1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud (at) inria.fr> 5 // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1 (at) gmail.com> 6 // Copyright (C) 2009 Kenneth Riddile <kfriddile (at) yahoo.com> 7 // Copyright (C) 2010 Hauke Heibel <hauke.heibel (at) gmail.com> 8 // Copyright (C) 2010 Thomas Capricelli <orzel (at) freehackers.org> 9 // Copyright (C) 2013 Pavel Holoborodko <pavel (at) holoborodko.com> 10 // 11 // This Source Code Form is subject to the terms of the Mozilla 12 // Public License v. 2.0. If a copy of the MPL was not distributed 13 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 14 15 16 /***************************************************************************** 17 *** Platform checks for aligned malloc functions *** 18 *****************************************************************************/ 19 20 #ifndef EIGEN_MEMORY_H 21 #define EIGEN_MEMORY_H 22 23 #ifndef EIGEN_MALLOC_ALREADY_ALIGNED 24 25 // Try to determine automatically if malloc is already aligned. 26 27 // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see: 28 // http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html 29 // This is true at least since glibc 2.8. 30 // This leaves the question how to detect 64-bit. According to this document, 31 // http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf 32 // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed 33 // quite safe, at least within the context of glibc, to equate 64-bit with LP64. 34 #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \ 35 && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ ) && (EIGEN_DEFAULT_ALIGN_BYTES == 16) 36 #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1 37 #else 38 #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0 39 #endif 40 41 // FreeBSD 6 seems to have 16-byte aligned malloc 42 // See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup 43 // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures 44 // See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup 45 #if defined(__FreeBSD__) && !(EIGEN_ARCH_ARM || EIGEN_ARCH_MIPS) && (EIGEN_DEFAULT_ALIGN_BYTES == 16) 46 #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1 47 #else 48 #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0 49 #endif 50 51 #if (EIGEN_OS_MAC && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \ 52 || (EIGEN_OS_WIN64 && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \ 53 || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \ 54 || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 55 #define EIGEN_MALLOC_ALREADY_ALIGNED 1 56 #else 57 #define EIGEN_MALLOC_ALREADY_ALIGNED 0 58 #endif 59 60 #endif 61 62 namespace Eigen { 63 64 namespace internal { 65 66 EIGEN_DEVICE_FUNC 67 inline void throw_std_bad_alloc() 68 { 69 #ifdef EIGEN_EXCEPTIONS 70 throw std::bad_alloc(); 71 #else 72 std::size_t huge = static_cast<std::size_t>(-1); 73 new int[huge]; 74 #endif 75 } 76 77 /***************************************************************************** 78 *** Implementation of handmade aligned functions *** 79 *****************************************************************************/ 80 81 /* ----- Hand made implementations of aligned malloc/free and realloc ----- */ 82 83 /** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned. 84 * Fast, but wastes 16 additional bytes of memory. Does not throw any exception. 85 */ 86 inline void* handmade_aligned_malloc(std::size_t size) 87 { 88 void *original = std::malloc(size+EIGEN_DEFAULT_ALIGN_BYTES); 89 if (original == 0) return 0; 90 void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES); 91 *(reinterpret_cast<void**>(aligned) - 1) = original; 92 return aligned; 93 } 94 95 /** \internal Frees memory allocated with handmade_aligned_malloc */ 96 inline void handmade_aligned_free(void *ptr) 97 { 98 if (ptr) std::free(*(reinterpret_cast<void**>(ptr) - 1)); 99 } 100 101 /** \internal 102 * \brief Reallocates aligned memory. 103 * Since we know that our handmade version is based on std::malloc 104 * we can use std::realloc to implement efficient reallocation. 105 */ 106 inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0) 107 { 108 if (ptr == 0) return handmade_aligned_malloc(size); 109 void *original = *(reinterpret_cast<void**>(ptr) - 1); 110 std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original); 111 original = std::realloc(original,size+EIGEN_DEFAULT_ALIGN_BYTES); 112 if (original == 0) return 0; 113 void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES); 114 void *previous_aligned = static_cast<char *>(original)+previous_offset; 115 if(aligned!