iftable.insert(iface); 6562 } 6563 size_t filled_ifcount = super_ifcount; 6564 for (ObjPtr<mirror::Class> interface : to_process) { 6565 // Let us call the first filled_ifcount elements of iftable the current-iface-list. 6566 // At this point in the loop current-iface-list has the invariant that: 6567 // for every pair of interfaces I,J within it: 6568 // if index_of(I) < index_of(J) then I is not a subtype of J 6569 6570 // If we have already seen this element then all of its super-interfaces must already be in the 6571 // current-iface-list so we can skip adding it. 6572 if (!ContainsElement(classes_in_iftable, interface)) { 6573 // We haven't seen this interface so add all of its super-interfaces onto the 6574 // current-iface-list, skipping those already on it. 6575 int32_t ifcount = interface->GetIfTableCount(); 6576 for (int32_t j = 0; j < ifcount; j++) { 6577 ObjPtr<mirror::Class> super_interface = interface->GetIfTable()->GetInterface(j); 6578 if (!ContainsElement(classes_in_iftable, super_interface)) { 6579 DCHECK(NotSubinterfaceOfAny(classes_in_iftable, super_interface)) << "Bad ordering."; 6580 classes_in_iftable.insert(super_interface); 6581 iftable->SetInterface(filled_ifcount, super_interface); 6582 filled_ifcount++; 6583 } 6584 } 6585 DCHECK(NotSubinterfaceOfAny(classes_in_iftable, interface)) << "Bad ordering"; 6586 // Place this interface onto the current-iface-list after all of its super-interfaces. 6587 classes_in_iftable.insert(interface); 6588 iftable->SetInterface(filled_ifcount, interface); 6589 filled_ifcount++; 6590 } else if (kIsDebugBuild) { 6591 // Check all super-interfaces are already in the list. 6592 int32_t ifcount = interface->GetIfTableCount(); 6593 for (int32_t j = 0; j < ifcount; j++) { 6594 ObjPtr<mirror::Class> super_interface = interface->GetIfTable()->GetInterface(j); 6595 DCHECK(ContainsElement(classes_in_iftable, super_interface)) 6596 << "Iftable does not contain " << mirror::Class::PrettyClass(super_interface) 6597 << ", a superinterface of " << interface->PrettyClass(); 6598 } 6599 } 6600 } 6601 if (kIsDebugBuild) { 6602 // Check that the iftable is ordered correctly. 6603 for (size_t i = 0; i < filled_ifcount; i++) { 6604 ObjPtr<mirror::Class> if_a = iftable->GetInterface(i); 6605 for (size_t j = i + 1; j < filled_ifcount; j++) { 6606 ObjPtr<mirror::Class> if_b = iftable->GetInterface(j); 6607 // !(if_a <: if_b) 6608 CHECK(!if_b->IsAssignableFrom(if_a)) 6609 << "Bad interface order: " << mirror::Class::PrettyClass(if_a) << " (index " << i 6610 << ") extends " 6611 << if_b->PrettyClass() << " (index " << j << ") and so should be after it in the " 6612 << "interface list."; 6613 } 6614 } 6615 } 6616 return filled_ifcount; 6617 } 6618 6619 bool ClassLinker::SetupInterfaceLookupTable(Thread* self, Handle<mirror::Class> klass, 6620 Handle<mirror::ObjectArray<mirror::Class>> interfaces) { 6621 StackHandleScope<1> hs(self); 6622 const bool has_superclass = klass->HasSuperClass(); 6623 const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U; 6624 const bool have_interfaces = interfaces != nullptr; 6625 const size_t num_interfaces = 6626 have_interfaces ? interfaces->GetLength() : klass->NumDirectInterfaces(); 6627 if (num_interfaces == 0) { 6628 if (super_ifcount == 0) { 6629 if (LIKELY(has_superclass)) { 6630 klass->SetIfTable(klass->GetSuperClass()->GetIfTable()); 6631 } 6632 // Class implements no interfaces. 6633 DCHECK_EQ(klass->GetIfTableCount(), 0); 6634 return true; 6635 } 6636 // Class implements same interfaces as parent, are any of these not marker interfaces? 6637 bool has_non_marker_interface = false; 6638 ObjPtr<mirror::IfTable> super_iftable = klass->GetSuperClass()->GetIfTable(); 6639 for (size_t i = 0; i < super_ifcount; ++i) { 6640 if (super_iftable->GetMethodArrayCount(i) > 0) { 6641 has_non_marker_interface = true; 6642 break; 6643 } 6644 } 6645 // Class just inherits marker interfaces from parent so recycle parent's iftable. 6646 if (!has_non_marker_interface) { 6647 klass->SetIfTable(super_iftable); 6648 return true; 6649 } 6650 } 6651 size_t ifcount = super_ifcount + num_interfaces; 6652 // Check that every class being implemented is an interface. 6653 for (size_t i = 0; i < num_interfaces; i++) { 6654 ObjPtr<mirror::Class> interface = have_interfaces 6655 ? interfaces->GetWithoutChecks(i) 6656 : mirror::Class::GetDirectInterface(self, klass.Get(), i); 6657 DCHECK(interface != nullptr); 6658 if (UNLIKELY(!interface->IsInterface())) { 6659 std::string temp; 6660 ThrowIncompatibleClassChangeError(klass.Get(), 6661 "Class %s implements non-interface class %s", 6662 klass->PrettyDescriptor().c_str(), 6663 PrettyDescriptor(interface->GetDescriptor(&temp)).c_str()); 6664 return false; 6665 } 6666 ifcount += interface->GetIfTableCount(); 6667 } 6668 // Create the interface function table. 6669 MutableHandle<mirror::IfTable> iftable(hs.NewHandle(AllocIfTable(self, ifcount))); 6670 if (UNLIKELY(iftable == nullptr)) { 6671 self->AssertPendingOOMException(); 6672 return false; 6673 } 6674 // Fill in table with superclass's iftable. 6675 if (super_ifcount != 0) { 6676 ObjPtr<mirror::IfTable> super_iftable = klass->GetSuperClass()->GetIfTable(); 6677 for (size_t i = 0; i < super_ifcount; i++) { 6678 ObjPtr<mirror::Class> super_interface = super_iftable->GetInterface(i); 6679 iftable->SetInterface(i, super_interface); 6680 } 6681 } 6682 6683 // Note that AllowThreadSuspension is to thread suspension as pthread_testcancel is to pthread 6684 // cancellation. That is it will suspend if one has a pending suspend request but otherwise 6685 // doesn't really do anything. 6686 self->AllowThreadSuspension(); 6687 6688 size_t new_ifcount; 6689 { 6690 ScopedAssertNoThreadSuspension nts("Copying mirror::Class*'s for FillIfTable"); 6691 std::vector<mirror::Class*> to_add; 6692 for (size_t i = 0; i < num_interfaces; i++) { 6693 ObjPtr<mirror::Class> interface = have_interfaces ? interfaces->Get(i) : 6694 mirror::Class::GetDirectInterface(self, klass.Get(), i); 6695 to_add.push_back(interface.Ptr()); 6696 } 6697 6698 new_ifcount = FillIfTable(iftable.Get(), super_ifcount, std::move(to_add)); 6699 } 6700 6701 self->AllowThreadSuspension(); 6702 6703 // Shrink iftable in case duplicates were found 6704 if (new_ifcount < ifcount) { 6705 DCHECK_NE(num_interfaces, 0U); 6706 iftable.Assign(down_cast<mirror::IfTable*>( 6707 iftable->CopyOf(self, new_ifcount * mirror::IfTable::kMax))); 6708 if (UNLIKELY(iftable == nullptr)) { 6709 self->AssertPendingOOMException(); 6710 return false; 6711 } 6712 ifcount = new_ifcount; 6713 } else { 6714 DCHECK_EQ(new_ifcount, ifcount); 6715 } 6716 klass->SetIfTable(iftable.Get()); 6717 return true; 6718 } 6719 6720 // Finds the method with a name/signature that matches cmp in the given lists of methods. The list 6721 // of methods must be unique. 6722 static ArtMethod* FindSameNameAndSignature(MethodNameAndSignatureComparator& cmp ATTRIBUTE_UNUSED) { 6723 return nullptr; 6724 } 6725 6726 template <typename ... Types> 6727 static ArtMethod* FindSameNameAndSignature(MethodNameAndSignatureComparator& cmp, 6728 const ScopedArenaVector<ArtMethod*>& list, 6729 const Types& ... rest) 6730 REQUIRES_SHARED(Locks::mutator_lock_) { 6731 for (ArtMethod* method : list) { 6732 if (cmp.HasSameNameAndSignature(method)) { 6733 return method; 6734 } 6735 } 6736 return FindSameNameAndSignature(cmp, rest...); 6737 } 6738 6739 // Check that all vtable entries are present in this class's virtuals or are the same as a 6740 // superclasses vtable entry. 6741 static void CheckClassOwnsVTableEntries(Thread* self, 6742 Handle<mirror::Class> klass, 6743 PointerSize pointer_size) 6744 REQUIRES_SHARED(Locks::mutator_lock_) { 6745 StackHandleScope<2> hs(self); 6746 Handle<mirror::PointerArray> check_vtable(hs.NewHandle(klass->GetVTableDuringLinking())); 6747 ObjPtr<mirror::Class> super_temp = (klass->HasSuperClass()) ? klass->GetSuperClass() : nullptr; 6748 Handle<mirror::Class> superclass(hs.NewHandle(super_temp)); 6749 int32_t super_vtable_length = (superclass != nullptr) ? superclass->GetVTableLength() : 0; 6750 for (int32_t i = 0; i < check_vtable->GetLength(); ++i) { 6751 ArtMethod* m = check_vtable->GetElementPtrSize<ArtMethod*>(i, pointer_size); 6752 CHECK(m != nullptr); 6753 6754 if (m->GetMethodIndexDuringLinking() != i) { 6755 LOG(WARNING) << m->PrettyMethod() 6756 << " has an unexpected method index for its spot in the vtable for class" 6757 << klass->PrettyClass(); 6758 } 6759 ArraySlice<ArtMethod> virtuals = klass->GetVirtualMethodsSliceUnchecked(pointer_size); 6760 auto is_same_method = [m] (const ArtMethod& meth) { 6761 return &meth == m; 6762 }; 6763 if (!((super_vtable_length > i && superclass->GetVTableEntry(i, pointer_size) == m) || 6764 std::find_if(virtuals.begin(), virtuals.end(), is_same_method) != virtuals.end())) { 6765 LOG(WARNING) << m->PrettyMethod() << " does not seem to be owned by current class " 6766 << klass->PrettyClass() << " or any of its superclasses!"; 6767 } 6768 } 6769 } 6770 6771 // Check to make sure the vtable does not have duplicates. Duplicates could cause problems when a 6772 // method is overridden in a subclass. 6773 static void CheckVTableHasNoDuplicates(Thread* self, 6774 Handle<mirror::Class> klass, 6775 PointerSize pointer_size) 6776 REQUIRES_SHARED(Locks::mutator_lock_) { 6777 StackHandleScope<1> hs(self); 6778 Handle<mirror::PointerArray> vtable(hs.NewHandle(klass->GetVTableDuringLinking())); 6779 int32_t num_entries = vtable->GetLength(); 6780 for (int32_t i = 0; i < num_entries; i++) { 6781 ArtMethod* vtable_entry = vtable->GetElementPtrSize<ArtMethod*>(i, pointer_size); 6782 // Don't bother if we cannot 'see' the vtable entry (i.e. it is a package-private member maybe). 6783 if (!klass->CanAccessMember(vtable_entry->GetDeclaringClass(), 6784 vtable_entry->GetAccessFlags())) { 6785 continue; 6786 } 6787 MethodNameAndSignatureComparator name_comparator( 6788 vtable_entry->GetInterfaceMethodIfProxy(pointer_size)); 6789 for (int32_t j = i + 1; j < num_entries; j++) { 6790 ArtMethod* other_entry = vtable->GetElementPtrSize<ArtMethod*>(j, pointer_size); 6791 if (!klass->CanAccessMember(other_entry->GetDeclaringClass(), 6792 other_entry->GetAccessFlags())) { 6793 continue; 6794 } 6795 if (vtable_entry == other_entry || 6796 name_comparator.HasSameNameAndSignature( 6797 other_entry->GetInterfaceMethodIfProxy(pointer_size))) { 6798 LOG(WARNING) << "vtable entries " << i << " and " << j << " are identical for " 6799 << klass->PrettyClass() << " in method " << vtable_entry->PrettyMethod() 6800 << " (0x" << std::hex << reinterpret_cast<uintptr_t>(vtable_entry) << ") and " 6801 << other_entry->PrettyMethod() << " (0x" << std::hex 6802 << reinterpret_cast<uintptr_t>(other_entry) << ")"; 6803 } 6804 } 6805 } 6806 } 6807 6808 static void SanityCheckVTable(Thread* self, Handle<mirror::Class> klass, PointerSize pointer_size) 6809 REQUIRES_SHARED(Locks::mutator_lock_) { 6810 CheckClassOwnsVTableEntries(self, klass, pointer_size); 6811 CheckVTableHasNoDuplicates(self, klass, pointer_size); 6812 } 6813 6814 void ClassLinker::FillImtFromSuperClass(Handle<mirror::Class> klass, 6815 ArtMethod* unimplemented_method, 6816 ArtMethod* imt_conflict_method, 6817 bool* new_conflict, 6818 ArtMethod** imt) { 6819 DCHECK(klass->HasSuperClass()); 6820 ObjPtr<mirror::Class> super_class = klass->GetSuperClass(); 6821 if (super_class->ShouldHaveImt()) { 6822 ImTable* super_imt = super_class->GetImt(image_pointer_size_); 6823 for (size_t i = 0; i < ImTable::kSize; ++i) { 6824 imt[i] = super_imt->Get(i, image_pointer_size_); 6825 } 6826 } else { 6827 // No imt in the super class, need to reconstruct from the iftable. 6828 ObjPtr<mirror::IfTable> if_table = super_class->GetIfTable(); 6829 if (if_table->Count() != 0) { 6830 // Ignore copied methods since we will handle these in LinkInterfaceMethods. 6831 FillIMTFromIfTable(if_table, 6832 unimplemented_method, 6833 imt_conflict_method, 6834 klass.Get(), 6835 /*create_conflict_table*/false, 6836 /*ignore_copied_methods*/true, 6837 /*out*/new_conflict, 6838 /*out*/imt); 6839 } 6840 } 6841 } 6842 6843 class ClassLinker::LinkInterfaceMethodsHelper { 6844 public: 6845 LinkInterfaceMethodsHelper(ClassLinker* class_linker, 6846 Handle<mirror::Class> klass, 6847 Thread* self, 6848 Runtime* runtime) 6849 : class_linker_(class_linker), 6850 klass_(klass), 6851 method_alignment_(ArtMethod::Alignment(class_linker->GetImagePointerSize())), 6852 method_size_(ArtMethod::Size(class_linker->GetImagePointerSize())), 6853 self_(self), 6854 stack_(runtime->GetLinearAlloc()->GetArenaPool()), 6855 allocator_(&stack_), 6856 default_conflict_methods_(allocator_.Adapter()), 6857 overriding_default_conflict_methods_(allocator_.Adapter()), 6858 miranda_methods_(allocator_.Adapter()), 6859 default_methods_(allocator_.Adapter()), 6860 overriding_default_methods_(allocator_.Adapter()), 6861 move_table_(allocator_.Adapter()) { 6862 } 6863 6864 ArtMethod* FindMethod(ArtMethod* interface_method, 6865 MethodNameAndSignatureComparator& interface_name_comparator, 6866 ArtMethod* vtable_impl) 6867 REQUIRES_SHARED(Locks::mutator_lock_); 6868 6869 ArtMethod* GetOrCreateMirandaMethod(ArtMethod* interface_method, 6870 MethodNameAndSignatureComparator& interface_name_comparator) 6871 REQUIRES_SHARED(Locks::mutator_lock_); 6872 6873 bool HasNewVirtuals() const { 6874 return !