Home | History | Annotate | Download | only in text
      1 /*
      2  * Copyright (C) 2006 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 package android.text;
     18 
     19 import android.annotation.Nullable;
     20 import android.graphics.BaseCanvas;
     21 import android.graphics.Paint;
     22 import android.util.Log;
     23 
     24 import com.android.internal.annotations.GuardedBy;
     25 import com.android.internal.util.ArrayUtils;
     26 import com.android.internal.util.GrowingArrayUtils;
     27 
     28 import libcore.util.EmptyArray;
     29 
     30 import java.lang.reflect.Array;
     31 import java.util.IdentityHashMap;
     32 
     33 /**
     34  * This is the class for text whose content and markup can both be changed.
     35  */
     36 public class SpannableStringBuilder implements CharSequence, GetChars, Spannable, Editable,
     37         Appendable, GraphicsOperations {
     38     private final static String TAG = "SpannableStringBuilder";
     39     /**
     40      * Create a new SpannableStringBuilder with empty contents
     41      */
     42     public SpannableStringBuilder() {
     43         this("");
     44     }
     45 
     46     /**
     47      * Create a new SpannableStringBuilder containing a copy of the
     48      * specified text, including its spans if any.
     49      */
     50     public SpannableStringBuilder(CharSequence text) {
     51         this(text, 0, text.length());
     52     }
     53 
     54     /**
     55      * Create a new SpannableStringBuilder containing a copy of the
     56      * specified slice of the specified text, including its spans if any.
     57      */
     58     public SpannableStringBuilder(CharSequence text, int start, int end) {
     59         int srclen = end - start;
     60 
     61         if (srclen < 0) throw new StringIndexOutOfBoundsException();
     62 
     63         mText = ArrayUtils.newUnpaddedCharArray(GrowingArrayUtils.growSize(srclen));
     64         mGapStart = srclen;
     65         mGapLength = mText.length - srclen;
     66 
     67         TextUtils.getChars(text, start, end, mText, 0);
     68 
     69         mSpanCount = 0;
     70         mSpanInsertCount = 0;
     71         mSpans = EmptyArray.OBJECT;
     72         mSpanStarts = EmptyArray.INT;
     73         mSpanEnds = EmptyArray.INT;
     74         mSpanFlags = EmptyArray.INT;
     75         mSpanMax = EmptyArray.INT;
     76         mSpanOrder = EmptyArray.INT;
     77 
     78         if (text instanceof Spanned) {
     79             Spanned sp = (Spanned) text;
     80             Object[] spans = sp.getSpans(start, end, Object.class);
     81 
     82             for (int i = 0; i < spans.length; i++) {
     83                 if (spans[i] instanceof NoCopySpan) {
     84                     continue;
     85                 }
     86 
     87                 int st = sp.getSpanStart(spans[i]) - start;
     88                 int en = sp.getSpanEnd(spans[i]) - start;
     89                 int fl = sp.getSpanFlags(spans[i]);
     90 
     91                 if (st < 0)
     92                     st = 0;
     93                 if (st > end - start)
     94                     st = end - start;
     95 
     96                 if (en < 0)
     97                     en = 0;
     98                 if (en > end - start)
     99                     en = end - start;
    100 
    101                 setSpan(false, spans[i], st, en, fl, false/*enforceParagraph*/);
    102             }
    103             restoreInvariants();
    104         }
    105     }
    106 
    107     public static SpannableStringBuilder valueOf(CharSequence source) {
    108         if (source instanceof SpannableStringBuilder) {
    109             return (SpannableStringBuilder) source;
    110         } else {
    111             return new SpannableStringBuilder(source);
    112         }
    113     }
    114 
    115     /**
    116      * Return the char at the specified offset within the buffer.
    117      */
    118     public char charAt(int where) {
    119         int len = length();
    120         if (where < 0) {
    121             throw new IndexOutOfBoundsException("charAt: " + where + " < 0");
    122         } else if (where >= len) {
    123             throw new IndexOutOfBoundsException("charAt: " + where + " >= length " + len);
    124         }
    125 
    126         if (where >= mGapStart)
    127             return mText[where + mGapLength];
    128         else
    129             return mText[where];
    130     }
    131 
    132     /**
    133      * Return the number of chars in the buffer.
    134      */
    135     public int length() {
    136         return mText.length - mGapLength;
    137     }
    138 
    139     private void resizeFor(int size) {
    140         final int oldLength = mText.length;
    141         if (size + 1 <= oldLength) {
    142             return;
    143         }
    144 
    145         char[] newText = ArrayUtils.newUnpaddedCharArray(GrowingArrayUtils.growSize(size));
    146         System.arraycopy(mText, 0, newText, 0, mGapStart);
    147         final int newLength = newText.length;
    148         final int delta = newLength - oldLength;
    149         final int after = oldLength - (mGapStart + mGapLength);
    150         System.arraycopy(mText, oldLength - after, newText, newLength - after, after);
    151         mText = newText;
    152 
    153         mGapLength += delta;
    154         if (mGapLength < 1)
    155             new Exception("mGapLength < 1").printStackTrace();
    156 
    157         if (mSpanCount != 0) {
    158             for (int i = 0; i < mSpanCount; i++) {
    159                 if (mSpanStarts[i] > mGapStart) mSpanStarts[i] += delta;
    160                 if (mSpanEnds[i] > mGapStart) mSpanEnds[i] += delta;
    161             }
    162             calcMax(treeRoot());
    163         }
    164     }
    165 
    166     private void moveGapTo(int where) {
    167         if (where == mGapStart)
    168             return;
    169 
    170         boolean atEnd = (where == length());
    171 
    172         if (where < mGapStart) {
    173             int overlap = mGapStart - where;
    174             System.arraycopy(mText, where, mText, mGapStart + mGapLength - overlap, overlap);
    175         } else /* where > mGapStart */ {
    176             int overlap = where - mGapStart;
    177             System.arraycopy(mText, where + mGapLength - overlap, mText, mGapStart, overlap);
    178         }
    179 
    180         // TODO: be more clever (although the win really isn't that big)
    181         if (mSpanCount != 0) {
    182             for (int i = 0; i < mSpanCount; i++) {
    183                 int start = mSpanStarts[i];
    184                 int end = mSpanEnds[i];
    185 
    186                 if (start > mGapStart)
    187                     start -= mGapLength;
    188                 if (start > where)
    189                     start += mGapLength;
    190                 else if (start == where) {
    191                     int flag = (mSpanFlags[i] & START_MASK) >> START_SHIFT;
    192 
    193                     if (flag == POINT || (atEnd && flag == PARAGRAPH))
    194                         start += mGapLength;
    195                 }
    196 
    197                 if (end > mGapStart)
    198                     end -= mGapLength;
    199                 if (end > where)
    200                     end += mGapLength;
    201                 else if (end == where) {
    202                     int flag = (mSpanFlags[i] & END_MASK);
    203 
    204                     if (flag == POINT || (atEnd && flag == PARAGRAPH))
    205                         end += mGapLength;
    206                 }
    207 
    208                 mSpanStarts[i] = start;
    209                 mSpanEnds[i] = end;
    210             }
    211             calcMax(treeRoot());
    212         }
    213 
    214         mGapStart = where;
    215     }
    216 
    217     // Documentation from interface
    218     public SpannableStringBuilder insert(int where, CharSequence tb, int start, int end) {
    219         return replace(where, where, tb, start, end);
    220     }
    221 
    222     // Documentation from interface
    223     public SpannableStringBuilder insert(int where, CharSequence tb) {
    224         return replace(where, where, tb, 0, tb.length());
    225     }
    226 
    227     // Documentation from interface
    228     public SpannableStringBuilder delete(int start, int end) {
    229         SpannableStringBuilder ret = replace(start, end, "", 0, 0);
    230 
    231         if (mGapLength > 2 * length())
    232             resizeFor(length());
    233 
    234         return ret; // == this
    235     }
    236 
    237     // Documentation from interface
    238     public void clear() {
    239         replace(0, length(), "", 0, 0);
    240         mSpanInsertCount = 0;
    241     }
    242 
    243     // Documentation from interface
    244     public void clearSpans() {
    245         for (int i = mSpanCount - 1; i >= 0; i--) {
    246             Object what = mSpans[i];
    247             int ostart = mSpanStarts[i];
    248             int oend = mSpanEnds[i];
    249 
    250             if (ostart > mGapStart)
    251                 ostart -= mGapLength;
    252             if (oend > mGapStart)
    253                 oend -= mGapLength;
    254 
    255             mSpanCount = i;
    256             mSpans[i] = null;
    257 
    258             sendSpanRemoved(what, ostart, oend);
    259         }
    260         if (mIndexOfSpan != null) {
    261             mIndexOfSpan.clear();
    262         }
    263         mSpanInsertCount = 0;
    264     }
    265 
    266     // Documentation from interface
    267     public SpannableStringBuilder append(CharSequence text) {
    268         int length = length();
    269         return replace(length, length, text, 0, text.length());
    270     }
    271 
    272     /**
    273      * Appends the character sequence {@code text} and spans {@code what} over the appended part.
