Home | History | Annotate | Download | only in openssh
      1 /* $OpenBSD: moduli.c,v 1.30 2015/01/20 23:14:00 deraadt Exp $ */
      2 /*
      3  * Copyright 1994 Phil Karn <karn (at) qualcomm.com>
      4  * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson (at) greendragon.com>
      5  * Copyright 2000 Niels Provos <provos (at) citi.umich.edu>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Two-step process to generate safe primes for DHGEX
     31  *
     32  *  Sieve candidates for "safe" primes,
     33  *  suitable for use as Diffie-Hellman moduli;
     34  *  that is, where q = (p-1)/2 is also prime.
     35  *
     36  * First step: generate candidate primes (memory intensive)
     37  * Second step: test primes' safety (processor intensive)
     38  */
     39 
     40 #include "includes.h"
     41 
     42 #ifdef WITH_OPENSSL
     43 
     44 #include <sys/param.h>	/* MAX */
     45 #include <sys/types.h>
     46 
     47 #include <openssl/bn.h>
     48 #include <openssl/dh.h>
     49 
     50 #include <errno.h>
     51 #include <stdio.h>
     52 #include <stdlib.h>
     53 #include <string.h>
     54 #include <stdarg.h>
     55 #include <time.h>
     56 #include <unistd.h>
     57 #include <limits.h>
     58 
     59 #include "xmalloc.h"
     60 #include "dh.h"
     61 #include "log.h"
     62 #include "misc.h"
     63 
     64 #include "openbsd-compat/openssl-compat.h"
     65 
     66 /*
     67  * File output defines
     68  */
     69 
     70 /* need line long enough for largest moduli plus headers */
     71 #define QLINESIZE		(100+8192)
     72 
     73 /*
     74  * Size: decimal.
     75  * Specifies the number of the most significant bit (0 to M).
     76  * WARNING: internally, usually 1 to N.
     77  */
     78 #define QSIZE_MINIMUM		(511)
     79 
     80 /*
     81  * Prime sieving defines
     82  */
     83 
     84 /* Constant: assuming 8 bit bytes and 32 bit words */
     85 #define SHIFT_BIT	(3)
     86 #define SHIFT_BYTE	(2)
     87 #define SHIFT_WORD	(SHIFT_BIT+SHIFT_BYTE)
     88 #define SHIFT_MEGABYTE	(20)
     89 #define SHIFT_MEGAWORD	(SHIFT_MEGABYTE-SHIFT_BYTE)
     90 
     91 /*
     92  * Using virtual memory can cause thrashing.  This should be the largest
     93  * number that is supported without a large amount of disk activity --
     94  * that would increase the run time from hours to days or weeks!
     95  */
     96 #define LARGE_MINIMUM	(8UL)	/* megabytes */
     97 
     98 /*
     99  * Do not increase this number beyond the unsigned integer bit size.
    100  * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
    101  */
    102 #define LARGE_MAXIMUM	(127UL)	/* megabytes */
    103 
    104 /*
    105  * Constant: when used with 32-bit integers, the largest sieve prime
    106  * has to be less than 2**32.