(miranda_methods_.empty() && 6875 default_methods_.empty() && 6876 overriding_default_methods_.empty() && 6877 overriding_default_conflict_methods_.empty() && 6878 default_conflict_methods_.empty()); 6879 } 6880 6881 void ReallocMethods() REQUIRES_SHARED(Locks::mutator_lock_); 6882 6883 ObjPtr<mirror::PointerArray> UpdateVtable( 6884 const std::unordered_map<size_t, ClassLinker::MethodTranslation>& default_translations, 6885 ObjPtr<mirror::PointerArray> old_vtable) REQUIRES_SHARED(Locks::mutator_lock_); 6886 6887 void UpdateIfTable(Handle<mirror::IfTable> iftable) REQUIRES_SHARED(Locks::mutator_lock_); 6888 6889 void UpdateIMT(ArtMethod** out_imt); 6890 6891 void CheckNoStaleMethodsInDexCache() REQUIRES_SHARED(Locks::mutator_lock_) { 6892 if (kIsDebugBuild) { 6893 PointerSize pointer_size = class_linker_->GetImagePointerSize(); 6894 // Check that there are no stale methods are in the dex cache array. 6895 auto* resolved_methods = klass_->GetDexCache()->GetResolvedMethods(); 6896 for (size_t i = 0, count = klass_->GetDexCache()->NumResolvedMethods(); i < count; ++i) { 6897 auto* m = mirror::DexCache::GetElementPtrSize(resolved_methods, i, pointer_size); 6898 CHECK(move_table_.find(m) == move_table_.end() || 6899 // The original versions of copied methods will still be present so allow those too. 6900 // Note that if the first check passes this might fail to GetDeclaringClass(). 6901 std::find_if(m->GetDeclaringClass()->GetMethods(pointer_size).begin(), 6902 m->GetDeclaringClass()->GetMethods(pointer_size).end(), 6903 [m] (ArtMethod& meth) { 6904 return &meth == m; 6905 }) != m->GetDeclaringClass()->GetMethods(pointer_size).end()) 6906 << "Obsolete method " << m->PrettyMethod() << " is in dex cache!"; 6907 } 6908 } 6909 } 6910 6911 void ClobberOldMethods(LengthPrefixedArray<ArtMethod>* old_methods, 6912 LengthPrefixedArray<ArtMethod>* methods) { 6913 if (kIsDebugBuild) { 6914 CHECK(methods != nullptr); 6915 // Put some random garbage in old methods to help find stale pointers. 6916 if (methods != old_methods && old_methods != nullptr) { 6917 // Need to make sure the GC is not running since it could be scanning the methods we are 6918 // about to overwrite. 6919 ScopedThreadStateChange tsc(self_, kSuspended); 6920 gc::ScopedGCCriticalSection gcs(self_, 6921 gc::kGcCauseClassLinker, 6922 gc::kCollectorTypeClassLinker); 6923 const size_t old_size = LengthPrefixedArray<ArtMethod>::ComputeSize(old_methods->size(), 6924 method_size_, 6925 method_alignment_); 6926 memset(old_methods, 0xFEu, old_size); 6927 } 6928 } 6929 } 6930 6931 private: 6932 size_t NumberOfNewVirtuals() const { 6933 return miranda_methods_.size() + 6934 default_methods_.size() + 6935 overriding_default_conflict_methods_.size() + 6936 overriding_default_methods_.size() + 6937 default_conflict_methods_.size(); 6938 } 6939 6940 bool FillTables() REQUIRES_SHARED(Locks::mutator_lock_) { 6941 return !klass_->IsInterface(); 6942 } 6943 6944 void LogNewVirtuals() const REQUIRES_SHARED(Locks::mutator_lock_) { 6945 DCHECK(!klass_->IsInterface() || (default_methods_.empty() && miranda_methods_.empty())) 6946 << "Interfaces should only have default-conflict methods appended to them."; 6947 VLOG(class_linker) << mirror::Class::PrettyClass(klass_.Get()) << ": miranda_methods=" 6948 << miranda_methods_.size() 6949 << " default_methods=" << default_methods_.size() 6950 << " overriding_default_methods=" << overriding_default_methods_.size() 6951 << " default_conflict_methods=" << default_conflict_methods_.size() 6952 << " overriding_default_conflict_methods=" 6953 << overriding_default_conflict_methods_.size(); 6954 } 6955 6956 ClassLinker* class_linker_; 6957 Handle<mirror::Class> klass_; 6958 size_t method_alignment_; 6959 size_t method_size_; 6960 Thread* const self_; 6961 6962 // These are allocated on the heap to begin, we then transfer to linear alloc when we re-create 6963 // the virtual methods array. 6964 // Need to use low 4GB arenas for compiler or else the pointers wont fit in 32 bit method array 6965 // during cross compilation. 6966 // Use the linear alloc pool since this one is in the low 4gb for the compiler. 6967 ArenaStack stack_; 6968 ScopedArenaAllocator allocator_; 6969 6970 ScopedArenaVector<ArtMethod*> default_conflict_methods_; 6971 ScopedArenaVector<ArtMethod*> overriding_default_conflict_methods_; 6972 ScopedArenaVector<ArtMethod*> miranda_methods_; 6973 ScopedArenaVector<ArtMethod*> default_methods_; 6974 ScopedArenaVector<ArtMethod*> overriding_default_methods_; 6975 6976 ScopedArenaUnorderedMap<ArtMethod*, ArtMethod*> move_table_; 6977 }; 6978 6979 ArtMethod* ClassLinker::LinkInterfaceMethodsHelper::FindMethod( 6980 ArtMethod* interface_method, 6981 MethodNameAndSignatureComparator& interface_name_comparator, 6982 ArtMethod* vtable_impl) { 6983 ArtMethod* current_method = nullptr; 6984 switch (class_linker_->FindDefaultMethodImplementation(self_, 6985 interface_method, 6986 klass_, 6987 /*out*/¤t_method)) { 6988 case DefaultMethodSearchResult::kDefaultConflict: { 6989 // Default method conflict. 6990 DCHECK(current_method == nullptr); 6991 ArtMethod* default_conflict_method = nullptr; 6992 if (vtable_impl != nullptr && vtable_impl->IsDefaultConflicting()) { 6993 // We can reuse the method from the superclass, don't bother adding it to virtuals. 6994 default_conflict_method = vtable_impl; 6995 } else { 6996 // See if we already have a conflict method for this method. 6997 ArtMethod* preexisting_conflict = FindSameNameAndSignature( 6998 interface_name_comparator, 6999 default_conflict_methods_, 7000 overriding_default_conflict_methods_); 7001 if (LIKELY(preexisting_conflict != nullptr)) { 7002 // We already have another conflict we can reuse. 7003 default_conflict_method = preexisting_conflict; 7004 } else { 7005 // Note that we do this even if we are an interface since we need to create this and 7006 // cannot reuse another classes. 7007 // Create a new conflict method for this to use. 7008 default_conflict_method = reinterpret_cast<ArtMethod*>(allocator_.Alloc(method_size_)); 7009 new(default_conflict_method) ArtMethod(interface_method, 7010 class_linker_->GetImagePointerSize()); 7011 if (vtable_impl == nullptr) { 7012 // Save the conflict method. We need to add it to the vtable. 7013 default_conflict_methods_.push_back(default_conflict_method); 7014 } else { 7015 // Save the conflict method but it is already in the vtable. 7016 overriding_default_conflict_methods_.push_back(default_conflict_method); 7017 } 7018 } 7019 } 7020 current_method = default_conflict_method; 7021 break; 7022 } // case kDefaultConflict 7023 case DefaultMethodSearchResult::kDefaultFound: { 7024 DCHECK(current_method != nullptr); 7025 // Found a default method. 7026 if (vtable_impl != nullptr && 7027 current_method->GetDeclaringClass() == vtable_impl->GetDeclaringClass()) { 7028 // We found a default method but it was the same one we already have from our 7029 // superclass. Don't bother adding it to our vtable again. 7030 current_method = vtable_impl; 7031 } else if (LIKELY(FillTables())) { 7032 // Interfaces don't need to copy default methods since they don't have vtables. 7033 // Only record this default method if it is new to save space. 7034 // TODO It might be worthwhile to copy default methods on interfaces anyway since it 7035 // would make lookup for interface super much faster. (We would only need to scan 7036 // the iftable to find if there is a NSME or AME.) 7037 ArtMethod* old = FindSameNameAndSignature(interface_name_comparator, 7038 default_methods_, 7039 overriding_default_methods_); 7040 if (old == nullptr) { 7041 // We found a default method implementation and there were no conflicts. 7042 if (vtable_impl == nullptr) { 7043 // Save the default method. We need to add it to the vtable. 7044 default_methods_.push_back(current_method); 7045 } else { 7046 // Save the default method but it is already in the vtable. 7047 overriding_default_methods_.push_back(current_method); 7048 } 7049 } else { 7050 CHECK(old == current_method) << "Multiple default implementations selected!"; 7051 } 7052 } 7053 break; 7054 } // case kDefaultFound 7055 case DefaultMethodSearchResult::kAbstractFound: { 7056 DCHECK(current_method == nullptr); 7057 // Abstract method masks all defaults. 7058 if (vtable_impl != nullptr && 7059 vtable_impl->IsAbstract() && 7060 !vtable_impl->IsDefaultConflicting()) { 7061 // We need to make this an abstract method but the version in the vtable already is so 7062 // don't do anything. 7063 current_method = vtable_impl; 7064 } 7065 break; 7066 } // case kAbstractFound 7067 } 7068 return current_method; 7069 } 7070 7071 ArtMethod* ClassLinker::LinkInterfaceMethodsHelper::GetOrCreateMirandaMethod( 7072 ArtMethod* interface_method, 7073 MethodNameAndSignatureComparator& interface_name_comparator) { 7074 // Find out if there is already a miranda method we can use. 7075 ArtMethod* miranda_method = FindSameNameAndSignature(interface_name_comparator, 7076 miranda_methods_); 7077 if (miranda_method == nullptr) { 7078 DCHECK(interface_method->IsAbstract()) << interface_method->PrettyMethod(); 7079 miranda_method = reinterpret_cast<ArtMethod*>(allocator_.Alloc(method_size_)); 7080 CHECK(miranda_method != nullptr); 7081 // Point the interface table at a phantom slot. 7082 new(miranda_method) ArtMethod(interface_method, class_linker_->GetImagePointerSize()); 7083 miranda_methods_.push_back(miranda_method); 7084 } 7085 return miranda_method; 7086 } 7087 7088 void ClassLinker::LinkInterfaceMethodsHelper::ReallocMethods() { 7089 LogNewVirtuals(); 7090 7091 const size_t old_method_count = klass_->NumMethods(); 7092 const size_t new_method_count = old_method_count + NumberOfNewVirtuals(); 7093 DCHECK_NE(old_method_count, new_method_count); 7094 7095 // Attempt to realloc to save RAM if possible. 7096 LengthPrefixedArray<ArtMethod>* old_methods = klass_->GetMethodsPtr(); 7097 // The Realloced virtual methods aren't visible from the class roots, so there is no issue 7098 // where GCs could attempt to mark stale pointers due to memcpy. And since we overwrite the 7099 // realloced memory with out->CopyFrom, we are guaranteed to have objects in the to space since 7100 // CopyFrom has internal read barriers. 7101 // 7102 // TODO We should maybe move some of this into mirror::Class or at least into another method. 7103 const size_t old_size = LengthPrefixedArray<ArtMethod>::ComputeSize(old_method_count, 7104 method_size_, 7105 method_alignment_); 7106 const size_t new_size = LengthPrefixedArray<ArtMethod>::ComputeSize(new_method_count, 7107 method_size_, 7108 method_alignment_); 7109 const size_t old_methods_ptr_size = (old_methods != nullptr) ? old_size : 0; 7110 auto* methods = reinterpret_cast<LengthPrefixedArray<ArtMethod>*>( 7111 Runtime::Current()->GetLinearAlloc()->Realloc( 7112 self_, old_methods, old_methods_ptr_size, new_size)); 7113 CHECK(methods != nullptr); // Native allocation failure aborts. 7114 7115 PointerSize pointer_size = class_linker_->GetImagePointerSize(); 7116 if (methods != old_methods) { 7117 // Maps from heap allocated miranda method to linear alloc miranda method. 7118 StrideIterator<ArtMethod> out = methods->begin(method_size_, method_alignment_); 7119 // Copy over the old methods. 7120 for (auto& m : klass_->GetMethods(pointer_size)) { 7121 move_table_.emplace(&m, &*out); 7122 // The CopyFrom is only necessary to not miss read barriers since Realloc won't do read 7123 // barriers when it copies. 7124 out->CopyFrom(&m, pointer_size); 7125 ++out; 7126 } 7127 } 7128 StrideIterator<ArtMethod> out(methods->begin(method_size_, method_alignment_) + old_method_count); 7129 // Copy over miranda methods before copying vtable since CopyOf may cause thread suspension and 7130 // we want the roots of the miranda methods to get visited. 7131 for (size_t i = 0; i < miranda_methods_.size(); ++i) { 7132 ArtMethod* mir_method = miranda_methods_[i]; 7133 ArtMethod& new_method = *out; 7134 new_method.CopyFrom(mir_method, pointer_size); 7135 new_method.SetAccessFlags(new_method.GetAccessFlags() | kAccMiranda | kAccCopied); 7136 DCHECK_NE(new_method.GetAccessFlags() & kAccAbstract, 0u) 7137 << "Miranda method should be abstract!"; 7138 move_table_.emplace(mir_method, &new_method); 7139 // Update the entry in the method array, as the array will be used for future lookups, 7140 // where thread suspension is allowed. 7141 // As such, the array should not contain locally allocated ArtMethod, otherwise the GC 7142 // would not see them. 7143 miranda_methods_[i] = &new_method; 7144 ++out; 7145 } 7146 // We need to copy the default methods into our own method table since the runtime requires that 7147 // every method on a class's vtable be in that respective class's virtual method table. 7148 // NOTE This means that two classes might have the same implementation of a method from the same 7149 // interface but will have different ArtMethod*s for them. This also means we cannot compare a 7150 // default method found on a class with one found on the declaring interface directly and must 7151 // look at the declaring class to determine if they are the same. 7152 for (ScopedArenaVector<ArtMethod*>* methods_vec : {&default_methods_, 7153 &overriding_default_methods_}) { 7154 for (size_t i = 0; i < methods_vec->size(); ++i) { 7155 ArtMethod* def_method = (*methods_vec)[i]; 7156 ArtMethod& new_method = *out; 7157 new_method.CopyFrom(def_method, pointer_size); 7158 // Clear the kAccSkipAccessChecks flag if it is present. Since this class hasn't been 7159 // verified yet it shouldn't have methods that are skipping access checks. 