Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "thread.h"
     18 
     19 #if !defined(__APPLE__)
     20 #include <sched.h>
     21 #endif
     22 
     23 #include <pthread.h>
     24 #include <signal.h>
     25 #include <sys/resource.h>
     26 #include <sys/time.h>
     27 
     28 #include <algorithm>
     29 #include <bitset>
     30 #include <cerrno>
     31 #include <iostream>
     32 #include <list>
     33 #include <sstream>
     34 
     35 #include "android-base/stringprintf.h"
     36 
     37 #include "arch/context.h"
     38 #include "art_field-inl.h"
     39 #include "art_method-inl.h"
     40 #include "base/bit_utils.h"
     41 #include "base/memory_tool.h"
     42 #include "base/mutex.h"
     43 #include "base/timing_logger.h"
     44 #include "base/to_str.h"
     45 #include "base/systrace.h"
     46 #include "class_linker-inl.h"
     47 #include "debugger.h"
     48 #include "dex_file-inl.h"
     49 #include "dex_file_annotations.h"
     50 #include "entrypoints/entrypoint_utils.h"
     51 #include "entrypoints/quick/quick_alloc_entrypoints.h"
     52 #include "gc/accounting/card_table-inl.h"
     53 #include "gc/accounting/heap_bitmap-inl.h"
     54 #include "gc/allocator/rosalloc.h"
     55 #include "gc/heap.h"
     56 #include "gc/space/space-inl.h"
     57 #include "handle_scope-inl.h"
     58 #include "indirect_reference_table-inl.h"
     59 #include "java_vm_ext.h"
     60 #include "jni_internal.h"
     61 #include "mirror/class_loader.h"
     62 #include "mirror/class-inl.h"
     63 #include "mirror/object_array-inl.h"
     64 #include "mirror/stack_trace_element.h"
     65 #include "monitor.h"
     66 #include "native_stack_dump.h"
     67 #include "nth_caller_visitor.h"
     68 #include "oat_quick_method_header.h"
     69 #include "obj_ptr-inl.h"
     70 #include "object_lock.h"
     71 #include "quick_exception_handler.h"
     72 #include "quick/quick_method_frame_info.h"
     73 #include "read_barrier-inl.h"
     74 #include "reflection.h"
     75 #include "runtime.h"
     76 #include "runtime_callbacks.h"
     77 #include "scoped_thread_state_change-inl.h"
     78 #include "ScopedLocalRef.h"
     79 #include "ScopedUtfChars.h"
     80 #include "stack.h"
     81 #include "stack_map.h"
     82 #include "thread_list.h"
     83 #include "thread-inl.h"
     84 #include "utils.h"
     85 #include "verifier/method_verifier.h"
     86 #include "verify_object.h"
     87 #include "well_known_classes.h"
     88 #include "interpreter/interpreter.h"
     89 
     90 #if ART_USE_FUTEXES
     91 #include "linux/futex.h"
     92 #include "sys/syscall.h"
     93 #ifndef SYS_futex
     94 #define SYS_futex __NR_futex
     95 #endif
     96 #endif  // ART_USE_FUTEXES
     97 
     98 namespace art {
     99 
    100 using android::base::StringAppendV;
    101 using android::base::StringPrintf;
    102 
    103 extern "C" NO_RETURN void artDeoptimize(Thread* self);
    104 
    105 bool Thread::is_started_ = false;
    106 pthread_key_t Thread::pthread_key_self_;
    107 ConditionVariable* Thread::resume_cond_ = nullptr;
    108 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
    109 bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
    110 Thread* Thread::jit_sensitive_thread_ = nullptr;
    111 
    112 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
    113 
    114 // For implicit overflow checks we reserve an extra piece of memory at the bottom
    115 // of the stack (lowest memory).  The higher portion of the memory
    116 // is protected against reads and the lower is available for use while
    117 // throwing the StackOverflow exception.