    107  */
    108 #define SMALL_MAXIMUM	(0xffffffffUL)
    109 
    110 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
    111 #define TINY_NUMBER	(1UL<<16)
    112 
    113 /* Ensure enough bit space for testing 2*q. */
    114 #define TEST_MAXIMUM	(1UL<<16)
    115 #define TEST_MINIMUM	(QSIZE_MINIMUM + 1)
    116 /* real TEST_MINIMUM	(1UL << (SHIFT_WORD - TEST_POWER)) */
    117 #define TEST_POWER	(3)	/* 2**n, n < SHIFT_WORD */
    118 
    119 /* bit operations on 32-bit words */
    120 #define BIT_CLEAR(a,n)	((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
    121 #define BIT_SET(a,n)	((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
    122 #define BIT_TEST(a,n)	((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
    123 
    124 /*
    125  * Prime testing defines
    126  */
    127 
    128 /* Minimum number of primality tests to perform */
    129 #define TRIAL_MINIMUM	(4)
    130 
    131 /*
    132  * Sieving data (XXX - move to struct)
    133  */
    134 
    135 /* sieve 2**16 */
    136 static u_int32_t *TinySieve, tinybits;
    137 
    138 /* sieve 2**30 in 2**16 parts */
    139 static u_int32_t *SmallSieve, smallbits, smallbase;
    140 
    141 /* sieve relative to the initial value */
    142 static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
    143 static u_int32_t largebits, largememory;	/* megabytes */
    144 static BIGNUM *largebase;
    145 
    146 int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
    147 int prime_test(FILE *, FILE *, u_int32_t, u_int32_t, char *, unsigned long,
    148     unsigned long);
    149 
    150 /*
    151  * print moduli out in consistent form,
    152  */
    153 static int
    154 qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
    155     u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
    156 {
    157 	struct tm *gtm;
    158 	time_t time_now;
    159 	int res;
    160 
    161 	time(&time_now);
    162 	gtm = gmtime(&time_now);
    163 
    164 	res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
    165 	    gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
    166 	    gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
    167 	    otype, otests, otries, osize, ogenerator);
    168 
    169 	if (res < 0)
    170 		return (-1);
    171 
    172 	if (BN_print_fp(ofile, omodulus) < 1)
    173 		return (-1);
    174 
    175 	res = fprintf(ofile, "\n");
    176 	fflush(ofile);
    177 
    178 	return (res > 0 ? 0 : -1);
    179 }
    180 
    181 
    182 /*
    183  ** Sieve p's and q's with small factors
    184  */
    185 static void
    186 sieve_large(u_int32_t s)
    187 {
    188 	u_int32_t r, u;
    189 
    190 	debug3("sieve_large %u", s);
    191 	largetries++;
    192 	/* r = largebase mod s */
    193 	r = BN_mod_word(largebase, s);
    194 	if (r == 0)
    195 		u = 0; /* s divides into largebase exactly */
    196 	else
    197 		u = s - r; /* largebase+u is first entry divisible by s */
    198 
    199 	if (u < largebits * 2) {
    200 		/*
    201 		 * The sieve omits p's and q's divisible by 2, so ensure that
    202 		 * largebase+u is odd. Then, step through the sieve in
    203 		 * increments of 2*s
    204 		 */
    205 		if (u & 0x1)
    206 			u += s; /* Make largebase+u odd, and u even */
    207 
    208 		/* Mark all multiples of 2*s */
    209 		for (u /= 2; u < largebits; u += s)
    210 			BIT_SET(LargeSieve, u);
    211 	}
    212 
    213 	/* r = p mod s */
    214 	r = (2 * r + 1) % s;
    215 	if (r == 0)
    216 		u = 0; /* s divides p exactly */
    217 	else
    218 		u = s - r; /* p+u is first entry divisible by s */
    219 
    220 	if (u < largebits * 4) {
    221 		/*
    222 		 * The sieve omits p's divisible by 4, so ensure that
    223 		 * largebase+u is not. Then, step through the sieve in
    224 		 * increments of 4*s
    225 		 */
    226 		while (u & 0x3) {
    227 			if (SMALL_MAXIMUM - u < s)
    228 				return;
    229 			u += s;
    230 		}
    231 
    232 		/* Mark all multiples of 4*s */
    233 		for (u /= 4; u < largebits; u += s)
    234 			BIT_SET(LargeSieve, u);
    235 	}
    236 }
    237 
    238 /*
    239  * list candidates for Sophie-Germain primes (where q = (p-1)/2)
    240  * to standard output.
    241  * The list is checked against small known primes (less than 2**30).
    242  */
    243 int
    244 gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
    245 {
    246 	BIGNUM *q;
    247 	u_int32_t j, r, s, t;
    248 	u_int32_t smallwords = TINY_NUMBER >> 6;
    249 	u_int32_t tinywords = TINY_NUMBER >> 6;
    250 	time_t time_start, time_stop;
    251 	u_int32_t i;
    252 	int ret = 0;
    253 
    254 	largememory = memory;
    255 
    256 	if (memory != 0 &&
    257 	    (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
    258 		error("Invalid memory amount (min %ld, max %ld)",
    259 		    LARGE_MINIMUM, LARGE_MAXIMUM);
    260 		return (-1);
    261 	}
    262 
    263 	/*
    264 	 * Set power to the length in bits of the prime to be generated.