    274      * See {@link Spanned} for an explanation of what the flags mean.
    275      * @param text the character sequence to append.
    276      * @param what the object to be spanned over the appended text.
    277      * @param flags see {@link Spanned}.
    278      * @return this {@code SpannableStringBuilder}.
    279      */
    280     public SpannableStringBuilder append(CharSequence text, Object what, int flags) {
    281         int start = length();
    282         append(text);
    283         setSpan(what, start, length(), flags);
    284         return this;
    285     }
    286 
    287     // Documentation from interface
    288     public SpannableStringBuilder append(CharSequence text, int start, int end) {
    289         int length = length();
    290         return replace(length, length, text, start, end);
    291     }
    292 
    293     // Documentation from interface
    294     public SpannableStringBuilder append(char text) {
    295         return append(String.valueOf(text));
    296     }
    297 
    298     // Returns true if a node was removed (so we can restart search from root)
    299     private boolean removeSpansForChange(int start, int end, boolean textIsRemoved, int i) {
    300         if ((i & 1) != 0) {
    301             // internal tree node
    302             if (resolveGap(mSpanMax[i]) >= start &&
    303                     removeSpansForChange(start, end, textIsRemoved, leftChild(i))) {
    304                 return true;
    305             }
    306         }
    307         if (i < mSpanCount) {
    308             if ((mSpanFlags[i] & Spanned.SPAN_EXCLUSIVE_EXCLUSIVE) ==
    309                     Spanned.SPAN_EXCLUSIVE_EXCLUSIVE &&
    310                     mSpanStarts[i] >= start && mSpanStarts[i] < mGapStart + mGapLength &&
    311                     mSpanEnds[i] >= start && mSpanEnds[i] < mGapStart + mGapLength &&
    312                     // The following condition indicates that the span would become empty
    313                     (textIsRemoved || mSpanStarts[i] > start || mSpanEnds[i] < mGapStart)) {
    314                 mIndexOfSpan.remove(mSpans[i]);
    315                 removeSpan(i);
    316                 return true;
    317             }
    318             return resolveGap(mSpanStarts[i]) <= end && (i & 1) != 0 &&
    319                 removeSpansForChange(start, end, textIsRemoved, rightChild(i));
    320         }
    321         return false;
    322     }
    323 
    324     private void change(int start, int end, CharSequence cs, int csStart, int csEnd) {
    325         // Can be negative
    326         final int replacedLength = end - start;
    327         final int replacementLength = csEnd - csStart;
    328         final int nbNewChars = replacementLength - replacedLength;
    329 
    330         boolean changed = false;
    331         for (int i = mSpanCount - 1; i >= 0; i--) {
    332             int spanStart = mSpanStarts[i];
    333             if (spanStart > mGapStart)
    334                 spanStart -= mGapLength;
    335 
    336             int spanEnd = mSpanEnds[i];
    337             if (spanEnd > mGapStart)
    338                 spanEnd -= mGapLength;
    339 
    340             if ((mSpanFlags[i] & SPAN_PARAGRAPH) == SPAN_PARAGRAPH) {
    341                 int ost = spanStart;
    342                 int oen = spanEnd;
    343                 int clen = length();
    344 
    345                 if (spanStart > start && spanStart <= end) {
    346                     for (spanStart = end; spanStart < clen; spanStart++)
    347                         if (spanStart > end && charAt(spanStart - 1) == '\n')
    348                             break;
    349                 }
    350 
    351                 if (spanEnd > start && spanEnd <= end) {
    352                     for (spanEnd = end; spanEnd < clen; spanEnd++)
    353                         if (spanEnd > end && charAt(spanEnd - 1) == '\n')
    354                             break;
    355                 }
    356 
    357                 if (spanStart != ost || spanEnd != oen) {
    358                     setSpan(false, mSpans[i], spanStart, spanEnd, mSpanFlags[i],
    359                             true/*enforceParagraph*/);
    360                     changed = true;
    361                 }
    362             }
    363 
    364             int flags = 0;
    365             if (spanStart == start) flags |= SPAN_START_AT_START;
    366             else if (spanStart == end + nbNewChars) flags |= SPAN_START_AT_END;
    367             if (spanEnd == start) flags |= SPAN_END_AT_START;
    368             else if (spanEnd == end + nbNewChars) flags |= SPAN_END_AT_END;
    369             mSpanFlags[i] |= flags;
    370         }
    371         if (changed) {
    372             restoreInvariants();
    373         }
    374 
    375         moveGapTo(end);
    376 
    377         if (nbNewChars >= mGapLength) {
    378             resizeFor(mText.length + nbNewChars - mGapLength);
    379         }
    380 
    381         final boolean textIsRemoved = replacementLength == 0;
    382         // The removal pass needs to be done before the gap is updated in order to broadcast the
    383         // correct previous positions to the correct intersecting SpanWatchers
    384         if (replacedLength > 0) { // no need for span fixup on pure insertion
    385             while (mSpanCount > 0 &&
    386                     removeSpansForChange(start, end, textIsRemoved, treeRoot())) {
    387                 // keep deleting spans as needed, and restart from root after every deletion
    388                 // because deletion can invalidate an index.
    389             }
    390         }
    391 
    392         mGapStart += nbNewChars;
    393         mGapLength -= nbNewChars;
    394 
    395         if (mGapLength < 1)
    396             new Exception("mGapLength < 1").printStackTrace();
    397 
    398         TextUtils.getChars(cs, csStart, csEnd, mText, start);
    399 
    400         if (replacedLength > 0) { // no need for span fixup on pure insertion
    401             // TODO potential optimization: only update bounds on intersecting spans
    402             final boolean atEnd = (mGapStart + mGapLength == mText.length);
    403 
    404             for (int i = 0; i < mSpanCount; i++) {
    405                 final int startFlag = (mSpanFlags[i] & START_MASK) >> START_SHIFT;
    406                 mSpanStarts[i] = updatedIntervalBound(mSpanStarts[i], start, nbNewChars, startFlag,
    407                         atEnd, textIsRemoved);
    408 
    409                 final int endFlag = (mSpanFlags[i] & END_MASK);
    410                 mSpanEnds[i] = updatedIntervalBound(mSpanEnds[i], start, nbNewChars, endFlag,
    411                         atEnd, textIsRemoved);
    412             }
    413             // TODO potential optimization: only fix up invariants when bounds actually changed
    414             restoreInvariants();
    415         }
    416 
    417         if (cs instanceof Spanned) {
    418             Spanned sp = (Spanned) cs;
    419             Object[] spans = sp.getSpans(csStart, csEnd, Object.class);
    420 
    421             for (int i = 0; i < spans.length; i++) {
    422                 int st = sp.getSpanStart(spans[i]);
    423                 int en = sp.getSpanEnd(spans[i]);
    424 
    425                 if (st < csStart) st = csStart;
    426                 if (en > csEnd) en = csEnd;
    427 
    428                 // Add span only if this object is not yet used as a span in this string
    429                 if (getSpanStart(spans[i]) < 0) {
    430                     int copySpanStart = st - csStart + start;
    431                     int copySpanEnd = en - csStart + start;
    432                     int copySpanFlags = sp.getSpanFlags(spans[i]) | SPAN_ADDED;
    433 
    434                     setSpan(false, spans[i], copySpanStart, copySpanEnd, copySpanFlags,
    435                             false/*enforceParagraph*/);
    436                 }
    437             }
    438             restoreInvariants();
    439         }
    440     }
    441 
    442     private int updatedIntervalBound(int offset, int start, int nbNewChars, int flag, boolean atEnd,
    443             boolean textIsRemoved) {
    444         if (offset >= start && offset < mGapStart + mGapLength) {
    445             if (flag == POINT) {
    446                 // A POINT located inside the replaced range should be moved to the end of the
    447                 // replaced text.
    448                 // The exception is when the point is at the start of the range and we are doing a
    449                 // text replacement (as opposed to a deletion): the point stays there.
    450                 if (textIsRemoved || offset > start) {
    451                     return mGapStart + mGapLength;
    452                 }
    453             } else {
    454                 if (flag == PARAGRAPH) {
    455                     if (atEnd) {
    456                         return mGapStart + mGapLength;
    457                     }
    458                 } else { // MARK
    459                     // MARKs should be moved to the start, with the exception of a mark located at
    460                     // the end of the range (which will be < mGapStart + mGapLength since mGapLength
    461                     // is > 0, which should stay 'unchanged' at the end of the replaced text.
    462                     if (textIsRemoved || offset < mGapStart - nbNewChars) {
    463                         return start;
    464                     } else {
    465                         // Move to the end of replaced text (needed if nbNewChars != 0)
    466                         return mGapStart;
    467                     }
    468                 }
    469             }
    470         }
    471         return offset;
    472     }
    473 
    474     // Note: caller is responsible for removing the mIndexOfSpan entry.