    118 constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
    119 
    120 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
    121 
    122 void Thread::InitCardTable() {
    123   tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
    124 }
    125 
    126 static void UnimplementedEntryPoint() {
    127   UNIMPLEMENTED(FATAL);
    128 }
    129 
    130 void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
    131 void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_marking);
    132 
    133 void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
    134   CHECK(kUseReadBarrier);
    135   tls32_.is_gc_marking = is_marking;
    136   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, is_marking);
    137   ResetQuickAllocEntryPointsForThread(is_marking);
    138 }
    139 
    140 void Thread::InitTlsEntryPoints() {
    141   // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
    142   uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
    143   uintptr_t* end = reinterpret_cast<uintptr_t*>(
    144       reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
    145   for (uintptr_t* it = begin; it != end; ++it) {
    146     *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
    147   }
    148   InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
    149 }
    150 
    151 void Thread::ResetQuickAllocEntryPointsForThread(bool is_marking) {
    152   if (kUseReadBarrier && kRuntimeISA != kX86_64) {
    153     // Allocation entrypoint switching is currently only implemented for X86_64.
    154     is_marking = true;
    155   }
    156   ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints, is_marking);
    157 }
    158 
    159 class DeoptimizationContextRecord {
    160  public:
    161   DeoptimizationContextRecord(const JValue& ret_val,
    162                               bool is_reference,
    163                               bool from_code,
    164                               ObjPtr<mirror::Throwable> pending_exception,
    165                               DeoptimizationContextRecord* link)
    166       : ret_val_(ret_val),
    167         is_reference_(is_reference),
    168         from_code_(from_code),
    169         pending_exception_(pending_exception.Ptr()),
    170         link_(link) {}
    171 
    172   JValue GetReturnValue() const { return ret_val_; }
    173   bool IsReference() const { return is_reference_; }
    174   bool GetFromCode() const { return from_code_; }
    175   ObjPtr<mirror::Throwable> GetPendingException() const { return pending_exception_; }
    176   DeoptimizationContextRecord* GetLink() const { return link_; }
    177   mirror::Object** GetReturnValueAsGCRoot() {
    178     DCHECK(is_reference_);
    179     return ret_val_.GetGCRoot();
    180   }
    181   mirror::Object** GetPendingExceptionAsGCRoot() {
    182     return reinterpret_cast<mirror::Object**>(&pending_exception_);
    183   }
    184 
    185  private:
    186   // The value returned by the method at the top of the stack before deoptimization.
    187   JValue ret_val_;
    188 
    189   // Indicates whether the returned value is a reference. If so, the GC will visit it.
    190   const bool is_reference_;
    191 
    192   // Whether the context was created from an explicit deoptimization in the code.
    193   const bool from_code_;
    194 
    195   // The exception that was pending before deoptimization (or null if there was no pending
    196   // exception).
    197   mirror::Throwable* pending_exception_;
    198 
    199   // A link to the previous DeoptimizationContextRecord.
    200   DeoptimizationContextRecord* const link_;
    201 
    202   DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
    203 };
    204 
    205 class StackedShadowFrameRecord {
    206  public:
    207   StackedShadowFrameRecord(ShadowFrame* shadow_frame,
    208                            StackedShadowFrameType type,
    209                            StackedShadowFrameRecord* link)
    210       : shadow_frame_(shadow_frame),
    211         type_(type),
    212         link_(link) {}
    213 
    214   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
    215   StackedShadowFrameType GetType() const { return type_; }
    216   StackedShadowFrameRecord* GetLink() const { return link_; }
    217 
    218  private:
    219   ShadowFrame* const shadow_frame_;
    220   const StackedShadowFrameType type_;
    221   StackedShadowFrameRecord* const link_;
    222 
    223   DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
    224 };
    225 
    226 void Thread::PushDeoptimizationContext(const JValue& return_value,
    227                                        bool is_reference,
    228                                        bool from_code,
    229                                        ObjPtr<mirror::Throwable> exception) {
    230   DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
    231       return_value,
    232       is_reference,
    233       from_code,
    234       exception,
    235       tlsPtr_.deoptimization_context_stack);
    236   tlsPtr_.deoptimization_context_stack = record;
    237 }
    238 
    239 void Thread::PopDeoptimizationContext(JValue* result,
    240                                       ObjPtr<mirror::Throwable>* exception,
    241                                       bool* from_code) {
    242   AssertHasDeoptimizationContext();
    243   DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
    244   tlsPtr_.deoptimization_context_stack = record->GetLink();
    245   result->SetJ(record->GetReturnValue().GetJ());
    246   *exception = record->GetPendingException();
    247   *from_code = record->GetFromCode();
    248   delete record;
    249 }
    250 
    251 void Thread::AssertHasDeoptimizationContext() {
    252   CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
    253       << "No deoptimization context for thread " << *this;
    254 }
    255 
    256 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
    257   StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
    258       sf, type, tlsPtr_.stacked_shadow_frame_record);
    259   tlsPtr_.stacked_shadow_frame_record = record;
    260 }
    261 
    262 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
    263   StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
    264   if (must_be_present) {
    265     DCHECK(record != nullptr);
    266   } else {
    267     if (record == nullptr || record->GetType() != type) {
    268       return nullptr;
    269     }
    270   }
    271   tlsPtr_.stacked_shadow_frame_record = record->GetLink();
    272   ShadowFrame* shadow_frame = record->GetShadowFrame();
    273   delete record;
    274   return shadow_frame;
    275 }
    276 
    277 class FrameIdToShadowFrame {
    278  public:
    279   static FrameIdToShadowFrame* Create(size_t frame_id,
    280                                       ShadowFrame* shadow_frame,
    281                                       FrameIdToShadowFrame* next,
    282                                       size_t num_vregs) {
    283     // Append a bool array at the end to keep track of what vregs are updated by the debugger.