=previous_aligned) 116 std::memmove(aligned, previous_aligned, size); 117 118 *(reinterpret_cast<void**>(aligned) - 1) = original; 119 return aligned; 120 } 121 122 /***************************************************************************** 123 *** Implementation of portable aligned versions of malloc/free/realloc *** 124 *****************************************************************************/ 125 126 #ifdef EIGEN_NO_MALLOC 127 EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() 128 { 129 eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)"); 130 } 131 #elif defined EIGEN_RUNTIME_NO_MALLOC 132 EIGEN_DEVICE_FUNC inline bool is_malloc_allowed_impl(bool update, bool new_value = false) 133 { 134 static bool value = true; 135 if (update == 1) 136 value = new_value; 137 return value; 138 } 139 EIGEN_DEVICE_FUNC inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); } 140 EIGEN_DEVICE_FUNC inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); } 141 EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() 142 { 143 eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)"); 144 } 145 #else 146 EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() 147 {} 148 #endif 149 150 /** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 or 32 bytes alignment depending on the requirements. 151 * On allocation error, the returned pointer is null, and std::bad_alloc is thrown. 152 */ 153 EIGEN_DEVICE_FUNC inline void* aligned_malloc(std::size_t size) 154 { 155 check_that_malloc_is_allowed(); 156 157 void *result; 158 #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED 159 result = std::malloc(size); 160 #if EIGEN_DEFAULT_ALIGN_BYTES==16 161 eigen_assert((size<16 || (std::size_t(result)%16)==0) && "System's malloc returned an unaligned pointer. Compile with EIGEN_MALLOC_ALREADY_ALIGNED=0 to fallback to handmade alignd memory allocator."); 162 #endif 163 #else 164 result = handmade_aligned_malloc(size); 165 #endif 166 167 if(!result && size) 168 throw_std_bad_alloc(); 169 170 return result; 171 } 172 173 /** \internal Frees memory allocated with aligned_malloc. */ 174 EIGEN_DEVICE_FUNC inline void aligned_free(void *ptr) 175 { 176 #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED 177 std::free(ptr); 178 #else 179 handmade_aligned_free(ptr); 180 #endif 181 } 182 183 /** 184 * \internal 185 * \brief Reallocates an aligned block of memory. 186 * \throws std::bad_alloc on allocation failure 187 */ 188 inline void* aligned_realloc(void *ptr, std::size_t new_size, std::size_t old_size) 189 { 190 EIGEN_UNUSED_VARIABLE(old_size); 191 192 void *result; 193 #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED 194 result = std::realloc(ptr,new_size); 195 #else 196 result = handmade_aligned_realloc(ptr,new_size,old_size); 197 #endif 198 199 if (!result && new_size) 200 throw_std_bad_alloc(); 201 202 return result; 203 } 204 205 /***************************************************************************** 206 *** Implementation of conditionally aligned functions *** 207 *****************************************************************************/ 208 209 /** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned. 210 * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown. 211 */ 212 template<bool Align> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc(std::size_t size) 213 { 214 return aligned_malloc(size); 215 } 216 217 template<> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc<false>(std::size_t size) 218 { 219 check_that_malloc_is_allowed(); 220 221 void *result = std::malloc(size); 222 if(!result && size) 223 throw_std_bad_alloc(); 224 return result; 225 } 226 227 /** \internal Frees memory allocated with conditional_aligned_malloc */ 228 template<bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_free(void *ptr) 229 { 230 aligned_free(ptr); 231 } 232 233 template<> EIGEN_DEVICE_FUNC inline void conditional_aligned_free<false>(void *ptr) 234 { 235 std::free(ptr); 236 } 237 238 template<bool Align> inline void* conditional_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size) 239 { 240 return aligned_realloc(ptr, new_size, old_size); 241 } 242 243 template<> inline void* conditional_aligned_realloc<false>(void* ptr, std::size_t new_size, std::size_t) 244 { 245 return std::realloc(ptr, new_size); 246 } 247 248 /***************************************************************************** 249 *** Construction/destruction of array elements *** 250 *****************************************************************************/ 251 252 /** \internal Destructs the elements of an array. 