7160 // TODO This is rather arbitrary. We should maybe support classes where only some of its 7161 // methods are skip_access_checks. 7162 constexpr uint32_t kSetFlags = kAccDefault | kAccCopied; 7163 constexpr uint32_t kMaskFlags = ~kAccSkipAccessChecks; 7164 new_method.SetAccessFlags((new_method.GetAccessFlags() | kSetFlags) & kMaskFlags); 7165 move_table_.emplace(def_method, &new_method); 7166 // Update the entry in the method array, as the array will be used for future lookups, 7167 // where thread suspension is allowed. 7168 // As such, the array should not contain locally allocated ArtMethod, otherwise the GC 7169 // would not see them. 7170 (*methods_vec)[i] = &new_method; 7171 ++out; 7172 } 7173 } 7174 for (ScopedArenaVector<ArtMethod*>* methods_vec : {&default_conflict_methods_, 7175 &overriding_default_conflict_methods_}) { 7176 for (size_t i = 0; i < methods_vec->size(); ++i) { 7177 ArtMethod* conf_method = (*methods_vec)[i]; 7178 ArtMethod& new_method = *out; 7179 new_method.CopyFrom(conf_method, pointer_size); 7180 // This is a type of default method (there are default method impls, just a conflict) so 7181 // mark this as a default, non-abstract method, since thats what it is. Also clear the 7182 // kAccSkipAccessChecks bit since this class hasn't been verified yet it shouldn't have 7183 // methods that are skipping access checks. 7184 constexpr uint32_t kSetFlags = kAccDefault | kAccDefaultConflict | kAccCopied; 7185 constexpr uint32_t kMaskFlags = ~(kAccAbstract | kAccSkipAccessChecks); 7186 new_method.SetAccessFlags((new_method.GetAccessFlags() | kSetFlags) & kMaskFlags); 7187 DCHECK(new_method.IsDefaultConflicting()); 7188 // The actual method might or might not be marked abstract since we just copied it from a 7189 // (possibly default) interface method. We need to set it entry point to be the bridge so 7190 // that the compiler will not invoke the implementation of whatever method we copied from. 7191 EnsureThrowsInvocationError(class_linker_, &new_method); 7192 move_table_.emplace(conf_method, &new_method); 7193 // Update the entry in the method array, as the array will be used for future lookups, 7194 // where thread suspension is allowed. 7195 // As such, the array should not contain locally allocated ArtMethod, otherwise the GC 7196 // would not see them. 7197 (*methods_vec)[i] = &new_method; 7198 ++out; 7199 } 7200 } 7201 methods->SetSize(new_method_count); 7202 class_linker_->UpdateClassMethods(klass_.Get(), methods); 7203 } 7204 7205 ObjPtr<mirror::PointerArray> ClassLinker::LinkInterfaceMethodsHelper::UpdateVtable( 7206 const std::unordered_map<size_t, ClassLinker::MethodTranslation>& default_translations, 7207 ObjPtr<mirror::PointerArray> old_vtable) { 7208 // Update the vtable to the new method structures. We can skip this for interfaces since they 7209 // do not have vtables. 7210 const size_t old_vtable_count = old_vtable->GetLength(); 7211 const size_t new_vtable_count = old_vtable_count + 7212 miranda_methods_.size() + 7213 default_methods_.size() + 7214 default_conflict_methods_.size(); 7215 7216 ObjPtr<mirror::PointerArray> vtable = 7217 down_cast<mirror::PointerArray*>(old_vtable->CopyOf(self_, new_vtable_count)); 7218 if (UNLIKELY(vtable == nullptr)) { 7219 self_->AssertPendingOOMException(); 7220 return nullptr; 7221 } 7222 7223 size_t vtable_pos = old_vtable_count; 7224 PointerSize pointer_size = class_linker_->GetImagePointerSize(); 7225 // Update all the newly copied method's indexes so they denote their placement in the vtable. 7226 for (const ScopedArenaVector<ArtMethod*>& methods_vec : {default_methods_, 7227 default_conflict_methods_, 7228 miranda_methods_}) { 7229 // These are the functions that are not already in the vtable! 7230 for (ArtMethod* new_vtable_method : methods_vec) { 7231 // Leave the declaring class alone the method's dex_code_item_offset_ and dex_method_index_ 7232 // fields are references into the dex file the method was defined in. Since the ArtMethod 7233 // does not store that information it uses declaring_class_->dex_cache_. 7234 new_vtable_method->SetMethodIndex(0xFFFF & vtable_pos); 7235 vtable->SetElementPtrSize(vtable_pos, new_vtable_method, pointer_size); 7236 ++vtable_pos; 7237 } 7238 } 7239 DCHECK_EQ(vtable_pos, new_vtable_count); 7240 7241 // Update old vtable methods. We use the default_translations map to figure out what each 7242 // vtable entry should be updated to, if they need to be at all. 7243 for (size_t i = 0; i < old_vtable_count; ++i) { 7244 ArtMethod* translated_method = vtable->GetElementPtrSize<ArtMethod*>(i, pointer_size); 7245 // Try and find what we need to change this method to. 7246 auto translation_it = default_translations.find(i); 7247 if (translation_it != default_translations.end()) { 7248 if (translation_it->second.IsInConflict()) { 7249 // Find which conflict method we are to use for this method. 7250 MethodNameAndSignatureComparator old_method_comparator( 7251 translated_method->GetInterfaceMethodIfProxy(pointer_size)); 7252 // We only need to look through overriding_default_conflict_methods since this is an 7253 // overridden method we are fixing up here. 7254 ArtMethod* new_conflict_method = FindSameNameAndSignature( 7255 old_method_comparator, overriding_default_conflict_methods_); 7256 CHECK(new_conflict_method != nullptr) << "Expected a conflict method!"; 7257 translated_method = new_conflict_method; 7258 } else if (translation_it->second.IsAbstract()) { 7259 // Find which miranda method we are to use for this method. 7260 MethodNameAndSignatureComparator old_method_comparator( 7261 translated_method->GetInterfaceMethodIfProxy(pointer_size)); 7262 ArtMethod* miranda_method = FindSameNameAndSignature(old_method_comparator, 7263 miranda_methods_); 7264 DCHECK(miranda_method != nullptr); 7265 translated_method = miranda_method; 7266 } else { 7267 // Normal default method (changed from an older default or abstract interface method). 7268 DCHECK(translation_it->second.IsTranslation()); 7269 translated_method = translation_it->second.GetTranslation(); 7270 auto it = move_table_.find(translated_method); 7271 DCHECK(it != move_table_.end()); 7272 translated_method = it->second; 7273 } 7274 } else { 7275 auto it = move_table_.find(translated_method); 7276 translated_method = (it != move_table_.end()) ? it->second : nullptr; 7277 } 7278 7279 if (translated_method != nullptr) { 7280 // Make sure the new_methods index is set. 7281 if (translated_method->GetMethodIndexDuringLinking() != i) { 7282 if (kIsDebugBuild) { 7283 auto* methods = klass_->GetMethodsPtr(); 7284 CHECK_LE(reinterpret_cast<uintptr_t>(&*methods->begin(method_size_, method_alignment_)), 7285 reinterpret_cast<uintptr_t>(translated_method)); 7286 CHECK_LT(reinterpret_cast<uintptr_t>(translated_method), 7287 reinterpret_cast<uintptr_t>(&*methods->end(method_size_, method_alignment_))); 7288 } 7289 translated_method->SetMethodIndex(0xFFFF & i); 7290 } 7291 vtable->SetElementPtrSize(i, translated_method, pointer_size); 7292 } 7293 } 7294 klass_->SetVTable(vtable.Ptr()); 7295 return vtable; 7296 } 7297 7298 void ClassLinker::LinkInterfaceMethodsHelper::UpdateIfTable(Handle<mirror::IfTable> iftable) { 7299 PointerSize pointer_size = class_linker_->GetImagePointerSize(); 7300 const size_t ifcount = klass_->GetIfTableCount(); 7301 // Go fix up all the stale iftable pointers. 7302 for (size_t i = 0; i < ifcount; ++i) { 7303 for (size_t j = 0, count = iftable->GetMethodArrayCount(i); j < count; ++j) { 7304 auto* method_array = iftable->GetMethodArray(i); 7305 auto* m = method_array->GetElementPtrSize<ArtMethod*>(j, pointer_size); 7306 DCHECK(m != nullptr) << klass_->PrettyClass(); 7307 auto it = move_table_.find(m); 7308 if (it != move_table_.end()) { 7309 auto* new_m = it->second; 7310 DCHECK(new_m != nullptr) << klass_->PrettyClass(); 7311 method_array->SetElementPtrSize(j, new_m, pointer_size); 7312 } 7313 } 7314 } 7315 } 7316 7317 void ClassLinker::LinkInterfaceMethodsHelper::UpdateIMT(ArtMethod** out_imt) { 7318 // Fix up IMT next. 7319 for (size_t i = 0; i < ImTable::kSize; ++i) { 7320 auto it = move_table_.find(out_imt[i]); 7321 if (it != move_table_.end()) { 7322 out_imt[i] = it->second; 7323 } 7324 } 7325 } 7326 7327 // TODO This method needs to be split up into several smaller methods. 7328 bool ClassLinker::LinkInterfaceMethods( 7329 Thread* self, 7330 Handle<mirror::Class> klass, 7331 const std::unordered_map<size_t, ClassLinker::MethodTranslation>& default_translations, 7332 bool* out_new_conflict, 7333 ArtMethod** out_imt) { 7334 StackHandleScope<3> hs(self); 7335 Runtime* const runtime = Runtime::Current(); 7336 7337 const bool is_interface = klass->IsInterface(); 7338 const bool has_superclass = klass->HasSuperClass(); 7339 const bool fill_tables = !is_interface; 7340 const size_t super_ifcount = has_superclass ? klass->GetSuperClass()->GetIfTableCount() : 0U; 7341 const size_t ifcount = klass->GetIfTableCount(); 7342 7343 Handle<mirror::IfTable> iftable(hs.NewHandle(klass->GetIfTable())); 7344 7345 MutableHandle<mirror::PointerArray> vtable(hs.NewHandle(klass->GetVTableDuringLinking())); 7346 ArtMethod* const unimplemented_method = runtime->GetImtUnimplementedMethod(); 7347 ArtMethod* const imt_conflict_method = runtime->GetImtConflictMethod(); 7348 // Copy the IMT from the super class if possible. 7349 const bool extend_super_iftable = has_superclass; 7350 if (has_superclass && fill_tables) { 7351 FillImtFromSuperClass(klass, 7352 unimplemented_method, 7353 imt_conflict_method, 7354 out_new_conflict, 7355 out_imt); 7356 } 7357 // Allocate method arrays before since we don't want miss visiting miranda method roots due to 7358 // thread suspension. 7359 if (fill_tables) { 7360 if (!AllocateIfTableMethodArrays(self, klass, iftable)) { 7361 return false; 7362 } 7363 } 7364 7365 LinkInterfaceMethodsHelper helper(this, klass, self, runtime); 7366 7367 auto* old_cause = self->StartAssertNoThreadSuspension( 7368 "Copying ArtMethods for LinkInterfaceMethods"); 7369 // Going in reverse to ensure that we will hit abstract methods that override defaults before the 7370 // defaults. This means we don't need to do any trickery when creating the Miranda methods, since 7371 // they will already be null. This has the additional benefit that the declarer of a miranda 7372 // method will actually declare an abstract method. 7373 for (size_t i = ifcount; i != 0; ) { 7374 --i; 7375 7376 DCHECK_GE(i, 0u); 7377 DCHECK_LT(i, ifcount); 7378 7379 size_t num_methods = iftable->GetInterface(i)->NumDeclaredVirtualMethods(); 7380 if (num_methods > 0) { 7381 StackHandleScope<2> hs2(self); 7382 const bool is_super = i < super_ifcount; 7383 const bool super_interface = is_super && extend_super_iftable; 7384 // We don't actually create or fill these tables for interfaces, we just copy some methods for 7385 // conflict methods. Just set this as nullptr in those cases. 7386 Handle<mirror::PointerArray> method_array(fill_tables 7387 ? hs2.NewHandle(iftable->GetMethodArray(i)) 7388 : hs2.NewHandle<mirror::PointerArray>(nullptr)); 7389 7390 ArraySlice<ArtMethod> input_virtual_methods; 7391 ScopedNullHandle<mirror::PointerArray> null_handle; 7392 Handle<mirror::PointerArray> input_vtable_array(null_handle); 7393 int32_t input_array_length = 0; 7394 7395 // TODO Cleanup Needed: In the presence of default methods this optimization is rather dirty 7396 // and confusing. Default methods should always look through all the superclasses 7397 // because they are the last choice of an implementation. We get around this by looking 7398 // at the super-classes iftable methods (copied into method_array previously) when we are 7399 // looking for the implementation of a super-interface method but that is rather dirty. 7400 bool using_virtuals; 7401 if (super_interface || is_interface) { 7402 // If we are overwriting a super class interface, try to only virtual methods instead of the 7403 // whole vtable. 7404 using_virtuals = true; 7405 input_virtual_methods = klass->GetDeclaredMethodsSlice(image_pointer_size_); 7406 input_array_length = input_virtual_methods.size(); 7407 } else { 7408 // For a new interface, however, we need the whole vtable in case a new 7409 // interface method is implemented in the whole superclass. 7410 using_virtuals = false; 7411 DCHECK(vtable != nullptr); 7412 input_vtable_array = vtable; 7413 input_array_length = input_vtable_array->GetLength(); 7414 } 7415 7416 // For each method in interface 7417 for (size_t j = 0; j < num_methods; ++j) { 7418 auto* interface_method = iftable->GetInterface(i)->GetVirtualMethod(j, image_pointer_size_); 7419 MethodNameAndSignatureComparator interface_name_comparator( 7420 interface_method->GetInterfaceMethodIfProxy(image_pointer_size_)); 7421 uint32_t imt_index = ImTable::GetImtIndex(interface_method); 7422 ArtMethod** imt_ptr = &out_imt[imt_index]; 7423 // For each method listed in the interface's method list, find the 7424 // matching method in our class's method list. We want to favor the 7425 // subclass over the superclass, which just requires walking 7426 // back from the end of the vtable. (This only matters if the 7427 // superclass defines a private method and this class redefines 7428 // it -- otherwise it would use the same vtable slot. In .dex files 7429 // those don't end up in the virtual method table, so it shouldn't 7430 // matter which direction we go. We walk it backward anyway.) 