    284     uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
    285     return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
    286   }
    287 
    288   static void Delete(FrameIdToShadowFrame* f) {
    289     uint8_t* memory = reinterpret_cast<uint8_t*>(f);
    290     delete[] memory;
    291   }
    292 
    293   size_t GetFrameId() const { return frame_id_; }
    294   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
    295   FrameIdToShadowFrame* GetNext() const { return next_; }
    296   void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
    297   bool* GetUpdatedVRegFlags() {
    298     return updated_vreg_flags_;
    299   }
    300 
    301  private:
    302   FrameIdToShadowFrame(size_t frame_id,
    303                        ShadowFrame* shadow_frame,
    304                        FrameIdToShadowFrame* next)
    305       : frame_id_(frame_id),
    306         shadow_frame_(shadow_frame),
    307         next_(next) {}
    308 
    309   const size_t frame_id_;
    310   ShadowFrame* const shadow_frame_;
    311   FrameIdToShadowFrame* next_;
    312   bool updated_vreg_flags_[0];
    313 
    314   DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
    315 };
    316 
    317 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
    318                                                       size_t frame_id) {
    319   FrameIdToShadowFrame* found = nullptr;
    320   for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
    321     if (record->GetFrameId() == frame_id) {
    322       if (kIsDebugBuild) {
    323         // Sanity check we have at most one record for this frame.
    324         CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
    325         found = record;
    326       } else {
    327         return record;
    328       }
    329     }
    330   }
    331   return found;
    332 }
    333 
    334 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
    335   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
    336       tlsPtr_.frame_id_to_shadow_frame, frame_id);
    337   if (record != nullptr) {
    338     return record->GetShadowFrame();
    339   }
    340   return nullptr;
    341 }
    342 
    343 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
    344 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
    345   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
    346       tlsPtr_.frame_id_to_shadow_frame, frame_id);
    347   CHECK(record != nullptr);
    348   return record->GetUpdatedVRegFlags();
    349 }
    350 
    351 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
    352                                                      uint32_t num_vregs,
    353                                                      ArtMethod* method,
    354                                                      uint32_t dex_pc) {
    355   ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
    356   if (shadow_frame != nullptr) {
    357     return shadow_frame;
    358   }
    359   VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
    360   shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
    361   FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
    362                                                               shadow_frame,
    363                                                               tlsPtr_.frame_id_to_shadow_frame,
    364                                                               num_vregs);
    365   for (uint32_t i = 0; i < num_vregs; i++) {
    366     // Do this to clear all references for root visitors.
    367     shadow_frame->SetVRegReference(i, nullptr);
    368     // This flag will be changed to true if the debugger modifies the value.
    369     record->GetUpdatedVRegFlags()[i] = false;
    370   }
    371   tlsPtr_.frame_id_to_shadow_frame = record;
    372   return shadow_frame;
    373 }
    374 
    375 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
    376   FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
    377   if (head->GetFrameId() == frame_id) {
    378     tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
    379     FrameIdToShadowFrame::Delete(head);
    380     return;
    381   }
    382   FrameIdToShadowFrame* prev = head;
    383   for (FrameIdToShadowFrame* record = head->GetNext();
    384        record != nullptr;
    385        prev = record, record = record->GetNext()) {
    386     if (record->GetFrameId() == frame_id) {
    387       prev->SetNext(record->GetNext());
    388       FrameIdToShadowFrame::Delete(record);
    389       return;
    390     }
    391   }
    392   LOG(FATAL) << "No shadow frame for frame " << frame_id;
    393   UNREACHABLE();
    394 }
    395 
    396 void Thread::InitTid() {
    397   tls32_.tid = ::art::GetTid();
    398 }
    399 
    400 void Thread::InitAfterFork() {
    401   // One thread (us) survived the fork, but we have a new tid so we need to
    402   // update the value stashed in this Thread*.