253 * The \a size parameters tells on how many objects to call the destructor of T. 254 */ 255 template<typename T> EIGEN_DEVICE_FUNC inline void destruct_elements_of_array(T *ptr, std::size_t size) 256 { 257 // always destruct an array starting from the end. 258 if(ptr) 259 while(size) ptr[--size].~T(); 260 } 261 262 /** \internal Constructs the elements of an array. 263 * The \a size parameter tells on how many objects to call the constructor of T. 264 */ 265 template<typename T> EIGEN_DEVICE_FUNC inline T* construct_elements_of_array(T *ptr, std::size_t size) 266 { 267 std::size_t i; 268 EIGEN_TRY 269 { 270 for (i = 0; i < size; ++i) ::new (ptr + i) T; 271 return ptr; 272 } 273 EIGEN_CATCH(...) 274 { 275 destruct_elements_of_array(ptr, i); 276 EIGEN_THROW; 277 } 278 return NULL; 279 } 280 281 /***************************************************************************** 282 *** Implementation of aligned new/delete-like functions *** 283 *****************************************************************************/ 284 285 template<typename T> 286 EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void check_size_for_overflow(std::size_t size) 287 { 288 if(size > std::size_t(-1) / sizeof(T)) 289 throw_std_bad_alloc(); 290 } 291 292 /** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment. 293 * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown. 294 * The default constructor of T is called. 295 */ 296 template<typename T> EIGEN_DEVICE_FUNC inline T* aligned_new(std::size_t size) 297 { 298 check_size_for_overflow<T>(size); 299 T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size)); 300 EIGEN_TRY 301 { 302 return construct_elements_of_array(result, size); 303 } 304 EIGEN_CATCH(...) 305 { 306 aligned_free(result); 307 EIGEN_THROW; 308 } 309 return result; 310 } 311 312 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new(std::size_t size) 313 { 314 check_size_for_overflow<T>(size); 315 T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size)); 316 EIGEN_TRY 317 { 318 return construct_elements_of_array(result, size); 319 } 320 EIGEN_CATCH(...) 321 { 322 conditional_aligned_free<Align>(result); 323 EIGEN_THROW; 324 } 325 return result; 326 } 327 328 /** \internal Deletes objects constructed with aligned_new 329 * The \a size parameters tells on how many objects to call the destructor of T. 330 */ 331 template<typename T> EIGEN_DEVICE_FUNC inline void aligned_delete(T *ptr, std::size_t size) 332 { 333 destruct_elements_of_array<T>(ptr, size); 334 aligned_free(ptr); 335 } 336 337 /** \internal Deletes objects constructed with conditional_aligned_new 338 * The \a size parameters tells on how many objects to call the destructor of T. 339 */ 340 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete(T *ptr, std::size_t size) 341 { 342 destruct_elements_of_array<T>(ptr, size); 343 conditional_aligned_free<Align>(ptr); 344 } 345 346 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new(T* pts, std::size_t new_size, std::size_t old_size) 347 { 348 check_size_for_overflow<T>(new_size); 349 check_size_for_overflow<T>(old_size); 350 if(new_size < old_size) 351 destruct_elements_of_array(pts+new_size, old_size-new_size); 352 T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size)); 353 if(new_size > old_size) 354 { 355 EIGEN_TRY 356 { 357 construct_elements_of_array(result+old_size, new_size-old_size); 358 } 359 EIGEN_CATCH(...) 360 { 361 conditional_aligned_free<Align>(result); 362 EIGEN_THROW; 363 } 364 } 365 return result; 366 } 367 368 369 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new_auto(std::size_t size) 370 { 371 if(size==0) 372 return 0; // short-cut. Also fixes Bug 884 373 check_size_for_overflow<T>(size); 374 T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size)); 375 if(NumTraits<T>::RequireInitialization) 376 { 377 EIGEN_TRY 378 { 379 construct_elements_of_array(result, size); 380 } 381 EIGEN_CATCH(...) 382 { 383 conditional_aligned_free<Align>(result); 384 EIGEN_THROW; 385 } 386 } 387 return result; 388 } 389 390 template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, std::size_t new_size, std::size_t old_size) 391 { 392 check_size_for_overflow<T>(new_size); 393 check_size_for_overflow<T>(old_size); 394 if(NumTraits<T>::RequireInitialization && (new_size < old_size)) 395 destruct_elements_of_array(pts+new_size, old_size-new_size); 396 T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size)); 397 if(NumTraits<T>::RequireInitialization && (new_size > old_size)) 398 { 399 EIGEN_TRY 400 { 401 construct_elements_of_array(result+old_size, new_size-old_size); 402 } 403 EIGEN_CATCH(...) 