1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "image_space.h" 18 19 #include <lz4.h> 20 #include <random> 21 #include <sys/statvfs.h> 22 #include <sys/types.h> 23 #include <unistd.h> 24 25 #include "android-base/stringprintf.h" 26 #include "android-base/strings.h" 27 28 #include "art_field-inl.h" 29 #include "art_method-inl.h" 30 #include "base/enums.h" 31 #include "base/macros.h" 32 #include "base/stl_util.h" 33 #include "base/scoped_flock.h" 34 #include "base/systrace.h" 35 #include "base/time_utils.h" 36 #include "exec_utils.h" 37 #include "gc/accounting/space_bitmap-inl.h" 38 #include "image-inl.h" 39 #include "image_space_fs.h" 40 #include "mirror/class-inl.h" 41 #include "mirror/object-inl.h" 42 #include "mirror/object-refvisitor-inl.h" 43 #include "oat_file.h" 44 #include "os.h" 45 #include "space-inl.h" 46 #include "utils.h" 47 48 namespace art { 49 namespace gc { 50 namespace space { 51 52 using android::base::StringAppendF; 53 using android::base::StringPrintf; 54 55 Atomic<uint32_t> ImageSpace::bitmap_index_(0); 56 57 ImageSpace::ImageSpace(const std::string& image_filename, 58 const char* image_location, 59 MemMap* mem_map, 60 accounting::ContinuousSpaceBitmap* live_bitmap, 61 uint8_t* end) 62 : MemMapSpace(image_filename, 63 mem_map, 64 mem_map->Begin(), 65 end, 66 end, 67 kGcRetentionPolicyNeverCollect), 68 oat_file_non_owned_(nullptr), 69 image_location_(image_location) { 70 DCHECK(live_bitmap != nullptr); 71 live_bitmap_.reset(live_bitmap); 72 } 73 74 static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) { 75 CHECK_ALIGNED(min_delta, kPageSize); 76 CHECK_ALIGNED(max_delta, kPageSize); 77 CHECK_LT(min_delta, max_delta); 78 79 int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta); 80 if (r % 2 == 0) { 81 r = RoundUp(r, kPageSize); 82 } else { 83 r = RoundDown(r, kPageSize); 84 } 85 CHECK_LE(min_delta, r); 86 CHECK_GE(max_delta, r); 87 CHECK_ALIGNED(r, kPageSize); 88 return r; 89 } 90 91 static int32_t ChooseRelocationOffsetDelta() { 92 return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA); 93 } 94 95 static bool GenerateImage(const std::string& image_filename, 96 InstructionSet image_isa, 97 std::string* error_msg) { 98 const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString()); 99 std::vector<std::string> boot_class_path; 100 Split(boot_class_path_string, ':', &boot_class_path); 101 if (boot_class_path.empty()) { 102 *error_msg = "Failed to generate image because no boot class path specified"; 103 return false; 104 } 105 // We should clean up so we are more likely to have room for the image. 106 if (Runtime::Current()->IsZygote()) { 107 LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile"; 108 PruneDalvikCache(image_isa); 109 } 110 111 std::vector<std::string> arg_vector; 112 113 std::string dex2oat(Runtime::Current()->GetCompilerExecutable()); 114 arg_vector.push_back(dex2oat); 115 116 std::string image_option_string("--image="); 117 image_option_string += image_filename; 118 arg_vector.push_back(image_option_string); 119 120 for (size_t i = 0; i < boot_class_path.size(); i++) { 121 arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]); 122 } 123 124 std::string oat_file_option_string("--oat-file="); 125 oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename); 126 arg_vector.push_back(oat_file_option_string); 127 128 // Note: we do not generate a fully debuggable boot image so we do not pass the 129 // compiler flag --debuggable here. 130 131 Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector); 132 CHECK_EQ(image_isa, kRuntimeISA) 133 << "We should always be generating an image for the current isa."; 134 135 int32_t base_offset = ChooseRelocationOffsetDelta(); 136 LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default " 137 << "art base address of 0x" << std::hex << ART_BASE_ADDRESS; 138 arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset)); 139 140 if (!kIsTargetBuild) { 141 arg_vector.push_back("--host"); 142 } 143 144 const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions(); 145 for (size_t i = 0; i < compiler_options.size(); ++i) { 146 arg_vector.push_back(compiler_options[i].c_str()); 147 } 148 149 std::string command_line(android::base::Join(arg_vector, ' ')); 150 LOG(INFO) << "GenerateImage: " << command_line; 151 return Exec(arg_vector, error_msg); 152 } 153 154 static bool FindImageFilenameImpl(const char* image_location, 155 const InstructionSet image_isa, 156 bool* has_system, 157 std::string* system_filename, 158 bool* dalvik_cache_exists, 159 std::string* dalvik_cache, 160 bool* is_global_cache, 161 bool* has_cache, 162 std::string* cache_filename) { 163 DCHECK(dalvik_cache != nullptr); 164 165 *has_system = false; 166 *has_cache = false; 167 // image_location = /system/framework/boot.art 168 // system_image_location = /system/framework/<image_isa>/boot.art 169 std::string system_image_filename(GetSystemImageFilename(image_location, image_isa)); 170 if (OS::FileExists(system_image_filename.c_str())) { 171 *system_filename = system_image_filename; 172 *has_system = true; 173 } 174 175 bool have_android_data = false; 176 *dalvik_cache_exists = false; 177 GetDalvikCache(GetInstructionSetString(image_isa), 178 true, 179 dalvik_cache, 180 &have_android_data, 181 dalvik_cache_exists, 182 is_global_cache); 183 184 if (have_android_data && *dalvik_cache_exists) { 185 // Always set output location even if it does not exist, 186 // so that the caller knows where to create the image. 187 // 188 // image_location = /system/framework/boot.art 189 // *image_filename = /data/dalvik-cache/<image_isa>/boot.art 190 std::string error_msg; 191 if (!GetDalvikCacheFilename(image_location, 192 dalvik_cache->c_str(), 193 cache_filename, 194 &error_msg)) { 195 LOG(WARNING) << error_msg; 196 return *has_system; 197 } 198 *has_cache = OS::FileExists(cache_filename->c_str()); 199 } 200 return *has_system || *has_cache; 201 } 202 203 bool ImageSpace::FindImageFilename(const char* image_location, 204 const InstructionSet image_isa, 205 std::string* system_filename, 206 bool* has_system, 207 std::string* cache_filename, 208 bool* dalvik_cache_exists, 209 bool* has_cache, 210 bool* is_global_cache) { 211 std::string dalvik_cache_unused; 212 return FindImageFilenameImpl(image_location, 213 image_isa, 214 has_system, 215 system_filename, 216 dalvik_cache_exists, 217 &dalvik_cache_unused, 218 is_global_cache, 219 has_cache, 220 cache_filename); 221 } 222 223 static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) { 224 std::unique_ptr<File> image_file(OS::OpenFileForReading(filename)); 225 if (image_file.get() == nullptr) { 226 return false; 227 } 228 const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader)); 229 if (!success || !image_header->IsValid()) { 230 return false; 231 } 232 return true; 233 } 234 235 // Relocate the image at image_location to dest_filename and relocate it by a random amount. 236 static bool RelocateImage(const char* image_location, 237 const char* dest_filename, 238 InstructionSet isa, 239 std::string* error_msg) { 240 // We should clean up so we are more likely to have room for the image. 241 if (Runtime::Current()->IsZygote()) { 242 LOG(INFO) << "Pruning dalvik-cache since we are relocating an image and will need to recompile"; 243 PruneDalvikCache(isa); 244 } 245 246 std::string patchoat(Runtime::Current()->GetPatchoatExecutable()); 247 248 std::string input_image_location_arg("--input-image-location="); 249 input_image_location_arg += image_location; 250 251 std::string output_image_filename_arg("--output-image-file="); 252 output_image_filename_arg += dest_filename; 253 254 std::string instruction_set_arg("--instruction-set="); 255 instruction_set_arg += GetInstructionSetString(isa); 256 257 std::string base_offset_arg("--base-offset-delta="); 258 StringAppendF(&base_offset_arg, "%d", ChooseRelocationOffsetDelta()); 259 260 std::vector<std::string> argv; 261 argv.push_back(patchoat); 262 263 argv.push_back(input_image_location_arg); 264 argv.push_back(output_image_filename_arg); 265 266 argv.push_back(instruction_set_arg); 267 argv.push_back(base_offset_arg); 268 269 std::string command_line(android::base::Join(argv, ' ')); 270 LOG(INFO) << "RelocateImage: " << command_line; 271 return Exec(argv, error_msg); 272 } 273 274 static ImageHeader* ReadSpecificImageHeader(const char* filename, std::string* error_msg) { 275 std::unique_ptr<ImageHeader> hdr(new ImageHeader); 276 if (!ReadSpecificImageHeader(filename, hdr.get())) { 277 *error_msg = StringPrintf("Unable to read image header for %s", filename); 278 return nullptr; 279 } 280 return hdr.release(); 281 } 282 283 ImageHeader* ImageSpace::ReadImageHeader(const char* image_location, 284 const InstructionSet image_isa, 285 std::string* error_msg) { 286 