    265 	 * This is changed to 1 less than the desired safe prime moduli p.
    266 	 */
    267 	if (power > TEST_MAXIMUM) {
    268 		error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
    269 		return (-1);
    270 	} else if (power < TEST_MINIMUM) {
    271 		error("Too few bits: %u < %u", power, TEST_MINIMUM);
    272 		return (-1);
    273 	}
    274 	power--; /* decrement before squaring */
    275 
    276 	/*
    277 	 * The density of ordinary primes is on the order of 1/bits, so the
    278 	 * density of safe primes should be about (1/bits)**2. Set test range
    279 	 * to something well above bits**2 to be reasonably sure (but not
    280 	 * guaranteed) of catching at least one safe prime.
    281 	 */
    282 	largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
    283 
    284 	/*
    285 	 * Need idea of how much memory is available. We don't have to use all
    286 	 * of it.
    287 	 */
    288 	if (largememory > LARGE_MAXIMUM) {
    289 		logit("Limited memory: %u MB; limit %lu MB",
    290 		    largememory, LARGE_MAXIMUM);
    291 		largememory = LARGE_MAXIMUM;
    292 	}
    293 
    294 	if (largewords <= (largememory << SHIFT_MEGAWORD)) {
    295 		logit("Increased memory: %u MB; need %u bytes",
    296 		    largememory, (largewords << SHIFT_BYTE));
    297 		largewords = (largememory << SHIFT_MEGAWORD);
    298 	} else if (largememory > 0) {
    299 		logit("Decreased memory: %u MB; want %u bytes",
    300 		    largememory, (largewords << SHIFT_BYTE));
    301 		largewords = (largememory << SHIFT_MEGAWORD);
    302 	}
    303 
    304 	TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
    305 	tinybits = tinywords << SHIFT_WORD;
    306 
    307 	SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
    308 	smallbits = smallwords << SHIFT_WORD;
    309 
    310 	/*
    311 	 * dynamically determine available memory
    312 	 */
    313 	while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
    314 		largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
    315 
    316 	largebits = largewords << SHIFT_WORD;
    317 	largenumbers = largebits * 2;	/* even numbers excluded */
    318 
    319 	/* validation check: count the number of primes tried */
    320 	largetries = 0;
    321 	if ((q = BN_new()) == NULL)
    322 		fatal("BN_new failed");
    323 
    324 	/*
    325 	 * Generate random starting point for subprime search, or use
    326 	 * specified parameter.
    327 	 */
    328 	if ((largebase = BN_new()) == NULL)
    329 		fatal("BN_new failed");
    330 	if (start == NULL) {
    331 		if (BN_rand(largebase, power, 1, 1) == 0)
    332 			fatal("BN_rand failed");
    333 	} else {
    334 		if (BN_copy(largebase, start) == NULL)
    335 			fatal("BN_copy: failed");
    336 	}
    337 
    338 	/* ensure odd */
    339 	if (BN_set_bit(largebase, 0) == 0)
    340 		fatal("BN_set_bit: failed");
    341 
    342 	time(&time_start);
    343 
    344 	logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
    345 	    largenumbers, power);
    346 	debug2("start point: 0x%s", BN_bn2hex(largebase));
    347 
    348 	/*
    349 	 * TinySieve
    350 	 */
    351 	for (i = 0; i < tinybits; i++) {
    352 		if (BIT_TEST(TinySieve, i))
    353 			continue; /* 2*i+3 is composite */
    354 
    355 		/* The next tiny prime */
    356 		t = 2 * i + 3;
    357 
    358 		/* Mark all multiples of t */
    359 		for (j = i + t; j < tinybits; j += t)
    360 			BIT_SET(TinySieve, j);
    361 
    362 		sieve_large(t);
    363 	}
    364 
    365 	/*
    366 	 * Start the small block search at the next possible prime. To avoid
    367 	 * fencepost errors, the last pass is skipped.
