Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2015 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_COMPILER_OPTIMIZING_INDUCTION_VAR_RANGE_H_
     18 #define ART_COMPILER_OPTIMIZING_INDUCTION_VAR_RANGE_H_
     19 
     20 #include "induction_var_analysis.h"
     21 
     22 namespace art {
     23 
     24 /**
     25  * This class implements range analysis on expressions within loops. It takes the results
     26  * of induction variable analysis in the constructor and provides a public API to obtain
     27  * a conservative lower and upper bound value or last value on each instruction in the HIR.
     28  * The public API also provides a few general-purpose utility methods related to induction.
     29  *
     30  * The range analysis is done with a combination of symbolic and partial integral evaluation
     31  * of expressions. The analysis avoids complications with wrap-around arithmetic on the integral
     32  * parts but all clients should be aware that wrap-around may occur on any of the symbolic parts.
     33  * For example, given a known range for [0,100] for i, the evaluation yields range [-100,100]
     34  * for expression -2*i+100, which is exact, and range [x,x+100] for expression i+x, which may
     35  * wrap-around anywhere in the range depending on the actual value of x.
     36  */
     37 class InductionVarRange {
     38  public:
     39   /*
     40    * A value that can be represented as "a * instruction + b" for 32-bit constants, where
     41    * Value() denotes an unknown lower and upper bound. Although range analysis could yield
     42    * more complex values, the format is sufficiently powerful to represent useful cases
     43    * and feeds directly into optimizations like bounds check elimination.
     44    */
     45   struct Value {
     46     Value() : instruction(nullptr), a_constant(0), b_constant(0), is_known(false) {}
     47     Value(HInstruction* i, int32_t a, int32_t b)
     48         : instruction(a != 0 ? i : nullptr), a_constant(a), b_constant(b), is_known(true) {}
     49     explicit Value(int32_t b) : Value(nullptr, 0, b) {}
     50     // Representation as: a_constant x instruction + b_constant.
     51     HInstruction* instruction;
     52     int32_t a_constant;
     53     int32_t b_constant;
     54     // If true, represented by prior fields. Otherwise unknown value.
     55     bool is_known;
     56   };
     57 
     58   explicit InductionVarRange(HInductionVarAnalysis* induction);
     59 
     60   /**
     61    * Given a context denoted by the first instruction, returns a possibly conservative lower
     62    * and upper bound on the instruction's value in the output parameters min_val and max_val,
     63    * respectively. The need_finite_test flag denotes if an additional finite-test is needed
     64    * to protect the range evaluation inside its loop. The parameter chase_hint defines an
     65    * instruction at which chasing may stop. Returns false on failure.
     66    */
     67   bool GetInductionRange(HInstruction* context,
     68                          HInstruction* instruction,
     69                          HInstruction* chase_hint,
     70                          /*out*/ Value* min_val,
     71                          /*out*/ Value* max_val,
     72                          /*out*/ bool* needs_finite_test);
     73 
     74   /**
     75    * Returns true if range analysis is able to generate code for the lower and upper
     76    * bound expressions on the instruction in the given context. The need_finite_test
     77    * and need_taken test flags denote if an additional finite-test and/or taken-test
     78    * are needed to protect the range evaluation inside its loop.
     79    */
     80   bool CanGenerateRange(HInstruction* context,
     81                         HInstruction* instruction,
     82                         /*out*/ bool* needs_finite_test,
     83                         /*out*/ bool* needs_taken_test);
     84 
     85   /**
     86    * Generates the actual code in the HIR for the lower and upper bound expressions on the
     87    * instruction in the given context. Code for the lower and upper bound expression are
     88    * generated in given block and graph and are returned in the output parameters lower and
     89    * upper, respectively. For a loop invariant, lower is not set.
     90    *
     91    * For example, given expression x+i with range [0, 5] for i, calling this method
     92    * will generate the following sequence:
     93    *
     94    * block:
     95    *   lower: add x, 0
     96    *   upper: add x, 5
     97    *
     98    * Precondition: CanGenerateRange() returns true.
     99    */
    100   void GenerateRange(HInstruction* context,
    101                      HInstruction* instruction,
    102                      HGraph* graph,
    103                      HBasicBlock* block,
    104                      /*out*/ HInstruction** lower,
    105                      /*out*/ HInstruction** upper);
    106 
    107   /**
    108    * Generates explicit taken-test for the loop in the given context. Code is generated in
    109    * given block and graph. Returns generated taken-test.
    110    *
    111    * Precondition: CanGenerateRange() returns true and needs_taken_test is set.
    112    */
    113   HInstruction* GenerateTakenTest(HInstruction* context, HGraph* graph, HBasicBlock* block);
    114 
    115   /**
    116    * Returns true if induction analysis is able to generate code for last value of
    117    * the given instruction inside the closest enveloping loop.