    475     private void removeSpan(int i) {
    476         Object object = mSpans[i];
    477 
    478         int start = mSpanStarts[i];
    479         int end = mSpanEnds[i];
    480 
    481         if (start > mGapStart) start -= mGapLength;
    482         if (end > mGapStart) end -= mGapLength;
    483 
    484         int count = mSpanCount - (i + 1);
    485         System.arraycopy(mSpans, i + 1, mSpans, i, count);
    486         System.arraycopy(mSpanStarts, i + 1, mSpanStarts, i, count);
    487         System.arraycopy(mSpanEnds, i + 1, mSpanEnds, i, count);
    488         System.arraycopy(mSpanFlags, i + 1, mSpanFlags, i, count);
    489         System.arraycopy(mSpanOrder, i + 1, mSpanOrder, i, count);
    490 
    491         mSpanCount--;
    492 
    493         invalidateIndex(i);
    494         mSpans[mSpanCount] = null;
    495 
    496         // Invariants must be restored before sending span removed notifications.
    497         restoreInvariants();
    498 
    499         sendSpanRemoved(object, start, end);
    500     }
    501 
    502     // Documentation from interface
    503     public SpannableStringBuilder replace(int start, int end, CharSequence tb) {
    504         return replace(start, end, tb, 0, tb.length());
    505     }
    506 
    507     // Documentation from interface
    508     public SpannableStringBuilder replace(final int start, final int end,
    509             CharSequence tb, int tbstart, int tbend) {
    510         checkRange("replace", start, end);
    511 
    512         int filtercount = mFilters.length;
    513         for (int i = 0; i < filtercount; i++) {
    514             CharSequence repl = mFilters[i].filter(tb, tbstart, tbend, this, start, end);
    515 
    516             if (repl != null) {
    517                 tb = repl;
    518                 tbstart = 0;
    519                 tbend = repl.length();
    520             }
    521         }
    522 
    523         final int origLen = end - start;
    524         final int newLen = tbend - tbstart;
    525 
    526         if (origLen == 0 && newLen == 0 && !hasNonExclusiveExclusiveSpanAt(tb, tbstart)) {
    527             // This is a no-op iif there are no spans in tb that would be added (with a 0-length)
    528             // Early exit so that the text watchers do not get notified
    529             return this;
    530         }
    531 
    532         TextWatcher[] textWatchers = getSpans(start, start + origLen, TextWatcher.class);
    533         sendBeforeTextChanged(textWatchers, start, origLen, newLen);
    534 
    535         // Try to keep the cursor / selection at the same relative position during
    536         // a text replacement. If replaced or replacement text length is zero, this
    537         // is already taken care of.
    538         boolean adjustSelection = origLen != 0 && newLen != 0;
    539         int selectionStart = 0;
    540         int selectionEnd = 0;
    541         if (adjustSelection) {
    542             selectionStart = Selection.getSelectionStart(this);
    543             selectionEnd = Selection.getSelectionEnd(this);
    544         }
    545 
    546         change(start, end, tb, tbstart, tbend);
    547 
    548         if (adjustSelection) {
    549             boolean changed = false;
    550             if (selectionStart > start && selectionStart < end) {
    551                 final long diff = selectionStart - start;
    552                 final int offset = Math.toIntExact(diff * newLen / origLen);
    553                 selectionStart = start + offset;
    554 
    555                 changed = true;
    556                 setSpan(false, Selection.SELECTION_START, selectionStart, selectionStart,
    557                         Spanned.SPAN_POINT_POINT, true/*enforceParagraph*/);
    558             }
    559             if (selectionEnd > start && selectionEnd < end) {
    560                 final long diff = selectionEnd - start;
    561                 final int offset = Math.toIntExact(diff * newLen / origLen);
    562                 selectionEnd = start + offset;
    563 
    564                 changed = true;
    565                 setSpan(false, Selection.SELECTION_END, selectionEnd, selectionEnd,
    566                         Spanned.SPAN_POINT_POINT, true/*enforceParagraph*/);
    567             }
    568             if (changed) {
    569                 restoreInvariants();
    570             }
    571         }
    572 
    573         sendTextChanged(textWatchers, start, origLen, newLen);
    574         sendAfterTextChanged(textWatchers);
    575 
    576         // Span watchers need to be called after text watchers, which may update the layout
    577         sendToSpanWatchers(start, end, newLen - origLen);
    578 
    579         return this;
    580     }
    581 
    582     private static boolean hasNonExclusiveExclusiveSpanAt(CharSequence text, int offset) {
    583         if (text instanceof Spanned) {
    584             Spanned spanned = (Spanned) text;
    585             Object[] spans = spanned.getSpans(offset, offset, Object.class);
    586             final int length = spans.length;
    587             for (int i = 0; i < length; i++) {
    588                 Object span = spans[i];
    589                 int flags = spanned.getSpanFlags(span);
    590                 if (flags != Spanned.SPAN_EXCLUSIVE_EXCLUSIVE) return true;
    591             }
    592         }
    593         return false;
    594     }
    595 
    596     private void sendToSpanWatchers(int replaceStart, int replaceEnd, int nbNewChars) {
    597         for (int i = 0; i < mSpanCount; i++) {
    598             int spanFlags = mSpanFlags[i];
    599 
    600             // This loop handles only modified (not added) spans.
    601             if ((spanFlags & SPAN_ADDED) != 0) continue;
    602             int spanStart = mSpanStarts[i];
    603             int spanEnd = mSpanEnds[i];
    604             if (spanStart > mGapStart) spanStart -= mGapLength;
    605             if (spanEnd > mGapStart) spanEnd -= mGapLength;
    606 
    607             int newReplaceEnd = replaceEnd + nbNewChars;
    608             boolean spanChanged = false;
    609 
    610             int previousSpanStart = spanStart;
    611             if (spanStart > newReplaceEnd) {
    612                 if (nbNewChars != 0) {
    613                     previousSpanStart -= nbNewChars;
    614                     spanChanged = true;
    615                 }
    616             } else if (spanStart >= replaceStart) {
    617                 // No change if span start was already at replace interval boundaries before replace
    618                 if ((spanStart != replaceStart ||
    619                         ((spanFlags & SPAN_START_AT_START) != SPAN_START_AT_START)) &&
    620                         (spanStart != newReplaceEnd ||
    621                         ((spanFlags & SPAN_START_AT_END) != SPAN_START_AT_END))) {
    622                     // TODO A correct previousSpanStart cannot be computed at this point.
    623                     // It would require to save all the previous spans' positions before the replace
    624                     // Using an invalid -1 value to convey this would break the broacast range
    625                     spanChanged = true;
    626                 }
    627             }
    628 
    629             int previousSpanEnd = spanEnd;
    630             if (spanEnd > newReplaceEnd) {
    631                 if (nbNewChars != 0) {
    632                     previousSpanEnd -= nbNewChars;
    633                     spanChanged = true;
    634                 }
    635             } else if (spanEnd >= replaceStart) {
    636                 // No change if span start was already at replace interval boundaries before replace
    637                 if ((spanEnd != replaceStart ||
    638                         ((spanFlags & SPAN_END_AT_START) != SPAN_END_AT_START)) &&
    639                         (spanEnd != newReplaceEnd ||
    640                         ((spanFlags & SPAN_END_AT_END) != SPAN_END_AT_END))) {
    641                     // TODO same as above for previousSpanEnd
    642                     spanChanged = true;
    643                 }
    644             }
    645 
    646             if (spanChanged) {
    647                 sendSpanChanged(mSpans[i], previousSpanStart, previousSpanEnd, spanStart, spanEnd);
    648             }
    649             mSpanFlags[i] &= ~SPAN_START_END_MASK;
    650         }
    651 
    652         // Handle added spans
    653         for (int i = 0; i < mSpanCount; i++) {
    654             int spanFlags = mSpanFlags[i];
    655             if ((spanFlags & SPAN_ADDED) != 0) {
    656                 mSpanFlags[i] &= ~SPAN_ADDED;
    657                 int spanStart = mSpanStarts[i];
    658                 int spanEnd = mSpanEnds[i];
    659                 if (spanStart > mGapStart) spanStart -= mGapLength;
    660                 if (spanEnd > mGapStart) spanEnd -= mGapLength;
    661                 sendSpanAdded(mSpans[i], spanStart, spanEnd);
    662             }
    663         }
    664     }
    665 
    666     /**
    667      * Mark the specified range of text with the specified object.
    668      * The flags determine how the span will behave when text is
    669      * inserted at the start or end of the span's range.
    670      */
    671     public void setSpan(Object what, int start, int end, int flags) {
    672         setSpan(true, what, start, end, flags, true/*enforceParagraph*/);
    673     }
    674 
    675     // Note: if send is false, then it is the caller's responsibility to restore
    676     // invariants. If send is false and the span already exists, then this method
    677     // will not change the index of any spans.
