Home | History | Annotate | Download | only in util
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      6 // Copyright (C) 2009 Kenneth Riddile <kfriddile (at) yahoo.com>
      7 // Copyright (C) 2010 Hauke Heibel <hauke.heibel (at) gmail.com>
      8 // Copyright (C) 2010 Thomas Capricelli <orzel (at) freehackers.org>
      9 // Copyright (C) 2013 Pavel Holoborodko <pavel (at) holoborodko.com>
     10 //
     11 // This Source Code Form is subject to the terms of the Mozilla
     12 // Public License v. 2.0. If a copy of the MPL was not distributed
     13 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     14 
     15 
     16 /*****************************************************************************
     17 *** Platform checks for aligned malloc functions                           ***
     18 *****************************************************************************/
     19 
     20 #ifndef EIGEN_MEMORY_H
     21 #define EIGEN_MEMORY_H
     22 
     23 #ifndef EIGEN_MALLOC_ALREADY_ALIGNED
     24 
     25 // Try to determine automatically if malloc is already aligned.
     26 
     27 // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see:
     28 //   http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html
     29 // This is true at least since glibc 2.8.
     30 // This leaves the question how to detect 64-bit. According to this document,
     31 //   http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf
     32 // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed
     33 // quite safe, at least within the context of glibc, to equate 64-bit with LP64.
     34 #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \
     35  && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ ) && (EIGEN_DEFAULT_ALIGN_BYTES == 16)
     36   #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1
     37 #else
     38   #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0
     39 #endif
     40 
     41 // FreeBSD 6 seems to have 16-byte aligned malloc
     42 //   See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
     43 // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
     44 //   See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
     45 #if defined(__FreeBSD__) && !(EIGEN_ARCH_ARM || EIGEN_ARCH_MIPS) && (EIGEN_DEFAULT_ALIGN_BYTES == 16)
     46   #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
     47 #else
     48   #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
     49 #endif
     50 
     51 #if (EIGEN_OS_MAC && (EIGEN_DEFAULT_ALIGN_BYTES == 16))     \
     52  || (EIGEN_OS_WIN64 && (EIGEN_DEFAULT_ALIGN_BYTES == 16))   \
     53  || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED              \
     54  || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
     55   #define EIGEN_MALLOC_ALREADY_ALIGNED 1
     56 #else
     57   #define EIGEN_MALLOC_ALREADY_ALIGNED 0
     58 #endif
     59 
     60 #endif
     61 
     62 namespace Eigen {
     63 
     64 namespace internal {
     65 
     66 EIGEN_DEVICE_FUNC
     67 inline void throw_std_bad_alloc()
     68 {
     69   #ifdef EIGEN_EXCEPTIONS
     70     throw std::bad_alloc();
     71   #else
     72     std::size_t huge = static_cast<std::size_t>(-1);
     73     new int[huge];
     74   #endif
     75 }
     76 
     77 /*****************************************************************************
     78 *** Implementation of handmade aligned functions                           ***
     79 *****************************************************************************/
     80 
     81 /* ----- Hand made implementations of aligned malloc/free and realloc ----- */
     82 
     83 /** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned.
     84   * Fast, but wastes 16 additional bytes of memory. Does not throw any exception.
     85   */
     86 inline void* handmade_aligned_malloc(std::size_t size)
     87 {
     88   void *original = std::malloc(size+EIGEN_DEFAULT_ALIGN_BYTES);
     89   if (original == 0) return 0;
     90   void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES);
     91   *(reinterpret_cast<void**>(aligned) - 1) = original;
     92   return aligned;
     93 }
     94 
     95 /** \internal Frees memory allocated with handmade_aligned_malloc */
     96 inline void handmade_aligned_free(void *ptr)
     97 {
     98   if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1));
     99 }
    100 
    101 /** \internal
    102   * \brief Reallocates aligned memory.
    103   * Since we know that our handmade version is based on std::malloc
    104   * we can use std::realloc to implement efficient reallocation.