7431 // 7432 // To find defaults we need to do the same but also go over interfaces. 7433 bool found_impl = false; 7434 ArtMethod* vtable_impl = nullptr; 7435 for (int32_t k = input_array_length - 1; k >= 0; --k) { 7436 ArtMethod* vtable_method = using_virtuals ? 7437 &input_virtual_methods[k] : 7438 input_vtable_array->GetElementPtrSize<ArtMethod*>(k, image_pointer_size_); 7439 ArtMethod* vtable_method_for_name_comparison = 7440 vtable_method->GetInterfaceMethodIfProxy(image_pointer_size_); 7441 if (interface_name_comparator.HasSameNameAndSignature( 7442 vtable_method_for_name_comparison)) { 7443 if (!vtable_method->IsAbstract() && !vtable_method->IsPublic()) { 7444 // Must do EndAssertNoThreadSuspension before throw since the throw can cause 7445 // allocations. 7446 self->EndAssertNoThreadSuspension(old_cause); 7447 ThrowIllegalAccessError(klass.Get(), 7448 "Method '%s' implementing interface method '%s' is not public", 7449 vtable_method->PrettyMethod().c_str(), 7450 interface_method->PrettyMethod().c_str()); 7451 return false; 7452 } else if (UNLIKELY(vtable_method->IsOverridableByDefaultMethod())) { 7453 // We might have a newer, better, default method for this, so we just skip it. If we 7454 // are still using this we will select it again when scanning for default methods. To 7455 // obviate the need to copy the method again we will make a note that we already found 7456 // a default here. 7457 // TODO This should be much cleaner. 7458 vtable_impl = vtable_method; 7459 break; 7460 } else { 7461 found_impl = true; 7462 if (LIKELY(fill_tables)) { 7463 method_array->SetElementPtrSize(j, vtable_method, image_pointer_size_); 7464 // Place method in imt if entry is empty, place conflict otherwise. 7465 SetIMTRef(unimplemented_method, 7466 imt_conflict_method, 7467 vtable_method, 7468 /*out*/out_new_conflict, 7469 /*out*/imt_ptr); 7470 } 7471 break; 7472 } 7473 } 7474 } 7475 // Continue on to the next method if we are done. 7476 if (LIKELY(found_impl)) { 7477 continue; 7478 } else if (LIKELY(super_interface)) { 7479 // Don't look for a default implementation when the super-method is implemented directly 7480 // by the class. 7481 // 7482 // See if we can use the superclasses method and skip searching everything else. 7483 // Note: !found_impl && super_interface 7484 CHECK(extend_super_iftable); 7485 // If this is a super_interface method it is possible we shouldn't override it because a 7486 // superclass could have implemented it directly. We get the method the superclass used 7487 // to implement this to know if we can override it with a default method. Doing this is 7488 // safe since we know that the super_iftable is filled in so we can simply pull it from 7489 // there. We don't bother if this is not a super-classes interface since in that case we 7490 // have scanned the entire vtable anyway and would have found it. 7491 // TODO This is rather dirty but it is faster than searching through the entire vtable 7492 // every time. 7493 ArtMethod* supers_method = 7494 method_array->GetElementPtrSize<ArtMethod*>(j, image_pointer_size_); 7495 DCHECK(supers_method != nullptr); 7496 DCHECK(interface_name_comparator.HasSameNameAndSignature(supers_method)); 7497 if (LIKELY(!supers_method->IsOverridableByDefaultMethod())) { 7498 // The method is not overridable by a default method (i.e. it is directly implemented 7499 // in some class). Therefore move onto the next interface method. 7500 continue; 7501 } else { 7502 // If the super-classes method is override-able by a default method we need to keep 7503 // track of it since though it is override-able it is not guaranteed to be 'overridden'. 7504 // If it turns out not to be overridden and we did not keep track of it we might add it 7505 // to the vtable twice, causing corruption (vtable entries having inconsistent and 7506 // illegal states, incorrect vtable size, and incorrect or inconsistent iftable entries) 7507 // in this class and any subclasses. 7508 DCHECK(vtable_impl == nullptr || vtable_impl == supers_method) 7509 << "vtable_impl was " << ArtMethod::PrettyMethod(vtable_impl) 7510 << " and not 'nullptr' or " 7511 << supers_method->PrettyMethod() 7512 << " as expected. IFTable appears to be corrupt!"; 7513 vtable_impl = supers_method; 7514 } 7515 } 7516 // If we haven't found it yet we should search through the interfaces for default methods. 7517 ArtMethod* current_method = helper.FindMethod(interface_method, 7518 interface_name_comparator, 7519 vtable_impl); 7520 if (LIKELY(fill_tables)) { 7521 if (current_method == nullptr && !super_interface) { 7522 // We could not find an implementation for this method and since it is a brand new 7523 // interface we searched the entire vtable (and all default methods) for an 7524 // implementation but couldn't find one. We therefore need to make a miranda method. 7525 current_method = helper.GetOrCreateMirandaMethod(interface_method, 7526 interface_name_comparator); 7527 } 7528 7529 if (current_method != nullptr) { 7530 // We found a default method implementation. Record it in the iftable and IMT. 7531 method_array->SetElementPtrSize(j, current_method, image_pointer_size_); 7532 SetIMTRef(unimplemented_method, 7533 imt_conflict_method, 7534 current_method, 7535 /*out*/out_new_conflict, 7536 /*out*/imt_ptr); 7537 } 7538 } 7539 } // For each method in interface end. 7540 } // if (num_methods > 0) 7541 } // For each interface. 7542 // TODO don't extend virtuals of interface unless necessary (when is it?). 7543 if (helper.HasNewVirtuals()) { 7544 LengthPrefixedArray<ArtMethod>* old_methods = kIsDebugBuild ? klass->GetMethodsPtr() : nullptr; 7545 helper.ReallocMethods(); // No return value to check. Native allocation failure aborts. 7546 LengthPrefixedArray<ArtMethod>* methods = kIsDebugBuild ? klass->GetMethodsPtr() : nullptr; 7547 7548 // Done copying methods, they are all roots in the class now, so we can end the no thread 7549 // suspension assert. 7550 self->EndAssertNoThreadSuspension(old_cause); 7551 7552 if (fill_tables) { 7553 vtable.Assign(helper.UpdateVtable(default_translations, vtable.Get())); 7554 if (UNLIKELY(vtable == nullptr)) { 7555 // The helper has already called self->AssertPendingOOMException(); 7556 return false; 7557 } 7558 helper.UpdateIfTable(iftable); 7559 helper.UpdateIMT(out_imt); 7560 } 7561 7562 helper.CheckNoStaleMethodsInDexCache(); 7563 helper.ClobberOldMethods(old_methods, methods); 7564 } else { 7565 self->EndAssertNoThreadSuspension(old_cause); 7566 } 7567 if (kIsDebugBuild && !is_interface) { 7568 SanityCheckVTable(self, klass, image_pointer_size_); 7569 } 7570 return true; 7571 } 7572 7573 bool ClassLinker::LinkInstanceFields(Thread* self, Handle<mirror::Class> klass) { 7574 CHECK(klass != nullptr); 7575 return LinkFields(self, klass, false, nullptr); 7576 } 7577 7578 bool ClassLinker::LinkStaticFields(Thread* self, Handle<mirror::Class> klass, size_t* class_size) { 7579 CHECK(klass != nullptr); 7580 return LinkFields(self, klass, true, class_size); 7581 } 7582 7583 struct LinkFieldsComparator { 7584 explicit LinkFieldsComparator() REQUIRES_SHARED(Locks::mutator_lock_) { 7585 } 7586 // No thread safety analysis as will be called from STL. Checked lock held in constructor. 7587 bool operator()(ArtField* field1, ArtField* field2) 7588 NO_THREAD_SAFETY_ANALYSIS { 7589 // First come reference fields, then 64-bit, then 32-bit, and then 16-bit, then finally 8-bit. 7590 Primitive::Type type1 = field1->GetTypeAsPrimitiveType(); 7591 Primitive::Type type2 = field2->GetTypeAsPrimitiveType(); 7592 if (type1 != type2) { 7593 if (type1 == Primitive::kPrimNot) { 7594 // Reference always goes first. 7595 return true; 7596 } 7597 if (type2 == Primitive::kPrimNot) { 7598 // Reference always goes first. 7599 return false; 7600 } 7601 size_t size1 = Primitive::ComponentSize(type1); 7602 size_t size2 = Primitive::ComponentSize(type2); 7603 if (size1 != size2) { 7604 // Larger primitive types go first. 7605 return size1 > size2; 7606 } 7607 // Primitive types differ but sizes match. Arbitrarily order by primitive type. 7608 return type1 < type2; 7609 } 7610 // Same basic group? Then sort by dex field index. This is guaranteed to be sorted 7611 // by name and for equal names by type id index. 7612 // NOTE: This works also for proxies. Their static fields are assigned appropriate indexes. 7613 return field1->GetDexFieldIndex() < field2->GetDexFieldIndex(); 7614 } 7615 }; 7616 7617 bool ClassLinker::LinkFields(Thread* self, 7618 Handle<mirror::Class> klass, 7619 bool is_static, 7620 size_t* class_size) { 7621 self->AllowThreadSuspension(); 7622 const size_t num_fields = is_static ? klass->NumStaticFields() : klass->NumInstanceFields(); 7623 LengthPrefixedArray<ArtField>* const fields = is_static ? klass->GetSFieldsPtr() : 7624 klass->GetIFieldsPtr(); 7625 7626 // Initialize field_offset 7627 MemberOffset field_offset(0); 7628 if (is_static) { 7629 field_offset = klass->GetFirstReferenceStaticFieldOffsetDuringLinking(image_pointer_size_); 7630 } else { 7631 ObjPtr<mirror::Class> super_class = klass->GetSuperClass(); 7632 if (super_class != nullptr) { 7633 CHECK(super_class->IsResolved()) 7634 << klass->PrettyClass() << " " << super_class->PrettyClass(); 7635 field_offset = MemberOffset(super_class->GetObjectSize()); 7636 } 7637 } 7638 7639 CHECK_EQ(num_fields == 0, fields == nullptr) << klass->PrettyClass(); 7640 7641 // we want a relatively stable order so that adding new fields 7642 // minimizes disruption of C++ version such as Class and Method. 7643 // 7644 // The overall sort order order is: 7645 // 1) All object reference fields, sorted alphabetically. 7646 // 2) All java long (64-bit) integer fields, sorted alphabetically. 7647 // 3) All java double (64-bit) floating point fields, sorted alphabetically. 7648 // 4) All java int (32-bit) integer fields, sorted alphabetically. 7649 // 5) All java float (32-bit) floating point fields, sorted alphabetically. 7650 // 6) All java char (16-bit) integer fields, sorted alphabetically. 7651 // 7) All java short (16-bit) integer fields, sorted alphabetically. 7652 // 8) All java boolean (8-bit) integer fields, sorted alphabetically. 7653 // 9) All java byte (8-bit) integer fields, sorted alphabetically. 7654 // 7655 // Once the fields are sorted in this order we will attempt to fill any gaps that might be present 7656 // in the memory layout of the structure. See ShuffleForward for how this is done. 7657 std::deque<ArtField*> grouped_and_sorted_fields; 7658 const char* old_no_suspend_cause = self->StartAssertNoThreadSuspension( 7659 "Naked ArtField references in deque"); 7660 for (size_t i = 0; i < num_fields; i++) { 7661 grouped_and_sorted_fields.push_back(&fields->At(i)); 7662 } 7663 std::sort(grouped_and_sorted_fields.begin(), grouped_and_sorted_fields.end(), 7664 LinkFieldsComparator()); 7665 7666 // References should be at the front. 7667 size_t current_field = 0; 7668 size_t num_reference_fields = 0; 7669 FieldGaps gaps; 7670 7671 for (; current_field < num_fields; current_field++) { 7672 ArtField* field = grouped_and_sorted_fields.front(); 7673 Primitive::Type type = field->GetTypeAsPrimitiveType(); 7674 bool isPrimitive = type != Primitive::kPrimNot; 7675 if (isPrimitive) { 7676 break; // past last reference, move on to the next phase 7677 } 7678 if (UNLIKELY(!IsAligned<sizeof(mirror::HeapReference<mirror::Object>)>( 7679 field_offset.Uint32Value()))) { 7680 MemberOffset old_offset = field_offset; 7681 field_offset = MemberOffset(RoundUp(field_offset.Uint32Value(), 4)); 7682 AddFieldGap(old_offset.Uint32Value(), field_offset.Uint32Value(), &gaps); 7683 } 7684 DCHECK_ALIGNED(field_offset.Uint32Value(), sizeof(mirror::HeapReference<mirror::Object>)); 7685 grouped_and_sorted_fields.pop_front(); 7686 num_reference_fields++; 7687 field->SetOffset(field_offset); 7688 field_offset = MemberOffset(field_offset.Uint32Value() + 7689 sizeof(mirror::HeapReference<mirror::Object>)); 7690 } 7691 // Gaps are stored as a max heap which means that we must shuffle from largest to smallest 7692 // otherwise we could end up with suboptimal gap fills. 7693 ShuffleForward<8>(¤t_field, &field_offset, &grouped_and_sorted_fields, &gaps); 7694 ShuffleForward<4>(¤t_field, &field_offset, &grouped_and_sorted_fields, &gaps); 7695 ShuffleForward<2>(¤t_field, &field_offset, &grouped_and_sorted_fields, &gaps); 7696 ShuffleForward<1>(¤t_field, &field_offset, &grouped_and_sorted_fields, &gaps); 7697 CHECK(grouped_and_sorted_fields.empty()) << "Missed " << grouped_and_sorted_fields.size() << 7698 " fields."; 7699 self->EndAssertNoThreadSuspension(old_no_suspend_cause); 7700 7701 // We lie to the GC about the java.lang.ref.Reference.referent field, so it doesn't scan it. 7702 if (!is_static && klass->DescriptorEquals("Ljava/lang/ref/Reference;")) { 7703 // We know there are no non-reference fields in the Reference classes, and we know 7704 // that 'referent' is alphabetically last, so this is easy... 7705 CHECK_EQ(num_reference_fields, num_fields) << klass->PrettyClass(); 7706 CHECK_STREQ(fields->At(num_fields - 1).GetName(), "referent") 7707 << klass->PrettyClass(); 7708 --num_reference_fields; 7709 } 7710 7711 size_t size = field_offset.Uint32Value(); 7712 // Update klass 7713 if (is_static) { 7714 klass->SetNumReferenceStaticFields(num_reference_fields); 7715 *class_size = size; 7716 } else { 7717 klass->SetNumReferenceInstanceFields(num_reference_fields); 7718 ObjPtr<mirror::Class> super_class = klass->GetSuperClass(); 7719 if (num_reference_fields == 0 || super_class == nullptr) { 7720 // object has one reference field, klass, but we ignore it since we always visit the class. 