    403   InitTid();
    404 }
    405 
    406 void* Thread::CreateCallback(void* arg) {
    407   Thread* self = reinterpret_cast<Thread*>(arg);
    408   Runtime* runtime = Runtime::Current();
    409   if (runtime == nullptr) {
    410     LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
    411     return nullptr;
    412   }
    413   {
    414     // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
    415     //       after self->Init().
    416     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    417     // Check that if we got here we cannot be shutting down (as shutdown should never have started
    418     // while threads are being born).
    419     CHECK(!runtime->IsShuttingDownLocked());
    420     // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
    421     //       a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
    422     //       the runtime in such a case. In case this ever changes, we need to make sure here to
    423     //       delete the tmp_jni_env, as we own it at this point.
    424     CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
    425     self->tlsPtr_.tmp_jni_env = nullptr;
    426     Runtime::Current()->EndThreadBirth();
    427   }
    428   {
    429     ScopedObjectAccess soa(self);
    430     self->InitStringEntryPoints();
    431 
    432     // Copy peer into self, deleting global reference when done.
    433     CHECK(self->tlsPtr_.jpeer != nullptr);
    434     self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
    435     self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
    436     self->tlsPtr_.jpeer = nullptr;
    437     self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
    438 
    439     ArtField* priorityField = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority);
    440     self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
    441 
    442     runtime->GetRuntimeCallbacks()->ThreadStart(self);
    443 
    444     // Invoke the 'run' method of our java.lang.Thread.
    445     ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
    446     jmethodID mid = WellKnownClasses::java_lang_Thread_run;
    447     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
    448     InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
    449   }
    450   // Detach and delete self.
    451   Runtime::Current()->GetThreadList()->Unregister(self);
    452 
    453   return nullptr;
    454 }
    455 
    456 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
    457                                   ObjPtr<mirror::Object> thread_peer) {
    458   ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer);
    459   Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
    460   // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
    461   // to stop it from going away.
    462   if (kIsDebugBuild) {
    463     MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
    464     if (result != nullptr && !result->IsSuspended()) {
    465       Locks::thread_list_lock_->AssertHeld(soa.Self());
    466     }
    467   }
    468   return result;
    469 }
    470 
    471 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
    472                                   jobject java_thread) {
    473   return FromManagedThread(soa, soa.Decode<mirror::Object>(java_thread).Ptr());
    474 }
    475 
    476 static size_t FixStackSize(size_t stack_size) {
    477   // A stack size of zero means "use the default".
    478   if (stack_size == 0) {
    479     stack_size = Runtime::Current()->GetDefaultStackSize();
    480   }
    481 
    482   // Dalvik used the bionic pthread default stack size for native threads,
    483   // so include that here to support apps that expect large native stacks.
    484   stack_size += 1 * MB;
    485 
    486   // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
    487   if (stack_size < PTHREAD_STACK_MIN) {
    488     stack_size = PTHREAD_STACK_MIN;
    489   }
    490 
    491   if (Runtime::Current()->ExplicitStackOverflowChecks()) {
    492     // It's likely that callers are trying to ensure they have at least a certain amount of
    493     // stack space, so we should add our reserved space on top of what they requested, rather
    494     // than implicitly take it away from them.
    495     stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
    496   } else {
    497     // If we are going to use implicit stack checks, allocate space for the protected
    498     // region at the bottom of the stack.
    499     stack_size += Thread::kStackOverflowImplicitCheckSize +
    500         GetStackOverflowReservedBytes(kRuntimeISA);
    501   }
    502 
    503   // Some systems require the stack size to be a multiple of the system page size, so round up.
    504   stack_size = RoundUp(stack_size, kPageSize);
    505 
    506   return stack_size;
    507 }
    508 
    509 // Return the nearest page-aligned address below the current stack top.