404 { 405 conditional_aligned_free<Align>(result); 406 EIGEN_THROW; 407 } 408 } 409 return result; 410 } 411 412 template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete_auto(T *ptr, std::size_t size) 413 { 414 if(NumTraits<T>::RequireInitialization) 415 destruct_elements_of_array<T>(ptr, size); 416 conditional_aligned_free<Align>(ptr); 417 } 418 419 /****************************************************************************/ 420 421 /** \internal Returns the index of the first element of the array that is well aligned with respect to the requested \a Alignment. 422 * 423 * \tparam Alignment requested alignment in Bytes. 424 * \param array the address of the start of the array 425 * \param size the size of the array 426 * 427 * \note If no element of the array is well aligned or the requested alignment is not a multiple of a scalar, 428 * the size of the array is returned. For example with SSE, the requested alignment is typically 16-bytes. If 429 * packet size for the given scalar type is 1, then everything is considered well-aligned. 430 * 431 * \note Otherwise, if the Alignment is larger that the scalar size, we rely on the assumptions that sizeof(Scalar) is a 432 * power of 2. On the other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for 433 * example with Scalar=double on certain 32-bit platforms, see bug #79. 434 * 435 * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h. 436 * \sa first_default_aligned() 437 */ 438 template<int Alignment, typename Scalar, typename Index> 439 EIGEN_DEVICE_FUNC inline Index first_aligned(const Scalar* array, Index size) 440 { 441 const Index ScalarSize = sizeof(Scalar); 442 const Index AlignmentSize = Alignment / ScalarSize; 443 const Index AlignmentMask = AlignmentSize-1; 444 445 if(AlignmentSize<=1) 446 { 447 // Either the requested alignment if smaller than a scalar, or it exactly match a 1 scalar 448 // so that all elements of the array have the same alignment. 449 return 0; 450 } 451 else if( (UIntPtr(array) & (sizeof(Scalar)-1)) || (Alignment%ScalarSize)!=0) 452 { 453 // The array is not aligned to the size of a single scalar, or the requested alignment is not a multiple of the scalar size. 454 // Consequently, no element of the array is well aligned. 455 return size; 456 } 457 else 458 { 459 Index first = (AlignmentSize - (Index((UIntPtr(array)/sizeof(Scalar))) & AlignmentMask)) & AlignmentMask; 460 return (first < size) ? first : size; 461 } 462 } 463 464 /** \internal Returns the index of the first element of the array that is well aligned with respect the largest packet requirement. 465 * \sa first_aligned(Scalar*,Index) and first_default_aligned(DenseBase<Derived>) */ 466 template<typename Scalar, typename Index> 467 EIGEN_DEVICE_FUNC inline Index first_default_aligned(const Scalar* array, Index size) 468 { 469 typedef typename packet_traits<Scalar>::type DefaultPacketType; 470 return first_aligned<unpacket_traits<DefaultPacketType>::alignment>(array, size); 471 } 472 473 /** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size 474 */ 475 template<typename Index> 476 inline Index first_multiple(Index size, Index base) 477 { 478 return ((size+base-1)/base)*base; 479 } 480 481 // std::copy is much slower than memcpy, so let's introduce a smart_copy which 482 // use memcpy on trivial types, i.e., on types that does not require an initialization ctor. 483 template<typename T, bool UseMemcpy> struct smart_copy_helper; 484 485 template<typename T> EIGEN_DEVICE_FUNC void smart_copy(const T* start, const T* end, T* target) 486 { 487 smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target); 488 } 489 490 template<typename T> struct smart_copy_helper<T,true> { 491 EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target) 492 { 493 IntPtr size = IntPtr(end)-IntPtr(start); 494 if(size==0) return; 495 eigen_internal_assert(start!=0 && end!=0 && target!=0); 496 memcpy(target, start, size); 497 } 498 }; 499 500 template<typename T> struct smart_copy_helper<T,false> { 501 EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target) 502 { std::copy(start, end, target); } 503 }; 504 505 // intelligent memmove. falls back to std::memmove for POD types, uses std::copy otherwise. 