    678     private void setSpan(boolean send, Object what, int start, int end, int flags,
    679             boolean enforceParagraph) {
    680         checkRange("setSpan", start, end);
    681 
    682         int flagsStart = (flags & START_MASK) >> START_SHIFT;
    683         if (isInvalidParagraph(start, flagsStart)) {
    684             if (!enforceParagraph) {
    685                 // do not set the span
    686                 return;
    687             }
    688             throw new RuntimeException("PARAGRAPH span must start at paragraph boundary"
    689                     + " (" + start + " follows " + charAt(start - 1) + ")");
    690         }
    691 
    692         int flagsEnd = flags & END_MASK;
    693         if (isInvalidParagraph(end, flagsEnd)) {
    694             if (!enforceParagraph) {
    695                 // do not set the span
    696                 return;
    697             }
    698             throw new RuntimeException("PARAGRAPH span must end at paragraph boundary"
    699                     + " (" + end + " follows " + charAt(end - 1) + ")");
    700         }
    701 
    702         // 0-length Spanned.SPAN_EXCLUSIVE_EXCLUSIVE
    703         if (flagsStart == POINT && flagsEnd == MARK && start == end) {
    704             if (send) {
    705                 Log.e(TAG, "SPAN_EXCLUSIVE_EXCLUSIVE spans cannot have a zero length");
    706             }
    707             // Silently ignore invalid spans when they are created from this class.
    708             // This avoids the duplication of the above test code before all the
    709             // calls to setSpan that are done in this class
    710             return;
    711         }
    712 
    713         int nstart = start;
    714         int nend = end;
    715 
    716         if (start > mGapStart) {
    717             start += mGapLength;
    718         } else if (start == mGapStart) {
    719             if (flagsStart == POINT || (flagsStart == PARAGRAPH && start == length()))
    720                 start += mGapLength;
    721         }
    722 
    723         if (end > mGapStart) {
    724             end += mGapLength;
    725         } else if (end == mGapStart) {
    726             if (flagsEnd == POINT || (flagsEnd == PARAGRAPH && end == length()))
    727                 end += mGapLength;
    728         }
    729 
    730         if (mIndexOfSpan != null) {
    731             Integer index = mIndexOfSpan.get(what);
    732             if (index != null) {
    733                 int i = index;
    734                 int ostart = mSpanStarts[i];
    735                 int oend = mSpanEnds[i];
    736 
    737                 if (ostart > mGapStart)
    738                     ostart -= mGapLength;
    739                 if (oend > mGapStart)
    740                     oend -= mGapLength;
    741 
    742                 mSpanStarts[i] = start;
    743                 mSpanEnds[i] = end;
    744                 mSpanFlags[i] = flags;
    745 
    746                 if (send) {
    747                     restoreInvariants();
    748                     sendSpanChanged(what, ostart, oend, nstart, nend);
    749                 }
    750 
    751                 return;
    752             }
    753         }
    754 
    755         mSpans = GrowingArrayUtils.append(mSpans, mSpanCount, what);
    756         mSpanStarts = GrowingArrayUtils.append(mSpanStarts, mSpanCount, start);
    757         mSpanEnds = GrowingArrayUtils.append(mSpanEnds, mSpanCount, end);
    758         mSpanFlags = GrowingArrayUtils.append(mSpanFlags, mSpanCount, flags);
    759         mSpanOrder = GrowingArrayUtils.append(mSpanOrder, mSpanCount, mSpanInsertCount);
    760         invalidateIndex(mSpanCount);
    761         mSpanCount++;
    762         mSpanInsertCount++;
    763         // Make sure there is enough room for empty interior nodes.
    764         // This magic formula computes the size of the smallest perfect binary
    765         // tree no smaller than mSpanCount.
    766         int sizeOfMax = 2 * treeRoot() + 1;
    767         if (mSpanMax.length < sizeOfMax) {
    768             mSpanMax = new int[sizeOfMax];
    769         }
    770 
    771         if (send) {
    772             restoreInvariants();
    773             sendSpanAdded(what, nstart, nend);
    774         }
    775     }
    776 
    777     private boolean isInvalidParagraph(int index, int flag) {
    778         return flag == PARAGRAPH && index != 0 && index != length() && charAt(index - 1) != '\n';
    779     }
    780 
    781     /**
    782      * Remove the specified markup object from the buffer.
    783      */
    784     public void removeSpan(Object what) {
    785         if (mIndexOfSpan == null) return;
    786         Integer i = mIndexOfSpan.remove(what);
    787         if (i != null) {
    788             removeSpan(i.intValue());
    789         }
    790     }
    791 
    792     /**
    793      * Return externally visible offset given offset into gapped buffer.
    794      */
    795     private int resolveGap(int i) {
    796         return i > mGapStart ? i - mGapLength : i;
    797     }
    798 
    799     /**
    800      * Return the buffer offset of the beginning of the specified
    801      * markup object, or -1 if it is not attached to this buffer.
    802      */
    803     public int getSpanStart(Object what) {
    804         if (mIndexOfSpan == null) return -1;
    805         Integer i = mIndexOfSpan.get(what);
    806         return i == null ? -1 : resolveGap(mSpanStarts[i]);
    807     }
    808 
    809     /**
    810      * Return the buffer offset of the end of the specified
    811      * markup object, or -1 if it is not attached to this buffer.
    812      */
    813     public int getSpanEnd(Object what) {
    814         if (mIndexOfSpan == null) return -1;
    815         Integer i = mIndexOfSpan.get(what);
    816         return i == null ? -1 : resolveGap(mSpanEnds[i]);
    817     }
    818 
    819     /**
    820      * Return the flags of the end of the specified
    821      * markup object, or 0 if it is not attached to this buffer.
    822      */
    823     public int getSpanFlags(Object what) {
    824         if (mIndexOfSpan == null) return 0;
    825         Integer i = mIndexOfSpan.get(what);
    826         return i == null ? 0 : mSpanFlags[i];
    827     }
    828 
    829     /**
    830      * Return an array of the spans of the specified type that overlap
    831      * the specified range of the buffer.  The kind may be Object.class to get
    832      * a list of all the spans regardless of type.
    833      */
    834     @SuppressWarnings("unchecked")
    835     public <T> T[] getSpans(int queryStart, int queryEnd, @Nullable Class<T> kind) {
    836         return getSpans(queryStart, queryEnd, kind, true);
    837     }
    838 
    839     /**
    840      * Return an array of the spans of the specified type that overlap
    841      * the specified range of the buffer.  The kind may be Object.class to get
    842      * a list of all the spans regardless of type.
    843      *
    844      * @param queryStart Start index.
    845      * @param queryEnd End index.
    846      * @param kind Class type to search for.
    847      * @param sortByInsertionOrder If true the results are sorted by the insertion order.
    848      * @param <T>
    849      * @return Array of the spans. Empty array if no results are found.
    850      *
    851      * @hide
    852      */
    853     public <T> T[] getSpans(int queryStart, int queryEnd, @Nullable Class<T> kind,
    854             boolean sortByInsertionOrder) {
    855         if (kind == null) return (T[]) ArrayUtils.emptyArray(Object.class);
    856         if (mSpanCount == 0) return ArrayUtils.emptyArray(kind);
    857         int count = countSpans(queryStart, queryEnd, kind, treeRoot());
    858         if (count == 0) {
    859             return ArrayUtils.emptyArray(kind);
    860         }
    861 
    862         // Safe conversion, but requires a suppressWarning
    863         T[] ret = (T[]) Array.newInstance(kind, count);
    864         final int[] prioSortBuffer = sortByInsertionOrder ? obtain(count) : EmptyArray.INT;
    865         final int[] orderSortBuffer = sortByInsertionOrder ? obtain(count) : EmptyArray.INT;
    866         getSpansRec(queryStart, queryEnd, kind, treeRoot(), ret, prioSortBuffer,
    867                 orderSortBuffer, 0, sortByInsertionOrder);
    868         if (sortByInsertionOrder) {
    869             sort(ret, prioSortBuffer, orderSortBuffer);
    870             recycle(prioSortBuffer);
    871             recycle(orderSortBuffer);
    872         }
    873         return ret;
    874     }
    875 
    876     private int countSpans(int queryStart, int queryEnd, Class kind, int i) {
    877         int count = 0;
    878         if ((i & 1) != 0) {
    879             // internal tree node
    880             int left = leftChild(i);
    881             int spanMax = mSpanMax[left];
    882             if (spanMax > mGapStart) {
    883                 spanMax -= mGapLength;
    884             }
    885             if (spanMax >= queryStart) {
    886                 count = countSpans(queryStart, queryEnd, kind, left);
    887             }
    888         }
    889         if (i < mSpanCount) {
    890             int spanStart = mSpanStarts[i];
    891             if (spanStart > mGapStart) {
    892                 spanStart -= mGapLength;
    893             }
    894             if (spanStart <= queryEnd) {
    895                 int spanEnd = mSpanEnds[i];
    896                 if (spanEnd > mGapStart) {
    897                     spanEnd -= mGapLength;
    898                 }
    899                 if (spanEnd >= queryStart &&
    900                     (spanStart == spanEnd || queryStart == queryEnd ||
    901                         (spanStart != queryEnd && spanEnd != queryStart)) &&
    902                         (Object.class == kind || kind.isInstance(mSpans[i]))) {
    903                     count++;
    904                 }
    905                 if ((i & 1) != 0) {
    906                     count += countSpans(queryStart, queryEnd, kind, rightChild(i));
    907                 }
    908             }
    909         }
    910         return count;
    911     }
    912 
    913     /**
    914      * Fills the result array with the spans found under the current interval tree node.