7721 // super_class is null iff the class is java.lang.Object. 7722 if (super_class == nullptr || 7723 (super_class->GetClassFlags() & mirror::kClassFlagNoReferenceFields) != 0) { 7724 klass->SetClassFlags(klass->GetClassFlags() | mirror::kClassFlagNoReferenceFields); 7725 } 7726 } 7727 if (kIsDebugBuild) { 7728 DCHECK_EQ(super_class == nullptr, klass->DescriptorEquals("Ljava/lang/Object;")); 7729 size_t total_reference_instance_fields = 0; 7730 ObjPtr<mirror::Class> cur_super = klass.Get(); 7731 while (cur_super != nullptr) { 7732 total_reference_instance_fields += cur_super->NumReferenceInstanceFieldsDuringLinking(); 7733 cur_super = cur_super->GetSuperClass(); 7734 } 7735 if (super_class == nullptr) { 7736 CHECK_EQ(total_reference_instance_fields, 1u) << klass->PrettyDescriptor(); 7737 } else { 7738 // Check that there is at least num_reference_fields other than Object.class. 7739 CHECK_GE(total_reference_instance_fields, 1u + num_reference_fields) 7740 << klass->PrettyClass(); 7741 } 7742 } 7743 if (!klass->IsVariableSize()) { 7744 std::string temp; 7745 DCHECK_GE(size, sizeof(mirror::Object)) << klass->GetDescriptor(&temp); 7746 size_t previous_size = klass->GetObjectSize(); 7747 if (previous_size != 0) { 7748 // Make sure that we didn't originally have an incorrect size. 7749 CHECK_EQ(previous_size, size) << klass->GetDescriptor(&temp); 7750 } 7751 klass->SetObjectSize(size); 7752 } 7753 } 7754 7755 if (kIsDebugBuild) { 7756 // Make sure that the fields array is ordered by name but all reference 7757 // offsets are at the beginning as far as alignment allows. 7758 MemberOffset start_ref_offset = is_static 7759 ? klass->GetFirstReferenceStaticFieldOffsetDuringLinking(image_pointer_size_) 7760 : klass->GetFirstReferenceInstanceFieldOffset(); 7761 MemberOffset end_ref_offset(start_ref_offset.Uint32Value() + 7762 num_reference_fields * 7763 sizeof(mirror::HeapReference<mirror::Object>)); 7764 MemberOffset current_ref_offset = start_ref_offset; 7765 for (size_t i = 0; i < num_fields; i++) { 7766 ArtField* field = &fields->At(i); 7767 VLOG(class_linker) << "LinkFields: " << (is_static ? "static" : "instance") 7768 << " class=" << klass->PrettyClass() << " field=" << field->PrettyField() 7769 << " offset=" << field->GetOffsetDuringLinking(); 7770 if (i != 0) { 7771 ArtField* const prev_field = &fields->At(i - 1); 7772 // NOTE: The field names can be the same. This is not possible in the Java language 7773 // but it's valid Java/dex bytecode and for example proguard can generate such bytecode. 7774 DCHECK_LE(strcmp(prev_field->GetName(), field->GetName()), 0); 7775 } 7776 Primitive::Type type = field->GetTypeAsPrimitiveType(); 7777 bool is_primitive = type != Primitive::kPrimNot; 7778 if (klass->DescriptorEquals("Ljava/lang/ref/Reference;") && 7779 strcmp("referent", field->GetName()) == 0) { 7780 is_primitive = true; // We lied above, so we have to expect a lie here. 7781 } 7782 MemberOffset offset = field->GetOffsetDuringLinking(); 7783 if (is_primitive) { 7784 if (offset.Uint32Value() < end_ref_offset.Uint32Value()) { 7785 // Shuffled before references. 7786 size_t type_size = Primitive::ComponentSize(type); 7787 CHECK_LT(type_size, sizeof(mirror::HeapReference<mirror::Object>)); 7788 CHECK_LT(offset.Uint32Value(), start_ref_offset.Uint32Value()); 7789 CHECK_LE(offset.Uint32Value() + type_size, start_ref_offset.Uint32Value()); 7790 CHECK(!IsAligned<sizeof(mirror::HeapReference<mirror::Object>)>(offset.Uint32Value())); 7791 } 7792 } else { 7793 CHECK_EQ(current_ref_offset.Uint32Value(), offset.Uint32Value()); 7794 current_ref_offset = MemberOffset(current_ref_offset.Uint32Value() + 7795 sizeof(mirror::HeapReference<mirror::Object>)); 7796 } 7797 } 7798 CHECK_EQ(current_ref_offset.Uint32Value(), end_ref_offset.Uint32Value()); 7799 } 7800 return true; 7801 } 7802 7803 // Set the bitmap of reference instance field offsets. 7804 void ClassLinker::CreateReferenceInstanceOffsets(Handle<mirror::Class> klass) { 7805 uint32_t reference_offsets = 0; 7806 ObjPtr<mirror::Class> super_class = klass->GetSuperClass(); 7807 // Leave the reference offsets as 0 for mirror::Object (the class field is handled specially). 7808 if (super_class != nullptr) { 7809 reference_offsets = super_class->GetReferenceInstanceOffsets(); 7810 // Compute reference offsets unless our superclass overflowed. 7811 if (reference_offsets != mirror::Class::kClassWalkSuper) { 7812 size_t num_reference_fields = klass->NumReferenceInstanceFieldsDuringLinking(); 7813 if (num_reference_fields != 0u) { 7814 // All of the fields that contain object references are guaranteed be grouped in memory 7815 // starting at an appropriately aligned address after super class object data. 7816 uint32_t start_offset = RoundUp(super_class->GetObjectSize(), 7817 sizeof(mirror::HeapReference<mirror::Object>)); 7818 uint32_t start_bit = (start_offset - mirror::kObjectHeaderSize) / 7819 sizeof(mirror::HeapReference<mirror::Object>); 7820 if (start_bit + num_reference_fields > 32) { 7821 reference_offsets = mirror::Class::kClassWalkSuper; 7822 } else { 7823 reference_offsets |= (0xffffffffu << start_bit) & 7824 (0xffffffffu >> (32 - (start_bit + num_reference_fields))); 7825 } 7826 } 7827 } 7828 } 7829 klass->SetReferenceInstanceOffsets(reference_offsets); 7830 } 7831 7832 mirror::String* ClassLinker::ResolveString(const DexFile& dex_file, 7833 dex::StringIndex string_idx, 7834 Handle<mirror::DexCache> dex_cache) { 7835 DCHECK(dex_cache != nullptr); 7836 Thread::PoisonObjectPointersIfDebug(); 7837 ObjPtr<mirror::String> resolved = dex_cache->GetResolvedString(string_idx); 7838 if (resolved != nullptr) { 7839 return resolved.Ptr(); 7840 } 7841 uint32_t utf16_length; 7842 const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length); 7843 ObjPtr<mirror::String> string = intern_table_->InternStrong(utf16_length, utf8_data); 7844 if (string != nullptr) { 7845 dex_cache->SetResolvedString(string_idx, string); 7846 } 7847 return string.Ptr(); 7848 } 7849 7850 mirror::String* ClassLinker::LookupString(const DexFile& dex_file, 7851 dex::StringIndex string_idx, 7852 ObjPtr<mirror::DexCache> dex_cache) { 7853 DCHECK(dex_cache != nullptr); 7854 ObjPtr<mirror::String> resolved = dex_cache->GetResolvedString(string_idx); 7855 if (resolved != nullptr) { 7856 return resolved.Ptr(); 7857 } 7858 uint32_t utf16_length; 7859 const char* utf8_data = dex_file.StringDataAndUtf16LengthByIdx(string_idx, &utf16_length); 7860 ObjPtr<mirror::String> string = 7861 intern_table_->LookupStrong(Thread::Current(), utf16_length, utf8_data); 7862 if (string != nullptr) { 7863 dex_cache->SetResolvedString(string_idx, string); 7864 } 7865 return string.Ptr(); 7866 } 7867 7868 ObjPtr<mirror::Class> ClassLinker::LookupResolvedType(const DexFile& dex_file, 7869 dex::TypeIndex type_idx, 7870 ObjPtr<mirror::DexCache> dex_cache, 7871 ObjPtr<mirror::ClassLoader> class_loader) { 7872 ObjPtr<mirror::Class> type = dex_cache->GetResolvedType(type_idx); 7873 if (type == nullptr) { 7874 const char* descriptor = dex_file.StringByTypeIdx(type_idx); 7875 DCHECK_NE(*descriptor, '\0') << "descriptor is empty string"; 7876 if (descriptor[1] == '\0') { 7877 // only the descriptors of primitive types should be 1 character long, also avoid class lookup 7878 // for primitive classes that aren't backed by dex files. 7879 type = FindPrimitiveClass(descriptor[0]); 7880 } else { 7881 Thread* const self = Thread::Current(); 7882 DCHECK(self != nullptr); 7883 const size_t hash = ComputeModifiedUtf8Hash(descriptor); 7884 // Find the class in the loaded classes table. 7885 type = LookupClass(self, descriptor, hash, class_loader.Ptr()); 7886 } 7887 if (type != nullptr) { 7888 if (type->IsResolved()) { 7889 dex_cache->SetResolvedType(type_idx, type); 7890 } else { 7891 type = nullptr; 7892 } 7893 } 7894 } 7895 DCHECK(type == nullptr || type->IsResolved()); 7896 return type; 7897 } 7898 7899 mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file, 7900 dex::TypeIndex type_idx, 7901 ObjPtr<mirror::Class> referrer) { 7902 StackHandleScope<2> hs(Thread::Current()); 7903 Handle<mirror::DexCache> dex_cache(hs.NewHandle(referrer->GetDexCache())); 7904 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(referrer->GetClassLoader())); 7905 return ResolveType(dex_file, type_idx, dex_cache, class_loader); 7906 } 7907 7908 mirror::Class* ClassLinker::ResolveType(const DexFile& dex_file, 7909 dex::TypeIndex type_idx, 7910 Handle<mirror::DexCache> dex_cache, 7911 Handle<mirror::ClassLoader> class_loader) { 7912 DCHECK(dex_cache != nullptr); 7913 Thread::PoisonObjectPointersIfDebug(); 7914 ObjPtr<mirror::Class> resolved = dex_cache->GetResolvedType(type_idx); 7915 if (resolved == nullptr) { 7916 // TODO: Avoid this lookup as it duplicates work done in FindClass(). It is here 7917 // as a workaround for FastNative JNI to avoid AssertNoPendingException() when 7918 // trying to resolve annotations while an exception may be pending. Bug: 34659969 7919 resolved = LookupResolvedType(dex_file, type_idx, dex_cache.Get(), class_loader.Get()); 7920 } 7921 if (resolved == nullptr) { 7922 Thread* self = Thread::Current(); 7923 const char* descriptor = dex_file.StringByTypeIdx(type_idx); 7924 resolved = FindClass(self, descriptor, class_loader); 7925 if (resolved != nullptr) { 7926 // TODO: we used to throw here if resolved's class loader was not the 7927 // boot class loader. This was to permit different classes with the 7928 // same name to be loaded simultaneously by different loaders 7929 dex_cache->SetResolvedType(type_idx, resolved); 7930 } else { 7931 CHECK(self->IsExceptionPending()) 7932 << "Expected pending exception for failed resolution of: " << descriptor; 7933 // Convert a ClassNotFoundException to a NoClassDefFoundError. 7934 StackHandleScope<1> hs(self); 7935 Handle<mirror::Throwable> cause(hs.NewHandle(self->GetException())); 7936 if (cause->InstanceOf(GetClassRoot(kJavaLangClassNotFoundException))) { 7937 DCHECK(resolved == nullptr); // No Handle needed to preserve resolved. 7938 self->ClearException(); 7939 ThrowNoClassDefFoundError("Failed resolution of: %s", descriptor); 7940 self->GetException()->SetCause(cause.Get()); 7941 } 7942 } 7943 } 7944 DCHECK((resolved == nullptr) || resolved->IsResolved()) 7945 << resolved->PrettyDescriptor() << " " << resolved->GetStatus(); 7946 return resolved.Ptr(); 7947 } 7948 7949 template <ClassLinker::ResolveMode kResolveMode> 7950 ArtMethod* ClassLinker::ResolveMethod(const DexFile& dex_file, 7951 uint32_t method_idx, 7952 Handle<mirror::DexCache> dex_cache, 7953 Handle<mirror::ClassLoader> class_loader, 7954 ArtMethod* referrer, 7955 InvokeType type) { 7956 DCHECK(dex_cache != nullptr); 7957 // Check for hit in the dex cache. 7958 ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx, image_pointer_size_); 7959 Thread::PoisonObjectPointersIfDebug(); 7960 if (resolved != nullptr && !resolved->IsRuntimeMethod()) { 7961 DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex(); 7962 if (kResolveMode == ClassLinker::kForceICCECheck) { 7963 if (resolved->CheckIncompatibleClassChange(type)) { 7964 ThrowIncompatibleClassChangeError(type, resolved->GetInvokeType(), resolved, referrer); 7965 return nullptr; 7966 } 7967 } 7968 return resolved; 7969 } 7970 // Fail, get the declaring class. 7971 const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx); 7972 ObjPtr<mirror::Class> klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader); 7973 if (klass == nullptr) { 7974 DCHECK(Thread::Current()->IsExceptionPending()); 7975 return nullptr; 7976 } 7977 // Scan using method_idx, this saves string compares but will only hit for matching dex 7978 // caches/files. 7979 switch (type) { 7980 case kDirect: // Fall-through. 7981 case kStatic: 7982 resolved = klass->FindDirectMethod(dex_cache.Get(), method_idx, image_pointer_size_); 7983 DCHECK(resolved == nullptr || resolved->GetDeclaringClassUnchecked() != nullptr); 7984 break; 7985 case kInterface: 7986 // We have to check whether the method id really belongs to an interface (dex static bytecode 7987 // constraint A15). Otherwise you must not invoke-interface on it. 7988 // 7989 // This is not symmetric to A12-A14 (direct, static, virtual), as using FindInterfaceMethod 7990 // assumes that the given type is an interface, and will check the interface table if the 7991 // method isn't declared in the class. So it may find an interface method (usually by name 7992 // in the handling below, but we do the constraint check early). In that case, 7993 // CheckIncompatibleClassChange will succeed (as it is called on an interface method) 7994 // unexpectedly. 7995 // Example: 7996 // interface I { 7997 // foo() 7998 // } 7999 // class A implements I { 8000 // ... 8001 // } 8002 // class B extends A { 8003 // ... 