506 template<typename T, bool UseMemmove> struct smart_memmove_helper; 507 508 template<typename T> void smart_memmove(const T* start, const T* end, T* target) 509 { 510 smart_memmove_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target); 511 } 512 513 template<typename T> struct smart_memmove_helper<T,true> { 514 static inline void run(const T* start, const T* end, T* target) 515 { 516 IntPtr size = IntPtr(end)-IntPtr(start); 517 if(size==0) return; 518 eigen_internal_assert(start!=0 && end!=0 && target!=0); 519 std::memmove(target, start, size); 520 } 521 }; 522 523 template<typename T> struct smart_memmove_helper<T,false> { 524 static inline void run(const T* start, const T* end, T* target) 525 { 526 if (UIntPtr(target) < UIntPtr(start)) 527 { 528 std::copy(start, end, target); 529 } 530 else 531 { 532 std::ptrdiff_t count = (std::ptrdiff_t(end)-std::ptrdiff_t(start)) / sizeof(T); 533 std::copy_backward(start, end, target + count); 534 } 535 } 536 }; 537 538 539 /***************************************************************************** 540 *** Implementation of runtime stack allocation (falling back to malloc) *** 541 *****************************************************************************/ 542 543 // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA 544 // to the appropriate stack allocation function 545 #ifndef EIGEN_ALLOCA 546 #if EIGEN_OS_LINUX || EIGEN_OS_MAC || (defined alloca) 547 #define EIGEN_ALLOCA alloca 548 #elif EIGEN_COMP_MSVC 549 #define EIGEN_ALLOCA _alloca 550 #endif 551 #endif 552 553 // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data 554 // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions. 555 template<typename T> class aligned_stack_memory_handler : noncopyable 556 { 557 public: 558 /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size. 559 * Note that \a ptr can be 0 regardless of the other parameters. 560 * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization). 561 * In this case, the buffer elements will also be destructed when this handler will be destructed. 562 * Finally, if \a dealloc is true, then the pointer \a ptr is freed. 563 **/ 564 aligned_stack_memory_handler(T* ptr, std::size_t size, bool dealloc) 565 : m_ptr(ptr), m_size(size), m_deallocate(dealloc) 566 { 567 if(NumTraits<T>::RequireInitialization && m_ptr) 568 Eigen::internal::construct_elements_of_array(m_ptr, size); 569 } 570 ~aligned_stack_memory_handler() 571 { 572 if(NumTraits<T>::RequireInitialization && m_ptr) 573 Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size); 574 if(m_deallocate) 575 Eigen::internal::aligned_free(m_ptr); 576 } 577 protected: 578 T* m_ptr; 579 std::size_t m_size; 580 bool m_deallocate; 581 }; 582 583 template<typename T> class scoped_array : noncopyable 584 { 585 T* m_ptr; 586 public: 587 explicit scoped_array(std::ptrdiff_t size) 588 { 589 m_ptr = new T[size]; 590 } 591 ~scoped_array() 592 { 593 delete[] m_ptr; 594 } 595 T& operator[](std::ptrdiff_t i) { return m_ptr[i]; } 596 const T& operator[](std::ptrdiff_t i) const { return m_ptr[i]; } 597 T* &ptr() { return m_ptr; } 598 const T* ptr() const { return m_ptr; } 599 operator const T*() const { return m_ptr; } 600 }; 601 602 template<typename T> void swap(scoped_array<T> &a,scoped_array<T> &b) 603 { 604 std::swap(a.ptr(),b.ptr()); 605 } 606 607 } // end namespace internal 608 609 /** \internal 610 * Declares, allocates and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack 611 * if SIZE is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform 612 * (currently, this is Linux and Visual Studio only). Otherwise the memory is allocated on the heap. 613 * The allocated buffer is automatically deleted when exiting the scope of this declaration. 614 * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs. 615 * Here is an example: 616 * \code 617 * { 618 * ei_declare_aligned_stack_constructed_variable(float,data,size,0); 619 * // use data[0] to data[size-1] 620 * } 621 * \endcode 622 * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token. 623 */ 624 #ifdef EIGEN_ALLOCA 625 626 #if EIGEN_DEFAULT_ALIGN_BYTES>0 627 // We always manually re-align the result of EIGEN_ALLOCA. 628 // If alloca is already aligned, the compiler should be smart enough to optimize away the re-alignment. 