std::string system_filename; 287 bool has_system = false; 288 std::string cache_filename; 289 bool has_cache = false; 290 bool dalvik_cache_exists = false; 291 bool is_global_cache = false; 292 if (FindImageFilename(image_location, image_isa, &system_filename, &has_system, 293 &cache_filename, &dalvik_cache_exists, &has_cache, &is_global_cache)) { 294 if (Runtime::Current()->ShouldRelocate()) { 295 if (has_system && has_cache) { 296 std::unique_ptr<ImageHeader> sys_hdr(new ImageHeader); 297 std::unique_ptr<ImageHeader> cache_hdr(new ImageHeader); 298 if (!ReadSpecificImageHeader(system_filename.c_str(), sys_hdr.get())) { 299 *error_msg = StringPrintf("Unable to read image header for %s at %s", 300 image_location, system_filename.c_str()); 301 return nullptr; 302 } 303 if (!ReadSpecificImageHeader(cache_filename.c_str(), cache_hdr.get())) { 304 *error_msg = StringPrintf("Unable to read image header for %s at %s", 305 image_location, cache_filename.c_str()); 306 return nullptr; 307 } 308 if (sys_hdr->GetOatChecksum() != cache_hdr->GetOatChecksum()) { 309 *error_msg = StringPrintf("Unable to find a relocated version of image file %s", 310 image_location); 311 return nullptr; 312 } 313 return cache_hdr.release(); 314 } else if (!has_cache) { 315 *error_msg = StringPrintf("Unable to find a relocated version of image file %s", 316 image_location); 317 return nullptr; 318 } else if (!has_system && has_cache) { 319 // This can probably just use the cache one. 320 return ReadSpecificImageHeader(cache_filename.c_str(), error_msg); 321 } 322 } else { 323 // We don't want to relocate, Just pick the appropriate one if we have it and return. 324 if (has_system && has_cache) { 325 // We want the cache if the checksum matches, otherwise the system. 326 std::unique_ptr<ImageHeader> system(ReadSpecificImageHeader(system_filename.c_str(), 327 error_msg)); 328 std::unique_ptr<ImageHeader> cache(ReadSpecificImageHeader(cache_filename.c_str(), 329 error_msg)); 330 if (system.get() == nullptr || 331 (cache.get() != nullptr && cache->GetOatChecksum() == system->GetOatChecksum())) { 332 return cache.release(); 333 } else { 334 return system.release(); 335 } 336 } else if (has_system) { 337 return ReadSpecificImageHeader(system_filename.c_str(), error_msg); 338 } else if (has_cache) { 339 return ReadSpecificImageHeader(cache_filename.c_str(), error_msg); 340 } 341 } 342 } 343 344 *error_msg = StringPrintf("Unable to find image file for %s", image_location); 345 return nullptr; 346 } 347 348 static bool ChecksumsMatch(const char* image_a, const char* image_b, std::string* error_msg) { 349 DCHECK(error_msg != nullptr); 350 351 ImageHeader hdr_a; 352 ImageHeader hdr_b; 353 354 if (!ReadSpecificImageHeader(image_a, &hdr_a)) { 355 *error_msg = StringPrintf("Cannot read header of %s", image_a); 356 return false; 357 } 358 if (!ReadSpecificImageHeader(image_b, &hdr_b)) { 359 *error_msg = StringPrintf("Cannot read header of %s", image_b); 360 return false; 361 } 362 363 if (hdr_a.GetOatChecksum() != hdr_b.GetOatChecksum()) { 364 *error_msg = StringPrintf("Checksum mismatch: %u(%s) vs %u(%s)", 365 hdr_a.GetOatChecksum(), 366 image_a, 367 hdr_b.GetOatChecksum(), 368 image_b); 369 return false; 370 } 371 372 return true; 373 } 374 375 static bool CanWriteToDalvikCache(const InstructionSet isa) { 376 const std::string dalvik_cache = GetDalvikCache(GetInstructionSetString(isa)); 377 if (access(dalvik_cache.c_str(), O_RDWR) == 0) { 378 return true; 379 } else if (errno != EACCES) { 380 PLOG(WARNING) << "CanWriteToDalvikCache returned error other than EACCES"; 381 } 382 return false; 383 } 384 385 static bool ImageCreationAllowed(bool is_global_cache, 386 const InstructionSet isa, 387 std::string* error_msg) { 388 // Anyone can write into a "local" cache. 389 if (!is_global_cache) { 390 return true; 391 } 392 393 // Only the zygote running as root is allowed to create the global boot image. 394 // If the zygote is running as non-root (and cannot write to the dalvik-cache), 395 // then image creation is not allowed.. 396 if (Runtime::Current()->IsZygote()) { 397 return CanWriteToDalvikCache(isa); 398 } 399 400 *error_msg = "Only the zygote can create the global boot image."; 401 return false; 402 } 403 404 void ImageSpace::VerifyImageAllocations() { 405 uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment); 406 while (current < End()) { 407 CHECK_ALIGNED(current, kObjectAlignment); 408 auto* obj = reinterpret_cast<mirror::Object*>(current); 409 CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class"; 410 CHECK(live_bitmap_->Test(obj)) << obj->PrettyTypeOf(); 411 if (kUseBakerReadBarrier) { 412 obj->AssertReadBarrierState(); 413 } 414 current += RoundUp(obj->SizeOf(), kObjectAlignment); 415 } 416 } 417 418 // Helper class for relocating from one range of memory to another. 419 class RelocationRange { 420 public: 421 RelocationRange() = default; 422 RelocationRange(const RelocationRange&) = default; 423 RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length) 424 : source_(source), 425 dest_(dest), 426 length_(length) {} 427 428 bool InSource(uintptr_t address) const { 429 return address - source_ < length_; 430 } 431 432 bool InDest(uintptr_t address) const { 433 return address - dest_ < length_; 434 } 435 436 // Translate a source address to the destination space. 437 uintptr_t ToDest(uintptr_t address) const { 438 DCHECK(InSource(address)); 439 return address + Delta(); 440 } 441 442 // Returns the delta between the dest from the source. 443 uintptr_t Delta() const { 444 return dest_ - source_; 445 } 446 447 uintptr_t Source() const { 448 return source_; 449 } 450 451 uintptr_t Dest() const { 452 return dest_; 453 } 454 455 uintptr_t Length() const { 456 return length_; 457 } 458 459 private: 460 const uintptr_t source_; 461 const uintptr_t dest_; 462 const uintptr_t length_; 463 }; 464 465 std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) { 466 return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-" 467 << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->(" 468 << reinterpret_cast<const void*>(reloc.Dest()) << "-" 469 << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")"; 470 } 471 472 // Helper class encapsulating loading, so we can access private ImageSpace members (this is a 473 // friend class), but not declare functions in the header. 474 class ImageSpaceLoader { 475 public: 476 static std::unique_ptr<ImageSpace> Load(const char* image_location, 477 const std::string& image_filename, 478 bool is_zygote, 479 bool is_global_cache, 480 bool validate_oat_file, 481 std::string* error_msg) 482 REQUIRES_SHARED(Locks::mutator_lock_) { 483 // Note that we must not use the file descriptor associated with 484 // ScopedFlock::GetFile to Init the image file. We want the file 485 // descriptor (and the associated exclusive lock) to be released when 486 // we leave Create. 487 ScopedFlock image_lock; 488 // Should this be a RDWR lock? This is only a defensive measure, as at 489 // this point the image should exist. 490 // However, only the zygote can write into the global dalvik-cache, so 491 // restrict to zygote processes, or any process that isn't using 492 // /data/dalvik-cache (which we assume to be allowed to write there). 493 const bool rw_lock = is_zygote || !is_global_cache; 494 image_lock.Init(image_filename.c_str(), 495 rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY /* flags */, 496 true /* block */, 497 error_msg); 498 VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location " 499 << image_location; 500 // If we are in /system we can assume the image is good. We can also 501 // assume this if we are using a relocated image (i.e. image checksum 502 // matches) since this is only different by the offset. We need this to 503 // make sure that host tests continue to work. 504 // Since we are the boot image, pass null since we load the oat file from the boot image oat 505 // file name. 506 return Init(image_filename.c_str(), 507 image_location, 508 validate_oat_file, 509 /* oat_file */nullptr, 510 error_msg); 511 } 512 513 static std::unique_ptr<ImageSpace> Init(const char* image_filename, 514 const char* image_location, 515 bool validate_oat_file, 516 const OatFile* oat_file, 517 std::string* error_msg) 518 REQUIRES_SHARED(Locks::mutator_lock_) { 519 CHECK(image_filename != nullptr); 520 CHECK(image_location != nullptr); 521 522 TimingLogger logger(__PRETTY_FUNCTION__, true, VLOG_IS_ON(image)); 523 VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename; 524 525 std::unique_ptr<File> file; 526 { 527 TimingLogger::ScopedTiming timing("OpenImageFile", &logger); 528 file.reset(OS::OpenFileForReading(image_filename)); 529 if (file == nullptr) { 530 *error_msg = StringPrintf("Failed to open '%s'", image_filename); 531 return nullptr; 532 } 533 } 534 ImageHeader temp_image_header; 535 ImageHeader* image_header = &temp_image_header; 536 { 537 TimingLogger::ScopedTiming timing("ReadImageHeader", &logger); 538 bool success = file->ReadFully(image_header, sizeof(*image_header)); 539 if (!success || !image_header->IsValid()) { 540 *error_msg = StringPrintf("Invalid image header in '%s'", image_filename); 541 return nullptr; 542 } 543 } 544 // Check that the file is larger or equal to the header size + data size. 545 const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength()); 546 if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) { 547 *error_msg = StringPrintf("Image file truncated: %" PRIu64 " vs. %" PRIu64 ".", 548 image_file_size, 549 sizeof(ImageHeader) + image_header->GetDataSize()); 550 return nullptr; 551 } 552 553 if (oat_file != nullptr) { 554 // If we have an oat file, check the oat file checksum. The oat file is only non-null for the 555 // app image case. Otherwise, we open the oat file after the image and check the checksum there. 