    105   */
    106 inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0)
    107 {
    108   if (ptr == 0) return handmade_aligned_malloc(size);
    109   void *original = *(reinterpret_cast<void**>(ptr) - 1);
    110   std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original);
    111   original = std::realloc(original,size+EIGEN_DEFAULT_ALIGN_BYTES);
    112   if (original == 0) return 0;
    113   void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES);
    114   void *previous_aligned = static_cast<char *>(original)+previous_offset;
    115   if(aligned!=previous_aligned)
    116     std::memmove(aligned, previous_aligned, size);
    117 
    118   *(reinterpret_cast<void**>(aligned) - 1) = original;
    119   return aligned;
    120 }
    121 
    122 /*****************************************************************************
    123 *** Implementation of portable aligned versions of malloc/free/realloc     ***
    124 *****************************************************************************/
    125 
    126 #ifdef EIGEN_NO_MALLOC
    127 EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
    128 {
    129   eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)");
    130 }
    131 #elif defined EIGEN_RUNTIME_NO_MALLOC
    132 EIGEN_DEVICE_FUNC inline bool is_malloc_allowed_impl(bool update, bool new_value = false)
    133 {
    134   static bool value = true;
    135   if (update == 1)
    136     value = new_value;
    137   return value;
    138 }
    139 EIGEN_DEVICE_FUNC inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); }
    140 EIGEN_DEVICE_FUNC inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); }
    141 EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
    142 {
    143   eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)");
    144 }
    145 #else
    146 EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed()
    147 {}
    148 #endif
    149 
    150 /** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 or 32 bytes alignment depending on the requirements.
    151   * On allocation error, the returned pointer is null, and std::bad_alloc is thrown.
    152   */
    153 EIGEN_DEVICE_FUNC inline void* aligned_malloc(std::size_t size)
    154 {
    155   check_that_malloc_is_allowed();
    156 
    157   void *result;
    158   #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
    159     result = std::malloc(size);
    160     #if EIGEN_DEFAULT_ALIGN_BYTES==16
    161     eigen_assert((size<16 || (std::size_t(result)%16)==0) && "System's malloc returned an unaligned pointer. Compile with EIGEN_MALLOC_ALREADY_ALIGNED=0 to fallback to handmade alignd memory allocator.");
    162     #endif
    163   #else
    164     result = handmade_aligned_malloc(size);
    165   #endif
    166 
    167   if(!result && size)
    168     throw_std_bad_alloc();
    169 
    170   return result;
    171 }
    172 
    173 /** \internal Frees memory allocated with aligned_malloc. */
    174 EIGEN_DEVICE_FUNC inline void aligned_free(void *ptr)
    175 {
    176   #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
    177     std::free(ptr);
    178   #else
    179     handmade_aligned_free(ptr);
    180   #endif
    181 }
    182 
    183 /**
    184   * \internal
    185   * \brief Reallocates an aligned block of memory.
    186   * \throws std::bad_alloc on allocation failure
    187   */
    188 inline void* aligned_realloc(void *ptr, std::size_t new_size, std::size_t old_size)
    189 {
    190   EIGEN_UNUSED_VARIABLE(old_size);
    191 
    192   void *result;
    193 #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED
    194   result = std::realloc(ptr,new_size);
    195 #else
    196   result = handmade_aligned_realloc(ptr,new_size,old_size);
    197 #endif
    198 
    199   if (!result && new_size)
    200     throw_std_bad_alloc();
    201 
    202   return result;
    203 }
    204 
    205 /*****************************************************************************
    206 *** Implementation of conditionally aligned functions                      ***
    207 *****************************************************************************/
    208 
    209 /** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned.
    210   * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown.
    211   */
    212 template<bool Align> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc(std::size_t size)
    213 {
    214   return aligned_malloc(size);
    215 }
    216 
    217 template<> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc<false>(std::size_t size)
    218 {
    219   check_that_malloc_is_allowed();
    220 
    221   void *result = std::malloc(size);
    222   if(!result && size)
    223     throw_std_bad_alloc();
    224   return result;
    225 }
    226 
    227 /** \internal Frees memory allocated with conditional_aligned_malloc */
    228 template<bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_free(void *ptr)
    229 {
    230   aligned_free(ptr);
    231 }
    232 
    233 template<> EIGEN_DEVICE_FUNC inline void conditional_aligned_free<false>(void *ptr)
    234 {
    235   std::free(ptr);
    236 }
    237 
    238 template<bool Align> inline void* conditional_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size)
    239 {
    240   return aligned_realloc(ptr, new_size, old_size);
    241 }
    242 
    243 template<> inline void* conditional_aligned_realloc<false>(void* ptr, std::size_t new_size, std::size_t)
    244 {
    245   return std::realloc(ptr, new_size);
    246 }
    247 
    248 /*****************************************************************************
    249 *** Construction/destruction of array elements                             ***
    250 *****************************************************************************/
    251 
    252 /** \internal Destructs the elements of an array.
    253   * The \a size parameters tells on how many objects to call the destructor of T.
    254   */
    255 template<typename T> EIGEN_DEVICE_FUNC inline void destruct_elements_of_array(T *ptr, std::size_t size)
    256 {
    257   // always destruct an array starting from the end.
    258   if(ptr)
    259     while(size) ptr[--size].~T();
    260 }
    261 
    262 /** \internal Constructs the elements of an array.