629 #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((internal::UIntPtr(EIGEN_ALLOCA(SIZE+EIGEN_DEFAULT_ALIGN_BYTES-1)) + EIGEN_DEFAULT_ALIGN_BYTES-1) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) 630 #else 631 #define EIGEN_ALIGNED_ALLOCA(SIZE) EIGEN_ALLOCA(SIZE) 632 #endif 633 634 #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ 635 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \ 636 TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \ 637 : reinterpret_cast<TYPE*>( \ 638 (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \ 639 : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \ 640 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT) 641 642 #else 643 644 #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ 645 Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \ 646 TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \ 647 Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true) 648 649 #endif 650 651 652 /***************************************************************************** 653 *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] *** 654 *****************************************************************************/ 655 656 #if EIGEN_MAX_ALIGN_BYTES!=0 657 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ 658 void* operator new(std::size_t size, const std::nothrow_t&) EIGEN_NO_THROW { \ 659 EIGEN_TRY { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \ 660 EIGEN_CATCH (...) { return 0; } \ 661 } 662 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \ 663 void *operator new(std::size_t size) { \ 664 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \ 665 } \ 666 void *operator new[](std::size_t size) { \ 667 return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \ 668 } \ 669 void operator delete(void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ 670 void operator delete[](void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ 671 void operator delete(void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ 672 void operator delete[](void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ 673 /* in-place new and delete. since (at least afaik) there is no actual */ \ 674 /* memory allocated we can safely let the default implementation handle */ \ 675 /* this particular case. */ \ 676 static void *operator new(std::size_t size, void *ptr) { return ::operator new(size,ptr); } \ 677 static void *operator new[](std::size_t size, void* ptr) { return ::operator new[](size,ptr); } \ 678 void operator delete(void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete(memory,ptr); } \ 679 void operator delete[](void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete[](memory,ptr); } \ 680 /* nothrow-new (returns zero instead of std::bad_alloc) */ \ 681 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ 682 void operator delete(void *ptr, const std::nothrow_t&) EIGEN_NO_THROW { \ 683 Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \ 684 } \ 685 typedef void eigen_aligned_operator_new_marker_type; 686 #else 687 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) 688 #endif 689 690 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true) 691 #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \ 692 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(((Size)!=Eigen::Dynamic) && ((sizeof(Scalar)*(Size))%EIGEN_MAX_ALIGN_BYTES==0))) 693 694 /****************************************************************************/ 695 696 /** \class aligned_allocator 697 * \ingroup Core_Module 698 * 699 * \brief STL compatible allocator to use with with 16 byte aligned types 700 * 701 * Example: 702 * \code 703 * // Matrix4f requires 16 bytes alignment: 704 * std::map< int, Matrix4f, std::less<int>, 705 * aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4; 706 * // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator: 707 * std::map< int, Vector3f > my_map_vec3; 708 * \endcode 709 * 710 * \sa \blank \ref TopicStlContainers. 711 */ 712 template<class T> 713 class aligned_allocator : public std::allocator<T> 714 { 715 public: 716 typedef std::size_t size_type; 717 typedef std::ptrdiff_t difference_type; 718 typedef T* pointer; 719 typedef const T* const_pointer; 720 typedef T& reference; 721 typedef const T& const_reference; 722 typedef T value_type; 723 724 template<class U> 725 struct rebind 726 { 727 typedef aligned_allocator<U> other; 728 }; 729 730 aligned_allocator() : std::allocator<T>() {} 731 732 aligned_allocator(const aligned_allocator& other) : std::allocator<T>(other) {} 733 734 template<class U> 735 aligned_allocator(const aligned_allocator<U>& other) : std::allocator<T>(other) {} 736 737 ~aligned_allocator() {} 738 739 pointer allocate(size_type num, const void* /*hint*/ = 0) 740 { 741 internal::check_size_for_overflow<T>(num); 742 return static_cast<pointer>( internal::aligned_malloc(num * sizeof(T)) ); 743 } 744 745 void deallocate(pointer p, size_type /*num*/) 746 { 747 internal::aligned_free(p); 748 } 749 }; 750 751 //---------- Cache sizes ---------- 752 753 #if !defined(EIGEN_NO_CPUID) 754 # if EIGEN_COMP_GNUC && EIGEN_ARCH_i386_OR_x86_64 755 # if defined(__PIC__) && EIGEN_ARCH_i386 756 // Case for x86 with PIC 757 # define EIGEN_CPUID(abcd,func,id) \ 758 __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id)); 759 # elif defined(__PIC__) && EIGEN_ARCH_x86_64 760 // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model. 