    368 	 */
    369 	for (smallbase = TINY_NUMBER + 3;
    370 	    smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
    371 	    smallbase += TINY_NUMBER) {
    372 		for (i = 0; i < tinybits; i++) {
    373 			if (BIT_TEST(TinySieve, i))
    374 				continue; /* 2*i+3 is composite */
    375 
    376 			/* The next tiny prime */
    377 			t = 2 * i + 3;
    378 			r = smallbase % t;
    379 
    380 			if (r == 0) {
    381 				s = 0; /* t divides into smallbase exactly */
    382 			} else {
    383 				/* smallbase+s is first entry divisible by t */
    384 				s = t - r;
    385 			}
    386 
    387 			/*
    388 			 * The sieve omits even numbers, so ensure that
    389 			 * smallbase+s is odd. Then, step through the sieve
    390 			 * in increments of 2*t
    391 			 */
    392 			if (s & 1)
    393 				s += t; /* Make smallbase+s odd, and s even */
    394 
    395 			/* Mark all multiples of 2*t */
    396 			for (s /= 2; s < smallbits; s += t)
    397 				BIT_SET(SmallSieve, s);
    398 		}
    399 
    400 		/*
    401 		 * SmallSieve
    402 		 */
    403 		for (i = 0; i < smallbits; i++) {
    404 			if (BIT_TEST(SmallSieve, i))
    405 				continue; /* 2*i+smallbase is composite */
    406 
    407 			/* The next small prime */
    408 			sieve_large((2 * i) + smallbase);
    409 		}
    410 
    411 		memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
    412 	}
    413 
    414 	time(&time_stop);
    415 
    416 	logit("%.24s Sieved with %u small primes in %ld seconds",
    417 	    ctime(&time_stop), largetries, (long) (time_stop - time_start));
    418 
    419 	for (j = r = 0; j < largebits; j++) {
    420 		if (BIT_TEST(LargeSieve, j))
    421 			continue; /* Definitely composite, skip */
    422 
    423 		debug2("test q = largebase+%u", 2 * j);
    424 		if (BN_set_word(q, 2 * j) == 0)
    425 			fatal("BN_set_word failed");
    426 		if (BN_add(q, q, largebase) == 0)
    427 			fatal("BN_add failed");
    428 		if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN,
    429 		    MODULI_TESTS_SIEVE, largetries,
    430 		    (power - 1) /* MSB */, (0), q) == -1) {
    431 			ret = -1;
    432 			break;
    433 		}
    434 
    435 		r++; /* count q */
    436 	}
    437 
    438 	time(&time_stop);
    439 
    440 	free(LargeSieve);
    441 	free(SmallSieve);
    442 	free(TinySieve);
    443 
    444 	logit("%.24s Found %u candidates", ctime(&time_stop), r);
    445 
    446 	return (ret);
    447 }
    448 
    449 static void
    450 write_checkpoint(char *cpfile, u_int32_t lineno)
    451 {
    452 	FILE *fp;
    453 	char tmp[PATH_MAX];
    454 	int r;
    455 
    456 	r = snprintf(tmp, sizeof(tmp), "%s.XXXXXXXXXX", cpfile);
    457 	if (r == -1 || r >= PATH_MAX) {
    458 		logit("write_checkpoint: temp pathname too long");
    459 		return;
    460 	}
    461 	if ((r = mkstemp(tmp)) == -1) {
    462 		logit("mkstemp(%s): %s", tmp, strerror(errno));
    463 		return;
    464 	}
    465 	if ((fp = fdopen(r, "w")) == NULL) {
    466 		logit("write_checkpoint: fdopen: %s", strerror(errno));
    467 		unlink(tmp);
    468 		close(r);
    469 		return;
    470 	}
    471 	if (fprintf(fp, "%lu\n", (unsigned long)lineno) > 0 && fclose(fp) == 0
    472 	    && rename(tmp, cpfile) == 0)
    473 		debug3("wrote checkpoint line %lu to '%s'",
    474 		    (unsigned long)lineno, cpfile);
    475 	else
    476 		logit("failed to write to checkpoint file '%s': %s", cpfile,
    477 		    strerror(errno));
    478 }
    479 
    480 static unsigned long
    481 read_checkpoint(char *cpfile)
    482 {
    483 	FILE *fp;