    263   * The \a size parameter tells on how many objects to call the constructor of T.
    264   */
    265 template<typename T> EIGEN_DEVICE_FUNC inline T* construct_elements_of_array(T *ptr, std::size_t size)
    266 {
    267   std::size_t i;
    268   EIGEN_TRY
    269   {
    270       for (i = 0; i < size; ++i) ::new (ptr + i) T;
    271       return ptr;
    272   }
    273   EIGEN_CATCH(...)
    274   {
    275     destruct_elements_of_array(ptr, i);
    276     EIGEN_THROW;
    277   }
    278   return NULL;
    279 }
    280 
    281 /*****************************************************************************
    282 *** Implementation of aligned new/delete-like functions                    ***
    283 *****************************************************************************/
    284 
    285 template<typename T>
    286 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void check_size_for_overflow(std::size_t size)
    287 {
    288   if(size > std::size_t(-1) / sizeof(T))
    289     throw_std_bad_alloc();
    290 }
    291 
    292 /** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment.
    293   * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown.
    294   * The default constructor of T is called.
    295   */
    296 template<typename T> EIGEN_DEVICE_FUNC inline T* aligned_new(std::size_t size)
    297 {
    298   check_size_for_overflow<T>(size);
    299   T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size));
    300   EIGEN_TRY
    301   {
    302     return construct_elements_of_array(result, size);
    303   }
    304   EIGEN_CATCH(...)
    305   {
    306     aligned_free(result);
    307     EIGEN_THROW;
    308   }
    309   return result;
    310 }
    311 
    312 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new(std::size_t size)
    313 {
    314   check_size_for_overflow<T>(size);
    315   T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
    316   EIGEN_TRY
    317   {
    318     return construct_elements_of_array(result, size);
    319   }
    320   EIGEN_CATCH(...)
    321   {
    322     conditional_aligned_free<Align>(result);
    323     EIGEN_THROW;
    324   }
    325   return result;
    326 }
    327 
    328 /** \internal Deletes objects constructed with aligned_new
    329   * The \a size parameters tells on how many objects to call the destructor of T.
    330   */
    331 template<typename T> EIGEN_DEVICE_FUNC inline void aligned_delete(T *ptr, std::size_t size)
    332 {
    333   destruct_elements_of_array<T>(ptr, size);
    334   aligned_free(ptr);
    335 }
    336 
    337 /** \internal Deletes objects constructed with conditional_aligned_new
    338   * The \a size parameters tells on how many objects to call the destructor of T.
    339   */
    340 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete(T *ptr, std::size_t size)
    341 {
    342   destruct_elements_of_array<T>(ptr, size);
    343   conditional_aligned_free<Align>(ptr);
    344 }
    345 
    346 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new(T* pts, std::size_t new_size, std::size_t old_size)
    347 {
    348   check_size_for_overflow<T>(new_size);
    349   check_size_for_overflow<T>(old_size);
    350   if(new_size < old_size)
    351     destruct_elements_of_array(pts+new_size, old_size-new_size);
    352   T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
    353   if(new_size > old_size)
    354   {
    355     EIGEN_TRY
    356     {
    357       construct_elements_of_array(result+old_size, new_size-old_size);
    358     }
    359     EIGEN_CATCH(...)
    360     {
    361       conditional_aligned_free<Align>(result);
    362       EIGEN_THROW;
    363     }
    364   }
    365   return result;
    366 }
    367 
    368 
    369 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new_auto(std::size_t size)
    370 {
    371   if(size==0)
    372     return 0; // short-cut. Also fixes Bug 884
    373   check_size_for_overflow<T>(size);
    374   T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
    375   if(NumTraits<T>::RequireInitialization)
    376   {
    377     EIGEN_TRY
    378     {
    379       construct_elements_of_array(result, size);
    380     }
    381     EIGEN_CATCH(...)
    382     {
    383       conditional_aligned_free<Align>(result);
    384       EIGEN_THROW;
    385     }
    386   }
    387   return result;
    388 }
    389 
    390 template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, std::size_t new_size, std::size_t old_size)
    391 {
    392   check_size_for_overflow<T>(new_size);
    393   check_size_for_overflow<T>(old_size);
    394   if(NumTraits<T>::RequireInitialization && (new_size < old_size))
    395     destruct_elements_of_array(pts+new_size, old_size-new_size);
    396   T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size));
    397   if(NumTraits<T>::RequireInitialization && (new_size > old_size))
    398   {
    399     EIGEN_TRY
    400     {
    401       construct_elements_of_array(result+old_size, new_size-old_size);
    402     }
    403     EIGEN_CATCH(...)
    404     {
    405       conditional_aligned_free<Align>(result);
    406       EIGEN_THROW;
    407     }
    408   }
    409   return result;
    410 }
    411 
    412 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete_auto(T *ptr, std::size_t size)
    413 {
    414   if(NumTraits<T>::RequireInitialization)
    415     destruct_elements_of_array<T>(ptr, size);
    416   conditional_aligned_free<Align>(ptr);
    417 }
    418 
    419 /****************************************************************************/
    420 
    421 /** \internal Returns the index of the first element of the array that is well aligned with respect to the requested \a Alignment.