    915      *
    916      * @param queryStart Start index for the interval query.
    917      * @param queryEnd End index for the interval query.
    918      * @param kind Class type to search for.
    919      * @param i Index of the current tree node.
    920      * @param ret Array to be filled with results.
    921      * @param priority Buffer to keep record of the priorities of spans found.
    922      * @param insertionOrder Buffer to keep record of the insertion orders of spans found.
    923      * @param count The number of found spans.
    924      * @param sort Flag to fill the priority and insertion order buffers. If false then
    925      *             the spans with priority flag will be sorted in the result array.
    926      * @param <T>
    927      * @return The total number of spans found.
    928      */
    929     @SuppressWarnings("unchecked")
    930     private <T> int getSpansRec(int queryStart, int queryEnd, Class<T> kind,
    931             int i, T[] ret, int[] priority, int[] insertionOrder, int count, boolean sort) {
    932         if ((i & 1) != 0) {
    933             // internal tree node
    934             int left = leftChild(i);
    935             int spanMax = mSpanMax[left];
    936             if (spanMax > mGapStart) {
    937                 spanMax -= mGapLength;
    938             }
    939             if (spanMax >= queryStart) {
    940                 count = getSpansRec(queryStart, queryEnd, kind, left, ret, priority,
    941                         insertionOrder, count, sort);
    942             }
    943         }
    944         if (i >= mSpanCount) return count;
    945         int spanStart = mSpanStarts[i];
    946         if (spanStart > mGapStart) {
    947             spanStart -= mGapLength;
    948         }
    949         if (spanStart <= queryEnd) {
    950             int spanEnd = mSpanEnds[i];
    951             if (spanEnd > mGapStart) {
    952                 spanEnd -= mGapLength;
    953             }
    954             if (spanEnd >= queryStart &&
    955                     (spanStart == spanEnd || queryStart == queryEnd ||
    956                         (spanStart != queryEnd && spanEnd != queryStart)) &&
    957                         (Object.class == kind || kind.isInstance(mSpans[i]))) {
    958                 int spanPriority = mSpanFlags[i] & SPAN_PRIORITY;
    959                 int target = count;
    960                 if (sort) {
    961                     priority[target] = spanPriority;
    962                     insertionOrder[target] = mSpanOrder[i];
    963                 } else if (spanPriority != 0) {
    964                     //insertion sort for elements with priority
    965                     int j = 0;
    966                     for (; j < count; j++) {
    967                         int p = getSpanFlags(ret[j]) & SPAN_PRIORITY;
    968                         if (spanPriority > p) break;
    969                     }
    970                     System.arraycopy(ret, j, ret, j + 1, count - j);
    971                     target = j;
    972                 }
    973                 ret[target] = (T) mSpans[i];
    974                 count++;
    975             }
    976             if (count < ret.length && (i & 1) != 0) {
    977                 count = getSpansRec(queryStart, queryEnd, kind, rightChild(i), ret, priority,
    978                         insertionOrder, count, sort);
    979             }
    980         }
    981         return count;
    982     }
    983 
    984     /**
    985      * Obtain a temporary sort buffer.
    986      *
    987      * @param elementCount the size of the int[] to be returned
    988      * @return an int[] with elementCount length
    989      */
    990     private static int[] obtain(final int elementCount) {
    991         int[] result = null;
    992         synchronized (sCachedIntBuffer) {
    993             // try finding a tmp buffer with length of at least elementCount
    994             // if not get the first available one
    995             int candidateIndex = -1;
    996             for (int i = sCachedIntBuffer.length - 1; i >= 0; i--) {
    997                 if (sCachedIntBuffer[i] != null) {
    998                     if (sCachedIntBuffer[i].length >= elementCount) {
    999                         candidateIndex = i;
   1000                         break;
   1001                     } else if (candidateIndex == -1) {
   1002                         candidateIndex = i;
   1003                     }
   1004                 }
   1005             }
   1006 
   1007             if (candidateIndex != -1) {
   1008                 result = sCachedIntBuffer[candidateIndex];
   1009                 sCachedIntBuffer[candidateIndex] = null;
   1010             }
   1011         }
   1012         result = checkSortBuffer(result, elementCount);
   1013         return result;
   1014     }
   1015 
   1016     /**
   1017      * Recycle sort buffer.
   1018      *
   1019      * @param buffer buffer to be recycled
   1020      */
   1021     private static void recycle(int[] buffer) {
   1022         synchronized (sCachedIntBuffer) {
   1023             for (int i = 0; i < sCachedIntBuffer.length; i++) {
   1024                 if (sCachedIntBuffer[i] == null || buffer.length > sCachedIntBuffer[i].length) {
   1025                     sCachedIntBuffer[i] = buffer;
   1026                     break;
   1027                 }
   1028             }
   1029         }
   1030     }
   1031 
   1032     /**
   1033      * Check the size of the buffer and grow if required.
   1034      *
   1035      * @param buffer buffer to be checked.
   1036      * @param size   required size.
   1037      * @return Same buffer instance if the current size is greater than required size. Otherwise a
   1038      * new instance is created and returned.
   1039      */
   1040     private static int[] checkSortBuffer(int[] buffer, int size) {
   1041         if (buffer == null || size > buffer.length) {
   1042             return ArrayUtils.newUnpaddedIntArray(GrowingArrayUtils.growSize(size));
   1043         }
   1044         return buffer;
   1045     }
   1046 
   1047     /**
   1048      * An iterative heap sort implementation. It will sort the spans using first their priority
   1049      * then insertion order. A span with higher priority will be before a span with lower
   1050      * priority. If priorities are the same, the spans will be sorted with insertion order. A
   1051      * span with a lower insertion order will be before a span with a higher insertion order.
   1052      *
   1053      * @param array Span array to be sorted.
   1054      * @param priority Priorities of the spans
   1055      * @param insertionOrder Insertion orders of the spans
   1056      * @param <T> Span object type.
   1057      * @param <T>
   1058      */
   1059     private final <T> void sort(T[] array, int[] priority, int[] insertionOrder) {
   1060         int size = array.length;
   1061         for (int i = size / 2 - 1; i >= 0; i--) {
   1062             siftDown(i, array, size, priority, insertionOrder);
   1063         }
   1064 
   1065         for (int i = size - 1; i > 0; i--) {
   1066             final T tmpSpan =  array[0];
   1067             array[0] = array[i];
   1068             array[i] = tmpSpan;
   1069 
   1070             final int tmpPriority =  priority[0];
   1071             priority[0] = priority[i];
   1072             priority[i] = tmpPriority;
   1073 
   1074             final int tmpOrder =  insertionOrder[0];
   1075             insertionOrder[0] = insertionOrder[i];
   1076             insertionOrder[i] = tmpOrder;
   1077 
   1078             siftDown(0, array, i, priority, insertionOrder);
   1079         }
   1080     }
   1081 
   1082     /**
   1083      * Helper function for heap sort.
   1084      *
   1085      * @param index Index of the element to sift down.
   1086      * @param array Span array to be sorted.
   1087      * @param size Current heap size.
   1088      * @param priority Priorities of the spans
   1089      * @param insertionOrder Insertion orders of the spans
   1090      * @param <T> Span object type.
   1091      */
   1092     private final <T> void siftDown(int index, T[] array, int size, int[] priority,
   1093                                     int[] insertionOrder) {
   1094         int left = 2 * index + 1;
   1095         while (left < size) {
   1096             if (left < size - 1 && compareSpans(left, left + 1, priority, insertionOrder) < 0) {
   1097                 left++;
   1098             }
   1099             if (compareSpans(index, left, priority, insertionOrder) >= 0) {
   1100                 break;
   1101             }
   1102 
   1103             final T tmpSpan =  array[index];
   1104             array[index] = array[left];
   1105             array[left] = tmpSpan;
   1106 
   1107             final int tmpPriority =  priority[index];
   1108             priority[index] = priority[left];
   1109             priority[left] = tmpPriority;
   1110 
   1111             final int tmpOrder =  insertionOrder[index];
   1112             insertionOrder[index] = insertionOrder[left];
   1113             insertionOrder[left] = tmpOrder;
   1114 
   1115             index = left;
   1116             left = 2 * index + 1;
   1117         }
   1118     }
   1119 
   1120     /**
   1121      * Compare two span elements in an array. Comparison is based first on the priority flag of
   1122      * the span, and then the insertion order of the span.
   1123      *
   1124      * @param left Index of the element to compare.
   1125      * @param right Index of the other element to compare.
   1126      * @param priority Priorities of the spans
   1127      * @param insertionOrder Insertion orders of the spans
   1128      * @return
   1129      */
   1130     private final int compareSpans(int left, int right, int[] priority,
   1131                                        int[] insertionOrder) {
   1132         int priority1 = priority[left];
   1133         int priority2 = priority[right];
   1134         if (priority1 == priority2) {
   1135             return Integer.compare(insertionOrder[left], insertionOrder[right]);
   1136         }
   1137         // since high priority has to be before a lower priority, the arguments to compare are
   1138         // opposite of the insertion order check.