556 const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum(); 557 const uint32_t image_oat_checksum = image_header->GetOatChecksum(); 558 if (oat_checksum != image_oat_checksum) { 559 *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s", 560 oat_checksum, 561 image_oat_checksum, 562 image_filename); 563 return nullptr; 564 } 565 } 566 567 if (VLOG_IS_ON(startup)) { 568 LOG(INFO) << "Dumping image sections"; 569 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) { 570 const auto section_idx = static_cast<ImageHeader::ImageSections>(i); 571 auto& section = image_header->GetImageSection(section_idx); 572 LOG(INFO) << section_idx << " start=" 573 << reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " " 574 << section; 575 } 576 } 577 578 const auto& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap); 579 // The location we want to map from is the first aligned page after the end of the stored 580 // (possibly compressed) data. 581 const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(), 582 kPageSize); 583 const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size(); 584 if (end_of_bitmap != image_file_size) { 585 *error_msg = StringPrintf( 586 "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.", image_file_size, 587 end_of_bitmap); 588 return nullptr; 589 } 590 591 std::unique_ptr<MemMap> map; 592 593 // GetImageBegin is the preferred address to map the image. If we manage to map the 594 // image at the image begin, the amount of fixup work required is minimized. 595 // If it is pic we will retry with error_msg for the failure case. Pass a null error_msg to 596 // avoid reading proc maps for a mapping failure and slowing everything down. 597 map.reset(LoadImageFile(image_filename, 598 image_location, 599 *image_header, 600 image_header->GetImageBegin(), 601 file->Fd(), 602 logger, 603 image_header->IsPic() ? nullptr : error_msg)); 604 // If the header specifies PIC mode, we can also map at a random low_4gb address since we can 605 // relocate in-place. 606 if (map == nullptr && image_header->IsPic()) { 607 map.reset(LoadImageFile(image_filename, 608 image_location, 609 *image_header, 610 /* address */ nullptr, 611 file->Fd(), 612 logger, 613 error_msg)); 614 } 615 // Were we able to load something and continue? 616 if (map == nullptr) { 617 DCHECK(!error_msg->empty()); 618 return nullptr; 619 } 620 DCHECK_EQ(0, memcmp(image_header, map->Begin(), sizeof(ImageHeader))); 621 622 std::unique_ptr<MemMap> image_bitmap_map(MemMap::MapFileAtAddress(nullptr, 623 bitmap_section.Size(), 624 PROT_READ, MAP_PRIVATE, 625 file->Fd(), 626 image_bitmap_offset, 627 /*low_4gb*/false, 628 /*reuse*/false, 629 image_filename, 630 error_msg)); 631 if (image_bitmap_map == nullptr) { 632 *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str()); 633 return nullptr; 634 } 635 // Loaded the map, use the image header from the file now in case we patch it with 636 // RelocateInPlace. 637 image_header = reinterpret_cast<ImageHeader*>(map->Begin()); 638 const uint32_t bitmap_index = ImageSpace::bitmap_index_.FetchAndAddSequentiallyConsistent(1); 639 std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u", 640 image_filename, 641 bitmap_index)); 642 // Bitmap only needs to cover until the end of the mirror objects section. 643 const ImageSection& image_objects = image_header->GetImageSection(ImageHeader::kSectionObjects); 644 // We only want the mirror object, not the ArtFields and ArtMethods. 645 uint8_t* const image_end = map->Begin() + image_objects.End(); 646 std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap; 647 { 648 TimingLogger::ScopedTiming timing("CreateImageBitmap", &logger); 649 bitmap.reset( 650 accounting::ContinuousSpaceBitmap::CreateFromMemMap( 651 bitmap_name, 652 image_bitmap_map.release(), 653 reinterpret_cast<uint8_t*>(map->Begin()), 654 image_objects.End())); 655 if (bitmap == nullptr) { 656 *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str()); 657 return nullptr; 658 } 659 } 660 { 661 TimingLogger::ScopedTiming timing("RelocateImage", &logger); 662 if (!RelocateInPlace(*image_header, 663 map->Begin(), 664 bitmap.get(), 665 oat_file, 666 error_msg)) { 667 return nullptr; 668 } 669 } 670 // We only want the mirror object, not the ArtFields and ArtMethods. 671 std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename, 672 image_location, 673 map.release(), 674 bitmap.release(), 675 image_end)); 676 677 // VerifyImageAllocations() will be called later in Runtime::Init() 678 // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_ 679 // and ArtField::java_lang_reflect_ArtField_, which are used from 680 // Object::SizeOf() which VerifyImageAllocations() calls, are not 681 // set yet at this point. 682 if (oat_file == nullptr) { 683 TimingLogger::ScopedTiming timing("OpenOatFile", &logger); 684 space->oat_file_ = OpenOatFile(*space, image_filename, error_msg); 685 if (space->oat_file_ == nullptr) { 686 DCHECK(!error_msg->empty()); 687 return nullptr; 688 } 689 space->oat_file_non_owned_ = space->oat_file_.get(); 690 } else { 691 space->oat_file_non_owned_ = oat_file; 692 } 693 694 if (validate_oat_file) { 695 TimingLogger::ScopedTiming timing("ValidateOatFile", &logger); 696 CHECK(space->oat_file_ != nullptr); 697 if (!ImageSpace::ValidateOatFile(*space->oat_file_, error_msg)) { 698 DCHECK(!error_msg->empty()); 699 return nullptr; 700 } 701 } 702 703 Runtime* runtime = Runtime::Current(); 704 705 // If oat_file is null, then it is the boot image space. Use oat_file_non_owned_ from the space 706 // to set the runtime methods. 707 CHECK_EQ(oat_file != nullptr, image_header->IsAppImage()); 708 if (image_header->IsAppImage()) { 709 CHECK_EQ(runtime->GetResolutionMethod(), 710 image_header->GetImageMethod(ImageHeader::kResolutionMethod)); 711 CHECK_EQ(runtime->GetImtConflictMethod(), 712 image_header->GetImageMethod(ImageHeader::kImtConflictMethod)); 713 CHECK_EQ(runtime->GetImtUnimplementedMethod(), 714 image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod)); 715 CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveAllCalleeSaves), 716 image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod)); 717 CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveRefsOnly), 718 image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod)); 719 CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveRefsAndArgs), 720 image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod)); 721 CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveEverything), 722 image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod)); 723 } else if (!runtime->HasResolutionMethod()) { 724 runtime->SetInstructionSet(space->oat_file_non_owned_->GetOatHeader().GetInstructionSet()); 725 runtime->SetResolutionMethod(image_header->GetImageMethod(ImageHeader::kResolutionMethod)); 726 runtime->SetImtConflictMethod(image_header->GetImageMethod(ImageHeader::kImtConflictMethod)); 727 runtime->SetImtUnimplementedMethod( 728 image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod)); 729 runtime->SetCalleeSaveMethod( 730 image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod), 731 Runtime::kSaveAllCalleeSaves); 732 runtime->SetCalleeSaveMethod( 733 image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod), Runtime::kSaveRefsOnly); 734 runtime->SetCalleeSaveMethod( 735 image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod), 736 Runtime::kSaveRefsAndArgs); 737 runtime->SetCalleeSaveMethod( 738 image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod), Runtime::kSaveEverything); 739 } 740 741 VLOG(image) << "ImageSpace::Init exiting " << *space.get(); 742 if (VLOG_IS_ON(image)) { 743 logger.Dump(LOG_STREAM(INFO)); 744 } 745 return space; 746 } 747 748 