    422   *
    423   * \tparam Alignment requested alignment in Bytes.
    424   * \param array the address of the start of the array
    425   * \param size the size of the array
    426   *
    427   * \note If no element of the array is well aligned or the requested alignment is not a multiple of a scalar,
    428   * the size of the array is returned. For example with SSE, the requested alignment is typically 16-bytes. If
    429   * packet size for the given scalar type is 1, then everything is considered well-aligned.
    430   *
    431   * \note Otherwise, if the Alignment is larger that the scalar size, we rely on the assumptions that sizeof(Scalar) is a
    432   * power of 2. On the other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for
    433   * example with Scalar=double on certain 32-bit platforms, see bug #79.
    434   *
    435   * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h.
    436   * \sa first_default_aligned()
    437   */
    438 template<int Alignment, typename Scalar, typename Index>
    439 EIGEN_DEVICE_FUNC inline Index first_aligned(const Scalar* array, Index size)
    440 {
    441   const Index ScalarSize = sizeof(Scalar);
    442   const Index AlignmentSize = Alignment / ScalarSize;
    443   const Index AlignmentMask = AlignmentSize-1;
    444 
    445   if(AlignmentSize<=1)
    446   {
    447     // Either the requested alignment if smaller than a scalar, or it exactly match a 1 scalar
    448     // so that all elements of the array have the same alignment.
    449     return 0;
    450   }
    451   else if( (UIntPtr(array) & (sizeof(Scalar)-1)) || (Alignment%ScalarSize)!=0)
    452   {
    453     // The array is not aligned to the size of a single scalar, or the requested alignment is not a multiple of the scalar size.
    454     // Consequently, no element of the array is well aligned.
    455     return size;
    456   }
    457   else
    458   {
    459     Index first = (AlignmentSize - (Index((UIntPtr(array)/sizeof(Scalar))) & AlignmentMask)) & AlignmentMask;
    460     return (first < size) ? first : size;
    461   }
    462 }
    463 
    464 /** \internal Returns the index of the first element of the array that is well aligned with respect the largest packet requirement.
    465    * \sa first_aligned(Scalar*,Index) and first_default_aligned(DenseBase<Derived>) */
    466 template<typename Scalar, typename Index>
    467 EIGEN_DEVICE_FUNC inline Index first_default_aligned(const Scalar* array, Index size)
    468 {
    469   typedef typename packet_traits<Scalar>::type DefaultPacketType;
    470   return first_aligned<unpacket_traits<DefaultPacketType>::alignment>(array, size);
    471 }
    472 
    473 /** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size
    474   */
    475 template<typename Index>
    476 inline Index first_multiple(Index size, Index base)
    477 {
    478   return ((size+base-1)/base)*base;
    479 }
    480 
    481 // std::copy is much slower than memcpy, so let's introduce a smart_copy which
    482 // use memcpy on trivial types, i.e., on types that does not require an initialization ctor.
    483 template<typename T, bool UseMemcpy> struct smart_copy_helper;
    484 
    485 template<typename T> EIGEN_DEVICE_FUNC void smart_copy(const T* start, const T* end, T* target)
    486 {
    487   smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
    488 }
    489 
    490 template<typename T> struct smart_copy_helper<T,true> {
    491   EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target)
    492   {
    493     IntPtr size = IntPtr(end)-IntPtr(start);
    494     if(size==0) return;
    495     eigen_internal_assert(start!=0 && end!=0 && target!=0);
    496     memcpy(target, start, size);
    497   }
    498 };
    499 
    500 template<typename T> struct smart_copy_helper<T,false> {
    501   EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target)
    502   { std::copy(start, end, target); }
    503 };
    504 
    505 // intelligent memmove. falls back to std::memmove for POD types, uses std::copy otherwise.
