Home | History | Annotate | Download | only in gold
      1 // resolve.cc -- symbol resolution for gold
      2 
      3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
      4 // Written by Ian Lance Taylor <iant (at) google.com>.
      5 
      6 // This file is part of gold.
      7 
      8 // This program is free software; you can redistribute it and/or modify
      9 // it under the terms of the GNU General Public License as published by
     10 // the Free Software Foundation; either version 3 of the License, or
     11 // (at your option) any later version.
     12 
     13 // This program is distributed in the hope that it will be useful,
     14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16 // GNU General Public License for more details.
     17 
     18 // You should have received a copy of the GNU General Public License
     19 // along with this program; if not, write to the Free Software
     20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     21 // MA 02110-1301, USA.
     22 
     23 #include "gold.h"
     24 
     25 #include "elfcpp.h"
     26 #include "target.h"
     27 #include "object.h"
     28 #include "symtab.h"
     29 #include "plugin.h"
     30 
     31 namespace gold
     32 {
     33 
     34 // Symbol methods used in this file.
     35 
     36 // This symbol is being overridden by another symbol whose version is
     37 // VERSION.  Update the VERSION_ field accordingly.
     38 
     39 inline void
     40 Symbol::override_version(const char* version)
     41 {
     42   if (version == NULL)
     43     {
     44       // This is the case where this symbol is NAME/VERSION, and the
     45       // version was not marked as hidden.  That makes it the default
     46       // version, so we create NAME/NULL.  Later we see another symbol
     47       // NAME/NULL, and that symbol is overriding this one.  In this
     48       // case, since NAME/VERSION is the default, we make NAME/NULL
     49       // override NAME/VERSION as well.  They are already the same
     50       // Symbol structure.  Setting the VERSION_ field to NULL ensures
     51       // that it will be output with the correct, empty, version.
     52       this->version_ = version;
     53     }
     54   else
     55     {
     56       // This is the case where this symbol is NAME/VERSION_ONE, and
     57       // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
     58       // overriding NAME.  If VERSION_ONE and VERSION_TWO are
     59       // different, then this can only happen when VERSION_ONE is NULL
     60       // and VERSION_TWO is not hidden.
     61       gold_assert(this->version_ == version || this->version_ == NULL);
     62       this->version_ = version;
     63     }
     64 }
     65 
     66 // This symbol is being overidden by another symbol whose visibility
     67 // is VISIBILITY.  Updated the VISIBILITY_ field accordingly.
     68 
     69 inline void
     70 Symbol::override_visibility(elfcpp::STV visibility)
     71 {
     72   // The rule for combining visibility is that we always choose the
     73   // most constrained visibility.  In order of increasing constraint,
     74   // visibility goes PROTECTED, HIDDEN, INTERNAL.  This is the reverse
     75   // of the numeric values, so the effect is that we always want the
     76   // smallest non-zero value.
     77   if (visibility != elfcpp::STV_DEFAULT)
     78     {
     79       if (this->visibility_ == elfcpp::STV_DEFAULT)
     80 	this->visibility_ = visibility;
     81       else if (this->visibility_ > visibility)
     82 	this->visibility_ = visibility;
     83     }
     84 }
     85 
     86 // Override the fields in Symbol.
     87 
     88 template<int size, bool big_endian>
     89 void
     90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
     91 		      unsigned int st_shndx, bool is_ordinary,
     92 		      Object* object, const char* version)
     93 {
     94   gold_assert(this->source_ == FROM_OBJECT);
     95   this->u_.from_object.object = object;
     96   this->override_version(version);
     97   this->u_.from_object.shndx = st_shndx;
     98   this->is_ordinary_shndx_ = is_ordinary;
     99   // Don't override st_type from plugin placeholder symbols.
    100   if (object->pluginobj() == NULL)
    101     this->type_ = sym.get_st_type();
    102   this->binding_ = sym.get_st_bind();
    103   this->override_visibility(sym.get_st_visibility());
    104   this->nonvis_ = sym.get_st_nonvis();
    105   if (object->is_dynamic())
    106     this->in_dyn_ = true;
    107   else
    108     this->in_reg_ = true;
    109 }
    110 
    111 // Override the fields in Sized_symbol.
    112 
    113 template<int size>
    114 template<bool big_endian>
    115 void
    116 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
    117 			     unsigned st_shndx, bool is_ordinary,
    118 			     Object* object, const char* version)
    119 {
    120   this->override_base(sym, st_shndx, is_ordinary, object, version);
    121   this->value_ = sym.get_st_value();
    122   this->symsize_ = sym.get_st_size();
    123 }
    124 
    125 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
    126 // VERSION.  This handles all aliases of TOSYM.
    127 
    128 template<int size, bool big_endian>
    129 void
    130 Symbol_table::override(Sized_symbol<size>* tosym,
    131 		       const elfcpp::Sym<size, big_endian>& fromsym,
    132 		       unsigned int st_shndx, bool is_ordinary,
    133 		       Object* object, const char* version)
    134 {
    135   tosym->override(fromsym, st_shndx, is_ordinary, object, version);
    136   if (tosym->has_alias())
    137     {
    138       Symbol* sym = this->weak_aliases_[tosym];
    139       gold_assert(sym != NULL);
    140       Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
    141       do
    142 	{
    143 	  ssym->override(fromsym, st_shndx, is_ordinary, object, version);
    144 	  sym = this->weak_aliases_[ssym];
    145 	  gold_assert(sym != NULL);
    146 	  ssym = this->get_sized_symbol<size>(sym);
    147 	}
    148       while (ssym != tosym);
    149     }
    150 }
    151 
    152 // The resolve functions build a little code for each symbol.