   1139         return Integer.compare(priority2, priority1);
   1140     }
   1141 
   1142     /**
   1143      * Return the next offset after <code>start</code> but less than or
   1144      * equal to <code>limit</code> where a span of the specified type
   1145      * begins or ends.
   1146      */
   1147     public int nextSpanTransition(int start, int limit, Class kind) {
   1148         if (mSpanCount == 0) return limit;
   1149         if (kind == null) {
   1150             kind = Object.class;
   1151         }
   1152         return nextSpanTransitionRec(start, limit, kind, treeRoot());
   1153     }
   1154 
   1155     private int nextSpanTransitionRec(int start, int limit, Class kind, int i) {
   1156         if ((i & 1) != 0) {
   1157             // internal tree node
   1158             int left = leftChild(i);
   1159             if (resolveGap(mSpanMax[left]) > start) {
   1160                 limit = nextSpanTransitionRec(start, limit, kind, left);
   1161             }
   1162         }
   1163         if (i < mSpanCount) {
   1164             int st = resolveGap(mSpanStarts[i]);
   1165             int en = resolveGap(mSpanEnds[i]);
   1166             if (st > start && st < limit && kind.isInstance(mSpans[i]))
   1167                 limit = st;
   1168             if (en > start && en < limit && kind.isInstance(mSpans[i]))
   1169                 limit = en;
   1170             if (st < limit && (i & 1) != 0) {
   1171                 limit = nextSpanTransitionRec(start, limit, kind, rightChild(i));
   1172             }
   1173         }
   1174 
   1175         return limit;
   1176     }
   1177 
   1178     /**
   1179      * Return a new CharSequence containing a copy of the specified
   1180      * range of this buffer, including the overlapping spans.
   1181      */
   1182     public CharSequence subSequence(int start, int end) {
   1183         return new SpannableStringBuilder(this, start, end);
   1184     }
   1185 
   1186     /**
   1187      * Copy the specified range of chars from this buffer into the
   1188      * specified array, beginning at the specified offset.
   1189      */
   1190     public void getChars(int start, int end, char[] dest, int destoff) {
   1191         checkRange("getChars", start, end);
   1192 
   1193         if (end <= mGapStart) {
   1194             System.arraycopy(mText, start, dest, destoff, end - start);
   1195         } else if (start >= mGapStart) {
   1196             System.arraycopy(mText, start + mGapLength, dest, destoff, end - start);
   1197         } else {
   1198             System.arraycopy(mText, start, dest, destoff, mGapStart - start);
   1199             System.arraycopy(mText, mGapStart + mGapLength,
   1200                     dest, destoff + (mGapStart - start),
   1201                     end - mGapStart);
   1202         }
   1203     }
   1204 
   1205     /**
   1206      * Return a String containing a copy of the chars in this buffer.
   1207      */
   1208     @Override
   1209     public String toString() {
   1210         int len = length();
   1211         char[] buf = new char[len];
   1212 
   1213         getChars(0, len, buf, 0);
   1214         return new String(buf);
   1215     }
   1216 
   1217     /**
   1218      * Return a String containing a copy of the chars in this buffer, limited to the
   1219      * [start, end[ range.
   1220      * @hide
   1221      */
   1222     public String substring(int start, int end) {
   1223         char[] buf = new char[end - start];
   1224         getChars(start, end, buf, 0);
   1225         return new String(buf);
   1226     }
   1227 
   1228     /**
   1229      * Returns the depth of TextWatcher callbacks. Returns 0 when the object is not handling
   1230      * TextWatchers. A return value greater than 1 implies that a TextWatcher caused a change that
   1231      * recursively triggered a TextWatcher.
   1232      */
   1233     public int getTextWatcherDepth() {
   1234         return mTextWatcherDepth;
   1235     }
   1236 
   1237     private void sendBeforeTextChanged(TextWatcher[] watchers, int start, int before, int after) {
   1238         int n = watchers.length;
   1239 
   1240         mTextWatcherDepth++;
   1241         for (int i = 0; i < n; i++) {
   1242             watchers[i].beforeTextChanged(this, start, before, after);
   1243         }
   1244         mTextWatcherDepth--;
   1245     }
   1246 
   1247     private void sendTextChanged(TextWatcher[] watchers, int start, int before, int after) {
   1248         int n = watchers.length;
   1249 
   1250         mTextWatcherDepth++;
   1251         for (int i = 0; i < n; i++) {
   1252             watchers[i].onTextChanged(this, start, before, after);
   1253         }
   1254         mTextWatcherDepth--;
   1255     }
   1256 
   1257     private void sendAfterTextChanged(TextWatcher[] watchers) {
   1258         int n = watchers.length;
   1259 
   1260         mTextWatcherDepth++;
   1261         for (int i = 0; i < n; i++) {
   1262             watchers[i].afterTextChanged(this);
   1263         }
   1264         mTextWatcherDepth--;
   1265     }
   1266 
   1267     private void sendSpanAdded(Object what, int start, int end) {
   1268         SpanWatcher[] recip = getSpans(start, end, SpanWatcher.class);
   1269         int n = recip.length;
   1270 
   1271         for (int i = 0; i < n; i++) {
   1272             recip[i].onSpanAdded(this, what, start, end);
   1273         }
   1274     }
   1275 
   1276     private void sendSpanRemoved(Object what, int start, int end) {
   1277         SpanWatcher[] recip = getSpans(start, end, SpanWatcher.class);
   1278         int n = recip.length;
   1279 
   1280         for (int i = 0; i < n; i++) {
   1281             recip[i].onSpanRemoved(this, what, start, end);
   1282         }
   1283     }
   1284 
   1285     private void sendSpanChanged(Object what, int oldStart, int oldEnd, int start, int end) {
   1286         // The bounds of a possible SpanWatcher are guaranteed to be set before this method is
   1287         // called, so that the order of the span does not affect this broadcast.
   1288         SpanWatcher[] spanWatchers = getSpans(Math.min(oldStart, start),
   1289                 Math.min(Math.max(oldEnd, end), length()), SpanWatcher.class);
   1290         int n = spanWatchers.length;
   1291         for (int i = 0; i < n; i++) {
   1292             spanWatchers[i].onSpanChanged(this, what, oldStart, oldEnd, start, end);
   1293         }
   1294     }
   1295 
   1296     private static String region(int start, int end) {
   1297         return "(" + start + " ... " + end + ")";
   1298     }
   1299 
   1300     private void checkRange(final String operation, int start, int end) {
   1301         if (end < start) {
   1302             throw new IndexOutOfBoundsException(operation + " " +
   1303                     region(start, end) + " has end before start");
   1304         }
   1305 
   1306         int len = length();
   1307 
   1308         if (start > len || end > len) {
   1309             throw new IndexOutOfBoundsException(operation + " " +
   1310                     region(start, end) + " ends beyond length " + len);
   1311         }
   1312 
   1313         if (start < 0 || end < 0) {
   1314             throw new IndexOutOfBoundsException(operation + " " +
   1315                     region(start, end) + " starts before 0");
   1316         }
   1317     }
   1318 
   1319     /*
   1320     private boolean isprint(char c) { // XXX
   1321         if (c >= ' ' && c <= '~')
   1322             return true;
   1323         else
   1324             return false;
   1325     }
   1326 
   1327     private static final int startFlag(int flag) {
   1328         return (flag >> 4) & 0x0F;
   1329     }
   1330 
   1331     private static final int endFlag(int flag) {
   1332         return flag & 0x0F;
   1333     }
   1334 
   1335     public void dump() { // XXX
   1336         for (int i = 0; i < mGapStart; i++) {
   1337             System.out.print('|');
   1338             System.out.print(' ');
   1339             System.out.print(isprint(mText[i]) ? mText[i] : '.');
   1340             System.out.print(' ');
   1341         }
   1342 
   1343         for (int i = mGapStart; i < mGapStart + mGapLength; i++) {
   1344             System.out.print('|');
   1345             System.out.print('(');
   1346             System.out.print(isprint(mText[i]) ? mText[i] : '.');
   1347             System.out.print(')');
   1348         }
   1349 
   1350         for (int i = mGapStart + mGapLength; i < mText.length; i++) {
   1351             System.out.print('|');
   1352             System.out.print(' ');
   1353             System.out.print(isprint(mText[i]) ? mText[i] : '.');
   1354             System.out.print(' ');
   1355         }
   1356 
   1357         System.out.print('\n');
   1358 
   1359         for (int i = 0; i < mText.length + 1; i++) {
   1360             int found = 0;
   1361             int wfound = 0;
   1362 
   1363             for (int j = 0; j < mSpanCount; j++) {
   1364                 if (mSpanStarts[j] == i) {
   1365                     found = 1;
   1366                     wfound = j;
   1367                     break;
   1368                 }
   1369 
   1370                 if (mSpanEnds[j] == i) {
   1371                     found = 2;
   1372                     wfound = j;
   1373                     break;
   1374                 }
   1375             }
   1376 
   1377             if (found == 1) {
   1378                 if (startFlag(mSpanFlags[wfound]) == MARK)
   1379                     System.out.print("(   ");
   1380                 if (startFlag(mSpanFlags[wfound]) == PARAGRAPH)
   1381                     System.out.print("<   ");
   1382                 else
   1383                     System.out.print("[   ");
   1384             } else if (found == 2) {
   1385                 if (endFlag(mSpanFlags[wfound]) == POINT)
   1386                     System.out.print(")   ");
   1387                 if (endFlag(mSpanFlags[wfound]) == PARAGRAPH)
   1388                     System.out.print(">   ");
   1389                 else
   1390                     System.out.print("]   ");
   1391             } else {
   1392                 System.out.print("    ");
   1393             }
   1394         }
   1395 
   1396         System.out.print("\n");
   1397     }
   1398     */
   1399 
   1400     /**
   1401      * Don't call this yourself -- exists for Canvas to use internally.