    118    */
    119   bool CanGenerateLastValue(HInstruction* instruction);
    120 
    121   /**
    122    * Generates last value of the given instruction in the closest enveloping loop.
    123    * Code is generated in given block and graph. Returns generated last value.
    124    *
    125    * Precondition: CanGenerateLastValue() returns true.
    126    */
    127   HInstruction* GenerateLastValue(HInstruction* instruction, HGraph* graph, HBasicBlock* block);
    128 
    129   /**
    130    * Updates all matching fetches with the given replacement in all induction information
    131    * that is associated with the given instruction.
    132    */
    133   void Replace(HInstruction* instruction, HInstruction* fetch, HInstruction* replacement);
    134 
    135   /**
    136    * Incrementally updates induction information for just the given loop.
    137    */
    138   void ReVisit(HLoopInformation* loop) {
    139     induction_analysis_->induction_.erase(loop);
    140     for (HInstructionIterator it(loop->GetHeader()->GetPhis()); !it.Done(); it.Advance()) {
    141       induction_analysis_->cycles_.erase(it.Current()->AsPhi());
    142     }
    143     induction_analysis_->VisitLoop(loop);
    144   }
    145 
    146   /**
    147    * Lookup an interesting cycle associated with an entry phi.
    148    */
    149   ArenaSet<HInstruction*>* LookupCycle(HPhi* phi) const {
    150     return induction_analysis_->LookupCycle(phi);
    151   }
    152 
    153   /**
    154    * Checks if header logic of a loop terminates. Sets trip-count tc if known.
    155    */
    156   bool IsFinite(HLoopInformation* loop, /*out*/ int64_t* tc) const;
    157 
    158   /**
    159    * Checks if the given instruction is a unit stride induction inside the closest enveloping
    160    * loop of the context that is defined by the first parameter (e.g. pass an array reference
    161    * as context and the index as instruction to make sure the stride is tested against the
    162    * loop that envelops the reference the closest). Returns invariant offset on success.
    163    */
    164   bool IsUnitStride(HInstruction* context,
    165                     HInstruction* instruction,
    166                     /*out*/ HInstruction** offset) const;
    167 
    168   /**
    169    * Generates the trip count expression for the given loop. Code is generated in given block
    170    * and graph. The expression is guarded by a taken test if needed. Returns the trip count
    171    * expression on success or null otherwise.
    172    */
    173   HInstruction* GenerateTripCount(HLoopInformation* loop, HGraph* graph, HBasicBlock* block);
    174 
    175  private:
    176   /*
    177    * Enum used in IsConstant() request.
    178    */
    179   enum ConstantRequest {
    180     kExact,
    181     kAtMost,
    182     kAtLeast
    183   };
    184 
    185   /**
    186    * Returns true if exact or upper/lower bound on the given induction
    187    * information is known as a 64-bit constant, which is returned in value.
    188    */
    189   bool IsConstant(HInductionVarAnalysis::InductionInfo* info,
    190                   ConstantRequest request,
    191                   /*out*/ int64_t* value) const;
    192 
    193   /** Returns whether induction information can be obtained. */
    194   bool HasInductionInfo(HInstruction* context,
    195                         HInstruction* instruction,
    196                         /*out*/ HLoopInformation** loop,
    197                         /*out*/ HInductionVarAnalysis::InductionInfo** info,
    198                         /*out*/ HInductionVarAnalysis::InductionInfo** trip) const;
    199 
    200   bool HasFetchInLoop(HInductionVarAnalysis::InductionInfo* info) const;
    201   bool NeedsTripCount(HInductionVarAnalysis::InductionInfo* info,
    202                       /*out*/ int64_t* stride_value) const;
    203   bool IsBodyTripCount(HInductionVarAnalysis::InductionInfo* trip) const;
    204   bool IsUnsafeTripCount(HInductionVarAnalysis::InductionInfo* trip) const;
    205   bool IsWellBehavedTripCount(HInductionVarAnalysis::InductionInfo* trip) const;
    206 
    207   Value GetLinear(HInductionVarAnalysis::InductionInfo* info,
    208                   HInductionVarAnalysis::InductionInfo* trip,
    209                   bool in_body,
    210                   bool is_min) const;
    211   Value GetPolynomial(HInductionVarAnalysis::InductionInfo* info,
    212                       HInductionVarAnalysis::InductionInfo* trip,
    213                       bool in_body,
    214                       bool is_min) const;
    215   Value GetGeometric(HInductionVarAnalysis::InductionInfo* info,
    216                      HInductionVarAnalysis::InductionInfo* trip,
    217                      bool in_body,
    218                      bool is_min) const;
    219   Value GetFetch(HInstruction* instruction,
    220                  HInductionVarAnalysis::InductionInfo* trip,
    221                  bool in_body,
    222                  bool is_min) const;
    223   Value GetVal(HInductionVarAnalysis::InductionInfo* info,
    224                HInductionVarAnalysis::InductionInfo* trip,
    225                bool in_body,
    226                bool is_min) const;
    227   Value GetMul(HInductionVarAnalysis::InductionInfo* info1,