private: 749 static MemMap* LoadImageFile(const char* image_filename, 750 const char* image_location, 751 const ImageHeader& image_header, 752 uint8_t* address, 753 int fd, 754 TimingLogger& logger, 755 std::string* error_msg) { 756 TimingLogger::ScopedTiming timing("MapImageFile", &logger); 757 const ImageHeader::StorageMode storage_mode = image_header.GetStorageMode(); 758 if (storage_mode == ImageHeader::kStorageModeUncompressed) { 759 return MemMap::MapFileAtAddress(address, 760 image_header.GetImageSize(), 761 PROT_READ | PROT_WRITE, 762 MAP_PRIVATE, 763 fd, 764 0, 765 /*low_4gb*/true, 766 /*reuse*/false, 767 image_filename, 768 error_msg); 769 } 770 771 if (storage_mode != ImageHeader::kStorageModeLZ4 && 772 storage_mode != ImageHeader::kStorageModeLZ4HC) { 773 if (error_msg != nullptr) { 774 *error_msg = StringPrintf("Invalid storage mode in image header %d", 775 static_cast<int>(storage_mode)); 776 } 777 return nullptr; 778 } 779 780 // Reserve output and decompress into it. 781 std::unique_ptr<MemMap> map(MemMap::MapAnonymous(image_location, 782 address, 783 image_header.GetImageSize(), 784 PROT_READ | PROT_WRITE, 785 /*low_4gb*/true, 786 /*reuse*/false, 787 error_msg)); 788 if (map != nullptr) { 789 const size_t stored_size = image_header.GetDataSize(); 790 const size_t decompress_offset = sizeof(ImageHeader); // Skip the header. 791 std::unique_ptr<MemMap> temp_map(MemMap::MapFile(sizeof(ImageHeader) + stored_size, 792 PROT_READ, 793 MAP_PRIVATE, 794 fd, 795 /*offset*/0, 796 /*low_4gb*/false, 797 image_filename, 798 error_msg)); 799 if (temp_map == nullptr) { 800 DCHECK(error_msg == nullptr || !error_msg->empty()); 801 return nullptr; 802 } 803 memcpy(map->Begin(), &image_header, sizeof(ImageHeader)); 804 const uint64_t start = NanoTime(); 805 // LZ4HC and LZ4 have same internal format, both use LZ4_decompress. 806 TimingLogger::ScopedTiming timing2("LZ4 decompress image", &logger); 807 const size_t decompressed_size = LZ4_decompress_safe( 808 reinterpret_cast<char*>(temp_map->Begin()) + sizeof(ImageHeader), 809 reinterpret_cast<char*>(map->Begin()) + decompress_offset, 810 stored_size, 811 map->Size() - decompress_offset); 812 const uint64_t time = NanoTime() - start; 813 // Add one 1 ns to prevent possible divide by 0. 814 VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " (" 815 << PrettySize(static_cast<uint64_t>(map->Size()) * MsToNs(1000) / (time + 1)) 816 << "/s)"; 817 if (decompressed_size + sizeof(ImageHeader) != image_header.GetImageSize()) { 818 if (error_msg != nullptr) { 819 *error_msg = StringPrintf( 820 "Decompressed size does not match expected image size %zu vs %zu", 821 decompressed_size + sizeof(ImageHeader), 822 image_header.GetImageSize()); 823 } 824 return nullptr; 825 } 826 } 827 828 return map.release(); 829 } 830 831 class FixupVisitor : public ValueObject { 832 public: 833 FixupVisitor(const RelocationRange& boot_image, 834 const RelocationRange& boot_oat, 835 const RelocationRange& app_image, 836 const RelocationRange& app_oat) 837 : boot_image_(boot_image), 838 boot_oat_(boot_oat), 839 app_image_(app_image), 840 app_oat_(app_oat) {} 841 842 // Return the relocated address of a heap object. 843 template <typename T> 844 ALWAYS_INLINE T* ForwardObject(T* src) const { 845 const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src); 846 if (boot_image_.InSource(uint_src)) { 847 return reinterpret_cast<T*>(boot_image_.ToDest(uint_src)); 848 } 849 if (app_image_.InSource(uint_src)) { 850 return reinterpret_cast<T*>(app_image_.ToDest(uint_src)); 851 } 852 // Since we are fixing up the app image, there should only be pointers to the app image and 853 // boot image. 854 DCHECK(src == nullptr) << reinterpret_cast<const void*>(src); 855 return src; 856 } 857 858 // Return the relocated address of a code pointer (contained by an oat file). 859 ALWAYS_INLINE const void* ForwardCode(const void* src) const { 860 const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src); 861 if (boot_oat_.InSource(uint_src)) { 862 return reinterpret_cast<const void*>(boot_oat_.ToDest(uint_src)); 863 } 864 if (app_oat_.InSource(uint_src)) { 865 return reinterpret_cast<const void*>(app_oat_.ToDest(uint_src)); 866 } 867 DCHECK(src == nullptr) << src; 868 return src; 869 } 870 871 // Must be called on pointers that already have been relocated to the destination relocation. 872 ALWAYS_INLINE bool IsInAppImage(mirror::Object* object) const { 873 return app_image_.InDest(reinterpret_cast<uintptr_t>(object)); 874 } 875 876 protected: 877 // Source section. 878 const RelocationRange boot_image_; 879 const RelocationRange boot_oat_; 880 const RelocationRange app_image_; 881 const RelocationRange app_oat_; 882 }; 883 884 // Adapt for mirror::Class::FixupNativePointers. 885 class FixupObjectAdapter : public FixupVisitor { 886 public: 887 template<typename... Args> 888 explicit FixupObjectAdapter(Args... args) : FixupVisitor(args...) {} 889 890 template <typename T> 891 T* operator()(T* obj, void** dest_addr ATTRIBUTE_UNUSED = nullptr) const { 892 return ForwardObject(obj); 893 } 894 }; 895 896 class FixupRootVisitor : public FixupVisitor { 897 public: 898 template<typename... Args> 899 explicit FixupRootVisitor(Args... args) : FixupVisitor(args...) {} 900 901 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const 902 REQUIRES_SHARED(Locks::mutator_lock_) { 903 if (!root->IsNull()) { 904 VisitRoot(root); 905 } 906 } 907 908 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const 909 REQUIRES_SHARED(Locks::mutator_lock_) { 910 mirror::Object* ref = root->AsMirrorPtr(); 911 mirror::Object* new_ref = ForwardObject(ref); 912 if (ref != new_ref) { 913 root->Assign(new_ref); 914 } 915 } 916 }; 917 918 class FixupObjectVisitor : public FixupVisitor { 919 public: 920 template<typename... Args> 921 explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited, 922 const PointerSize pointer_size, 923 Args... args) 924 : FixupVisitor(args...), 925 pointer_size_(pointer_size), 926 visited_(visited) {} 927 928 // Fix up separately since we also need to fix up method entrypoints. 929 ALWAYS_INLINE void VisitRootIfNonNull( 930 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} 931 932 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) 933 const {} 934 935 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj, 936 MemberOffset offset, 937 bool is_static ATTRIBUTE_UNUSED) const 938 NO_THREAD_SAFETY_ANALYSIS { 939 // There could be overlap between ranges, we must avoid visiting the same reference twice. 940 // Avoid the class field since we already fixed it up in FixupClassVisitor. 941 if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) { 942 // Space is not yet added to the heap, don't do a read barrier. 943 mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>( 944 offset); 945 // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the 946 // image. 947 obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, ForwardObject(ref)); 948 } 949 } 950 951 // Visit a pointer array and forward corresponding native data. Ignores pointer arrays in the 952 // boot image. Uses the bitmap to ensure the same array is not visited multiple times. 953 template <typename Visitor> 954 void UpdatePointerArrayContents(mirror::PointerArray* array, const Visitor& visitor) const 955 NO_THREAD_SAFETY_ANALYSIS { 956 DCHECK(array != nullptr); 957 DCHECK(visitor.IsInAppImage(array)); 958 // The bit for the array contents is different than the bit for the array. Since we may have 959 // already visited the array as a long / int array from walking the bitmap without knowing it 960 // was a pointer array. 961 static_assert(kObjectAlignment == 8u, "array bit may be in another object"); 962 mirror::Object* const contents_bit = reinterpret_cast<mirror::Object*>( 963 reinterpret_cast<uintptr_t>(array) + kObjectAlignment); 964 // If the bit is not set then the contents have not yet been updated. 965 if (!visited_->Test(contents_bit)) { 966 array->Fixup<kVerifyNone, kWithoutReadBarrier>(array, pointer_size_, visitor); 967 visited_->Set(contents_bit); 968 } 969 } 970 971 // java.lang.ref.Reference visitor. 972 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, 973 ObjPtr<mirror::Reference> ref) const 974 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { 975 mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>(); 976 ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>( 977 mirror::Reference::ReferentOffset(), 978 ForwardObject(obj)); 979 } 980 981 void operator()(mirror::Object* obj) const 982 NO_THREAD_SAFETY_ANALYSIS { 983 if (visited_->Test(obj)) { 984 // Already visited. 985 return; 986 } 987 visited_->Set(obj); 988 989 // Handle class specially first since we need it to be updated to properly visit the rest of 990 // the instance fields. 