761 // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway. 762 # define EIGEN_CPUID(abcd,func,id) \ 763 __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id)); 764 # else 765 // Case for x86_64 or x86 w/o PIC 766 # define EIGEN_CPUID(abcd,func,id) \ 767 __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) ); 768 # endif 769 # elif EIGEN_COMP_MSVC 770 # if (EIGEN_COMP_MSVC > 1500) && EIGEN_ARCH_i386_OR_x86_64 771 # define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id) 772 # endif 773 # endif 774 #endif 775 776 namespace internal { 777 778 #ifdef EIGEN_CPUID 779 780 inline bool cpuid_is_vendor(int abcd[4], const int vendor[3]) 781 { 782 return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2]; 783 } 784 785 inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3) 786 { 787 int abcd[4]; 788 l1 = l2 = l3 = 0; 789 int cache_id = 0; 790 int cache_type = 0; 791 do { 792 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; 793 EIGEN_CPUID(abcd,0x4,cache_id); 794 cache_type = (abcd[0] & 0x0F) >> 0; 795 if(cache_type==1||cache_type==3) // data or unified cache 796 { 797 int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5] 798 int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22] 799 int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12] 800 int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0] 801 int sets = (abcd[2]); // C[31:0] 802 803 int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1); 804 805 switch(cache_level) 806 { 807 case 1: l1 = cache_size; break; 808 case 2: l2 = cache_size; break; 809 case 3: l3 = cache_size; break; 810 default: break; 811 } 812 } 813 cache_id++; 814 } while(cache_type>0 && cache_id<16); 815 } 816 817 inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3) 818 { 819 int abcd[4]; 820 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; 821 l1 = l2 = l3 = 0; 822 EIGEN_CPUID(abcd,0x00000002,0); 823 unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2; 824 bool check_for_p2_core2 = false; 825 for(int i=0; i<14; ++i) 826 { 827 switch(bytes[i]) 828 { 829 case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines 830 case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines 831 case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines 832 case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) 833 case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) 834 case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines 835 case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines 836 case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored 837 case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored 838 case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored 839 case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored 840 case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64) 841 case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored 842 case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored 843 case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored 844 case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored 845 case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored 846 case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored 847 case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored 848 case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored 849 case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored 850 case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored 851 case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core) 852 case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines 853 case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines 854 case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines 855 case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines 856 case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines 857 case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines 858 case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines 859 case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines 860 case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2 861 case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines 862 case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines 863 case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines 864 case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines 865 case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines 866 case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines 867 case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored 868 case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored 869 case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored 870 case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored 871 case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines 872 case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64) 873 case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines 874 case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines 875 case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines 876 case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines 877 case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines 878 case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines 879 case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines 880 case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines 881 case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines 882 case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64) 883 case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64) 884 case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64) 885 case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64) 886 887 default: break; 888 } 889 } 890 if(check_for_p2_core2 && l2 == l3) 891 l3 = 0; 892 l1 *= 1024; 893 l2 *= 1024; 894 l3 *= 1024; 895 } 896 897 inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs) 898 { 899 if(max_std_funcs>=4) 900 queryCacheSizes_intel_direct(l1,l2,l3); 901 else 902 queryCacheSizes_intel_codes(l1,l2,l3); 903 } 904 905 inline void queryCacheSizes_amd(int& l1, int& l2, int& l3) 906 { 907 int abcd[4]; 908 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; 909 EIGEN_CPUID(abcd,0x80000005,0); 910 l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB 911 abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; 912 EIGEN_CPUID(abcd,0x80000006,0); 913 l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB 914 l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB 915 } 916 #endif 917 918 /** \internal 919 * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */ 920 inline void queryCacheSizes(int& l1, int& l2, int& l3) 921 { 922 #ifdef EIGEN_CPUID 923 int abcd[4]; 924 const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e}; 925 const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163}; 926 const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!" 927 928 // identify the CPU vendor 929 EIGEN_CPUID(abcd,0x0,0); 930 int max_std_funcs = abcd[1]; 931 if(cpuid_is_vendor(abcd,GenuineIntel)) 932 queryCacheSizes_intel(l1,l2,l3,max_std_funcs); 933 else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_)) 934 queryCacheSizes_amd(l1,l2,l3); 935 else 936 // by default let's use Intel's API 937 queryCacheSizes_intel(l1,l2,l3,max_std_funcs); 938 939 // here is the list of other vendors: 940 // ||cpuid_is_vendor(abcd,"VIA VIA VIA ") 941 // ||cpuid_is_vendor(abcd,"CyrixInstead") 942 // ||cpuid_is_vendor(abcd,"CentaurHauls") 943 // ||cpuid_is_vendor(abcd,"GenuineTMx86") 944 // ||cpuid_is_vendor(abcd,"TransmetaCPU") 945 // ||cpuid_is_vendor(abcd,"RiseRiseRise") 946 // ||cpuid_is_vendor(abcd,"Geode by NSC") 947 // ||cpuid_is_vendor(abcd,"SiS SiS SiS ") 948 // ||cpuid_is_vendor(abcd,"UMC UMC UMC ") 949 // ||cpuid_is_vendor(abcd,"NexGenDriven") 950 #else 951 l1 = l2 = l3 = -1; 952 #endif 953 } 954 955 /** \internal 956 * \returns the size in Bytes of the L1 data cache */ 957 inline int queryL1CacheSize() 958 { 959 int l1(-1), l2, l3; 960 queryCacheSizes(l1,l2,l3); 961 return l1; 962 } 963 964 /** \internal 965 * \returns the size in Bytes of the L2 or L3 cache if this later is present */ 966 inline int queryTopLevelCacheSize() 967 { 968 int l1, l2(-1), l3(-1); 969 queryCacheSizes(l1,l2,l3); 970 return (std::max)(l2,l3); 971 } 972 973 } // end namespace internal 974 975 } // end namespace Eigen 976 977 #endif // EIGEN_MEMORY_H 978