1 //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Common functionality for different debug information format backends. 11 // LLVM currently supports DWARF and CodeView. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "DebugHandlerBase.h" 16 #include "llvm/CodeGen/AsmPrinter.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineInstr.h" 19 #include "llvm/CodeGen/MachineModuleInfo.h" 20 #include "llvm/IR/DebugInfo.h" 21 #include "llvm/Target/TargetSubtargetInfo.h" 22 23 using namespace llvm; 24 25 DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} 26 27 // Each LexicalScope has first instruction and last instruction to mark 28 // beginning and end of a scope respectively. Create an inverse map that list 29 // scopes starts (and ends) with an instruction. One instruction may start (or 30 // end) multiple scopes. Ignore scopes that are not reachable. 31 void DebugHandlerBase::identifyScopeMarkers() { 32 SmallVector<LexicalScope *, 4> WorkList; 33 WorkList.push_back(LScopes.getCurrentFunctionScope()); 34 while (!WorkList.empty()) { 35 LexicalScope *S = WorkList.pop_back_val(); 36 37 const SmallVectorImpl<LexicalScope *> &Children = S->getChildren(); 38 if (!Children.empty()) 39 WorkList.append(Children.begin(), Children.end()); 40 41 if (S->isAbstractScope()) 42 continue; 43 44 for (const InsnRange &R : S->getRanges()) { 45 assert(R.first && "InsnRange does not have first instruction!"); 46 assert(R.second && "InsnRange does not have second instruction!"); 47 requestLabelBeforeInsn(R.first); 48 requestLabelAfterInsn(R.second); 49 } 50 } 51 } 52 53 // Return Label preceding the instruction. 54 MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) { 55 MCSymbol *Label = LabelsBeforeInsn.lookup(MI); 56 assert(Label && "Didn't insert label before instruction"); 57 return Label; 58 } 59 60 // Return Label immediately following the instruction. 61 MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) { 62 return LabelsAfterInsn.lookup(MI); 63 } 64 65 // Determine the relative position of the pieces described by P1 and P2. 66 // Returns -1 if P1 is entirely before P2, 0 if P1 and P2 overlap, 67 // 1 if P1 is entirely after P2. 68 int DebugHandlerBase::pieceCmp(const DIExpression *P1, const DIExpression *P2) { 69 unsigned l1 = P1->getBitPieceOffset(); 70 unsigned l2 = P2->getBitPieceOffset(); 71 unsigned r1 = l1 + P1->getBitPieceSize(); 72 unsigned r2 = l2 + P2->getBitPieceSize(); 73 if (r1 <= l2) 74 return -1; 75 else if (r2 <= l1) 76 return 1; 77 else 78 return 0; 79 } 80 81 /// Determine whether two variable pieces overlap. 82 bool DebugHandlerBase::piecesOverlap(const DIExpression *P1, const DIExpression *P2) { 83 if (!P1->isBitPiece() || !P2->isBitPiece()) 84 return true; 85 return pieceCmp(P1, P2) == 0; 86 } 87 88 /// If this type is derived from a base type then return base type size. 89 uint64_t DebugHandlerBase::getBaseTypeSize(const DITypeRef TyRef) { 90 DIType *Ty = TyRef.resolve(); 91 assert(Ty); 92 DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty); 93 if (!DDTy) 94 return Ty->getSizeInBits(); 95 96 unsigned Tag = DDTy->getTag(); 97 98 if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef && 99 Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type && 100 Tag != dwarf::DW_TAG_restrict_type) 101 return DDTy->getSizeInBits(); 102 103 DIType *BaseType = DDTy->getBaseType().resolve(); 104 105 assert(BaseType && "Unexpected invalid base type"); 106 107 // If this is a derived type, go ahead and get the base type, unless it's a 108 // reference then it's just the size of the field. Pointer types have no need 109 // of this since they're a different type of qualification on the type. 110 if (BaseType->getTag() == dwarf::DW_TAG_reference_type || 111 BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type) 112 return Ty->getSizeInBits(); 113 114 return getBaseTypeSize(BaseType); 115 } 116 117 void DebugHandlerBase::beginFunction(const MachineFunction *MF) { 118 // Grab the lexical scopes for the function, if we don't have any of those 119 // then we're not going to be able to do anything. 