991 { 992 mirror::Class* klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>(); 993 DCHECK(klass != nullptr) << "Null class in image"; 994 // No AsClass since our fields aren't quite fixed up yet. 995 mirror::Class* new_klass = down_cast<mirror::Class*>(ForwardObject(klass)); 996 if (klass != new_klass) { 997 obj->SetClass<kVerifyNone>(new_klass); 998 } 999 if (new_klass != klass && IsInAppImage(new_klass)) { 1000 // Make sure the klass contents are fixed up since we depend on it to walk the fields. 1001 operator()(new_klass); 1002 } 1003 } 1004 1005 obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>( 1006 *this, 1007 *this); 1008 // Note that this code relies on no circular dependencies. 1009 // We want to use our own class loader and not the one in the image. 1010 if (obj->IsClass<kVerifyNone, kWithoutReadBarrier>()) { 1011 mirror::Class* as_klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>(); 1012 FixupObjectAdapter visitor(boot_image_, boot_oat_, app_image_, app_oat_); 1013 as_klass->FixupNativePointers<kVerifyNone, kWithoutReadBarrier>(as_klass, 1014 pointer_size_, 1015 visitor); 1016 // Deal with the pointer arrays. Use the helper function since multiple classes can reference 1017 // the same arrays. 1018 mirror::PointerArray* const vtable = as_klass->GetVTable<kVerifyNone, kWithoutReadBarrier>(); 1019 if (vtable != nullptr && IsInAppImage(vtable)) { 1020 operator()(vtable); 1021 UpdatePointerArrayContents(vtable, visitor); 1022 } 1023 mirror::IfTable* iftable = as_klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>(); 1024 // Ensure iftable arrays are fixed up since we need GetMethodArray to return the valid 1025 // contents. 1026 if (IsInAppImage(iftable)) { 1027 operator()(iftable); 1028 for (int32_t i = 0, count = iftable->Count(); i < count; ++i) { 1029 if (iftable->GetMethodArrayCount<kVerifyNone, kWithoutReadBarrier>(i) > 0) { 1030 mirror::PointerArray* methods = 1031 iftable->GetMethodArray<kVerifyNone, kWithoutReadBarrier>(i); 1032 if (visitor.IsInAppImage(methods)) { 1033 operator()(methods); 1034 DCHECK(methods != nullptr); 1035 UpdatePointerArrayContents(methods, visitor); 1036 } 1037 } 1038 } 1039 } 1040 } 1041 } 1042 1043 private: 1044 const PointerSize pointer_size_; 1045 gc::accounting::ContinuousSpaceBitmap* const visited_; 1046 }; 1047 1048 class ForwardObjectAdapter { 1049 public: 1050 ALWAYS_INLINE explicit ForwardObjectAdapter(const FixupVisitor* visitor) : visitor_(visitor) {} 1051 1052 template <typename T> 1053 ALWAYS_INLINE T* operator()(T* src) const { 1054 return visitor_->ForwardObject(src); 1055 } 1056 1057 private: 1058 const FixupVisitor* const visitor_; 1059 }; 1060 1061 class ForwardCodeAdapter { 1062 public: 1063 ALWAYS_INLINE explicit ForwardCodeAdapter(const FixupVisitor* visitor) 1064 : visitor_(visitor) {} 1065 1066 template <typename T> 1067 ALWAYS_INLINE T* operator()(T* src) const { 1068 return visitor_->ForwardCode(src); 1069 } 1070 1071 private: 1072 const FixupVisitor* const visitor_; 1073 }; 1074 1075 class FixupArtMethodVisitor : public FixupVisitor, public ArtMethodVisitor { 1076 public: 1077 template<typename... Args> 1078 explicit FixupArtMethodVisitor(bool fixup_heap_objects, PointerSize pointer_size, Args... args) 1079 : FixupVisitor(args...), 1080 fixup_heap_objects_(fixup_heap_objects), 1081 pointer_size_(pointer_size) {} 1082 1083 virtual void Visit(ArtMethod* method) NO_THREAD_SAFETY_ANALYSIS { 1084 // TODO: Separate visitor for runtime vs normal methods. 1085 if (UNLIKELY(method->IsRuntimeMethod())) { 1086 ImtConflictTable* table = method->GetImtConflictTable(pointer_size_); 1087 if (table != nullptr) { 1088 ImtConflictTable* new_table = ForwardObject(table); 1089 if (table != new_table) { 1090 method->SetImtConflictTable(new_table, pointer_size_); 1091 } 1092 } 1093 const void* old_code = method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size_); 1094 const void* new_code = ForwardCode(old_code); 1095 if (old_code != new_code) { 1096 method->SetEntryPointFromQuickCompiledCodePtrSize(new_code, pointer_size_); 1097 } 1098 } else { 1099 if (fixup_heap_objects_) { 1100 method->UpdateObjectsForImageRelocation(ForwardObjectAdapter(this), pointer_size_); 1101 } 1102 method->UpdateEntrypoints<kWithoutReadBarrier>(ForwardCodeAdapter(this), pointer_size_); 1103 } 1104 } 1105 1106 private: 1107 const bool fixup_heap_objects_; 1108 const PointerSize pointer_size_; 1109 }; 1110 1111 class FixupArtFieldVisitor : public FixupVisitor, public ArtFieldVisitor { 1112 public: 1113 template<typename... Args> 1114 explicit FixupArtFieldVisitor(Args... args) : FixupVisitor(args...) {} 1115 1116 virtual void Visit(ArtField* field) NO_THREAD_SAFETY_ANALYSIS { 1117 field->UpdateObjects(ForwardObjectAdapter(this)); 1118 } 1119 }; 1120 1121 // Relocate an image space mapped at target_base which possibly used to be at a different base 1122 // address. Only needs a single image space, not one for both source and destination. 1123 // In place means modifying a single ImageSpace in place rather than relocating from one ImageSpace 1124 // to another. 1125 static bool RelocateInPlace(ImageHeader& image_header, 1126 uint8_t* target_base, 1127 accounting::ContinuousSpaceBitmap* bitmap, 1128 const OatFile* app_oat_file, 1129 std::string* error_msg) { 1130 DCHECK(error_msg != nullptr); 1131 if (!image_header.IsPic()) { 1132 if (image_header.GetImageBegin() == target_base) { 1133 return true; 1134 } 1135 *error_msg = StringPrintf("Cannot relocate non-pic image for oat file %s", 1136 (app_oat_file != nullptr) ? app_oat_file->GetLocation().c_str() : ""); 1137 return false; 1138 } 1139 // Set up sections. 1140 uint32_t boot_image_begin = 0; 1141 uint32_t boot_image_end = 0; 1142 uint32_t boot_oat_begin = 0; 1143 uint32_t boot_oat_end = 0; 1144 const PointerSize pointer_size = image_header.GetPointerSize(); 1145 gc::Heap* const heap = Runtime::Current()->GetHeap(); 1146 heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end); 1147 if (boot_image_begin == boot_image_end) { 1148 *error_msg = "Can not relocate app image without boot image space"; 1149 return false; 1150 } 1151 if (boot_oat_begin == boot_oat_end) { 1152 *error_msg = "Can not relocate app image without boot oat file"; 1153 return false; 1154 } 1155 const uint32_t boot_image_size = boot_image_end - boot_image_begin; 1156 const uint32_t boot_oat_size = boot_oat_end - boot_oat_begin; 1157 const uint32_t image_header_boot_image_size = image_header.GetBootImageSize(); 1158 const uint32_t image_header_boot_oat_size = image_header.GetBootOatSize(); 1159 if (boot_image_size != image_header_boot_image_size) { 1160 *error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %" 1161 PRIu64, 1162 static_cast<uint64_t>(boot_image_size), 1163 static_cast<uint64_t>(image_header_boot_image_size)); 1164 return false; 1165 } 1166 if (boot_oat_size != image_header_boot_oat_size) { 1167 *error_msg = StringPrintf("Boot oat size %" PRIu64 " does not match expected size %" 1168 PRIu64, 1169 static_cast<uint64_t>(boot_oat_size), 1170 static_cast<uint64_t>(image_header_boot_oat_size)); 1171 return false; 1172 } 1173 TimingLogger logger(__FUNCTION__, true, false); 1174 RelocationRange boot_image(image_header.GetBootImageBegin(), 1175 boot_image_begin, 1176 boot_image_size); 1177 RelocationRange boot_oat(image_header.GetBootOatBegin(), 1178 boot_oat_begin, 1179 boot_oat_size); 1180 RelocationRange app_image(reinterpret_cast<uintptr_t>(image_header.GetImageBegin()), 1181 reinterpret_cast<uintptr_t>(target_base), 1182 image_header.GetImageSize()); 1183 // Use the oat data section since this is where the OatFile::Begin is. 1184 RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()), 1185 // Not necessarily in low 4GB. 1186 reinterpret_cast<uintptr_t>(app_oat_file->Begin()), 1187 image_header.GetOatDataEnd() - image_header.GetOatDataBegin()); 1188 VLOG(image) << "App image " << app_image; 1189 VLOG(image) << "App oat " << app_oat; 1190 VLOG(image) << "Boot image " << boot_image; 1191 VLOG(image) << "Boot oat " << boot_oat; 1192 // True if we need to fixup any heap pointers, otherwise only code pointers. 1193 const bool fixup_image = boot_image.Delta() != 0 || app_image.Delta() != 0; 1194 const bool fixup_code = boot_oat.Delta() != 0 || app_oat.Delta() != 0; 1195 if (!fixup_image && !fixup_code) { 1196 // Nothing to fix up. 1197 return true; 1198 } 1199 ScopedDebugDisallowReadBarriers sddrb(Thread::Current()); 1200 // Need to update the image to be at the target base. 1201 const ImageSection& objects_section = image_header.GetImageSection(ImageHeader::kSectionObjects); 1202 uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset()); 1203 uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End()); 1204 FixupObjectAdapter fixup_adapter(boot_image, boot_oat, app_image, app_oat); 1205 if (fixup_image) { 1206 // Two pass approach, fix up all classes first, then fix up non class-objects. 