    484 	unsigned long lineno = 0;
    485 
    486 	if ((fp = fopen(cpfile, "r")) == NULL)
    487 		return 0;
    488 	if (fscanf(fp, "%lu\n", &lineno) < 1)
    489 		logit("Failed to load checkpoint from '%s'", cpfile);
    490 	else
    491 		logit("Loaded checkpoint from '%s' line %lu", cpfile, lineno);
    492 	fclose(fp);
    493 	return lineno;
    494 }
    495 
    496 static unsigned long
    497 count_lines(FILE *f)
    498 {
    499 	unsigned long count = 0;
    500 	char lp[QLINESIZE + 1];
    501 
    502 	if (fseek(f, 0, SEEK_SET) != 0) {
    503 		debug("input file is not seekable");
    504 		return ULONG_MAX;
    505 	}
    506 	while (fgets(lp, QLINESIZE + 1, f) != NULL)
    507 		count++;
    508 	rewind(f);
    509 	debug("input file has %lu lines", count);
    510 	return count;
    511 }
    512 
    513 static char *
    514 fmt_time(time_t seconds)
    515 {
    516 	int day, hr, min;
    517 	static char buf[128];
    518 
    519 	min = (seconds / 60) % 60;
    520 	hr = (seconds / 60 / 60) % 24;
    521 	day = seconds / 60 / 60 / 24;
    522 	if (day > 0)
    523 		snprintf(buf, sizeof buf, "%dd %d:%02d", day, hr, min);
    524 	else
    525 		snprintf(buf, sizeof buf, "%d:%02d", hr, min);
    526 	return buf;
    527 }
    528 
    529 static void
    530 print_progress(unsigned long start_lineno, unsigned long current_lineno,
    531     unsigned long end_lineno)
    532 {
    533 	static time_t time_start, time_prev;
    534 	time_t time_now, elapsed;
    535 	unsigned long num_to_process, processed, remaining, percent, eta;
    536 	double time_per_line;
    537 	char *eta_str;
    538 
    539 	time_now = monotime();
    540 	if (time_start == 0) {
    541 		time_start = time_prev = time_now;
    542 		return;
    543 	}
    544 	/* print progress after 1m then once per 5m */
    545 	if (time_now - time_prev < 5 * 60)
    546 		return;
    547 	time_prev = time_now;
    548 	elapsed = time_now - time_start;
    549 	processed = current_lineno - start_lineno;
    550 	remaining = end_lineno - current_lineno;
    551 	num_to_process = end_lineno - start_lineno;
    552 	time_per_line = (double)elapsed / processed;
    553 	/* if we don't know how many we're processing just report count+time */
    554 	time(&time_now);
    555 	if (end_lineno == ULONG_MAX) {
    556 		logit("%.24s processed %lu in %s", ctime(&time_now),
    557 		    processed, fmt_time(elapsed));
    558 		return;
    559 	}
    560 	percent = 100 * processed / num_to_process;
    561 	eta = time_per_line * remaining;
    562 	eta_str = xstrdup(fmt_time(eta));
    563 	logit("%.24s processed %lu of %lu (%lu%%) in %s, ETA %s",
    564 	    ctime(&time_now), processed, num_to_process, percent,
    565 	    fmt_time(elapsed), eta_str);
    566 	free(eta_str);
    567 }
    568 
    569 /*
    570  * perform a Miller-Rabin primality test
    571  * on the list of candidates
    572  * (checking both q and p)
    573  * The result is a list of so-call "safe" primes
    574  */
    575 int
    576 prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted,
    577     char *checkpoint_file, unsigned long start_lineno, unsigned long num_lines)
    578 {
    579 	BIGNUM *q, *p, *a;
    580 	BN_CTX *ctx;
    581 	char *cp, *lp;
    582 	u_int32_t count_in = 0, count_out = 0, count_possible = 0;
    583 	u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
    584 	unsigned long last_processed = 0, end_lineno;
    585 	time_t time_start, time_stop;
    586 	int res;
    587 
    588 	if (trials < TRIAL_MINIMUM) {
    589 		error("Minimum primality trials is %d", TRIAL_MINIMUM);