8004 // } 8005 // invoke-interface B.foo 8006 // -> FindInterfaceMethod finds I.foo (interface method), not A.foo (miranda method) 8007 if (UNLIKELY(!klass->IsInterface())) { 8008 ThrowIncompatibleClassChangeError(klass, 8009 "Found class %s, but interface was expected", 8010 klass->PrettyDescriptor().c_str()); 8011 return nullptr; 8012 } else { 8013 resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx, image_pointer_size_); 8014 DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface()); 8015 } 8016 break; 8017 case kSuper: 8018 if (klass->IsInterface()) { 8019 resolved = klass->FindInterfaceMethod(dex_cache.Get(), method_idx, image_pointer_size_); 8020 } else { 8021 resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_); 8022 } 8023 break; 8024 case kVirtual: 8025 resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_); 8026 break; 8027 default: 8028 LOG(FATAL) << "Unreachable - invocation type: " << type; 8029 UNREACHABLE(); 8030 } 8031 if (resolved == nullptr) { 8032 // Search by name, which works across dex files. 8033 const char* name = dex_file.StringDataByIdx(method_id.name_idx_); 8034 const Signature signature = dex_file.GetMethodSignature(method_id); 8035 switch (type) { 8036 case kDirect: // Fall-through. 8037 case kStatic: 8038 resolved = klass->FindDirectMethod(name, signature, image_pointer_size_); 8039 DCHECK(resolved == nullptr || resolved->GetDeclaringClassUnchecked() != nullptr); 8040 break; 8041 case kInterface: 8042 resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_); 8043 DCHECK(resolved == nullptr || resolved->GetDeclaringClass()->IsInterface()); 8044 break; 8045 case kSuper: 8046 if (klass->IsInterface()) { 8047 resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_); 8048 } else { 8049 resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_); 8050 } 8051 break; 8052 case kVirtual: 8053 resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_); 8054 break; 8055 } 8056 } 8057 // If we found a method, check for incompatible class changes. 8058 if (LIKELY(resolved != nullptr && !resolved->CheckIncompatibleClassChange(type))) { 8059 // Be a good citizen and update the dex cache to speed subsequent calls. 8060 dex_cache->SetResolvedMethod(method_idx, resolved, image_pointer_size_); 8061 return resolved; 8062 } else { 8063 // If we had a method, it's an incompatible-class-change error. 8064 if (resolved != nullptr) { 8065 ThrowIncompatibleClassChangeError(type, resolved->GetInvokeType(), resolved, referrer); 8066 } else { 8067 // We failed to find the method which means either an access error, an incompatible class 8068 // change, or no such method. First try to find the method among direct and virtual methods. 8069 const char* name = dex_file.StringDataByIdx(method_id.name_idx_); 8070 const Signature signature = dex_file.GetMethodSignature(method_id); 8071 switch (type) { 8072 case kDirect: 8073 case kStatic: 8074 resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_); 8075 // Note: kDirect and kStatic are also mutually exclusive, but in that case we would 8076 // have had a resolved method before, which triggers the "true" branch above. 8077 break; 8078 case kInterface: 8079 case kVirtual: 8080 case kSuper: 8081 resolved = klass->FindDirectMethod(name, signature, image_pointer_size_); 8082 break; 8083 } 8084 8085 // If we found something, check that it can be accessed by the referrer. 8086 bool exception_generated = false; 8087 if (resolved != nullptr && referrer != nullptr) { 8088 ObjPtr<mirror::Class> methods_class = resolved->GetDeclaringClass(); 8089 ObjPtr<mirror::Class> referring_class = referrer->GetDeclaringClass(); 8090 if (!referring_class->CanAccess(methods_class)) { 8091 ThrowIllegalAccessErrorClassForMethodDispatch(referring_class, 8092 methods_class, 8093 resolved, 8094 type); 8095 exception_generated = true; 8096 } else if (!referring_class->CanAccessMember(methods_class, resolved->GetAccessFlags())) { 8097 ThrowIllegalAccessErrorMethod(referring_class, resolved); 8098 exception_generated = true; 8099 } 8100 } 8101 if (!exception_generated) { 8102 // Otherwise, throw an IncompatibleClassChangeError if we found something, and check 8103 // interface methods and throw if we find the method there. If we find nothing, throw a 8104 // NoSuchMethodError. 8105 switch (type) { 8106 case kDirect: 8107 case kStatic: 8108 if (resolved != nullptr) { 8109 ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer); 8110 } else { 8111 resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_); 8112 if (resolved != nullptr) { 8113 ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer); 8114 } else { 8115 ThrowNoSuchMethodError(type, klass, name, signature); 8116 } 8117 } 8118 break; 8119 case kInterface: 8120 if (resolved != nullptr) { 8121 ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer); 8122 } else { 8123 resolved = klass->FindVirtualMethod(name, signature, image_pointer_size_); 8124 if (resolved != nullptr) { 8125 ThrowIncompatibleClassChangeError(type, kVirtual, resolved, referrer); 8126 } else { 8127 ThrowNoSuchMethodError(type, klass, name, signature); 8128 } 8129 } 8130 break; 8131 case kSuper: 8132 if (resolved != nullptr) { 8133 ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer); 8134 } else { 8135 ThrowNoSuchMethodError(type, klass, name, signature); 8136 } 8137 break; 8138 case kVirtual: 8139 if (resolved != nullptr) { 8140 ThrowIncompatibleClassChangeError(type, kDirect, resolved, referrer); 8141 } else { 8142 resolved = klass->FindInterfaceMethod(name, signature, image_pointer_size_); 8143 if (resolved != nullptr) { 8144 ThrowIncompatibleClassChangeError(type, kInterface, resolved, referrer); 8145 } else { 8146 ThrowNoSuchMethodError(type, klass, name, signature); 8147 } 8148 } 8149 break; 8150 } 8151 } 8152 } 8153 Thread::Current()->AssertPendingException(); 8154 return nullptr; 8155 } 8156 } 8157 8158 ArtMethod* ClassLinker::ResolveMethodWithoutInvokeType(const DexFile& dex_file, 8159 uint32_t method_idx, 8160 Handle<mirror::DexCache> dex_cache, 8161 Handle<mirror::ClassLoader> class_loader) { 8162 ArtMethod* resolved = dex_cache->GetResolvedMethod(method_idx, image_pointer_size_); 8163 Thread::PoisonObjectPointersIfDebug(); 8164 if (resolved != nullptr && !resolved->IsRuntimeMethod()) { 8165 DCHECK(resolved->GetDeclaringClassUnchecked() != nullptr) << resolved->GetDexMethodIndex(); 8166 return resolved; 8167 } 8168 // Fail, get the declaring class. 8169 const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx); 8170 ObjPtr<mirror::Class> klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader); 8171 if (klass == nullptr) { 8172 Thread::Current()->AssertPendingException(); 8173 return nullptr; 8174 } 8175 if (klass->IsInterface()) { 8176 LOG(FATAL) << "ResolveAmbiguousMethod: unexpected method in interface: " 8177 << klass->PrettyClass(); 8178 return nullptr; 8179 } 8180 8181 // Search both direct and virtual methods 8182 resolved = klass->FindDirectMethod(dex_cache.Get(), method_idx, image_pointer_size_); 8183 if (resolved == nullptr) { 8184 resolved = klass->FindVirtualMethod(dex_cache.Get(), method_idx, image_pointer_size_); 8185 } 8186 8187 return resolved; 8188 } 8189 8190 ArtField* ClassLinker::LookupResolvedField(uint32_t field_idx, 8191 ObjPtr<mirror::DexCache> dex_cache, 8192 ObjPtr<mirror::ClassLoader> class_loader, 8193 bool is_static) { 8194 const DexFile& dex_file = *dex_cache->GetDexFile(); 8195 const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx); 8196 ObjPtr<mirror::Class> klass = dex_cache->GetResolvedType(field_id.class_idx_); 8197 if (klass == nullptr) { 8198 klass = LookupResolvedType(dex_file, field_id.class_idx_, dex_cache, class_loader); 8199 } 8200 if (klass == nullptr) { 8201 // The class has not been resolved yet, so the field is also unresolved. 8202 return nullptr; 8203 } 8204 DCHECK(klass->IsResolved()); 8205 Thread* self = is_static ? Thread::Current() : nullptr; 8206 8207 // First try to find a field declared directly by `klass` by the field index. 8208 ArtField* resolved_field = is_static 8209 ? mirror::Class::FindStaticField(self, klass, dex_cache, field_idx) 8210 : klass->FindInstanceField(dex_cache, field_idx); 8211 8212 if (resolved_field == nullptr) { 8213 // If not found in `klass` by field index, search the class hierarchy using the name and type. 8214 const char* name = dex_file.GetFieldName(field_id); 8215 const char* type = dex_file.GetFieldTypeDescriptor(field_id); 8216 resolved_field = is_static 8217 ? mirror::Class::FindStaticField(self, klass, name, type) 8218 : klass->FindInstanceField(name, type); 8219 } 8220 8221 if (resolved_field != nullptr) { 8222 dex_cache->SetResolvedField(field_idx, resolved_field, image_pointer_size_); 8223 } 8224 return resolved_field; 8225 } 8226 8227 ArtField* ClassLinker::ResolveField(const DexFile& dex_file, 8228 uint32_t field_idx, 8229 Handle<mirror::DexCache> dex_cache, 8230 Handle<mirror::ClassLoader> class_loader, 8231 bool is_static) { 8232 DCHECK(dex_cache != nullptr); 8233 ArtField* resolved = dex_cache->GetResolvedField(field_idx, image_pointer_size_); 8234 Thread::PoisonObjectPointersIfDebug(); 8235 if (resolved != nullptr) { 8236 return resolved; 8237 } 8238 const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx); 8239 Thread* const self = Thread::Current(); 8240 ObjPtr<mirror::Class> klass = ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader); 8241 if (klass == nullptr) { 8242 DCHECK(Thread::Current()->IsExceptionPending()); 8243 return nullptr; 8244 } 8245 8246 if (is_static) { 8247 resolved = mirror::Class::FindStaticField(self, klass, dex_cache.Get(), field_idx); 8248 } else { 8249 resolved = klass->FindInstanceField(dex_cache.Get(), field_idx); 8250 } 8251 8252 if (resolved == nullptr) { 8253 const char* name = dex_file.GetFieldName(field_id); 8254 const char* type = dex_file.GetFieldTypeDescriptor(field_id); 8255 if (is_static) { 8256 resolved = mirror::Class::FindStaticField(self, klass, name, type); 8257 } else { 8258 resolved = klass->FindInstanceField(name, type); 8259 } 8260 if (resolved == nullptr) { 8261 ThrowNoSuchFieldError(is_static ? "static " : "instance ", klass, type, name); 8262 return nullptr; 8263 } 8264 } 8265 dex_cache->SetResolvedField(field_idx, resolved, image_pointer_size_); 8266 return resolved; 8267 } 8268 8269 ArtField* ClassLinker::ResolveFieldJLS(const DexFile& dex_file, 8270 uint32_t field_idx, 8271 Handle<mirror::DexCache> dex_cache, 8272 Handle<mirror::ClassLoader> class_loader) { 8273 DCHECK(dex_cache != nullptr); 8274 ArtField* resolved = dex_cache->GetResolvedField(field_idx, image_pointer_size_); 8275 Thread::PoisonObjectPointersIfDebug(); 8276 if (resolved != nullptr) { 8277 return resolved; 8278 } 8279 const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx); 8280 Thread* self = Thread::Current(); 8281 ObjPtr<mirror::Class> klass(ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader)); 8282 if (klass == nullptr) { 8283 DCHECK(Thread::Current()->IsExceptionPending()); 8284 return nullptr; 8285 } 8286 8287 StringPiece name(dex_file.GetFieldName(field_id)); 8288 StringPiece type(dex_file.GetFieldTypeDescriptor(field_id)); 8289 resolved = mirror::Class::FindField(self, klass, name, type); 8290 if (resolved != nullptr) { 8291 dex_cache->SetResolvedField(field_idx, resolved, image_pointer_size_); 8292 } else { 8293 ThrowNoSuchFieldError("", klass, type, name); 8294 } 8295 return resolved; 8296 } 8297 8298 mirror::MethodType* ClassLinker::ResolveMethodType(const DexFile& dex_file, 8299 uint32_t proto_idx, 8300 Handle<mirror::DexCache> dex_cache, 8301 Handle<mirror::ClassLoader> class_loader) { 8302 DCHECK(Runtime::Current()->IsMethodHandlesEnabled()); 8303 DCHECK(dex_cache != nullptr); 8304 8305 ObjPtr<mirror::MethodType> resolved = dex_cache->GetResolvedMethodType(proto_idx); 8306 if (resolved != nullptr) { 8307 return resolved.Ptr(); 8308 } 8309 8310 Thread* const self = Thread::Current(); 8311 StackHandleScope<4> hs(self); 8312 8313 // First resolve the return type. 8314 const DexFile::ProtoId& proto_id = dex_file.GetProtoId(proto_idx); 8315 Handle<mirror::Class> return_type(hs.NewHandle( 8316 ResolveType(dex_file, proto_id.return_type_idx_, dex_cache, class_loader))); 8317 if (return_type == nullptr) { 8318 DCHECK(self->IsExceptionPending()); 8319 return nullptr; 8320 } 8321 8322 // Then resolve the argument types. 8323 // 8324 // TODO: Is there a better way to figure out the number of method arguments 8325 // other than by looking at the shorty ? 