    228                HInductionVarAnalysis::InductionInfo* info2,
    229                HInductionVarAnalysis::InductionInfo* trip,
    230                bool in_body,
    231                bool is_min) const;
    232   Value GetDiv(HInductionVarAnalysis::InductionInfo* info1,
    233                HInductionVarAnalysis::InductionInfo* info2,
    234                HInductionVarAnalysis::InductionInfo* trip,
    235                bool in_body,
    236                bool is_min) const;
    237   Value GetRem(HInductionVarAnalysis::InductionInfo* info1,
    238                HInductionVarAnalysis::InductionInfo* info2) const;
    239   Value GetXor(HInductionVarAnalysis::InductionInfo* info1,
    240                HInductionVarAnalysis::InductionInfo* info2) const;
    241 
    242   Value MulRangeAndConstant(int64_t value,
    243                             HInductionVarAnalysis::InductionInfo* info,
    244                             HInductionVarAnalysis::InductionInfo* trip,
    245                             bool in_body,
    246                             bool is_min) const;
    247   Value DivRangeAndConstant(int64_t value,
    248                             HInductionVarAnalysis::InductionInfo* info,
    249                             HInductionVarAnalysis::InductionInfo* trip,
    250                             bool in_body,
    251                             bool is_min) const;
    252 
    253   Value AddValue(Value v1, Value v2) const;
    254   Value SubValue(Value v1, Value v2) const;
    255   Value MulValue(Value v1, Value v2) const;
    256   Value DivValue(Value v1, Value v2) const;
    257   Value MergeVal(Value v1, Value v2, bool is_min) const;
    258 
    259   /**
    260    * Generates code for lower/upper/taken-test or last value in the HIR. Returns true on
    261    * success. With values nullptr, the method can be used to determine if code generation
    262    * would be successful without generating actual code yet.
    263    */
    264   bool GenerateRangeOrLastValue(HInstruction* context,
    265                                 HInstruction* instruction,
    266                                 bool is_last_val,
    267                                 HGraph* graph,
    268                                 HBasicBlock* block,
    269                                 /*out*/ HInstruction** lower,
    270                                 /*out*/ HInstruction** upper,
    271                                 /*out*/ HInstruction** taken_test,
    272                                 /*out*/ int64_t* stride_value,
    273                                 /*out*/ bool* needs_finite_test,
    274                                 /*out*/ bool* needs_taken_test) const;
    275 
    276   bool GenerateLastValuePolynomial(HInductionVarAnalysis::InductionInfo* info,
    277                                    HInductionVarAnalysis::InductionInfo* trip,
    278                                    HGraph* graph,
    279                                    HBasicBlock* block,
    280                                    /*out*/HInstruction** result) const;
    281 
    282   bool GenerateLastValueGeometric(HInductionVarAnalysis::InductionInfo* info,
    283                                   HInductionVarAnalysis::InductionInfo* trip,
    284                                   HGraph* graph,
    285                                   HBasicBlock* block,
    286                                   /*out*/HInstruction** result) const;
    287 
    288   bool GenerateLastValueWrapAround(HInductionVarAnalysis::InductionInfo* info,
    289                                    HInductionVarAnalysis::InductionInfo* trip,
    290                                    HGraph* graph,
    291                                    HBasicBlock* block,
    292                                    /*out*/HInstruction** result) const;
    293 
    294   bool GenerateLastValuePeriodic(HInductionVarAnalysis::InductionInfo* info,
    295                                  HInductionVarAnalysis::InductionInfo* trip,
    296                                  HGraph* graph,
    297                                  HBasicBlock* block,
    298                                  /*out*/HInstruction** result,
    299                                  /*out*/ bool* needs_taken_test) const;
    300 
    301   bool GenerateCode(HInductionVarAnalysis::InductionInfo* info,
    302                     HInductionVarAnalysis::InductionInfo* trip,
    303                     HGraph* graph,
    304                     HBasicBlock* block,
    305                     /*out*/ HInstruction** result,
    306                     bool in_body,
    307                     bool is_min) const;
    308 
    309   void ReplaceInduction(HInductionVarAnalysis::InductionInfo* info,
    310                         HInstruction* fetch,
    311                         HInstruction* replacement);
    312 
    313   /** Results of prior induction variable analysis. */
    314   HInductionVarAnalysis* induction_analysis_;
    315 
    316   /** Instruction at which chasing may stop. */
    317   HInstruction* chase_hint_;
    318 
    319   friend class HInductionVarAnalysis;
    320   friend class InductionVarRangeTest;
    321 
    322   DISALLOW_COPY_AND_ASSIGN(InductionVarRange);
    323 };
    324 
    325 }  // namespace art
    326 
    327 #endif  // ART_COMPILER_OPTIMIZING_INDUCTION_VAR_RANGE_H_
    328