    506 template<typename T, bool UseMemmove> struct smart_memmove_helper;
    507 
    508 template<typename T> void smart_memmove(const T* start, const T* end, T* target)
    509 {
    510   smart_memmove_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
    511 }
    512 
    513 template<typename T> struct smart_memmove_helper<T,true> {
    514   static inline void run(const T* start, const T* end, T* target)
    515   {
    516     IntPtr size = IntPtr(end)-IntPtr(start);
    517     if(size==0) return;
    518     eigen_internal_assert(start!=0 && end!=0 && target!=0);
    519     std::memmove(target, start, size);
    520   }
    521 };
    522 
    523 template<typename T> struct smart_memmove_helper<T,false> {
    524   static inline void run(const T* start, const T* end, T* target)
    525   {
    526     if (UIntPtr(target) < UIntPtr(start))
    527     {
    528       std::copy(start, end, target);
    529     }
    530     else
    531     {
    532       std::ptrdiff_t count = (std::ptrdiff_t(end)-std::ptrdiff_t(start)) / sizeof(T);
    533       std::copy_backward(start, end, target + count);
    534     }
    535   }
    536 };
    537 
    538 
    539 /*****************************************************************************
    540 *** Implementation of runtime stack allocation (falling back to malloc)    ***
    541 *****************************************************************************/
    542 
    543 // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
    544 // to the appropriate stack allocation function
    545 #ifndef EIGEN_ALLOCA
    546   #if EIGEN_OS_LINUX || EIGEN_OS_MAC || (defined alloca)
    547     #define EIGEN_ALLOCA alloca
    548   #elif EIGEN_COMP_MSVC
    549     #define EIGEN_ALLOCA _alloca
    550   #endif
    551 #endif
    552 
    553 // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
    554 // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
    555 template<typename T> class aligned_stack_memory_handler : noncopyable
    556 {
    557   public:
    558     /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
    559      * Note that \a ptr can be 0 regardless of the other parameters.
    560      * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization).
    561      * In this case, the buffer elements will also be destructed when this handler will be destructed.
    562      * Finally, if \a dealloc is true, then the pointer \a ptr is freed.
    563      **/
    564     aligned_stack_memory_handler(T* ptr, std::size_t size, bool dealloc)
    565       : m_ptr(ptr), m_size(size), m_deallocate(dealloc)
    566     {
    567       if(NumTraits<T>::RequireInitialization && m_ptr)
    568         Eigen::internal::construct_elements_of_array(m_ptr, size);
    569     }
    570     ~aligned_stack_memory_handler()
    571     {
    572       if(NumTraits<T>::RequireInitialization && m_ptr)
    573         Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size);
    574       if(m_deallocate)
    575         Eigen::internal::aligned_free(m_ptr);
    576     }
    577   protected:
    578     T* m_ptr;
    579     std::size_t m_size;
    580     bool m_deallocate;
    581 };
    582 
    583 template<typename T> class scoped_array : noncopyable
    584 {
    585   T* m_ptr;
    586 public:
    587   explicit scoped_array(std::ptrdiff_t size)
    588   {
    589     m_ptr = new T[size];
    590   }
    591   ~scoped_array()
    592   {
    593     delete[] m_ptr;
    594   }
    595   T& operator[](std::ptrdiff_t i) { return m_ptr[i]; }
    596   const T& operator[](std::ptrdiff_t i) const { return m_ptr[i]; }
    597   T* &ptr() { return m_ptr; }
    598   const T* ptr() const { return m_ptr; }
    599   operator const T*() const { return m_ptr; }
    600 };
    601 
    602 template<typename T> void swap(scoped_array<T> &a,scoped_array<T> &b)
    603 {
    604   std::swap(a.ptr(),b.ptr());
    605 }
    606 
    607 } // end namespace internal
    608 
    609 /** \internal
    610   * Declares, allocates and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack
    611   * if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform
    612   * (currently, this is Linux and Visual Studio only). Otherwise the memory is allocated on the heap.
    613   * The allocated buffer is automatically deleted when exiting the scope of this declaration.
    614   * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs.
    615   * Here is an example:
    616   * \code
    617   * {
    618   *   ei_declare_aligned_stack_constructed_variable(float,data,size,0);
    619   *   // use data[0] to data[size-1]
    620   * }
    621   * \endcode
    622   * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token.
    623   */
    624 #ifdef EIGEN_ALLOCA
    625 
    626   #if EIGEN_DEFAULT_ALIGN_BYTES>0
    627     // We always manually re-align the result of EIGEN_ALLOCA.
    628     // If alloca is already aligned, the compiler should be smart enough to optimize away the re-alignment.