    590 		return (-1);
    591 	}
    592 
    593 	if (num_lines == 0)
    594 		end_lineno = count_lines(in);
    595 	else
    596 		end_lineno = start_lineno + num_lines;
    597 
    598 	time(&time_start);
    599 
    600 	if ((p = BN_new()) == NULL)
    601 		fatal("BN_new failed");
    602 	if ((q = BN_new()) == NULL)
    603 		fatal("BN_new failed");
    604 	if ((ctx = BN_CTX_new()) == NULL)
    605 		fatal("BN_CTX_new failed");
    606 
    607 	debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
    608 	    ctime(&time_start), trials, generator_wanted);
    609 
    610 	if (checkpoint_file != NULL)
    611 		last_processed = read_checkpoint(checkpoint_file);
    612 	last_processed = start_lineno = MAX(last_processed, start_lineno);
    613 	if (end_lineno == ULONG_MAX)
    614 		debug("process from line %lu from pipe", last_processed);
    615 	else
    616 		debug("process from line %lu to line %lu", last_processed,
    617 		    end_lineno);
    618 
    619 	res = 0;
    620 	lp = xmalloc(QLINESIZE + 1);
    621 	while (fgets(lp, QLINESIZE + 1, in) != NULL && count_in < end_lineno) {
    622 		count_in++;
    623 		if (count_in <= last_processed) {
    624 			debug3("skipping line %u, before checkpoint or "
    625 			    "specified start line", count_in);
    626 			continue;
    627 		}
    628 		if (checkpoint_file != NULL)
    629 			write_checkpoint(checkpoint_file, count_in);
    630 		print_progress(start_lineno, count_in, end_lineno);
    631 		if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
    632 			debug2("%10u: comment or short line", count_in);
    633 			continue;
    634 		}
    635 
    636 		/* XXX - fragile parser */
    637 		/* time */
    638 		cp = &lp[14];	/* (skip) */
    639 
    640 		/* type */
    641 		in_type = strtoul(cp, &cp, 10);
    642 
    643 		/* tests */
    644 		in_tests = strtoul(cp, &cp, 10);
    645 
    646 		if (in_tests & MODULI_TESTS_COMPOSITE) {
    647 			debug2("%10u: known composite", count_in);
    648 			continue;
    649 		}
    650 
    651 		/* tries */
    652 		in_tries = strtoul(cp, &cp, 10);
    653 
    654 		/* size (most significant bit) */
    655 		in_size = strtoul(cp, &cp, 10);
    656 
    657 		/* generator (hex) */
    658 		generator_known = strtoul(cp, &cp, 16);
    659 
    660 		/* Skip white space */
    661 		cp += strspn(cp, " ");
    662 
    663 		/* modulus (hex) */
    664 		switch (in_type) {
    665 		case MODULI_TYPE_SOPHIE_GERMAIN:
    666 			debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
    667 			a = q;
    668 			if (BN_hex2bn(&a, cp) == 0)
    669 				fatal("BN_hex2bn failed");
    670 			/* p = 2*q + 1 */
    671 			if (BN_lshift(p, q, 1) == 0)
    672 				fatal("BN_lshift failed");
    673 			if (BN_add_word(p, 1) == 0)
    674 				fatal("BN_add_word failed");
    675 			in_size += 1;
    676 			generator_known = 0;
    677 			break;
    678 		case MODULI_TYPE_UNSTRUCTURED:
    679 		case MODULI_TYPE_SAFE:
    680 		case MODULI_TYPE_SCHNORR:
    681 		case MODULI_TYPE_STRONG:
    682 		case MODULI_TYPE_UNKNOWN:
    683 			debug2("%10u: (%u)", count_in, in_type);
    684 			a = p;
    685 			if (BN_hex2bn(&a, cp) == 0)
    686 				fatal("BN_hex2bn failed");
    687 			/* q = (p-1) / 2 */
    688 			if (BN_rshift(q, p, 1) == 0)
    689 				fatal("BN_rshift failed");
    690 			break;
    691 		default:
    692 			debug2("Unknown prime type");
    693 			break;
    694 		}
    695 
    696 		/*
    697 		 * due to earlier inconsistencies in interpretation, check
    698 		 * the proposed bit size.