    153 // Bit 0: 0 for global, 1 for weak.
    154 // Bit 1: 0 for regular object, 1 for shared object
    155 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
    156 // This gives us values from 0 to 11.
    157 
    158 static const int global_or_weak_shift = 0;
    159 static const unsigned int global_flag = 0 << global_or_weak_shift;
    160 static const unsigned int weak_flag = 1 << global_or_weak_shift;
    161 
    162 static const int regular_or_dynamic_shift = 1;
    163 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
    164 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
    165 
    166 static const int def_undef_or_common_shift = 2;
    167 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
    168 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
    169 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
    170 
    171 // This convenience function combines all the flags based on facts
    172 // about the symbol.
    173 
    174 static unsigned int
    175 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
    176 	       unsigned int shndx, bool is_ordinary, elfcpp::STT type)
    177 {
    178   unsigned int bits;
    179 
    180   switch (binding)
    181     {
    182     case elfcpp::STB_GLOBAL:
    183     case elfcpp::STB_GNU_UNIQUE:
    184       bits = global_flag;
    185       break;
    186 
    187     case elfcpp::STB_WEAK:
    188       bits = weak_flag;
    189       break;
    190 
    191     case elfcpp::STB_LOCAL:
    192       // We should only see externally visible symbols in the symbol
    193       // table.
    194       gold_error(_("invalid STB_LOCAL symbol in external symbols"));
    195       bits = global_flag;
    196 
    197     default:
    198       // Any target which wants to handle STB_LOOS, etc., needs to
    199       // define a resolve method.
    200       gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
    201       bits = global_flag;
    202     }
    203 
    204   if (is_dynamic)
    205     bits |= dynamic_flag;
    206   else
    207     bits |= regular_flag;
    208 
    209   switch (shndx)
    210     {
    211     case elfcpp::SHN_UNDEF:
    212       bits |= undef_flag;
    213       break;
    214 
    215     case elfcpp::SHN_COMMON:
    216       if (!is_ordinary)
    217 	bits |= common_flag;
    218       break;
    219 
    220     default:
    221       if (type == elfcpp::STT_COMMON)
    222 	bits |= common_flag;
    223       else if (!is_ordinary && Symbol::is_common_shndx(shndx))
    224 	bits |= common_flag;
    225       else
    226         bits |= def_flag;
    227       break;
    228     }
    229 
    230   return bits;
    231 }
    232 
    233 // Resolve a symbol.  This is called the second and subsequent times
    234 // we see a symbol.  TO is the pre-existing symbol.  ST_SHNDX is the
    235 // section index for SYM, possibly adjusted for many sections.
    236 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
    237 // than a special code.  ORIG_ST_SHNDX is the original section index,
    238 // before any munging because of discarded sections, except that all
    239 // non-ordinary section indexes are mapped to SHN_UNDEF.  VERSION is
    240 // the version of SYM.
    241 
    242 template<int size, bool big_endian>
    243 void
    244 Symbol_table::resolve(Sized_symbol<size>* to,
    245 		      const elfcpp::Sym<size, big_endian>& sym,
    246 		      unsigned int st_shndx, bool is_ordinary,
    247 		      unsigned int orig_st_shndx,
    248 		      Object* object, const char* version)
    249 {
    250   // It's possible for a symbol to be defined in an object file
    251   // using .symver to give it a version, and for there to also be
    252   // a linker script giving that symbol the same version.  We
    253   // don't want to give a multiple-definition error for this
    254   // harmless redefinition.
    255   bool to_is_ordinary;
    256   if (to->source() == Symbol::FROM_OBJECT
    257       && to->object() == object
    258       && is_ordinary
    259       && to->is_defined()
    260       && to->shndx(&to_is_ordinary) == st_shndx
    261       && to_is_ordinary
    262       && to->value() == sym.get_st_value())
    263     return;
    264 
    265   if (parameters->target().has_resolve())
    266     {
    267       Sized_target<size, big_endian>* sized_target;
    268       sized_target = parameters->sized_target<size, big_endian>();
    269       sized_target->resolve(to, sym, object, version);
    270       return;
    271     }
    272 
    273   if (!object->is_dynamic())
    274     {
    275       // Record that we've seen this symbol in a regular object.
    276       to->set_in_reg();
    277     }
    278   else if (st_shndx == elfcpp::SHN_UNDEF
    279            && (to->visibility() == elfcpp::STV_HIDDEN
    280                || to->visibility() == elfcpp::STV_INTERNAL))
    281     {
    282       // The symbol is hidden, so a reference from a shared object
    283       // cannot bind to it.  We tried issuing a warning in this case,
    284       // but that produces false positives when the symbol is
    285       // actually resolved in a different shared object (PR 15574).
    286       return;
    287     }
    288   else
    289     {
    290       // Record that we've seen this symbol in a dynamic object.
    291       to->set_in_dyn();
    292     }
    293 
    294   // Record if we've seen this symbol in a real ELF object (i.e., the
    295   // symbol is referenced from outside the world known to the plugin).