8326 const size_t num_method_args = strlen(dex_file.StringDataByIdx(proto_id.shorty_idx_)) - 1; 8327 8328 ObjPtr<mirror::Class> class_type = mirror::Class::GetJavaLangClass(); 8329 ObjPtr<mirror::Class> array_of_class = FindArrayClass(self, &class_type); 8330 Handle<mirror::ObjectArray<mirror::Class>> method_params(hs.NewHandle( 8331 mirror::ObjectArray<mirror::Class>::Alloc(self, array_of_class, num_method_args))); 8332 if (method_params == nullptr) { 8333 DCHECK(self->IsExceptionPending()); 8334 return nullptr; 8335 } 8336 8337 DexFileParameterIterator it(dex_file, proto_id); 8338 int32_t i = 0; 8339 MutableHandle<mirror::Class> param_class = hs.NewHandle<mirror::Class>(nullptr); 8340 for (; it.HasNext(); it.Next()) { 8341 const dex::TypeIndex type_idx = it.GetTypeIdx(); 8342 param_class.Assign(ResolveType(dex_file, type_idx, dex_cache, class_loader)); 8343 if (param_class == nullptr) { 8344 DCHECK(self->IsExceptionPending()); 8345 return nullptr; 8346 } 8347 8348 method_params->Set(i++, param_class.Get()); 8349 } 8350 8351 DCHECK(!it.HasNext()); 8352 8353 Handle<mirror::MethodType> type = hs.NewHandle( 8354 mirror::MethodType::Create(self, return_type, method_params)); 8355 dex_cache->SetResolvedMethodType(proto_idx, type.Get()); 8356 8357 return type.Get(); 8358 } 8359 8360 mirror::MethodHandle* ClassLinker::ResolveMethodHandle(uint32_t method_handle_idx, 8361 ArtMethod* referrer) 8362 REQUIRES_SHARED(Locks::mutator_lock_) { 8363 Thread* const self = Thread::Current(); 8364 const DexFile* const dex_file = referrer->GetDexFile(); 8365 const DexFile::MethodHandleItem& mh = dex_file->GetMethodHandle(method_handle_idx); 8366 8367 union { 8368 ArtField* field; 8369 ArtMethod* method; 8370 uintptr_t field_or_method; 8371 } target; 8372 uint32_t num_params; 8373 mirror::MethodHandle::Kind kind; 8374 DexFile::MethodHandleType handle_type = 8375 static_cast<DexFile::MethodHandleType>(mh.method_handle_type_); 8376 switch (handle_type) { 8377 case DexFile::MethodHandleType::kStaticPut: { 8378 kind = mirror::MethodHandle::Kind::kStaticPut; 8379 target.field = ResolveField(mh.field_or_method_idx_, referrer, true /* is_static */); 8380 num_params = 1; 8381 break; 8382 } 8383 case DexFile::MethodHandleType::kStaticGet: { 8384 kind = mirror::MethodHandle::Kind::kStaticGet; 8385 target.field = ResolveField(mh.field_or_method_idx_, referrer, true /* is_static */); 8386 num_params = 0; 8387 break; 8388 } 8389 case DexFile::MethodHandleType::kInstancePut: { 8390 kind = mirror::MethodHandle::Kind::kInstancePut; 8391 target.field = ResolveField(mh.field_or_method_idx_, referrer, false /* is_static */); 8392 num_params = 2; 8393 break; 8394 } 8395 case DexFile::MethodHandleType::kInstanceGet: { 8396 kind = mirror::MethodHandle::Kind::kInstanceGet; 8397 target.field = ResolveField(mh.field_or_method_idx_, referrer, false /* is_static */); 8398 num_params = 1; 8399 break; 8400 } 8401 case DexFile::MethodHandleType::kInvokeStatic: { 8402 kind = mirror::MethodHandle::Kind::kInvokeStatic; 8403 target.method = ResolveMethod<kNoICCECheckForCache>(self, 8404 mh.field_or_method_idx_, 8405 referrer, 8406 InvokeType::kStatic); 8407 uint32_t shorty_length; 8408 target.method->GetShorty(&shorty_length); 8409 num_params = shorty_length - 1; // Remove 1 for return value. 8410 break; 8411 } 8412 case DexFile::MethodHandleType::kInvokeInstance: { 8413 kind = mirror::MethodHandle::Kind::kInvokeVirtual; 8414 target.method = ResolveMethod<kNoICCECheckForCache>(self, 8415 mh.field_or_method_idx_, 8416 referrer, 8417 InvokeType::kVirtual); 8418 uint32_t shorty_length; 8419 target.method->GetShorty(&shorty_length); 8420 num_params = shorty_length - 1; // Remove 1 for return value. 8421 break; 8422 } 8423 case DexFile::MethodHandleType::kInvokeConstructor: { 8424 UNIMPLEMENTED(FATAL) << "Invoke constructor is implemented as a transform."; 8425 num_params = 0; 8426 } 8427 } 8428 8429 StackHandleScope<5> hs(self); 8430 ObjPtr<mirror::Class> class_type = mirror::Class::GetJavaLangClass(); 8431 ObjPtr<mirror::Class> array_of_class = FindArrayClass(self, &class_type); 8432 Handle<mirror::ObjectArray<mirror::Class>> method_params(hs.NewHandle( 8433 mirror::ObjectArray<mirror::Class>::Alloc(self, array_of_class, num_params))); 8434 if (method_params.Get() == nullptr) { 8435 DCHECK(self->IsExceptionPending()); 8436 return nullptr; 8437 } 8438 8439 Handle<mirror::Class> return_type; 8440 switch (handle_type) { 8441 case DexFile::MethodHandleType::kStaticPut: { 8442 method_params->Set(0, target.field->GetType<true>()); 8443 return_type = hs.NewHandle(FindPrimitiveClass('V')); 8444 break; 8445 } 8446 case DexFile::MethodHandleType::kStaticGet: { 8447 return_type = hs.NewHandle(target.field->GetType<true>()); 8448 break; 8449 } 8450 case DexFile::MethodHandleType::kInstancePut: { 8451 method_params->Set(0, target.field->GetDeclaringClass()); 8452 method_params->Set(1, target.field->GetType<true>()); 8453 return_type = hs.NewHandle(FindPrimitiveClass('V')); 8454 break; 8455 } 8456 case DexFile::MethodHandleType::kInstanceGet: { 8457 method_params->Set(0, target.field->GetDeclaringClass()); 8458 return_type = hs.NewHandle(target.field->GetType<true>()); 8459 break; 8460 } 8461 case DexFile::MethodHandleType::kInvokeStatic: 8462 case DexFile::MethodHandleType::kInvokeInstance: { 8463 // TODO(oth): This will not work for varargs methods as this 8464 // requires instantiating a Transformer. This resolution step 8465 // would be best done in managed code rather than in the run 8466 // time (b/35235705) 8467 Handle<mirror::DexCache> dex_cache(hs.NewHandle(referrer->GetDexCache())); 8468 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(referrer->GetClassLoader())); 8469 DexFileParameterIterator it(*dex_file, target.method->GetPrototype()); 8470 for (int32_t i = 0; it.HasNext(); i++, it.Next()) { 8471 const dex::TypeIndex type_idx = it.GetTypeIdx(); 8472 mirror::Class* klass = ResolveType(*dex_file, type_idx, dex_cache, class_loader); 8473 if (nullptr == klass) { 8474 DCHECK(self->IsExceptionPending()); 8475 return nullptr; 8476 } 8477 method_params->Set(i, klass); 8478 } 8479 return_type = hs.NewHandle(target.method->GetReturnType(true)); 8480 break; 8481 } 8482 case DexFile::MethodHandleType::kInvokeConstructor: { 8483 // TODO(oth): b/35235705 8484 UNIMPLEMENTED(FATAL) << "Invoke constructor is implemented as a transform."; 8485 } 8486 } 8487 8488 if (return_type.IsNull()) { 8489 DCHECK(self->IsExceptionPending()); 8490 return nullptr; 8491 } 8492 8493 Handle<mirror::MethodType> 8494 mt(hs.NewHandle(mirror::MethodType::Create(self, return_type, method_params))); 8495 if (mt.IsNull()) { 8496 DCHECK(self->IsExceptionPending()); 8497 return nullptr; 8498 } 8499 return mirror::MethodHandleImpl::Create(self, target.field_or_method, kind, mt); 8500 } 8501 8502 bool ClassLinker::IsQuickResolutionStub(const void* entry_point) const { 8503 return (entry_point == GetQuickResolutionStub()) || 8504 (quick_resolution_trampoline_ == entry_point); 8505 } 8506 8507 bool ClassLinker::IsQuickToInterpreterBridge(const void* entry_point) const { 8508 return (entry_point == GetQuickToInterpreterBridge()) || 8509 (quick_to_interpreter_bridge_trampoline_ == entry_point); 8510 } 8511 8512 bool ClassLinker::IsQuickGenericJniStub(const void* entry_point) const { 8513 return (entry_point == GetQuickGenericJniStub()) || 8514 (quick_generic_jni_trampoline_ == entry_point); 8515 } 8516 8517 const void* ClassLinker::GetRuntimeQuickGenericJniStub() const { 8518 return GetQuickGenericJniStub(); 8519 } 8520 8521 void ClassLinker::SetEntryPointsToCompiledCode(ArtMethod* method, const void* code) const { 8522 CHECK(code != nullptr); 8523 const uint8_t* base = reinterpret_cast<const uint8_t*>(code); // Base of data points at code. 8524 base -= sizeof(void*); // Move backward so that code_offset != 0. 8525 const uint32_t code_offset = sizeof(void*); 8526 OatFile::OatMethod oat_method(base, code_offset); 8527 oat_method.LinkMethod(method); 8528 } 8529 8530 void ClassLinker::SetEntryPointsToInterpreter(ArtMethod* method) const { 8531 if (!method->IsNative()) { 8532 method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge()); 8533 } else { 8534 SetEntryPointsToCompiledCode(method, GetQuickGenericJniStub()); 8535 } 8536 } 8537 8538 void ClassLinker::SetEntryPointsForObsoleteMethod(ArtMethod* method) const { 8539 DCHECK(method->IsObsolete()); 8540 // We cannot mess with the entrypoints of native methods because they are used to determine how 8541 // large the method's quick stack frame is. Without this information we cannot walk the stacks. 8542 if (!method->IsNative()) { 8543 method->SetEntryPointFromQuickCompiledCode(GetInvokeObsoleteMethodStub()); 8544 } 8545 } 8546 8547 void ClassLinker::DumpForSigQuit(std::ostream& os) { 8548 ScopedObjectAccess soa(Thread::Current()); 8549 ReaderMutexLock mu(soa.Self(), *Locks::classlinker_classes_lock_); 8550 os << "Zygote loaded classes=" << NumZygoteClasses() << " post zygote classes=" 8551 << NumNonZygoteClasses() << "\n"; 8552 } 8553 8554 class CountClassesVisitor : public ClassLoaderVisitor { 8555 public: 8556 CountClassesVisitor() : num_zygote_classes(0), num_non_zygote_classes(0) {} 8557 8558 void Visit(ObjPtr<mirror::ClassLoader> class_loader) 8559 REQUIRES_SHARED(Locks::classlinker_classes_lock_, Locks::mutator_lock_) OVERRIDE { 8560 ClassTable* const class_table = class_loader->GetClassTable(); 8561 if (class_table != nullptr) { 8562 num_zygote_classes += class_table->NumZygoteClasses(class_loader); 8563 num_non_zygote_classes += class_table->NumNonZygoteClasses(class_loader); 8564 } 8565 } 8566 8567 size_t num_zygote_classes; 8568 size_t num_non_zygote_classes; 8569 }; 8570 8571 size_t ClassLinker::NumZygoteClasses() const { 8572 CountClassesVisitor visitor; 8573 VisitClassLoaders(&visitor); 8574 return visitor.num_zygote_classes + boot_class_table_.NumZygoteClasses(nullptr); 8575 } 8576 8577 size_t ClassLinker::NumNonZygoteClasses() const { 8578 CountClassesVisitor visitor; 8579 VisitClassLoaders(&visitor); 8580 return visitor.num_non_zygote_classes + boot_class_table_.NumNonZygoteClasses(nullptr); 8581 } 8582 8583 size_t ClassLinker::NumLoadedClasses() { 8584 ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); 8585 // Only return non zygote classes since these are the ones which apps which care about. 8586 return NumNonZygoteClasses(); 8587 } 8588 8589 pid_t ClassLinker::GetClassesLockOwner() { 8590 return Locks::classlinker_classes_lock_->GetExclusiveOwnerTid(); 8591 } 8592 8593 pid_t ClassLinker::GetDexLockOwner() { 8594 return Locks::dex_lock_->GetExclusiveOwnerTid(); 8595 } 8596 8597 void ClassLinker::SetClassRoot(ClassRoot class_root, ObjPtr<mirror::Class> klass) { 8598 DCHECK(!init_done_); 8599 8600 DCHECK(klass != nullptr); 8601 DCHECK(klass->GetClassLoader() == nullptr); 8602 8603 mirror::ObjectArray<mirror::Class>* class_roots = class_roots_.Read(); 8604 DCHECK(class_roots != nullptr); 8605 DCHECK(class_roots->Get(class_root) == nullptr); 8606 class_roots->Set<false>(class_root, klass); 8607 } 8608 8609 const char* ClassLinker::GetClassRootDescriptor(ClassRoot class_root) { 8610 static const char* class_roots_descriptors[] = { 8611 "Ljava/lang/Class;", 8612 "Ljava/lang/Object;", 8613 "[Ljava/lang/Class;", 8614 "[Ljava/lang/Object;", 8615 "Ljava/lang/String;", 8616 "Ljava/lang/DexCache;", 8617 "Ljava/lang/ref/Reference;", 8618 "Ljava/lang/reflect/Constructor;", 8619 "Ljava/lang/reflect/Field;", 8620 "Ljava/lang/reflect/Method;", 8621 "Ljava/lang/reflect/Proxy;", 8622 "[Ljava/lang/String;", 8623 "[Ljava/lang/reflect/Constructor;", 8624 "[Ljava/lang/reflect/Field;", 8625 "[Ljava/lang/reflect/Method;", 8626 "Ljava/lang/invoke/CallSite;", 8627 "Ljava/lang/invoke/MethodHandleImpl;", 8628 "Ljava/lang/invoke/MethodHandles$Lookup;", 8629 "Ljava/lang/invoke/MethodType;", 8630 "Ljava/lang/ClassLoader;", 8631 "Ljava/lang/Throwable;", 8632 "Ljava/lang/ClassNotFoundException;", 8633 "Ljava/lang/StackTraceElement;", 8634 "Ldalvik/system/EmulatedStackFrame;", 8635 "Z", 8636 "B", 8637 "C", 8638 "D", 8639 "F", 8640 "I", 8641 "J", 8642 "S", 8643 "V", 8644 "[Z", 8645 "[B", 8646 "[C", 8647 "[D", 8648 "[F", 8649 "[I", 8650 "[J", 8651 "[S", 8652 "[Ljava/lang/StackTraceElement;", 8653 "Ldalvik/system/ClassExt;", 8654 }; 8655 static_assert(arraysize(class_roots_descriptors) == size_t(kClassRootsMax), 8656 "Mismatch between class descriptors and class-root enum"); 8657 8658 const char* descriptor = class_roots_descriptors[class_root]; 8659 CHECK(descriptor != nullptr); 8660 return descriptor; 8661 } 8662 8663 jobject ClassLinker::CreatePathClassLoader(Thread* self, 8664 const std::vector<const DexFile*>& dex_files) { 8665 // SOAAlreadyRunnable is protected, and we need something to add a global reference. 8666 // We could move the jobject to the callers, but all call-sites do this... 8667 ScopedObjectAccessUnchecked soa(self); 8668 8669 // For now, create a libcore-level DexFile for each ART DexFile. This "explodes" multidex. 8670 StackHandleScope<6> hs(self); 8671 8672 ArtField* dex_elements_field = 8673 jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList_dexElements); 8674 8675 Handle<mirror::Class> dex_elements_class(hs.NewHandle(dex_elements_field->GetType<true>())); 8676 DCHECK(dex_elements_class != nullptr); 8677 DCHECK(dex_elements_class->IsArrayClass()); 8678 Handle<mirror::ObjectArray<mirror::Object>> h_dex_elements(hs.NewHandle( 8679 mirror::ObjectArray<mirror::Object>::Alloc(self, 8680 dex_elements_class.Get(), 8681 dex_files.size()))); 8682 Handle<mirror::Class> h_dex_element_class = 8683 hs.NewHandle(dex_elements_class->GetComponentType()); 8684 8685 ArtField* element_file_field = 8686 jni::DecodeArtField(WellKnownClasses::dalvik_system_DexPathList__Element_dexFile); 8687 DCHECK_EQ(h_dex_element_class.Get(), element_file_field->GetDeclaringClass()); 8688 8689 ArtField* cookie_field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie); 8690 DCHECK_EQ(cookie_field->GetDeclaringClass(), element_file_field->GetType<false>()); 8691 8692 ArtField* file_name_field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_fileName); 8693 DCHECK_EQ(file_name_field->GetDeclaringClass(), element_file_field->GetType<false>()); 8694 8695 // Fill the elements array. 