1207 // The visited bitmap is used to ensure that pointer arrays are not forwarded twice. 1208 std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap( 1209 gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap", 1210 target_base, 1211 image_header.GetImageSize())); 1212 FixupObjectVisitor fixup_object_visitor(visited_bitmap.get(), 1213 pointer_size, 1214 boot_image, 1215 boot_oat, 1216 app_image, 1217 app_oat); 1218 TimingLogger::ScopedTiming timing("Fixup classes", &logger); 1219 // Fixup objects may read fields in the boot image, use the mutator lock here for sanity. Though 1220 // its probably not required. 1221 ScopedObjectAccess soa(Thread::Current()); 1222 timing.NewTiming("Fixup objects"); 1223 bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor); 1224 // Fixup image roots. 1225 CHECK(app_image.InSource(reinterpret_cast<uintptr_t>( 1226 image_header.GetImageRoots<kWithoutReadBarrier>()))); 1227 image_header.RelocateImageObjects(app_image.Delta()); 1228 CHECK_EQ(image_header.GetImageBegin(), target_base); 1229 // Fix up dex cache DexFile pointers. 1230 auto* dex_caches = image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)-> 1231 AsObjectArray<mirror::DexCache, kVerifyNone, kWithoutReadBarrier>(); 1232 for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) { 1233 mirror::DexCache* dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i); 1234 // Fix up dex cache pointers. 1235 mirror::StringDexCacheType* strings = dex_cache->GetStrings(); 1236 if (strings != nullptr) { 1237 mirror::StringDexCacheType* new_strings = fixup_adapter.ForwardObject(strings); 1238 if (strings != new_strings) { 1239 dex_cache->SetStrings(new_strings); 1240 } 1241 dex_cache->FixupStrings<kWithoutReadBarrier>(new_strings, fixup_adapter); 1242 } 1243 mirror::TypeDexCacheType* types = dex_cache->GetResolvedTypes(); 1244 if (types != nullptr) { 1245 mirror::TypeDexCacheType* new_types = fixup_adapter.ForwardObject(types); 1246 if (types != new_types) { 1247 dex_cache->SetResolvedTypes(new_types); 1248 } 1249 dex_cache->FixupResolvedTypes<kWithoutReadBarrier>(new_types, fixup_adapter); 1250 } 1251 ArtMethod** methods = dex_cache->GetResolvedMethods(); 1252 if (methods != nullptr) { 1253 ArtMethod** new_methods = fixup_adapter.ForwardObject(methods); 1254 if (methods != new_methods) { 1255 dex_cache->SetResolvedMethods(new_methods); 1256 } 1257 for (size_t j = 0, num = dex_cache->NumResolvedMethods(); j != num; ++j) { 1258 ArtMethod* orig = mirror::DexCache::GetElementPtrSize(new_methods, j, pointer_size); 1259 ArtMethod* copy = fixup_adapter.ForwardObject(orig); 1260 if (orig != copy) { 1261 mirror::DexCache::SetElementPtrSize(new_methods, j, copy, pointer_size); 1262 } 1263 } 1264 } 1265 mirror::FieldDexCacheType* fields = dex_cache->GetResolvedFields(); 1266 if (fields != nullptr) { 1267 mirror::FieldDexCacheType* new_fields = fixup_adapter.ForwardObject(fields); 1268 if (fields != new_fields) { 1269 dex_cache->SetResolvedFields(new_fields); 1270 } 1271 for (size_t j = 0, num = dex_cache->NumResolvedFields(); j != num; ++j) { 1272 mirror::FieldDexCachePair orig = 1273 mirror::DexCache::GetNativePairPtrSize(new_fields, j, pointer_size); 1274 mirror::FieldDexCachePair copy(fixup_adapter.ForwardObject(orig.object), orig.index); 1275 if (orig.object != copy.object) { 1276 mirror::DexCache::SetNativePairPtrSize(new_fields, j, copy, pointer_size); 1277 } 1278 } 1279 } 1280 1281 mirror::MethodTypeDexCacheType* method_types = dex_cache->GetResolvedMethodTypes(); 1282 if (method_types != nullptr) { 1283 mirror::MethodTypeDexCacheType* new_method_types = 1284 fixup_adapter.ForwardObject(method_types); 1285 if (method_types != new_method_types) { 1286 dex_cache->SetResolvedMethodTypes(new_method_types); 1287 } 1288 dex_cache->FixupResolvedMethodTypes<kWithoutReadBarrier>(new_method_types, fixup_adapter); 1289 } 1290 GcRoot<mirror::CallSite>* call_sites = dex_cache->GetResolvedCallSites(); 1291 if (call_sites != nullptr) { 1292 GcRoot<mirror::CallSite>* new_call_sites = fixup_adapter.ForwardObject(call_sites); 1293 if (call_sites != new_call_sites) { 1294 dex_cache->SetResolvedCallSites(new_call_sites); 1295 } 1296 dex_cache->FixupResolvedCallSites<kWithoutReadBarrier>(new_call_sites, fixup_adapter); 1297 } 1298 } 1299 } 1300 { 1301 // Only touches objects in the app image, no need for mutator lock. 1302 TimingLogger::ScopedTiming timing("Fixup methods", &logger); 1303 FixupArtMethodVisitor method_visitor(fixup_image, 1304 pointer_size, 1305 boot_image, 1306 boot_oat, 1307 app_image, 1308 app_oat); 1309 image_header.VisitPackedArtMethods(&method_visitor, target_base, pointer_size); 1310 } 1311 if (fixup_image) { 1312 { 1313 // Only touches objects in the app image, no need for mutator lock. 1314 TimingLogger::ScopedTiming timing("Fixup fields", &logger); 1315 FixupArtFieldVisitor field_visitor(boot_image, boot_oat, app_image, app_oat); 1316 image_header.VisitPackedArtFields(&field_visitor, target_base); 1317 } 1318 { 1319 TimingLogger::ScopedTiming timing("Fixup imt", &logger); 1320 image_header.VisitPackedImTables(fixup_adapter, target_base, pointer_size); 1321 } 1322 { 1323 TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger); 1324 image_header.VisitPackedImtConflictTables(fixup_adapter, target_base, pointer_size); 1325 } 1326 // In the app image case, the image methods are actually in the boot image. 1327 image_header.RelocateImageMethods(boot_image.Delta()); 1328 const auto& class_table_section = image_header.GetImageSection(ImageHeader::kSectionClassTable); 1329 if (class_table_section.Size() > 0u) { 1330 // Note that we require that ReadFromMemory does not make an internal copy of the elements. 1331 // This also relies on visit roots not doing any verification which could fail after we update 1332 // the roots to be the image addresses. 1333 ScopedObjectAccess soa(Thread::Current()); 1334 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); 1335 ClassTable temp_table; 1336 temp_table.ReadFromMemory(target_base + class_table_section.Offset()); 1337 FixupRootVisitor root_visitor(boot_image, boot_oat, app_image, app_oat); 1338 temp_table.VisitRoots(root_visitor); 1339 } 1340 } 1341 if (VLOG_IS_ON(image)) { 1342 logger.Dump(LOG_STREAM(INFO)); 1343 } 1344 return true; 1345 } 1346 1347 static std::unique_ptr<OatFile> OpenOatFile(const ImageSpace& image, 1348 const char* image_path, 1349 std::string* error_msg) { 1350 const ImageHeader& image_header = image.GetImageHeader(); 1351 std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(image_path); 1352 1353 CHECK(image_header.GetOatDataBegin() != nullptr); 1354 1355 std::unique_ptr<OatFile> oat_file(OatFile::Open(oat_filename, 1356 oat_filename, 1357 image_header.GetOatDataBegin(), 1358 image_header.GetOatFileBegin(), 1359 !Runtime::Current()->IsAotCompiler(), 1360 /*low_4gb*/false, 1361 nullptr, 1362 error_msg)); 1363 if (oat_file == nullptr) { 1364 *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s", 1365 oat_filename.c_str(), 1366 image.GetName(), 1367 error_msg->c_str()); 1368 return nullptr; 1369 } 1370 uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum(); 1371 uint32_t image_oat_checksum = image_header.GetOatChecksum(); 1372 if (oat_checksum != image_oat_checksum) { 1373 *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum 0x%x" 1374 " in image %s", 1375 oat_checksum, 1376 image_oat_checksum, 1377 image.GetName()); 1378 return nullptr; 1379 } 1380 int32_t image_patch_delta = image_header.GetPatchDelta(); 1381 int32_t oat_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta(); 1382 if (oat_patch_delta != image_patch_delta && !image_header.CompilePic()) { 1383 // We should have already relocated by this point. Bail out. 1384 *error_msg = StringPrintf("Failed to match oat file patch delta %d to expected patch delta %d " 1385 "in image %s", 1386 oat_patch_delta, 1387 image_patch_delta, 1388 image.GetName()); 1389 return nullptr; 1390 } 1391 1392 return oat_file; 1393 } 1394 }; 1395 1396 static constexpr uint64_t kLowSpaceValue = 50 * MB; 1397 static constexpr uint64_t kTmpFsSentinelValue = 384 * MB; 1398 1399 // Read the free space of the cache partition and make a decision whether to keep the generated 1400 // image. This is to try to mitigate situations where the system might run out of space later. 1401 static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) { 1402 // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes. 1403 struct statvfs buf; 1404 1405 int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf)); 1406 if (res != 0) { 1407 // Could not stat. Conservatively tell the system to delete the image. 