    296   if (object->pluginobj() == NULL && !object->is_dynamic())
    297     to->set_in_real_elf();
    298 
    299   // If we're processing replacement files, allow new symbols to override
    300   // the placeholders from the plugin objects.
    301   // Treat common symbols specially since it is possible that an ELF
    302   // file increased the size of the alignment.
    303   if (to->source() == Symbol::FROM_OBJECT)
    304     {
    305       Pluginobj* obj = to->object()->pluginobj();
    306       if (obj != NULL
    307           && parameters->options().plugins()->in_replacement_phase())
    308         {
    309 	  bool adjust_common = false;
    310 	  typename Sized_symbol<size>::Size_type tosize = 0;
    311 	  typename Sized_symbol<size>::Value_type tovalue = 0;
    312 	  if (to->is_common() && !is_ordinary && st_shndx == elfcpp::SHN_COMMON)
    313 	    {
    314 	      adjust_common = true;
    315 	      tosize = to->symsize();
    316 	      tovalue = to->value();
    317 	    }
    318 	  this->override(to, sym, st_shndx, is_ordinary, object, version);
    319 	  if (adjust_common)
    320 	    {
    321 	      if (tosize > to->symsize())
    322 		to->set_symsize(tosize);
    323 	      if (tovalue > to->value())
    324 		to->set_value(tovalue);
    325 	    }
    326 	  return;
    327         }
    328     }
    329 
    330   // A new weak undefined reference, merging with an old weak
    331   // reference, could be a One Definition Rule (ODR) violation --
    332   // especially if the types or sizes of the references differ.  We'll
    333   // store such pairs and look them up later to make sure they
    334   // actually refer to the same lines of code.  We also check
    335   // combinations of weak and strong, which might occur if one case is
    336   // inline and the other is not.  (Note: not all ODR violations can
    337   // be found this way, and not everything this finds is an ODR
    338   // violation.  But it's helpful to warn about.)
    339   if (parameters->options().detect_odr_violations()
    340       && (sym.get_st_bind() == elfcpp::STB_WEAK
    341 	  || to->binding() == elfcpp::STB_WEAK)
    342       && orig_st_shndx != elfcpp::SHN_UNDEF
    343       && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
    344       && to_is_ordinary
    345       && sym.get_st_size() != 0    // Ignore weird 0-sized symbols.
    346       && to->symsize() != 0
    347       && (sym.get_st_type() != to->type()
    348           || sym.get_st_size() != to->symsize())
    349       // C does not have a concept of ODR, so we only need to do this
    350       // on C++ symbols.  These have (mangled) names starting with _Z.
    351       && to->name()[0] == '_' && to->name()[1] == 'Z')
    352     {
    353       Symbol_location fromloc
    354           = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
    355       Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
    356 				static_cast<off_t>(to->value()) };
    357       this->candidate_odr_violations_[to->name()].insert(fromloc);
    358       this->candidate_odr_violations_[to->name()].insert(toloc);
    359     }
    360 
    361   // Plugins don't provide a symbol type, so adopt the existing type
    362   // if the FROM symbol is from a plugin.
    363   elfcpp::STT fromtype = (object->pluginobj() != NULL
    364 			  ? to->type()
    365 			  : sym.get_st_type());
    366   unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
    367                                          object->is_dynamic(),
    368 					 st_shndx, is_ordinary,
    369                                          fromtype);
    370 
    371   bool adjust_common_sizes;
    372   bool adjust_dyndef;
    373   typename Sized_symbol<size>::Size_type tosize = to->symsize();
    374   if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
    375 				    object, &adjust_common_sizes,
    376 				    &adjust_dyndef))
    377     {
    378       elfcpp::STB tobinding = to->binding();
    379       typename Sized_symbol<size>::Value_type tovalue = to->value();
    380       this->override(to, sym, st_shndx, is_ordinary, object, version);
    381       if (adjust_common_sizes)
    382 	{
    383 	  if (tosize > to->symsize())
    384 	    to->set_symsize(tosize);
    385 	  if (tovalue > to->value())
    386 	    to->set_value(tovalue);
    387 	}
    388       if (adjust_dyndef)
    389 	{
    390 	  // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
    391 	  // Remember which kind of UNDEF it was for future reference.
    392 	  to->set_undef_binding(tobinding);
    393 	}
    394     }
    395   else
    396     {
    397       if (adjust_common_sizes)
    398 	{
    399 	  if (sym.get_st_size() > tosize)
    400 	    to->set_symsize(sym.get_st_size());
    401 	  if (sym.get_st_value() > to->value())
    402 	    to->set_value(sym.get_st_value());
    403 	}
    404       if (adjust_dyndef)
    405 	{
    406 	  // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
    407 	  // Remember which kind of UNDEF it was.
    408 	  to->set_undef_binding(sym.get_st_bind());
    409 	}
    410       // The ELF ABI says that even for a reference to a symbol we
    411       // merge the visibility.