120 LScopes.initialize(*MF); 121 if (LScopes.empty()) 122 return; 123 124 // Make sure that each lexical scope will have a begin/end label. 125 identifyScopeMarkers(); 126 127 // Calculate history for local variables. 128 assert(DbgValues.empty() && "DbgValues map wasn't cleaned!"); 129 calculateDbgValueHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(), 130 DbgValues); 131 132 // Request labels for the full history. 133 for (const auto &I : DbgValues) { 134 const auto &Ranges = I.second; 135 if (Ranges.empty()) 136 continue; 137 138 // The first mention of a function argument gets the CurrentFnBegin 139 // label, so arguments are visible when breaking at function entry. 140 const DILocalVariable *DIVar = Ranges.front().first->getDebugVariable(); 141 if (DIVar->isParameter() && 142 getDISubprogram(DIVar->getScope())->describes(MF->getFunction())) { 143 LabelsBeforeInsn[Ranges.front().first] = Asm->getFunctionBegin(); 144 if (Ranges.front().first->getDebugExpression()->isBitPiece()) { 145 // Mark all non-overlapping initial pieces. 146 for (auto I = Ranges.begin(); I != Ranges.end(); ++I) { 147 const DIExpression *Piece = I->first->getDebugExpression(); 148 if (std::all_of(Ranges.begin(), I, 149 [&](DbgValueHistoryMap::InstrRange Pred) { 150 return !piecesOverlap(Piece, Pred.first->getDebugExpression()); 151 })) 152 LabelsBeforeInsn[I->first] = Asm->getFunctionBegin(); 153 else 154 break; 155 } 156 } 157 } 158 159 for (const auto &Range : Ranges) { 160 requestLabelBeforeInsn(Range.first); 161 if (Range.second) 162 requestLabelAfterInsn(Range.second); 163 } 164 } 165 166 PrevInstLoc = DebugLoc(); 167 PrevLabel = Asm->getFunctionBegin(); 168 } 169 170 void DebugHandlerBase::beginInstruction(const MachineInstr *MI) { 171 if (!MMI->hasDebugInfo()) 172 return; 173 174 assert(CurMI == nullptr); 175 CurMI = MI; 176 177 // Insert labels where requested. 178 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 179 LabelsBeforeInsn.find(MI); 180 181 // No label needed. 182 if (I == LabelsBeforeInsn.end()) 183 return; 184 185 // Label already assigned. 186 if (I->second) 187 return; 188 189 if (!PrevLabel) { 190 PrevLabel = MMI->getContext().createTempSymbol(); 191 Asm->OutStreamer->EmitLabel(PrevLabel); 192 } 193 I->second = PrevLabel; 194 } 195 196 void DebugHandlerBase::endInstruction() { 197 if (!MMI->hasDebugInfo()) 198 return; 199 200 assert(CurMI != nullptr); 201 // Don't create a new label after DBG_VALUE instructions. 202 // They don't generate code. 203 if (!CurMI->isDebugValue()) 204 PrevLabel = nullptr; 205 206 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 207 LabelsAfterInsn.find(CurMI); 208 CurMI = nullptr; 209 210 // No label needed. 211 if (I == LabelsAfterInsn.end()) 212 return; 213 214 // Label already assigned. 215 if (I->second) 216 return; 217 218 // We need a label after this instruction. 219 if (!PrevLabel) { 220 PrevLabel = MMI->getContext().createTempSymbol(); 221 Asm->OutStreamer->EmitLabel(PrevLabel); 222 } 223 I->second = PrevLabel; 224 } 225 226 void DebugHandlerBase::endFunction(const MachineFunction *MF) { 227 DbgValues.clear(); 228 LabelsBeforeInsn.clear(); 229 LabelsAfterInsn.clear(); 230 } 231