1408 *error_msg = "Could not stat the filesystem, assuming low-memory situation."; 1409 return false; 1410 } 1411 1412 uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks); 1413 // Zygote is privileged, but other things are not. Use bavail. 1414 uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail); 1415 1416 // Take the overall size as an indicator for a tmpfs, which is being used for the decryption 1417 // environment. We do not want to fail quickening the boot image there, as it is beneficial 1418 // for time-to-UI. 1419 if (fs_overall_size > kTmpFsSentinelValue) { 1420 if (fs_free_size < kLowSpaceValue) { 1421 *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available, need at " 1422 "least %" PRIu64 ".", 1423 static_cast<double>(fs_free_size) / MB, 1424 kLowSpaceValue / MB); 1425 return false; 1426 } 1427 } 1428 return true; 1429 } 1430 1431 std::unique_ptr<ImageSpace> ImageSpace::CreateBootImage(const char* image_location, 1432 const InstructionSet image_isa, 1433 bool secondary_image, 1434 std::string* error_msg) { 1435 ScopedTrace trace(__FUNCTION__); 1436 1437 // Step 0: Extra zygote work. 1438 1439 // Step 0.a: If we're the zygote, mark boot. 1440 const bool is_zygote = Runtime::Current()->IsZygote(); 1441 if (is_zygote && !secondary_image && CanWriteToDalvikCache(image_isa)) { 1442 MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots()); 1443 } 1444 1445 // Step 0.b: If we're the zygote, check for free space, and prune the cache preemptively, 1446 // if necessary. While the runtime may be fine (it is pretty tolerant to 1447 // out-of-disk-space situations), other parts of the platform are not. 1448 // 1449 // The advantage of doing this proactively is that the later steps are simplified, 1450 // i.e., we do not need to code retries. 1451 std::string system_filename; 1452 bool has_system = false; 1453 std::string cache_filename; 1454 bool has_cache = false; 1455 bool dalvik_cache_exists = false; 1456 bool is_global_cache = true; 1457 std::string dalvik_cache; 1458 bool found_image = FindImageFilenameImpl(image_location, 1459 image_isa, 1460 &has_system, 1461 &system_filename, 1462 &dalvik_cache_exists, 1463 &dalvik_cache, 1464 &is_global_cache, 1465 &has_cache, 1466 &cache_filename); 1467 1468 if (is_zygote && dalvik_cache_exists) { 1469 DCHECK(!dalvik_cache.empty()); 1470 std::string local_error_msg; 1471 if (!CheckSpace(dalvik_cache, &local_error_msg)) { 1472 LOG(WARNING) << local_error_msg << " Preemptively pruning the dalvik cache."; 1473 PruneDalvikCache(image_isa); 1474 1475 // Re-evaluate the image. 1476 found_image = FindImageFilenameImpl(image_location, 1477 image_isa, 1478 &has_system, 1479 &system_filename, 1480 &dalvik_cache_exists, 1481 &dalvik_cache, 1482 &is_global_cache, 1483 &has_cache, 1484 &cache_filename); 1485 } 1486 } 1487 1488 // Collect all the errors. 1489 std::vector<std::string> error_msgs; 1490 1491 // Step 1: Check if we have an existing and relocated image. 1492 1493 // Step 1.a: Have files in system and cache. Then they need to match. 1494 if (found_image && has_system && has_cache) { 1495 std::string local_error_msg; 1496 // Check that the files are matching. 1497 if (ChecksumsMatch(system_filename.c_str(), cache_filename.c_str(), &local_error_msg)) { 1498 std::unique_ptr<ImageSpace> relocated_space = 1499 ImageSpaceLoader::Load(image_location, 1500 cache_filename, 1501 is_zygote, 1502 is_global_cache, 1503 /* validate_oat_file */ false, 1504 &local_error_msg); 1505 if (relocated_space != nullptr) { 1506 return relocated_space; 1507 } 1508 } 1509 error_msgs.push_back(local_error_msg); 1510 } 1511 1512 // Step 1.b: Only have a cache file. 1513 if (found_image && !has_system && has_cache) { 1514 std::string local_error_msg; 1515 std::unique_ptr<ImageSpace> cache_space = 1516 ImageSpaceLoader::Load(image_location, 1517 cache_filename, 1518 is_zygote, 1519 is_global_cache, 1520 /* validate_oat_file */ true, 1521 &local_error_msg); 1522 if (cache_space != nullptr) { 1523 return cache_space; 1524 } 1525 error_msgs.push_back(local_error_msg); 1526 } 1527 1528 // Step 2: We have an existing image in /system. 1529 1530 // Step 2.a: We are not required to relocate it. Then we can use it directly. 1531 bool relocate = Runtime::Current()->ShouldRelocate(); 1532 1533 if (found_image && has_system && !relocate) { 1534 std::string local_error_msg; 1535 std::unique_ptr<ImageSpace> system_space = 1536 ImageSpaceLoader::Load(image_location, 1537 system_filename, 1538 is_zygote, 1539 is_global_cache, 1540 /* validate_oat_file */ false, 1541 &local_error_msg); 1542 if (system_space != nullptr) { 1543 return system_space; 1544 } 1545 error_msgs.push_back(local_error_msg); 1546 } 1547 1548 // Step 2.b: We require a relocated image. Then we must patch it. This step fails if this is a 1549 // secondary image. 1550 if (found_image && has_system && relocate) { 1551 std::string local_error_msg; 1552 if (!Runtime::Current()->IsImageDex2OatEnabled()) { 1553 local_error_msg = "Patching disabled."; 1554 } else if (secondary_image) { 1555 local_error_msg = "Cannot patch a secondary image."; 1556 } else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) { 1557 bool patch_success = 1558 RelocateImage(image_location, cache_filename.c_str(), image_isa, &local_error_msg); 1559 if (patch_success) { 1560 std::unique_ptr<ImageSpace> patched_space = 1561 ImageSpaceLoader::Load(image_location, 1562 cache_filename, 1563 is_zygote, 1564 is_global_cache, 1565 /* validate_oat_file */ false, 1566 &local_error_msg); 1567 if (patched_space != nullptr) { 1568 return patched_space; 1569 } 1570 } 1571 } 1572 error_msgs.push_back(StringPrintf("Cannot relocate image %s to %s: %s", 1573 image_location, 1574 cache_filename.c_str(), 1575 local_error_msg.c_str())); 1576 } 1577 1578 // Step 3: We do not have an existing image in /system, so generate an image into the dalvik 1579 // cache. This step fails if this is a secondary image. 1580 if (!has_system) { 1581 std::string local_error_msg; 1582 if (!Runtime::Current()->IsImageDex2OatEnabled()) { 1583 local_error_msg = "Image compilation disabled."; 1584 } else if (secondary_image) { 1585 local_error_msg = "Cannot compile a secondary image."; 1586 } else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) { 1587 bool compilation_success = GenerateImage(cache_filename, image_isa, &local_error_msg); 1588 if (compilation_success) { 1589 std::unique_ptr<ImageSpace> compiled_space = 1590 ImageSpaceLoader::Load(image_location, 1591 cache_filename, 1592 is_zygote, 1593 is_global_cache, 1594 /* validate_oat_file */ false, 1595 &local_error_msg); 1596 if (compiled_space != nullptr) { 1597 return compiled_space; 1598 } 1599 } 1600 } 1601 error_msgs.push_back(StringPrintf("Cannot compile image to %s: %s", 1602 cache_filename.c_str(), 1603 local_error_msg.c_str())); 1604 } 1605 1606 // We failed. Prune the cache the free up space, create a compound error message and return no 1607 // image. 1608 PruneDalvikCache(image_isa); 1609 1610 std::ostringstream oss; 1611 bool first = true; 1612 for (const auto& msg : error_msgs) { 1613 if (!first) { 1614 oss << "\n "; 1615 } 1616 oss << msg; 1617 } 1618 *error_msg = oss.str(); 1619 1620 return nullptr; 1621 } 1622 1623 bool ImageSpace::LoadBootImage(const std::string& image_file_name, 1624 const InstructionSet image_instruction_set, 1625 std::vector<space::ImageSpace*>* boot_image_spaces, 1626 uint8_t** oat_file_end) { 1627 DCHECK(boot_image_spaces != nullptr); 1628 DCHECK(boot_image_spaces->empty()); 1629 DCHECK(oat_file_end != nullptr); 1630 DCHECK_NE(image_instruction_set, InstructionSet::kNone); 1631 1632 if (image_file_name.empty()) { 1633 return false; 1634 } 1635 1636 // For code reuse, handle this like a work queue. 1637 std::vector<std::string> image_file_names; 1638 image_file_names.push_back(image_file_name); 1639 1640 bool error = false; 1641 uint8_t* oat_file_end_tmp = *oat_file_end; 1642 1643 for (size_t index = 0; index < image_file_names.size(); ++index) { 1644 std::string& image_name = image_file_names[index]; 1645 std::string error_msg; 1646 std::unique_ptr<space::ImageSpace> boot_image_space_uptr = CreateBootImage( 1647 image_name.c_str(), 1648 image_instruction_set, 1649 index > 0, 1650 &error_msg); 1651 if (boot_image_space_uptr != nullptr) { 1652 space::ImageSpace* boot_image_space = boot_image_space_uptr.release(); 1653 boot_image_spaces->push_back(boot_image_space); 1654 // Oat files referenced by image files immediately follow them in memory, ensure alloc space 1655 // isn't going to get in the middle 1656 uint8_t* oat_file_end_addr = boot_image_space->GetImageHeader().GetOatFileEnd(); 1657 CHECK_GT(oat_file_end_addr, boot_image_space->End()); 1658 oat_file_end_tmp = AlignUp(oat_file_end_addr, kPageSize); 1659 1660 if (index == 0) { 1661 // If this was the first space, check whether there are more images to load. 1662 const OatFile* boot_oat_file = boot_image_space->GetOatFile(); 1663 if (boot_oat_file == nullptr) { 1664 continue; 1665 } 1666 1667 const OatHeader& boot_oat_header = boot_oat_file->GetOatHeader(); 1668 const char* boot_classpath = 1669 boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey); 1670 if (boot_classpath == nullptr) { 1671 continue; 1672 } 1673 1674 ExtractMultiImageLocations(image_file_name, boot_classpath, &image_file_names); 1675 } 1676 } else { 1677 error = true; 1678 LOG(ERROR) << "Could not create image space with image file '" << image_file_name << "'. " 1679 << "Attempting to fall back to imageless running. Error was: " << error_msg 1680 << "\nAttempted image: " << image_name; 1681 break; 1682 } 1683 } 1684 1685 if (error) { 1686 // Remove already loaded spaces. 