    412       to->override_visibility(sym.get_st_visibility());
    413     }
    414 
    415   if (adjust_common_sizes && parameters->options().warn_common())
    416     {
    417       if (tosize > sym.get_st_size())
    418 	Symbol_table::report_resolve_problem(false,
    419 					     _("common of '%s' overriding "
    420 					       "smaller common"),
    421 					     to, OBJECT, object);
    422       else if (tosize < sym.get_st_size())
    423 	Symbol_table::report_resolve_problem(false,
    424 					     _("common of '%s' overidden by "
    425 					       "larger common"),
    426 					     to, OBJECT, object);
    427       else
    428 	Symbol_table::report_resolve_problem(false,
    429 					     _("multiple common of '%s'"),
    430 					     to, OBJECT, object);
    431     }
    432 }
    433 
    434 // Handle the core of symbol resolution.  This is called with the
    435 // existing symbol, TO, and a bitflag describing the new symbol.  This
    436 // returns true if we should override the existing symbol with the new
    437 // one, and returns false otherwise.  It sets *ADJUST_COMMON_SIZES to
    438 // true if we should set the symbol size to the maximum of the TO and
    439 // FROM sizes.  It handles error conditions.
    440 
    441 bool
    442 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
    443 			      elfcpp::STT fromtype, Defined defined,
    444 			      Object* object, bool* adjust_common_sizes,
    445 			      bool* adjust_dyndef)
    446 {
    447   *adjust_common_sizes = false;
    448   *adjust_dyndef = false;
    449 
    450   unsigned int tobits;
    451   if (to->source() == Symbol::IS_UNDEFINED)
    452     tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
    453 			    to->type());
    454   else if (to->source() != Symbol::FROM_OBJECT)
    455     tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
    456 			    to->type());
    457   else
    458     {
    459       bool is_ordinary;
    460       unsigned int shndx = to->shndx(&is_ordinary);
    461       tobits = symbol_to_bits(to->binding(),
    462 			      to->object()->is_dynamic(),
    463 			      shndx,
    464 			      is_ordinary,
    465 			      to->type());
    466     }
    467 
    468   if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
    469       && !to->is_placeholder())
    470     Symbol_table::report_resolve_problem(true,
    471 					 _("symbol '%s' used as both __thread "
    472 					   "and non-__thread"),
    473 					 to, defined, object);
    474 
    475   // We use a giant switch table for symbol resolution.  This code is
    476   // unwieldy, but: 1) it is efficient; 2) we definitely handle all
    477   // cases; 3) it is easy to change the handling of a particular case.
    478   // The alternative would be a series of conditionals, but it is easy
    479   // to get the ordering wrong.  This could also be done as a table,
    480   // but that is no easier to understand than this large switch
    481   // statement.
    482 
    483   // These are the values generated by the bit codes.
    484   enum
    485   {
    486     DEF =              global_flag | regular_flag | def_flag,
    487     WEAK_DEF =         weak_flag   | regular_flag | def_flag,
    488     DYN_DEF =          global_flag | dynamic_flag | def_flag,
    489     DYN_WEAK_DEF =     weak_flag   | dynamic_flag | def_flag,
    490     UNDEF =            global_flag | regular_flag | undef_flag,
    491     WEAK_UNDEF =       weak_flag   | regular_flag | undef_flag,
    492     DYN_UNDEF =        global_flag | dynamic_flag | undef_flag,
    493     DYN_WEAK_UNDEF =   weak_flag   | dynamic_flag | undef_flag,
    494     COMMON =           global_flag | regular_flag | common_flag,
    495     WEAK_COMMON =      weak_flag   | regular_flag | common_flag,
    496     DYN_COMMON =       global_flag | dynamic_flag | common_flag,
    497     DYN_WEAK_COMMON =  weak_flag   | dynamic_flag | common_flag
    498   };
    499 
    500   switch (tobits * 16 + frombits)
    501     {
    502     case DEF * 16 + DEF:
    503       // Two definitions of the same symbol.
    504 
    505       // If either symbol is defined by an object included using
    506       // --just-symbols, then don't warn.  This is for compatibility
    507       // with the GNU linker.  FIXME: This is a hack.
    508       if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
    509           || (object != NULL && object->just_symbols()))
    510         return false;
    511 
    512       if (!parameters->options().muldefs())
    513 	Symbol_table::report_resolve_problem(true,
    514 					     _("multiple definition of '%s'"),
    515 					     to, defined, object);
    516       return false;
    517 
    518     case WEAK_DEF * 16 + DEF:
    519       // We've seen a weak definition, and now we see a strong
    520       // definition.  In the original SVR4 linker, this was treated as
    521       // a multiple definition error.  In the Solaris linker and the
    522       // GNU linker, a weak definition followed by a regular
    523       // definition causes the weak definition to be overridden.  We
    524       // are currently compatible with the GNU linker.  In the future
    525       // we should add a target specific option to change this.
    526       // FIXME.
    527       return true;
    528 
    529     case DYN_DEF * 16 + DEF:
    530     case DYN_WEAK_DEF * 16 + DEF:
    531       // We've seen a definition in a dynamic object, and now we see a
    532       // definition in a regular object.  The definition in the
    533       // regular object overrides the definition in the dynamic
    534       // object.
    535       return true;
    536 
    537     case UNDEF * 16 + DEF:
    538     case WEAK_UNDEF * 16 + DEF:
    539     case DYN_UNDEF * 16 + DEF:
    540     case DYN_WEAK_UNDEF * 16 + DEF:
    541       // We've seen an undefined reference, and now we see a
    542       // definition.  We use the definition.
    543       return true;
    544 
    545     case COMMON * 16 + DEF:
    546     case WEAK_COMMON * 16 + DEF:
    547     case DYN_COMMON * 16 + DEF:
    548     case DYN_WEAK_COMMON * 16 + DEF:
    549       // We've seen a common symbol and now we see a definition.  The
    550       // definition overrides.