8696 int32_t index = 0; 8697 for (const DexFile* dex_file : dex_files) { 8698 StackHandleScope<4> hs2(self); 8699 8700 // CreatePathClassLoader is only used by gtests. Index 0 of h_long_array is supposed to be the 8701 // oat file but we can leave it null. 8702 Handle<mirror::LongArray> h_long_array = hs2.NewHandle(mirror::LongArray::Alloc( 8703 self, 8704 kDexFileIndexStart + 1)); 8705 DCHECK(h_long_array != nullptr); 8706 h_long_array->Set(kDexFileIndexStart, reinterpret_cast<intptr_t>(dex_file)); 8707 8708 // Note that this creates a finalizable dalvik.system.DexFile object and a corresponding 8709 // FinalizerReference which will never get cleaned up without a started runtime. 8710 Handle<mirror::Object> h_dex_file = hs2.NewHandle( 8711 cookie_field->GetDeclaringClass()->AllocObject(self)); 8712 DCHECK(h_dex_file != nullptr); 8713 cookie_field->SetObject<false>(h_dex_file.Get(), h_long_array.Get()); 8714 8715 Handle<mirror::String> h_file_name = hs2.NewHandle( 8716 mirror::String::AllocFromModifiedUtf8(self, dex_file->GetLocation().c_str())); 8717 DCHECK(h_file_name != nullptr); 8718 file_name_field->SetObject<false>(h_dex_file.Get(), h_file_name.Get()); 8719 8720 Handle<mirror::Object> h_element = hs2.NewHandle(h_dex_element_class->AllocObject(self)); 8721 DCHECK(h_element != nullptr); 8722 element_file_field->SetObject<false>(h_element.Get(), h_dex_file.Get()); 8723 8724 h_dex_elements->Set(index, h_element.Get()); 8725 index++; 8726 } 8727 DCHECK_EQ(index, h_dex_elements->GetLength()); 8728 8729 // Create DexPathList. 8730 Handle<mirror::Object> h_dex_path_list = hs.NewHandle( 8731 dex_elements_field->GetDeclaringClass()->AllocObject(self)); 8732 DCHECK(h_dex_path_list != nullptr); 8733 // Set elements. 8734 dex_elements_field->SetObject<false>(h_dex_path_list.Get(), h_dex_elements.Get()); 8735 8736 // Create PathClassLoader. 8737 Handle<mirror::Class> h_path_class_class = hs.NewHandle( 8738 soa.Decode<mirror::Class>(WellKnownClasses::dalvik_system_PathClassLoader)); 8739 Handle<mirror::Object> h_path_class_loader = hs.NewHandle( 8740 h_path_class_class->AllocObject(self)); 8741 DCHECK(h_path_class_loader != nullptr); 8742 // Set DexPathList. 8743 ArtField* path_list_field = 8744 jni::DecodeArtField(WellKnownClasses::dalvik_system_BaseDexClassLoader_pathList); 8745 DCHECK(path_list_field != nullptr); 8746 path_list_field->SetObject<false>(h_path_class_loader.Get(), h_dex_path_list.Get()); 8747 8748 // Make a pretend boot-classpath. 8749 // TODO: Should we scan the image? 8750 ArtField* const parent_field = 8751 mirror::Class::FindField(self, 8752 h_path_class_loader->GetClass(), 8753 "parent", 8754 "Ljava/lang/ClassLoader;"); 8755 DCHECK(parent_field != nullptr); 8756 ObjPtr<mirror::Object> boot_cl = 8757 soa.Decode<mirror::Class>(WellKnownClasses::java_lang_BootClassLoader)->AllocObject(self); 8758 parent_field->SetObject<false>(h_path_class_loader.Get(), boot_cl); 8759 8760 // Make it a global ref and return. 8761 ScopedLocalRef<jobject> local_ref( 8762 soa.Env(), soa.Env()->AddLocalReference<jobject>(h_path_class_loader.Get())); 8763 return soa.Env()->NewGlobalRef(local_ref.get()); 8764 } 8765 8766 void ClassLinker::DropFindArrayClassCache() { 8767 std::fill_n(find_array_class_cache_, kFindArrayCacheSize, GcRoot<mirror::Class>(nullptr)); 8768 find_array_class_cache_next_victim_ = 0; 8769 } 8770 8771 void ClassLinker::ClearClassTableStrongRoots() const { 8772 Thread* const self = Thread::Current(); 8773 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); 8774 for (const ClassLoaderData& data : class_loaders_) { 8775 if (data.class_table != nullptr) { 8776 data.class_table->ClearStrongRoots(); 8777 } 8778 } 8779 } 8780 8781 void ClassLinker::VisitClassLoaders(ClassLoaderVisitor* visitor) const { 8782 Thread* const self = Thread::Current(); 8783 for (const ClassLoaderData& data : class_loaders_) { 8784 // Need to use DecodeJObject so that we get null for cleared JNI weak globals. 8785 ObjPtr<mirror::ClassLoader> class_loader = ObjPtr<mirror::ClassLoader>::DownCast( 8786 self->DecodeJObject(data.weak_root)); 8787 if (class_loader != nullptr) { 8788 visitor->Visit(class_loader.Ptr()); 8789 } 8790 } 8791 } 8792 8793 void ClassLinker::InsertDexFileInToClassLoader(ObjPtr<mirror::Object> dex_file, 8794 ObjPtr<mirror::ClassLoader> class_loader) { 8795 DCHECK(dex_file != nullptr); 8796 Thread* const self = Thread::Current(); 8797 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); 8798 ClassTable* const table = ClassTableForClassLoader(class_loader.Ptr()); 8799 DCHECK(table != nullptr); 8800 if (table->InsertStrongRoot(dex_file) && class_loader != nullptr) { 8801 // It was not already inserted, perform the write barrier to let the GC know the class loader's 8802 // class table was modified. 8803 Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(class_loader); 8804 } 8805 } 8806 8807 void ClassLinker::CleanupClassLoaders() { 8808 Thread* const self = Thread::Current(); 8809 std::vector<ClassLoaderData> to_delete; 8810 // Do the delete outside the lock to avoid lock violation in jit code cache. 8811 { 8812 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_); 8813 for (auto it = class_loaders_.begin(); it != class_loaders_.end(); ) { 8814 const ClassLoaderData& data = *it; 8815 // Need to use DecodeJObject so that we get null for cleared JNI weak globals. 8816 ObjPtr<mirror::ClassLoader> class_loader = 8817 ObjPtr<mirror::ClassLoader>::DownCast(self->DecodeJObject(data.weak_root)); 8818 if (class_loader != nullptr) { 8819 ++it; 8820 } else { 8821 VLOG(class_linker) << "Freeing class loader"; 8822 to_delete.push_back(data); 8823 it = class_loaders_.erase(it); 8824 } 8825 } 8826 } 8827 for (ClassLoaderData& data : to_delete) { 8828 DeleteClassLoader(self, data); 8829 } 8830 } 8831 8832 class GetResolvedClassesVisitor : public ClassVisitor { 8833 public: 8834 GetResolvedClassesVisitor(std::set<DexCacheResolvedClasses>* result, bool ignore_boot_classes) 8835 : result_(result), 8836 ignore_boot_classes_(ignore_boot_classes), 8837 last_resolved_classes_(result->end()), 8838 last_dex_file_(nullptr), 8839 vlog_is_on_(VLOG_IS_ON(class_linker)), 8840 extra_stats_(), 8841 last_extra_stats_(extra_stats_.end()) { } 8842 8843 bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { 8844 if (!klass->IsProxyClass() && 8845 !klass->IsArrayClass() && 8846 klass->IsResolved() && 8847 !klass->IsErroneousResolved() && 8848 (!ignore_boot_classes_ || klass->GetClassLoader() != nullptr)) { 8849 const DexFile& dex_file = klass->GetDexFile(); 8850 if (&dex_file != last_dex_file_) { 8851 last_dex_file_ = &dex_file; 8852 DexCacheResolvedClasses resolved_classes(dex_file.GetLocation(), 8853 dex_file.GetBaseLocation(), 8854 dex_file.GetLocationChecksum()); 8855 last_resolved_classes_ = result_->find(resolved_classes); 8856 if (last_resolved_classes_ == result_->end()) { 8857 last_resolved_classes_ = result_->insert(resolved_classes).first; 8858 } 8859 } 8860 bool added = last_resolved_classes_->AddClass(klass->GetDexTypeIndex()); 8861 if (UNLIKELY(vlog_is_on_) && added) { 8862 const DexCacheResolvedClasses* resolved_classes = std::addressof(*last_resolved_classes_); 8863 if (last_extra_stats_ == extra_stats_.end() || 8864 last_extra_stats_->first != resolved_classes) { 8865 last_extra_stats_ = extra_stats_.find(resolved_classes); 8866 if (last_extra_stats_ == extra_stats_.end()) { 8867 last_extra_stats_ = 8868 extra_stats_.emplace(resolved_classes, ExtraStats(dex_file.NumClassDefs())).first; 8869 } 8870 } 8871 } 8872 } 8873 return true; 8874 } 8875 8876 void PrintStatistics() const { 8877 if (vlog_is_on_) { 8878 for (const DexCacheResolvedClasses& resolved_classes : *result_) { 8879 auto it = extra_stats_.find(std::addressof(resolved_classes)); 8880 DCHECK(it != extra_stats_.end()); 8881 const ExtraStats& extra_stats = it->second; 8882 LOG(INFO) << "Dex location " << resolved_classes.GetDexLocation() 8883 << " has " << resolved_classes.GetClasses().size() << " / " 8884 << extra_stats.number_of_class_defs_ << " resolved classes"; 8885 } 8886 } 8887 } 8888 8889 private: 8890 struct ExtraStats { 8891 explicit ExtraStats(uint32_t number_of_class_defs) 8892 : number_of_class_defs_(number_of_class_defs) {} 8893 uint32_t number_of_class_defs_; 8894 }; 8895 8896 std::set<DexCacheResolvedClasses>* result_; 8897 bool ignore_boot_classes_; 8898 std::set<DexCacheResolvedClasses>::iterator last_resolved_classes_; 8899 const DexFile* last_dex_file_; 8900 8901 // Statistics. 8902 bool vlog_is_on_; 8903 std::map<const DexCacheResolvedClasses*, ExtraStats> extra_stats_; 8904 std::map<const DexCacheResolvedClasses*, ExtraStats>::iterator last_extra_stats_; 8905 }; 8906 8907 std::set<DexCacheResolvedClasses> ClassLinker::GetResolvedClasses(bool ignore_boot_classes) { 8908 ScopedTrace trace(__PRETTY_FUNCTION__); 8909 ScopedObjectAccess soa(Thread::Current()); 8910 ScopedAssertNoThreadSuspension ants(__FUNCTION__); 8911 std::set<DexCacheResolvedClasses> ret; 8912 VLOG(class_linker) << "Collecting resolved classes"; 8913 const uint64_t start_time = NanoTime(); 8914 GetResolvedClassesVisitor visitor(&ret, ignore_boot_classes); 8915 VisitClasses(&visitor); 8916 if (VLOG_IS_ON(class_linker)) { 8917 visitor.PrintStatistics(); 8918 LOG(INFO) << "Collecting class profile took " << PrettyDuration(NanoTime() - start_time); 8919 } 8920 return ret; 8921 } 8922 8923 std::unordered_set<std::string> ClassLinker::GetClassDescriptorsForResolvedClasses( 8924 const std::set<DexCacheResolvedClasses>& classes) { 8925 ScopedTrace trace(__PRETTY_FUNCTION__); 8926 std::unordered_set<std::string> ret; 8927 Thread* const self = Thread::Current(); 8928 std::unordered_map<std::string, const DexFile*> location_to_dex_file; 8929 ScopedObjectAccess soa(self); 8930 ScopedAssertNoThreadSuspension ants(__FUNCTION__); 8931 ReaderMutexLock mu(self, *Locks::dex_lock_); 8932 for (const ClassLinker::DexCacheData& data : GetDexCachesData()) { 8933 if (!self->IsJWeakCleared(data.weak_root)) { 8934 ObjPtr<mirror::DexCache> dex_cache = soa.Decode<mirror::DexCache>(data.weak_root); 8935 if (dex_cache != nullptr) { 8936 const DexFile* dex_file = dex_cache->GetDexFile(); 8937 // There could be duplicates if two dex files with the same location are mapped. 8938 location_to_dex_file.emplace(dex_file->GetLocation(), dex_file); 8939 } 8940 } 8941 } 8942 for (const DexCacheResolvedClasses& info : classes) { 8943 const std::string& location = info.GetDexLocation(); 8944 auto found = location_to_dex_file.find(location); 8945 if (found != location_to_dex_file.end()) { 8946 const DexFile* dex_file = found->second; 8947 VLOG(profiler) << "Found opened dex file for " << dex_file->GetLocation() << " with " 8948 << info.GetClasses().size() << " classes"; 8949 DCHECK_EQ(dex_file->GetLocationChecksum(), info.GetLocationChecksum()); 8950 for (dex::TypeIndex type_idx : info.GetClasses()) { 8951 if (!dex_file->IsTypeIndexValid(type_idx)) { 8952 // Something went bad. The profile is probably corrupted. Abort and return an emtpy set. 8953 LOG(WARNING) << "Corrupted profile: invalid type index " 8954 << type_idx.index_ << " in dex " << location; 8955 return std::unordered_set<std::string>(); 8956 } 8957 const DexFile::TypeId& type_id = dex_file->GetTypeId(type_idx); 8958 const char* descriptor = dex_file->GetTypeDescriptor(type_id); 8959 ret.insert(descriptor); 8960 } 8961 } else { 8962 VLOG(class_linker) << "Failed to find opened dex file for location " << location; 8963 } 8964 } 8965 return ret; 8966 } 8967 8968 class ClassLinker::FindVirtualMethodHolderVisitor : public ClassVisitor { 8969 public: 8970 FindVirtualMethodHolderVisitor(const ArtMethod* method, PointerSize pointer_size) 8971 : method_(method), 8972 pointer_size_(pointer_size) {} 8973 8974 bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE { 8975 if (klass->GetVirtualMethodsSliceUnchecked(pointer_size_).Contains(method_)) { 8976 holder_ = klass; 8977 } 8978 // Return false to stop searching if holder_ is not null. 8979 return holder_ == nullptr; 8980 } 8981 8982 ObjPtr<mirror::Class> holder_ = nullptr; 8983 const ArtMethod* const method_; 8984 const PointerSize pointer_size_; 8985 }; 8986 8987 mirror::Class* ClassLinker::GetHoldingClassOfCopiedMethod(ArtMethod* method) { 8988 ScopedTrace trace(__FUNCTION__); // Since this function is slow, have a trace to notify people. 8989 CHECK(method->IsCopied()); 8990 FindVirtualMethodHolderVisitor visitor(method, image_pointer_size_); 8991 VisitClasses(&visitor); 8992 return visitor.holder_.Ptr(); 8993 } 8994 8995 mirror::IfTable* ClassLinker::AllocIfTable(Thread* self, size_t ifcount) { 8996 return down_cast<mirror::IfTable*>( 8997 mirror::IfTable::Alloc(self, 8998 GetClassRoot(kObjectArrayClass), 8999 ifcount * mirror::IfTable::kMax)); 9000 } 9001 9002 // Instantiate ResolveMethod. 9003 template ArtMethod* ClassLinker::ResolveMethod<ClassLinker::kForceICCECheck>( 9004 const DexFile& dex_file, 9005 uint32_t method_idx, 9006 Handle<mirror::DexCache> dex_cache, 9007 Handle<mirror::ClassLoader> class_loader, 9008 ArtMethod* referrer, 9009 InvokeType type); 9010 template ArtMethod* ClassLinker::ResolveMethod<ClassLinker::kNoICCECheckForCache>( 9011 const DexFile& dex_file, 9012 uint32_t method_idx, 9013 Handle<mirror::DexCache> dex_cache, 9014 Handle<mirror::ClassLoader> class_loader, 9015 ArtMethod* referrer, 9016 InvokeType type); 9017 9018 } // namespace art 9019