    629     #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((internal::UIntPtr(EIGEN_ALLOCA(SIZE+EIGEN_DEFAULT_ALIGN_BYTES-1)) + EIGEN_DEFAULT_ALIGN_BYTES-1) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1)))
    630   #else
    631     #define EIGEN_ALIGNED_ALLOCA(SIZE) EIGEN_ALLOCA(SIZE)
    632   #endif
    633 
    634   #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
    635     Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
    636     TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \
    637                : reinterpret_cast<TYPE*>( \
    638                       (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \
    639                     : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) );  \
    640     Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT)
    641 
    642 #else
    643 
    644   #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \
    645     Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \
    646     TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE));    \
    647     Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true)
    648 
    649 #endif
    650 
    651 
    652 /*****************************************************************************
    653 *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF]                ***
    654 *****************************************************************************/
    655 
    656 #if EIGEN_MAX_ALIGN_BYTES!=0
    657   #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
    658       void* operator new(std::size_t size, const std::nothrow_t&) EIGEN_NO_THROW { \
    659         EIGEN_TRY { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \
    660         EIGEN_CATCH (...) { return 0; } \
    661       }
    662   #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \
    663       void *operator new(std::size_t size) { \
    664         return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
    665       } \
    666       void *operator new[](std::size_t size) { \
    667         return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \
    668       } \
    669       void operator delete(void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
    670       void operator delete[](void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
    671       void operator delete(void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
    672       void operator delete[](void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
    673       /* in-place new and delete. since (at least afaik) there is no actual   */ \
    674       /* memory allocated we can safely let the default implementation handle */ \
    675       /* this particular case. */ \
    676       static void *operator new(std::size_t size, void *ptr) { return ::operator new(size,ptr); } \
    677       static void *operator new[](std::size_t size, void* ptr) { return ::operator new[](size,ptr); } \
    678       void operator delete(void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete(memory,ptr); } \
    679       void operator delete[](void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete[](memory,ptr); } \
    680       /* nothrow-new (returns zero instead of std::bad_alloc) */ \
    681       EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
    682       void operator delete(void *ptr, const std::nothrow_t&) EIGEN_NO_THROW { \
    683         Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \
    684       } \
    685       typedef void eigen_aligned_operator_new_marker_type;
    686 #else
    687   #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
    688 #endif
    689 
    690 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true)
    691 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \
    692   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%EIGEN_MAX_ALIGN_BYTES==0)))
    693 
    694 /****************************************************************************/
    695 
    696 /** \class aligned_allocator
    697 * \ingroup Core_Module
    698 *
    699 * \brief STL compatible allocator to use with with 16 byte aligned types
    700 *
    701 * Example:
    702 * \code
    703 * // Matrix4f requires 16 bytes alignment:
    704 * std::map< int, Matrix4f, std::less<int>,
    705 *           aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4;
    706 * // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator:
    707 * std::map< int, Vector3f > my_map_vec3;
    708 * \endcode
    709 *
    710 * \sa \blank \ref TopicStlContainers.
    711 */
    712 template<class T>
    713 class aligned_allocator : public std::allocator<T>
    714 {
    715 public:
    716   typedef std::size_t     size_type;
    717   typedef std::ptrdiff_t  difference_type;
    718   typedef T*              pointer;
    719   typedef const T*        const_pointer;
    720   typedef T&              reference;
    721   typedef const T&        const_reference;
    722   typedef T               value_type;
    723 
    724   template<class U>
    725   struct rebind
    726   {
    727     typedef aligned_allocator<U> other;
    728   };
    729 
    730   aligned_allocator() : std::allocator<T>() {}
    731 
    732   aligned_allocator(const aligned_allocator& other) : std::allocator<T>(other) {}
    733 
    734   template<class U>
    735   aligned_allocator(const aligned_allocator<U>& other) : std::allocator<T>(other) {}
    736 
    737   ~aligned_allocator() {}
    738 
    739   pointer allocate(size_type num, const void* /*hint*/ = 0)
    740   {
    741     internal::check_size_for_overflow<T>(num);
    742     return static_cast<pointer>( internal::aligned_malloc(num * sizeof(T)) );
    743   }
    744 
    745   void deallocate(pointer p, size_type /*num*/)
    746   {
    747     internal::aligned_free(p);
    748   }
    749 };
    750 
    751 //---------- Cache sizes ----------
    752 
    753 #if !defined(EIGEN_NO_CPUID)
    754 #  if EIGEN_COMP_GNUC && EIGEN_ARCH_i386_OR_x86_64
    755 #    if defined(__PIC__) && EIGEN_ARCH_i386
    756        // Case for x86 with PIC
    757 #      define EIGEN_CPUID(abcd,func,id) \
    758          __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
    759 #    elif defined(__PIC__) && EIGEN_ARCH_x86_64
    760        // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model.
    761        // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway.