    551       if (parameters->options().warn_common())
    552 	Symbol_table::report_resolve_problem(false,
    553 					     _("definition of '%s' overriding "
    554 					       "common"),
    555 					     to, defined, object);
    556       return true;
    557 
    558     case DEF * 16 + WEAK_DEF:
    559     case WEAK_DEF * 16 + WEAK_DEF:
    560       // We've seen a definition and now we see a weak definition.  We
    561       // ignore the new weak definition.
    562       return false;
    563 
    564     case DYN_DEF * 16 + WEAK_DEF:
    565     case DYN_WEAK_DEF * 16 + WEAK_DEF:
    566       // We've seen a dynamic definition and now we see a regular weak
    567       // definition.  The regular weak definition overrides.
    568       return true;
    569 
    570     case UNDEF * 16 + WEAK_DEF:
    571     case WEAK_UNDEF * 16 + WEAK_DEF:
    572     case DYN_UNDEF * 16 + WEAK_DEF:
    573     case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
    574       // A weak definition of a currently undefined symbol.
    575       return true;
    576 
    577     case COMMON * 16 + WEAK_DEF:
    578     case WEAK_COMMON * 16 + WEAK_DEF:
    579       // A weak definition does not override a common definition.
    580       return false;
    581 
    582     case DYN_COMMON * 16 + WEAK_DEF:
    583     case DYN_WEAK_COMMON * 16 + WEAK_DEF:
    584       // A weak definition does override a definition in a dynamic
    585       // object.
    586       if (parameters->options().warn_common())
    587 	Symbol_table::report_resolve_problem(false,
    588 					     _("definition of '%s' overriding "
    589 					       "dynamic common definition"),
    590 					     to, defined, object);
    591       return true;
    592 
    593     case DEF * 16 + DYN_DEF:
    594     case WEAK_DEF * 16 + DYN_DEF:
    595     case DYN_DEF * 16 + DYN_DEF:
    596     case DYN_WEAK_DEF * 16 + DYN_DEF:
    597       // Ignore a dynamic definition if we already have a definition.
    598       return false;
    599 
    600     case UNDEF * 16 + DYN_DEF:
    601     case DYN_UNDEF * 16 + DYN_DEF:
    602     case DYN_WEAK_UNDEF * 16 + DYN_DEF:
    603       // Use a dynamic definition if we have a reference.
    604       return true;
    605 
    606     case WEAK_UNDEF * 16 + DYN_DEF:
    607       // When overriding a weak undef by a dynamic definition,
    608       // we need to remember that the original undef was weak.
    609       *adjust_dyndef = true;
    610       return true;
    611 
    612     case COMMON * 16 + DYN_DEF:
    613     case WEAK_COMMON * 16 + DYN_DEF:
    614     case DYN_COMMON * 16 + DYN_DEF:
    615     case DYN_WEAK_COMMON * 16 + DYN_DEF:
    616       // Ignore a dynamic definition if we already have a common
    617       // definition.
    618       return false;
    619 
    620     case DEF * 16 + DYN_WEAK_DEF:
    621     case WEAK_DEF * 16 + DYN_WEAK_DEF:
    622     case DYN_DEF * 16 + DYN_WEAK_DEF:
    623     case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
    624       // Ignore a weak dynamic definition if we already have a
    625       // definition.
    626       return false;
    627 
    628     case UNDEF * 16 + DYN_WEAK_DEF:
    629       // When overriding an undef by a dynamic weak definition,
    630       // we need to remember that the original undef was not weak.
    631       *adjust_dyndef = true;
    632       return true;
    633 
    634     case DYN_UNDEF * 16 + DYN_WEAK_DEF:
    635     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
    636       // Use a weak dynamic definition if we have a reference.
    637       return true;
    638 
    639     case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
    640       // When overriding a weak undef by a dynamic definition,
    641       // we need to remember that the original undef was weak.
    642       *adjust_dyndef = true;
    643       return true;
    644 
    645     case COMMON * 16 + DYN_WEAK_DEF:
    646     case WEAK_COMMON * 16 + DYN_WEAK_DEF:
    647     case DYN_COMMON * 16 + DYN_WEAK_DEF:
    648     case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
    649       // Ignore a weak dynamic definition if we already have a common
    650       // definition.
    651       return false;
    652 
    653     case DEF * 16 + UNDEF:
    654     case WEAK_DEF * 16 + UNDEF:
    655     case UNDEF * 16 + UNDEF:
    656       // A new undefined reference tells us nothing.
    657       return false;
    658 
    659     case DYN_DEF * 16 + UNDEF:
    660     case DYN_WEAK_DEF * 16 + UNDEF:
    661       // For a dynamic def, we need to remember which kind of undef we see.
    662       *adjust_dyndef = true;
    663       return false;
    664 
    665     case WEAK_UNDEF * 16 + UNDEF:
    666     case DYN_UNDEF * 16 + UNDEF:
    667     case DYN_WEAK_UNDEF * 16 + UNDEF:
    668       // A strong undef overrides a dynamic or weak undef.