1687 for (space::Space* loaded_space : *boot_image_spaces) { 1688 delete loaded_space; 1689 } 1690 boot_image_spaces->clear(); 1691 return false; 1692 } 1693 1694 *oat_file_end = oat_file_end_tmp; 1695 return true; 1696 } 1697 1698 ImageSpace::~ImageSpace() { 1699 Runtime* runtime = Runtime::Current(); 1700 if (runtime == nullptr) { 1701 return; 1702 } 1703 1704 if (GetImageHeader().IsAppImage()) { 1705 // This image space did not modify resolution method then in Init. 1706 return; 1707 } 1708 1709 if (!runtime->HasResolutionMethod()) { 1710 // Another image space has already unloaded the below methods. 1711 return; 1712 } 1713 1714 runtime->ClearInstructionSet(); 1715 runtime->ClearResolutionMethod(); 1716 runtime->ClearImtConflictMethod(); 1717 runtime->ClearImtUnimplementedMethod(); 1718 runtime->ClearCalleeSaveMethods(); 1719 } 1720 1721 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image, 1722 const OatFile* oat_file, 1723 std::string* error_msg) { 1724 return ImageSpaceLoader::Init(image, 1725 image, 1726 /*validate_oat_file*/false, 1727 oat_file, 1728 /*out*/error_msg); 1729 } 1730 1731 const OatFile* ImageSpace::GetOatFile() const { 1732 return oat_file_non_owned_; 1733 } 1734 1735 std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() { 1736 CHECK(oat_file_ != nullptr); 1737 return std::move(oat_file_); 1738 } 1739 1740 void ImageSpace::Dump(std::ostream& os) const { 1741 os << GetType() 1742 << " begin=" << reinterpret_cast<void*>(Begin()) 1743 << ",end=" << reinterpret_cast<void*>(End()) 1744 << ",size=" << PrettySize(Size()) 1745 << ",name=\"" << GetName() << "\"]"; 1746 } 1747 1748 std::string ImageSpace::GetMultiImageBootClassPath( 1749 const std::vector<const char*>& dex_locations, 1750 const std::vector<const char*>& oat_filenames, 1751 const std::vector<const char*>& image_filenames) { 1752 DCHECK_GT(oat_filenames.size(), 1u); 1753 // If the image filename was adapted (e.g., for our tests), we need to change this here, 1754 // too, but need to strip all path components (they will be re-established when loading). 1755 std::ostringstream bootcp_oss; 1756 bool first_bootcp = true; 1757 for (size_t i = 0; i < dex_locations.size(); ++i) { 1758 if (!first_bootcp) { 1759 bootcp_oss << ":"; 1760 } 1761 1762 std::string dex_loc = dex_locations[i]; 1763 std::string image_filename = image_filenames[i]; 1764 1765 // Use the dex_loc path, but the image_filename name (without path elements). 1766 size_t dex_last_slash = dex_loc.rfind('/'); 1767 1768 // npos is max(size_t). That makes this a bit ugly. 1769 size_t image_last_slash = image_filename.rfind('/'); 1770 size_t image_last_at = image_filename.rfind('@'); 1771 size_t image_last_sep = (image_last_slash == std::string::npos) 1772 ? image_last_at 1773 : (image_last_at == std::string::npos) 1774 ? std::string::npos 1775 : std::max(image_last_slash, image_last_at); 1776 // Note: whenever image_last_sep == npos, +1 overflow means using the full string. 1777 1778 if (dex_last_slash == std::string::npos) { 1779 dex_loc = image_filename.substr(image_last_sep + 1); 1780 } else { 1781 dex_loc = dex_loc.substr(0, dex_last_slash + 1) + 1782 image_filename.substr(image_last_sep + 1); 1783 } 1784 1785 // Image filenames already end with .art, no need to replace. 1786 1787 bootcp_oss << dex_loc; 1788 first_bootcp = false; 1789 } 1790 return bootcp_oss.str(); 1791 } 1792 1793 bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) { 1794 for (const OatFile::OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) { 1795 const std::string& dex_file_location = oat_dex_file->GetDexFileLocation(); 1796 1797 // Skip multidex locations - These will be checked when we visit their 1798 // corresponding primary non-multidex location. 1799 if (DexFile::IsMultiDexLocation(dex_file_location.c_str())) { 1800 continue; 1801 } 1802 1803 std::vector<uint32_t> checksums; 1804 if (!DexFile::GetMultiDexChecksums(dex_file_location.c_str(), &checksums, error_msg)) { 1805 *error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' " 1806 "referenced by oat file %s: %s", 1807 dex_file_location.c_str(), 1808 oat_file.GetLocation().c_str(), 1809 error_msg->c_str()); 1810 return false; 1811 } 1812 CHECK(!checksums.empty()); 1813 if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) { 1814 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file " 1815 "'%s' and dex file '%s' (0x%x != 0x%x)", 1816 oat_file.GetLocation().c_str(), 1817 dex_file_location.c_str(), 1818 oat_dex_file->GetDexFileLocationChecksum(), 1819 checksums[0]); 1820 return false; 1821 } 1822 1823 // Verify checksums for any related multidex entries. 1824 for (size_t i = 1; i < checksums.size(); i++) { 1825 std::string multi_dex_location = DexFile::GetMultiDexLocation(i, dex_file_location.c_str()); 1826 const OatFile::OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(), 1827 nullptr, 1828 error_msg); 1829 if (multi_dex == nullptr) { 1830 *error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'", 1831 oat_file.GetLocation().c_str(), 1832 multi_dex_location.c_str()); 1833 return false; 1834 } 1835 1836 if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) { 1837 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file " 1838 "'%s' and dex file '%s' (0x%x != 0x%x)", 1839 oat_file.GetLocation().c_str(), 1840 multi_dex_location.c_str(), 1841 multi_dex->GetDexFileLocationChecksum(), 1842 checksums[i]); 1843 return false; 1844 } 1845 } 1846 } 1847 return true; 1848 } 1849 1850 void ImageSpace::ExtractMultiImageLocations(const std::string& input_image_file_name, 1851 const std::string& boot_classpath, 1852 std::vector<std::string>* image_file_names) { 1853 DCHECK(image_file_names != nullptr); 1854 1855 std::vector<std::string> images; 1856 Split(boot_classpath, ':', &images); 1857 1858 // Add the rest into the list. We have to adjust locations, possibly: 1859 // 1860 // For example, image_file_name is /a/b/c/d/e.art 1861 // images[0] is f/c/d/e.art 1862 // ---------------------------------------------- 1863 // images[1] is g/h/i/j.art -> /a/b/h/i/j.art 1864 const std::string& first_image = images[0]; 1865 // Length of common suffix. 1866 size_t common = 0; 1867 while (common < input_image_file_name.size() && 1868 common < first_image.size() && 1869 *(input_image_file_name.end() - common - 1) == *(first_image.end() - common - 1)) { 1870 ++common; 1871 } 1872 // We want to replace the prefix of the input image with the prefix of the boot class path. 1873 // This handles the case where the image file contains @ separators. 1874 // Example image_file_name is oats/system@framework (at) boot.art 1875 // images[0] is .../arm/boot.art 1876 // means that the image name prefix will be oats/system@framework@ 1877 // so that the other images are openable. 1878 const size_t old_prefix_length = first_image.size() - common; 1879 const std::string new_prefix = input_image_file_name.substr( 1880 0, 1881 input_image_file_name.size() - common); 1882 1883 // Apply pattern to images[1] .. images[n]. 1884 for (size_t i = 1; i < images.size(); ++i) { 1885 const std::string& image = images[i]; 1886 CHECK_GT(image.length(), old_prefix_length); 1887 std::string suffix = image.substr(old_prefix_length); 1888 image_file_names->push_back(new_prefix + suffix); 1889 } 1890 } 1891 1892 void ImageSpace::DumpSections(std::ostream& os) const { 1893 const uint8_t* base = Begin(); 1894 const ImageHeader& header = GetImageHeader(); 1895 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) { 1896 auto section_type = static_cast<ImageHeader::ImageSections>(i); 1897 const ImageSection& section = header.GetImageSection(section_type); 1898 os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset()) 1899 << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n"; 1900 } 1901 } 1902 1903 } // namespace space 1904 } // namespace gc 1905 } // namespace art 1906