    762 #      define EIGEN_CPUID(abcd,func,id) \
    763         __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id));
    764 #    else
    765        // Case for x86_64 or x86 w/o PIC
    766 #      define EIGEN_CPUID(abcd,func,id) \
    767          __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) );
    768 #    endif
    769 #  elif EIGEN_COMP_MSVC
    770 #    if (EIGEN_COMP_MSVC > 1500) && EIGEN_ARCH_i386_OR_x86_64
    771 #      define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
    772 #    endif
    773 #  endif
    774 #endif
    775 
    776 namespace internal {
    777 
    778 #ifdef EIGEN_CPUID
    779 
    780 inline bool cpuid_is_vendor(int abcd[4], const int vendor[3])
    781 {
    782   return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2];
    783 }
    784 
    785 inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
    786 {
    787   int abcd[4];
    788   l1 = l2 = l3 = 0;
    789   int cache_id = 0;
    790   int cache_type = 0;
    791   do {
    792     abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
    793     EIGEN_CPUID(abcd,0x4,cache_id);
    794     cache_type  = (abcd[0] & 0x0F) >> 0;
    795     if(cache_type==1||cache_type==3) // data or unified cache
    796     {
    797       int cache_level = (abcd[0] & 0xE0) >> 5;  // A[7:5]
    798       int ways        = (abcd[1] & 0xFFC00000) >> 22; // B[31:22]
    799       int partitions  = (abcd[1] & 0x003FF000) >> 12; // B[21:12]
    800       int line_size   = (abcd[1] & 0x00000FFF) >>  0; // B[11:0]
    801       int sets        = (abcd[2]);                    // C[31:0]
    802 
    803       int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1);
    804 
    805       switch(cache_level)
    806       {
    807         case 1: l1 = cache_size; break;
    808         case 2: l2 = cache_size; break;
    809         case 3: l3 = cache_size; break;
    810         default: break;
    811       }
    812     }
    813     cache_id++;
    814   } while(cache_type>0 && cache_id<16);
    815 }
    816 
    817 inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3)
    818 {
    819   int abcd[4];
    820   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
    821   l1 = l2 = l3 = 0;
    822   EIGEN_CPUID(abcd,0x00000002,0);
    823   unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2;
    824   bool check_for_p2_core2 = false;
    825   for(int i=0; i<14; ++i)
    826   {
    827     switch(bytes[i])
    828     {
    829       case 0x0A: l1 = 8; break;   // 0Ah   data L1 cache, 8 KB, 2 ways, 32 byte lines
    830       case 0x0C: l1 = 16; break;  // 0Ch   data L1 cache, 16 KB, 4 ways, 32 byte lines
    831       case 0x0E: l1 = 24; break;  // 0Eh   data L1 cache, 24 KB, 6 ways, 64 byte lines
    832       case 0x10: l1 = 16; break;  // 10h   data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
    833       case 0x15: l1 = 16; break;  // 15h   code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64)
    834       case 0x2C: l1 = 32; break;  // 2Ch   data L1 cache, 32 KB, 8 ways, 64 byte lines
    835       case 0x30: l1 = 32; break;  // 30h   code L1 cache, 32 KB, 8 ways, 64 byte lines
    836       case 0x60: l1 = 16; break;  // 60h   data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored
    837       case 0x66: l1 = 8; break;   // 66h   data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored
    838       case 0x67: l1 = 16; break;  // 67h   data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored
    839       case 0x68: l1 = 32; break;  // 68h   data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored
    840       case 0x1A: l2 = 96; break;   // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64)
    841       case 0x22: l3 = 512; break;   // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored
    842       case 0x23: l3 = 1024; break;   // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
    843       case 0x25: l3 = 2048; break;   // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored
    844       case 0x29: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored
    845       case 0x39: l2 = 128; break;   // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored
    846       case 0x3A: l2 = 192; break;   // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored
    847       case 0x3B: l2 = 128; break;   // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored
    848       case 0x3C: l2 = 256; break;   // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored
    849       case 0x3D: l2 = 384; break;   // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored
    850       case 0x3E: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored
    851       case 0x40: l2 = 0; break;   // no integrated L2 cache (P6 core) or L3 cache (P4 core)
    852       case 0x41: l2 = 128; break;   // code and data L2 cache, 128 KB, 4 ways, 32 byte lines
    853       case 0x42: l2 = 256; break;   // code and data L2 cache, 256 KB, 4 ways, 32 byte lines
    854       case 0x43: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 32 byte lines
    855       case 0x44: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines
    856       case 0x45: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines
    857       case 0x46: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines
    858       case 0x47: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines
    859       case 0x48: l2 = 3072; break;   // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines
    860       case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2