    669       return true;
    670 
    671     case COMMON * 16 + UNDEF:
    672     case WEAK_COMMON * 16 + UNDEF:
    673     case DYN_COMMON * 16 + UNDEF:
    674     case DYN_WEAK_COMMON * 16 + UNDEF:
    675       // A new undefined reference tells us nothing.
    676       return false;
    677 
    678     case DEF * 16 + WEAK_UNDEF:
    679     case WEAK_DEF * 16 + WEAK_UNDEF:
    680     case UNDEF * 16 + WEAK_UNDEF:
    681     case WEAK_UNDEF * 16 + WEAK_UNDEF:
    682     case DYN_UNDEF * 16 + WEAK_UNDEF:
    683     case COMMON * 16 + WEAK_UNDEF:
    684     case WEAK_COMMON * 16 + WEAK_UNDEF:
    685     case DYN_COMMON * 16 + WEAK_UNDEF:
    686     case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
    687       // A new weak undefined reference tells us nothing unless the
    688       // exisiting symbol is a dynamic weak reference.
    689       return false;
    690 
    691     case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
    692       // A new weak reference overrides an existing dynamic weak reference.
    693       // This is necessary because a dynamic weak reference remembers
    694       // the old binding, which may not be weak.  If we keeps the existing
    695       // dynamic weak reference, the weakness may be dropped in the output.
    696       return true;
    697 
    698     case DYN_DEF * 16 + WEAK_UNDEF:
    699     case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
    700       // For a dynamic def, we need to remember which kind of undef we see.
    701       *adjust_dyndef = true;
    702       return false;
    703 
    704     case DEF * 16 + DYN_UNDEF:
    705     case WEAK_DEF * 16 + DYN_UNDEF:
    706     case DYN_DEF * 16 + DYN_UNDEF:
    707     case DYN_WEAK_DEF * 16 + DYN_UNDEF:
    708     case UNDEF * 16 + DYN_UNDEF:
    709     case WEAK_UNDEF * 16 + DYN_UNDEF:
    710     case DYN_UNDEF * 16 + DYN_UNDEF:
    711     case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
    712     case COMMON * 16 + DYN_UNDEF:
    713     case WEAK_COMMON * 16 + DYN_UNDEF:
    714     case DYN_COMMON * 16 + DYN_UNDEF:
    715     case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
    716       // A new dynamic undefined reference tells us nothing.
    717       return false;
    718 
    719     case DEF * 16 + DYN_WEAK_UNDEF:
    720     case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
    721     case DYN_DEF * 16 + DYN_WEAK_UNDEF:
    722     case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
    723     case UNDEF * 16 + DYN_WEAK_UNDEF:
    724     case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
    725     case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
    726     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
    727     case COMMON * 16 + DYN_WEAK_UNDEF:
    728     case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
    729     case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
    730     case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
    731       // A new weak dynamic undefined reference tells us nothing.
    732       return false;
    733 
    734     case DEF * 16 + COMMON:
    735       // A common symbol does not override a definition.
    736       if (parameters->options().warn_common())
    737 	Symbol_table::report_resolve_problem(false,
    738 					     _("common '%s' overridden by "
    739 					       "previous definition"),
    740 					     to, defined, object);
    741       return false;
    742 
    743     case WEAK_DEF * 16 + COMMON:
    744     case DYN_DEF * 16 + COMMON:
    745     case DYN_WEAK_DEF * 16 + COMMON:
    746       // A common symbol does override a weak definition or a dynamic
    747       // definition.
    748       return true;
    749 
    750     case UNDEF * 16 + COMMON:
    751     case WEAK_UNDEF * 16 + COMMON:
    752     case DYN_UNDEF * 16 + COMMON:
    753     case DYN_WEAK_UNDEF * 16 + COMMON:
    754       // A common symbol is a definition for a reference.
    755       return true;
    756 
    757     case COMMON * 16 + COMMON:
    758       // Set the size to the maximum.
    759       *adjust_common_sizes = true;
    760       return false;
    761 
    762     case WEAK_COMMON * 16 + COMMON:
    763       // I'm not sure just what a weak common symbol means, but
    764       // presumably it can be overridden by a regular common symbol.
    765       return true;
    766 
    767     case DYN_COMMON * 16 + COMMON:
    768     case DYN_WEAK_COMMON * 16 + COMMON:
    769       // Use the real common symbol, but adjust the size if necessary.
    770       *adjust_common_sizes = true;
    771       return true;
    772 
    773     case DEF * 16 + WEAK_COMMON:
    774     case WEAK_DEF * 16 + WEAK_COMMON:
    775     case DYN_DEF * 16 + WEAK_COMMON:
    776     case DYN_WEAK_DEF * 16 + WEAK_COMMON:
    777       // Whatever a weak common symbol is, it won't override a
    778       // definition.
    779       return false;
    780 
    781     case UNDEF * 16 + WEAK_COMMON:
    782     case WEAK_UNDEF * 16 + WEAK_COMMON:
    783     case DYN_UNDEF * 16 + WEAK_COMMON:
    784     case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
    785       // A weak common symbol is better than an undefined symbol.
    786       return true;
    787 
    788     case COMMON * 16 + WEAK_COMMON:
    789     case WEAK_COMMON * 16 + WEAK_COMMON:
    790     case DYN_COMMON * 16 + WEAK_COMMON:
    791     case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
    792       // Ignore a weak common symbol in the presence of a real common
    793       // symbol.