   1402      * {@hide}
   1403      */
   1404     @Override
   1405     public void drawText(BaseCanvas c, int start, int end, float x, float y, Paint p) {
   1406         checkRange("drawText", start, end);
   1407 
   1408         if (end <= mGapStart) {
   1409             c.drawText(mText, start, end - start, x, y, p);
   1410         } else if (start >= mGapStart) {
   1411             c.drawText(mText, start + mGapLength, end - start, x, y, p);
   1412         } else {
   1413             char[] buf = TextUtils.obtain(end - start);
   1414 
   1415             getChars(start, end, buf, 0);
   1416             c.drawText(buf, 0, end - start, x, y, p);
   1417             TextUtils.recycle(buf);
   1418         }
   1419     }
   1420 
   1421 
   1422     /**
   1423      * Don't call this yourself -- exists for Canvas to use internally.
   1424      * {@hide}
   1425      */
   1426     @Override
   1427     public void drawTextRun(BaseCanvas c, int start, int end, int contextStart, int contextEnd,
   1428             float x, float y, boolean isRtl, Paint p) {
   1429         checkRange("drawTextRun", start, end);
   1430 
   1431         int contextLen = contextEnd - contextStart;
   1432         int len = end - start;
   1433         if (contextEnd <= mGapStart) {
   1434             c.drawTextRun(mText, start, len, contextStart, contextLen, x, y, isRtl, p);
   1435         } else if (contextStart >= mGapStart) {
   1436             c.drawTextRun(mText, start + mGapLength, len, contextStart + mGapLength,
   1437                     contextLen, x, y, isRtl, p);
   1438         } else {
   1439             char[] buf = TextUtils.obtain(contextLen);
   1440             getChars(contextStart, contextEnd, buf, 0);
   1441             c.drawTextRun(buf, start - contextStart, len, 0, contextLen, x, y, isRtl, p);
   1442             TextUtils.recycle(buf);
   1443         }
   1444     }
   1445 
   1446     /**
   1447      * Don't call this yourself -- exists for Paint to use internally.
   1448      * {@hide}
   1449      */
   1450     public float measureText(int start, int end, Paint p) {
   1451         checkRange("measureText", start, end);
   1452 
   1453         float ret;
   1454 
   1455         if (end <= mGapStart) {
   1456             ret = p.measureText(mText, start, end - start);
   1457         } else if (start >= mGapStart) {
   1458             ret = p.measureText(mText, start + mGapLength, end - start);
   1459         } else {
   1460             char[] buf = TextUtils.obtain(end - start);
   1461 
   1462             getChars(start, end, buf, 0);
   1463             ret = p.measureText(buf, 0, end - start);
   1464             TextUtils.recycle(buf);
   1465         }
   1466 
   1467         return ret;
   1468     }
   1469 
   1470     /**
   1471      * Don't call this yourself -- exists for Paint to use internally.
   1472      * {@hide}
   1473      */
   1474     public int getTextWidths(int start, int end, float[] widths, Paint p) {
   1475         checkRange("getTextWidths", start, end);
   1476 
   1477         int ret;
   1478 
   1479         if (end <= mGapStart) {
   1480             ret = p.getTextWidths(mText, start, end - start, widths);
   1481         } else if (start >= mGapStart) {
   1482             ret = p.getTextWidths(mText, start + mGapLength, end - start, widths);
   1483         } else {
   1484             char[] buf = TextUtils.obtain(end - start);
   1485 
   1486             getChars(start, end, buf, 0);
   1487             ret = p.getTextWidths(buf, 0, end - start, widths);
   1488             TextUtils.recycle(buf);
   1489         }
   1490 
   1491         return ret;
   1492     }
   1493 
   1494     /**
   1495      * Don't call this yourself -- exists for Paint to use internally.
   1496      * {@hide}
   1497      */
   1498     public float getTextRunAdvances(int start, int end, int contextStart, int contextEnd, boolean isRtl,
   1499             float[] advances, int advancesPos, Paint p) {
   1500 
   1501         float ret;
   1502 
   1503         int contextLen = contextEnd - contextStart;
   1504         int len = end - start;
   1505 
   1506         if (end <= mGapStart) {
   1507             ret = p.getTextRunAdvances(mText, start, len, contextStart, contextLen,
   1508                     isRtl, advances, advancesPos);
   1509         } else if (start >= mGapStart) {
   1510             ret = p.getTextRunAdvances(mText, start + mGapLength, len,
   1511                     contextStart + mGapLength, contextLen, isRtl, advances, advancesPos);
   1512         } else {
   1513             char[] buf = TextUtils.obtain(contextLen);
   1514             getChars(contextStart, contextEnd, buf, 0);
   1515             ret = p.getTextRunAdvances(buf, start - contextStart, len,
   1516                     0, contextLen, isRtl, advances, advancesPos);
   1517             TextUtils.recycle(buf);
   1518         }
   1519 
   1520         return ret;
   1521     }
   1522 
   1523     /**
   1524      * Returns the next cursor position in the run.  This avoids placing the cursor between
   1525      * surrogates, between characters that form conjuncts, between base characters and combining
   1526      * marks, or within a reordering cluster.
   1527      *
   1528      * <p>The context is the shaping context for cursor movement, generally the bounds of the metric
   1529      * span enclosing the cursor in the direction of movement.
   1530      * <code>contextStart</code>, <code>contextEnd</code> and <code>offset</code> are relative to
   1531      * the start of the string.</p>
   1532      *
   1533      * <p>If cursorOpt is CURSOR_AT and the offset is not a valid cursor position,
   1534      * this returns -1.  Otherwise this will never return a value before contextStart or after
   1535      * contextEnd.</p>
   1536      *
   1537      * @param contextStart the start index of the context
   1538      * @param contextEnd the (non-inclusive) end index of the context
   1539      * @param dir either DIRECTION_RTL or DIRECTION_LTR
   1540      * @param offset the cursor position to move from
   1541      * @param cursorOpt how to move the cursor, one of CURSOR_AFTER,
   1542      * CURSOR_AT_OR_AFTER, CURSOR_BEFORE,
   1543      * CURSOR_AT_OR_BEFORE, or CURSOR_AT
   1544      * @param p the Paint object that is requesting this information
   1545      * @return the offset of the next position, or -1
   1546      * @deprecated This is an internal method, refrain from using it in your code
   1547      */
   1548     @Deprecated
   1549     public int getTextRunCursor(int contextStart, int contextEnd, int dir, int offset,
   1550             int cursorOpt, Paint p) {
   1551 
   1552         int ret;
   1553 
   1554         int contextLen = contextEnd - contextStart;
   1555         if (contextEnd <= mGapStart) {
   1556             ret = p.getTextRunCursor(mText, contextStart, contextLen,
   1557                     dir, offset, cursorOpt);
   1558         } else if (contextStart >= mGapStart) {
   1559             ret = p.getTextRunCursor(mText, contextStart + mGapLength, contextLen,
   1560                     dir, offset + mGapLength, cursorOpt) - mGapLength;
   1561         } else {
   1562             char[] buf = TextUtils.obtain(contextLen);
   1563             getChars(contextStart, contextEnd, buf, 0);
   1564             ret = p.getTextRunCursor(buf, 0, contextLen,
   1565                     dir, offset - contextStart, cursorOpt) + contextStart;
   1566             TextUtils.recycle(buf);
   1567         }
   1568 
   1569         return ret;
   1570     }
   1571 
   1572     // Documentation from interface
   1573     public void setFilters(InputFilter[] filters) {
   1574         if (filters == null) {
   1575             throw new IllegalArgumentException();
   1576         }
   1577 
   1578         mFilters = filters;
   1579     }
   1580 
   1581     // Documentation from interface
   1582     public InputFilter[] getFilters() {
   1583         return mFilters;
   1584     }
   1585 
   1586     // Same as SpannableStringInternal
   1587     @Override
   1588     public boolean equals(Object o) {
   1589         if (o instanceof Spanned &&
   1590                 toString().equals(o.toString())) {
   1591             Spanned other = (Spanned) o;
   1592             // Check span data
   1593             Object[] otherSpans = other.getSpans(0, other.length(), Object.class);
   1594             if (mSpanCount == otherSpans.length) {
   1595                 for (int i = 0; i < mSpanCount; ++i) {
   1596                     Object thisSpan = mSpans[i];
   1597                     Object otherSpan = otherSpans[i];
   1598                     if (thisSpan == this) {
   1599                         if (other != otherSpan ||
   1600                                 getSpanStart(thisSpan) != other.getSpanStart(otherSpan) ||
   1601                                 getSpanEnd(thisSpan) != other.getSpanEnd(otherSpan) ||
   1602                                 getSpanFlags(thisSpan) != other.getSpanFlags(otherSpan)) {
   1603                             return false;
   1604                         }
   1605                     } else if (!thisSpan.equals(otherSpan) ||
   1606                             getSpanStart(thisSpan) != other.getSpanStart(otherSpan) ||
   1607                             getSpanEnd(thisSpan) != other.getSpanEnd(otherSpan) ||
   1608                             getSpanFlags(thisSpan) != other.getSpanFlags(otherSpan)) {
   1609                         return false;
   1610                     }
   1611                 }
   1612                 return true;
   1613             }
   1614         }
   1615         return false;
   1616     }
   1617 
   1618     // Same as SpannableStringInternal
   1619     @Override
   1620     public int hashCode() {
   1621         int hash = toString().hashCode();
   1622         hash = hash * 31 + mSpanCount;
   1623         for (int i = 0; i < mSpanCount; ++i) {
   1624             Object span = mSpans[i];
   1625             if (span != this) {
   1626                 hash = hash * 31 + span.hashCode();
   1627             }
   1628             hash = hash * 31 + getSpanStart(span);
   1629             hash = hash * 31 + getSpanEnd(span);
   1630             hash = hash * 31 + getSpanFlags(span);
   1631         }
   1632         return hash;
   1633     }
   1634 
   1635     // Primitives for treating span list as binary tree
   1636 
   1637     // The spans (along with start and end offsets and flags) are stored in linear arrays sorted
   1638     // by start offset. For fast searching, there is a binary search structure imposed over these
   1639     // arrays. This structure is inorder traversal of a perfect binary tree, a slightly unusual
   1640     // but advantageous approach.