    861       case 0x4A: l3 = 6144; break;   // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines
    862       case 0x4B: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines
    863       case 0x4C: l3 = 12288; break;   // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines
    864       case 0x4D: l3 = 16384; break;   // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines
    865       case 0x4E: l2 = 6144; break;   // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines
    866       case 0x78: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines
    867       case 0x79: l2 = 128; break;   // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored
    868       case 0x7A: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored
    869       case 0x7B: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored
    870       case 0x7C: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored
    871       case 0x7D: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines
    872       case 0x7E: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64)
    873       case 0x7F: l2 = 512; break;   // code and data L2 cache, 512 KB, 2 ways, 64 byte lines
    874       case 0x80: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 64 byte lines
    875       case 0x81: l2 = 128; break;   // code and data L2 cache, 128 KB, 8 ways, 32 byte lines
    876       case 0x82: l2 = 256; break;   // code and data L2 cache, 256 KB, 8 ways, 32 byte lines
    877       case 0x83: l2 = 512; break;   // code and data L2 cache, 512 KB, 8 ways, 32 byte lines
    878       case 0x84: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines
    879       case 0x85: l2 = 2048; break;   // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines
    880       case 0x86: l2 = 512; break;   // code and data L2 cache, 512 KB, 4 ways, 64 byte lines
    881       case 0x87: l2 = 1024; break;   // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines
    882       case 0x88: l3 = 2048; break;   // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64)
    883       case 0x89: l3 = 4096; break;   // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64)
    884       case 0x8A: l3 = 8192; break;   // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64)
    885       case 0x8D: l3 = 3072; break;   // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64)
    886 
    887       default: break;
    888     }
    889   }
    890   if(check_for_p2_core2 && l2 == l3)
    891     l3 = 0;
    892   l1 *= 1024;
    893   l2 *= 1024;
    894   l3 *= 1024;
    895 }
    896 
    897 inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs)
    898 {
    899   if(max_std_funcs>=4)
    900     queryCacheSizes_intel_direct(l1,l2,l3);
    901   else
    902     queryCacheSizes_intel_codes(l1,l2,l3);
    903 }
    904 
    905 inline void queryCacheSizes_amd(int& l1, int& l2, int& l3)
    906 {
    907   int abcd[4];
    908   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
    909   EIGEN_CPUID(abcd,0x80000005,0);
    910   l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB
    911   abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0;
    912   EIGEN_CPUID(abcd,0x80000006,0);
    913   l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB
    914   l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB
    915 }
    916 #endif
    917 
    918 /** \internal
    919  * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */
    920 inline void queryCacheSizes(int& l1, int& l2, int& l3)
    921 {
    922   #ifdef EIGEN_CPUID
    923   int abcd[4];
    924   const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
    925   const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
    926   const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!"
    927 
    928   // identify the CPU vendor
    929   EIGEN_CPUID(abcd,0x0,0);
    930   int max_std_funcs = abcd[1];
    931   if(cpuid_is_vendor(abcd,GenuineIntel))
    932     queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
    933   else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_))
    934     queryCacheSizes_amd(l1,l2,l3);
    935   else
    936     // by default let's use Intel's API
    937     queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
    938 
    939   // here is the list of other vendors:
    940 //   ||cpuid_is_vendor(abcd,"VIA VIA VIA ")
    941 //   ||cpuid_is_vendor(abcd,"CyrixInstead")
    942 //   ||cpuid_is_vendor(abcd,"CentaurHauls")
    943 //   ||cpuid_is_vendor(abcd,"GenuineTMx86")
    944 //   ||cpuid_is_vendor(abcd,"TransmetaCPU")
    945 //   ||cpuid_is_vendor(abcd,"RiseRiseRise")
    946 //   ||cpuid_is_vendor(abcd,"Geode by NSC")
    947 //   ||cpuid_is_vendor(abcd,"SiS SiS SiS ")
    948 //   ||cpuid_is_vendor(abcd,"UMC UMC UMC ")
    949 //   ||cpuid_is_vendor(abcd,"NexGenDriven")
    950   #else
    951   l1 = l2 = l3 = -1;
    952   #endif
    953 }
    954 
    955 /** \internal
    956  * \returns the size in Bytes of the L1 data cache */
    957 inline int queryL1CacheSize()
    958 {
    959   int l1(-1), l2, l3;
    960   queryCacheSizes(l1,l2,l3);
    961   return l1;
    962 }
    963 
    964 /** \internal
    965  * \returns the size in Bytes of the L2 or L3 cache if this later is present */
    966 inline int queryTopLevelCacheSize()
    967 {
    968   int l1, l2(-1), l3(-1);
    969   queryCacheSizes(l1,l2,l3);
    970   return (std::max)(l2,l3);
    971 }
    972 
    973 } // end namespace internal
    974 
    975 } // end namespace Eigen
    976 
    977 #endif // EIGEN_MEMORY_H
    978