    794       return false;
    795 
    796     case DEF * 16 + DYN_COMMON:
    797     case WEAK_DEF * 16 + DYN_COMMON:
    798     case DYN_DEF * 16 + DYN_COMMON:
    799     case DYN_WEAK_DEF * 16 + DYN_COMMON:
    800       // Ignore a dynamic common symbol in the presence of a
    801       // definition.
    802       return false;
    803 
    804     case UNDEF * 16 + DYN_COMMON:
    805     case WEAK_UNDEF * 16 + DYN_COMMON:
    806     case DYN_UNDEF * 16 + DYN_COMMON:
    807     case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
    808       // A dynamic common symbol is a definition of sorts.
    809       return true;
    810 
    811     case COMMON * 16 + DYN_COMMON:
    812     case WEAK_COMMON * 16 + DYN_COMMON:
    813     case DYN_COMMON * 16 + DYN_COMMON:
    814     case DYN_WEAK_COMMON * 16 + DYN_COMMON:
    815       // Set the size to the maximum.
    816       *adjust_common_sizes = true;
    817       return false;
    818 
    819     case DEF * 16 + DYN_WEAK_COMMON:
    820     case WEAK_DEF * 16 + DYN_WEAK_COMMON:
    821     case DYN_DEF * 16 + DYN_WEAK_COMMON:
    822     case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
    823       // A common symbol is ignored in the face of a definition.
    824       return false;
    825 
    826     case UNDEF * 16 + DYN_WEAK_COMMON:
    827     case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
    828     case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
    829     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
    830       // I guess a weak common symbol is better than a definition.
    831       return true;
    832 
    833     case COMMON * 16 + DYN_WEAK_COMMON:
    834     case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
    835     case DYN_COMMON * 16 + DYN_WEAK_COMMON:
    836     case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
    837       // Set the size to the maximum.
    838       *adjust_common_sizes = true;
    839       return false;
    840 
    841     default:
    842       gold_unreachable();
    843     }
    844 }
    845 
    846 // Issue an error or warning due to symbol resolution.  IS_ERROR
    847 // indicates an error rather than a warning.  MSG is the error
    848 // message; it is expected to have a %s for the symbol name.  TO is
    849 // the existing symbol.  DEFINED/OBJECT is where the new symbol was
    850 // found.
    851 
    852 // FIXME: We should have better location information here.  When the
    853 // symbol is defined, we should be able to pull the location from the
    854 // debug info if there is any.
    855 
    856 void
    857 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
    858 				     const Symbol* to, Defined defined,
    859 				     Object* object)
    860 {
    861   std::string demangled(to->demangled_name());
    862   size_t len = strlen(msg) + demangled.length() + 10;
    863   char* buf = new char[len];
    864   snprintf(buf, len, msg, demangled.c_str());
    865 
    866   const char* objname;
    867   switch (defined)
    868     {
    869     case OBJECT:
    870       objname = object->name().c_str();
    871       break;
    872     case COPY:
    873       objname = _("COPY reloc");
    874       break;
    875     case DEFSYM:
    876     case UNDEFINED:
    877       objname = _("command line");
    878       break;
    879     case SCRIPT:
    880       objname = _("linker script");
    881       break;
    882     case PREDEFINED:
    883     case INCREMENTAL_BASE:
    884       objname = _("linker defined");
    885       break;
    886     default:
    887       gold_unreachable();
    888     }
    889 
    890   if (is_error)
    891     gold_error("%s: %s", objname, buf);
    892   else
    893     gold_warning("%s: %s", objname, buf);
    894 
    895   delete[] buf;
    896 
    897   if (to->source() == Symbol::FROM_OBJECT)
    898     objname = to->object()->name().c_str();
    899   else
    900     objname = _("command line");
    901   gold_info("%s: %s: previous definition here", program_name, objname);
    902 }
    903 
    904 // A special case of should_override which is only called for a strong
    905 // defined symbol from a regular object file.  This is used when
    906 // defining special symbols.
    907 
    908 bool
    909 Symbol_table::should_override_with_special(const Symbol* to,
    910 					   elfcpp::STT fromtype,
    911 					   Defined defined)
    912 {
    913   bool adjust_common_sizes;
    914   bool adjust_dyn_def;
    915   unsigned int frombits = global_flag | regular_flag | def_flag;
    916   bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
    917 					   NULL, &adjust_common_sizes,
    918 					   &adjust_dyn_def);
    919   gold_assert(!adjust_common_sizes && !adjust_dyn_def);
    920   return ret;
    921 }
    922 
    923 // Override symbol base with a special symbol.
    924 
    925 void
    926 Symbol::override_base_with_special(const Symbol* from)
    927 {
    928   bool same_name = this->name_ == from->name_;
    929   gold_assert(same_name || this->has_alias());
    930 
    931   // If we are overriding an undef, remember the original binding.
    932   if (this->is_undefined())
    933     this->set_undef_binding(this->binding_);
    934 
    935   this->source_ = from->source_;
    936   switch (from->source_)
    937     {
    938     case FROM_OBJECT:
    939       this->u_.from_object = from->u_.from_object;
    940       break;
    941     case IN_OUTPUT_DATA:
    942       this->u_.in_output_data = from->u_.in_output_data;
    943       break;
    944     case IN_OUTPUT_SEGMENT:
    945       this->u_.in_output_segment = from->u_.in_output_segment;
    946       break;
    947     case IS_CONSTANT:
    948     case IS_UNDEFINED:
    949       break;
    950     default:
    951       gold_unreachable();
    952       break;
    953     }
    954 
    955   if (same_name)
    956     {
    957       // When overriding a versioned symbol with a special symbol, we
    958       // may be changing the version.  This will happen if we see a
    959       // special symbol such as "_end" defined in a shared object with
    960       // one version (from a version script), but we want to define it
    961       // here with a different version (from a different version
    962       // script).