   1641 
   1642     // The value-containing nodes are indexed 0 <= i < n (where n = mSpanCount), thus preserving
   1643     // logic that accesses the values as a contiguous array. Other balanced binary tree approaches
   1644     // (such as a complete binary tree) would require some shuffling of node indices.
   1645 
   1646     // Basic properties of this structure: For a perfect binary tree of height m:
   1647     // The tree has 2^(m+1) - 1 total nodes.
   1648     // The root of the tree has index 2^m - 1.
   1649     // All leaf nodes have even index, all interior nodes odd.
   1650     // The height of a node of index i is the number of trailing ones in i's binary representation.
   1651     // The left child of a node i of height h is i - 2^(h - 1).
   1652     // The right child of a node i of height h is i + 2^(h - 1).
   1653 
   1654     // Note that for arbitrary n, interior nodes of this tree may be >= n. Thus, the general
   1655     // structure of a recursive traversal of node i is:
   1656     // * traverse left child if i is an interior node
   1657     // * process i if i < n
   1658     // * traverse right child if i is an interior node and i < n
   1659 
   1660     private int treeRoot() {
   1661         return Integer.highestOneBit(mSpanCount) - 1;
   1662     }
   1663 
   1664     // (i+1) & ~i is equal to 2^(the number of trailing ones in i)
   1665     private static int leftChild(int i) {
   1666         return i - (((i + 1) & ~i) >> 1);
   1667     }
   1668 
   1669     private static int rightChild(int i) {
   1670         return i + (((i + 1) & ~i) >> 1);
   1671     }
   1672 
   1673     // The span arrays are also augmented by an mSpanMax[] array that represents an interval tree
   1674     // over the binary tree structure described above. For each node, the mSpanMax[] array contains
   1675     // the maximum value of mSpanEnds of that node and its descendants. Thus, traversals can
   1676     // easily reject subtrees that contain no spans overlapping the area of interest.
   1677 
   1678     // Note that mSpanMax[] also has a valid valuefor interior nodes of index >= n, but which have
   1679     // descendants of index < n. In these cases, it simply represents the maximum span end of its
   1680     // descendants. This is a consequence of the perfect binary tree structure.
   1681     private int calcMax(int i) {
   1682         int max = 0;
   1683         if ((i & 1) != 0) {
   1684             // internal tree node
   1685             max = calcMax(leftChild(i));
   1686         }
   1687         if (i < mSpanCount) {
   1688             max = Math.max(max, mSpanEnds[i]);
   1689             if ((i & 1) != 0) {
   1690                 max = Math.max(max, calcMax(rightChild(i)));
   1691             }
   1692         }
   1693         mSpanMax[i] = max;
   1694         return max;
   1695     }
   1696 
   1697     // restores binary interval tree invariants after any mutation of span structure
   1698     private void restoreInvariants() {
   1699         if (mSpanCount == 0) return;
   1700 
   1701         // invariant 1: span starts are nondecreasing
   1702 
   1703         // This is a simple insertion sort because we expect it to be mostly sorted.
   1704         for (int i = 1; i < mSpanCount; i++) {
   1705             if (mSpanStarts[i] < mSpanStarts[i - 1]) {
   1706                 Object span = mSpans[i];
   1707                 int start = mSpanStarts[i];
   1708                 int end = mSpanEnds[i];
   1709                 int flags = mSpanFlags[i];
   1710                 int insertionOrder = mSpanOrder[i];
   1711                 int j = i;
   1712                 do {
   1713                     mSpans[j] = mSpans[j - 1];
   1714                     mSpanStarts[j] = mSpanStarts[j - 1];
   1715                     mSpanEnds[j] = mSpanEnds[j - 1];
   1716                     mSpanFlags[j] = mSpanFlags[j - 1];
   1717                     mSpanOrder[j] = mSpanOrder[j - 1];
   1718                     j--;
   1719                 } while (j > 0 && start < mSpanStarts[j - 1]);
   1720                 mSpans[j] = span;
   1721                 mSpanStarts[j] = start;
   1722                 mSpanEnds[j] = end;
   1723                 mSpanFlags[j] = flags;
   1724                 mSpanOrder[j] = insertionOrder;
   1725                 invalidateIndex(j);
   1726             }
   1727         }
   1728 
   1729         // invariant 2: max is max span end for each node and its descendants
   1730         calcMax(treeRoot());
   1731 
   1732         // invariant 3: mIndexOfSpan maps spans back to indices
   1733         if (mIndexOfSpan == null) {
   1734             mIndexOfSpan = new IdentityHashMap<Object, Integer>();
   1735         }
   1736         for (int i = mLowWaterMark; i < mSpanCount; i++) {
   1737             Integer existing = mIndexOfSpan.get(mSpans[i]);
   1738             if (existing == null || existing != i) {
   1739                 mIndexOfSpan.put(mSpans[i], i);
   1740             }
   1741         }
   1742         mLowWaterMark = Integer.MAX_VALUE;
   1743     }
   1744 
   1745     // Call this on any update to mSpans[], so that mIndexOfSpan can be updated
   1746     private void invalidateIndex(int i) {
   1747         mLowWaterMark = Math.min(i, mLowWaterMark);
   1748     }
   1749 
   1750     private static final InputFilter[] NO_FILTERS = new InputFilter[0];
   1751 
   1752     @GuardedBy("sCachedIntBuffer")
   1753     private static final int[][] sCachedIntBuffer = new int[6][0];
   1754 
   1755     private InputFilter[] mFilters = NO_FILTERS;
   1756 
   1757     private char[] mText;
   1758     private int mGapStart;
   1759     private int mGapLength;
   1760 
   1761     private Object[] mSpans;
   1762     private int[] mSpanStarts;
   1763     private int[] mSpanEnds;
   1764     private int[] mSpanMax;  // see calcMax() for an explanation of what this array stores
   1765     private int[] mSpanFlags;
   1766     private int[] mSpanOrder;  // store the order of span insertion
   1767     private int mSpanInsertCount;  // counter for the span insertion
   1768 
   1769     private int mSpanCount;
   1770     private IdentityHashMap<Object, Integer> mIndexOfSpan;
   1771     private int mLowWaterMark;  // indices below this have not been touched
   1772 
   1773     // TextWatcher callbacks may trigger changes that trigger more callbacks. This keeps track of
   1774     // how deep the callbacks go.
   1775     private int mTextWatcherDepth;
   1776 
   1777     // TODO These value are tightly related to the public SPAN_MARK/POINT values in {@link Spanned}
   1778     private static final int MARK = 1;
   1779     private static final int POINT = 2;
   1780     private static final int PARAGRAPH = 3;
   1781 
   1782     private static final int START_MASK = 0xF0;
   1783     private static final int END_MASK = 0x0F;
   1784     private static final int START_SHIFT = 4;
   1785 
   1786     // These bits are not (currently) used by SPANNED flags
   1787     private static final int SPAN_ADDED = 0x800;
   1788     private static final int SPAN_START_AT_START = 0x1000;
   1789     private static final int SPAN_START_AT_END = 0x2000;
   1790     private static final int SPAN_END_AT_START = 0x4000;
   1791     private static final int SPAN_END_AT_END = 0x8000;
   1792     private static final int SPAN_START_END_MASK = 0xF000;
   1793 }
   1794