    699 		 */
    700 		if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
    701 			debug2("%10u: bit size %u mismatch", count_in, in_size);
    702 			continue;
    703 		}
    704 		if (in_size < QSIZE_MINIMUM) {
    705 			debug2("%10u: bit size %u too short", count_in, in_size);
    706 			continue;
    707 		}
    708 
    709 		if (in_tests & MODULI_TESTS_MILLER_RABIN)
    710 			in_tries += trials;
    711 		else
    712 			in_tries = trials;
    713 
    714 		/*
    715 		 * guess unknown generator
    716 		 */
    717 		if (generator_known == 0) {
    718 			if (BN_mod_word(p, 24) == 11)
    719 				generator_known = 2;
    720 			else if (BN_mod_word(p, 12) == 5)
    721 				generator_known = 3;
    722 			else {
    723 				u_int32_t r = BN_mod_word(p, 10);
    724 
    725 				if (r == 3 || r == 7)
    726 					generator_known = 5;
    727 			}
    728 		}
    729 		/*
    730 		 * skip tests when desired generator doesn't match
    731 		 */
    732 		if (generator_wanted > 0 &&
    733 		    generator_wanted != generator_known) {
    734 			debug2("%10u: generator %d != %d",
    735 			    count_in, generator_known, generator_wanted);
    736 			continue;
    737 		}
    738 
    739 		/*
    740 		 * Primes with no known generator are useless for DH, so
    741 		 * skip those.
    742 		 */
    743 		if (generator_known == 0) {
    744 			debug2("%10u: no known generator", count_in);
    745 			continue;
    746 		}
    747 
    748 		count_possible++;
    749 
    750 		/*
    751 		 * The (1/4)^N performance bound on Miller-Rabin is
    752 		 * extremely pessimistic, so don't spend a lot of time
    753 		 * really verifying that q is prime until after we know
    754 		 * that p is also prime. A single pass will weed out the
    755 		 * vast majority of composite q's.
    756 		 */
    757 		if (BN_is_prime_ex(q, 1, ctx, NULL) <= 0) {
    758 			debug("%10u: q failed first possible prime test",
    759 			    count_in);
    760 			continue;
    761 		}
    762 
    763 		/*
    764 		 * q is possibly prime, so go ahead and really make sure
    765 		 * that p is prime. If it is, then we can go back and do
    766 		 * the same for q. If p is composite, chances are that
    767 		 * will show up on the first Rabin-Miller iteration so it
    768 		 * doesn't hurt to specify a high iteration count.
    769 		 */
    770 		if (!BN_is_prime_ex(p, trials, ctx, NULL)) {
    771 			debug("%10u: p is not prime", count_in);
    772 			continue;
    773 		}
    774 		debug("%10u: p is almost certainly prime", count_in);
    775 
    776 		/* recheck q more rigorously */
    777 		if (!BN_is_prime_ex(q, trials - 1, ctx, NULL)) {
    778 			debug("%10u: q is not prime", count_in);
    779 			continue;
    780 		}
    781 		debug("%10u: q is almost certainly prime", count_in);
    782 
    783 		if (qfileout(out, MODULI_TYPE_SAFE,
    784 		    in_tests | MODULI_TESTS_MILLER_RABIN,
    785 		    in_tries, in_size, generator_known, p)) {
    786 			res = -1;
    787 			break;
    788 		}
    789 
    790 		count_out++;
    791 	}
    792 
    793 	time(&time_stop);
    794 	free(lp);
    795 	BN_free(p);
    796 	BN_free(q);
    797 	BN_CTX_free(ctx);
    798 
    799 	if (checkpoint_file != NULL)
    800 		unlink(checkpoint_file);
    801 
    802 	logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
    803 	    ctime(&time_stop), count_out, count_possible,
    804 	    (long) (time_stop - time_start));
    805 
    806 	return (res);
    807 }
    808 
    809 #endif /* WITH_OPENSSL */
    810