    963       this->version_ = from->version_;
    964     }
    965   this->type_ = from->type_;
    966   this->binding_ = from->binding_;
    967   this->override_visibility(from->visibility_);
    968   this->nonvis_ = from->nonvis_;
    969 
    970   // Special symbols are always considered to be regular symbols.
    971   this->in_reg_ = true;
    972 
    973   if (from->needs_dynsym_entry_)
    974     this->needs_dynsym_entry_ = true;
    975   if (from->needs_dynsym_value_)
    976     this->needs_dynsym_value_ = true;
    977 
    978   this->is_predefined_ = from->is_predefined_;
    979 
    980   // We shouldn't see these flags.  If we do, we need to handle them
    981   // somehow.
    982   gold_assert(!from->is_forwarder_);
    983   gold_assert(!from->has_plt_offset());
    984   gold_assert(!from->has_warning_);
    985   gold_assert(!from->is_copied_from_dynobj_);
    986   gold_assert(!from->is_forced_local_);
    987 }
    988 
    989 // Override a symbol with a special symbol.
    990 
    991 template<int size>
    992 void
    993 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
    994 {
    995   this->override_base_with_special(from);
    996   this->value_ = from->value_;
    997   this->symsize_ = from->symsize_;
    998 }
    999 
   1000 // Override TOSYM with the special symbol FROMSYM.  This handles all
   1001 // aliases of TOSYM.
   1002 
   1003 template<int size>
   1004 void
   1005 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
   1006 				    const Sized_symbol<size>* fromsym)
   1007 {
   1008   tosym->override_with_special(fromsym);
   1009   if (tosym->has_alias())
   1010     {
   1011       Symbol* sym = this->weak_aliases_[tosym];
   1012       gold_assert(sym != NULL);
   1013       Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
   1014       do
   1015 	{
   1016 	  ssym->override_with_special(fromsym);
   1017 	  sym = this->weak_aliases_[ssym];
   1018 	  gold_assert(sym != NULL);
   1019 	  ssym = this->get_sized_symbol<size>(sym);
   1020 	}
   1021       while (ssym != tosym);
   1022     }
   1023   if (tosym->binding() == elfcpp::STB_LOCAL
   1024       || ((tosym->visibility() == elfcpp::STV_HIDDEN
   1025 	   || tosym->visibility() == elfcpp::STV_INTERNAL)
   1026 	  && (tosym->binding() == elfcpp::STB_GLOBAL
   1027 	      || tosym->binding() == elfcpp::STB_GNU_UNIQUE
   1028 	      || tosym->binding() == elfcpp::STB_WEAK)
   1029 	  && !parameters->options().relocatable()))
   1030     this->force_local(tosym);
   1031 }
   1032 
   1033 // Instantiate the templates we need.  We could use the configure
   1034 // script to restrict this to only the ones needed for implemented
   1035 // targets.
   1036 
   1037 // We have to instantiate both big and little endian versions because
   1038 // these are used by other templates that depends on size only.
   1039 
   1040 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
   1041 template
   1042 void
   1043 Symbol_table::resolve<32, false>(
   1044     Sized_symbol<32>* to,
   1045     const elfcpp::Sym<32, false>& sym,
   1046     unsigned int st_shndx,
   1047     bool is_ordinary,
   1048     unsigned int orig_st_shndx,
   1049     Object* object,
   1050     const char* version);
   1051 
   1052 template
   1053 void
   1054 Symbol_table::resolve<32, true>(
   1055     Sized_symbol<32>* to,
   1056     const elfcpp::Sym<32, true>& sym,
   1057     unsigned int st_shndx,
   1058     bool is_ordinary,
   1059     unsigned int orig_st_shndx,
   1060     Object* object,
   1061     const char* version);
   1062 #endif
   1063 
   1064 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
   1065 template
   1066 void
   1067 Symbol_table::resolve<64, false>(
   1068     Sized_symbol<64>* to,
   1069     const elfcpp::Sym<64, false>& sym,
   1070     unsigned int st_shndx,
   1071     bool is_ordinary,
   1072     unsigned int orig_st_shndx,
   1073     Object* object,
   1074     const char* version);
   1075 
   1076 template
   1077 void
   1078 Symbol_table::resolve<64, true>(
   1079     Sized_symbol<64>* to,
   1080     const elfcpp::Sym<64, true>& sym,
   1081     unsigned int st_shndx,
   1082     bool is_ordinary,
   1083     unsigned int orig_st_shndx,
   1084     Object* object,
   1085     const char* version);
   1086 #endif
   1087 
   1088 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
   1089 template
   1090 void
   1091 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
   1092 					const Sized_symbol<32>*);
   1093 #endif
   1094 
   1095 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
   1096 template
   1097 void
   1098 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
   1099 					const Sized_symbol<64>*);
   1100 #endif
   1101 
   1102 } // End namespace gold.
   1103