    510 NO_INLINE
    511 static uint8_t* FindStackTop() {
    512   return reinterpret_cast<uint8_t*>(
    513       AlignDown(__builtin_frame_address(0), kPageSize));
    514 }
    515 
    516 // Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
    517 // overflow is detected.  It is located right below the stack_begin_.
    518 ATTRIBUTE_NO_SANITIZE_ADDRESS
    519 void Thread::InstallImplicitProtection() {
    520   uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
    521   // Page containing current top of stack.
    522   uint8_t* stack_top = FindStackTop();
    523 
    524   // Try to directly protect the stack.
    525   VLOG(threads) << "installing stack protected region at " << std::hex <<
    526         static_cast<void*>(pregion) << " to " <<
    527         static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
    528   if (ProtectStack(/* fatal_on_error */ false)) {
    529     // Tell the kernel that we won't be needing these pages any more.
    530     // NB. madvise will probably write zeroes into the memory (on linux it does).
    531     uint32_t unwanted_size = stack_top - pregion - kPageSize;
    532     madvise(pregion, unwanted_size, MADV_DONTNEED);
    533     return;
    534   }
    535 
    536   // There is a little complexity here that deserves a special mention.  On some
    537   // architectures, the stack is created using a VM_GROWSDOWN flag
    538   // to prevent memory being allocated when it's not needed.  This flag makes the
    539   // kernel only allocate memory for the stack by growing down in memory.  Because we
    540   // want to put an mprotected region far away from that at the stack top, we need
    541   // to make sure the pages for the stack are mapped in before we call mprotect.
    542   //
    543   // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
    544   // with a non-mapped stack (usually only the main thread).
    545   //
    546   // We map in the stack by reading every page from the stack bottom (highest address)
    547   // to the stack top. (We then madvise this away.) This must be done by reading from the
    548   // current stack pointer downwards. Any access more than a page below the current SP
    549   // might cause a segv.
    550   // TODO: This comment may be out of date. It seems possible to speed this up. As
    551   //       this is normally done once in the zygote on startup, ignore for now.
    552   //
    553   // AddressSanitizer does not like the part of this functions that reads every stack page.
    554   // Looks a lot like an out-of-bounds access.
    555 
    556   // (Defensively) first remove the protection on the protected region as will want to read
    557   // and write it. Ignore errors.
    558   UnprotectStack();
    559 
    560   VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
    561       static_cast<void*>(pregion);
    562 
    563   // Read every page from the high address to the low.
    564   volatile uint8_t dont_optimize_this;
    565   UNUSED(dont_optimize_this);
    566   for (uint8_t* p = stack_top; p >= pregion; p -= kPageSize) {
    567     dont_optimize_this = *p;
    568   }
    569 
    570   VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
    571       static_cast<void*>(pregion) << " to " <<
    572       static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
    573 
    574   // Protect the bottom of the stack to prevent read/write to it.
    575   ProtectStack(/* fatal_on_error */ true);
    576 
    577   // Tell the kernel that we won't be needing these pages any more.
    578   // NB. madvise will probably write zeroes into the memory (on linux it does).
    579   uint32_t unwanted_size = stack_top - pregion - kPageSize;
    580   madvise(pregion, unwanted_size, MADV_DONTNEED);
    581 }
    582 
    583 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
    584   CHECK(java_peer != nullptr);
    585   Thread* self = static_cast<JNIEnvExt*>(env)->self;
    586 
    587   if (VLOG_IS_ON(threads)) {
    588     ScopedObjectAccess soa(env);
    589 
    590     ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
    591     ObjPtr<mirror::String> java_name =
    592         f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
    593     std::string thread_name;
    594     if (java_name != nullptr) {
    595       thread_name = java_name->ToModifiedUtf8();
    596     } else {
    597       thread_name = "(Unnamed)";
    598     }
    599 
    600     VLOG(threads) << "Creating native thread for " << thread_name;
    601     self->Dump(LOG_STREAM(INFO));
    602   }
    603 
    604   Runtime* runtime = Runtime::Current();
    605 
    606   // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
    607   bool thread_start_during_shutdown = false;
    608   {
    609     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    610     if (runtime->IsShuttingDownLocked()) {
    611       thread_start_during_shutdown = true;
    612     } else {
    613       runtime->StartThreadBirth();
    614     }
    615   }
    616   if (thread_start_during_shutdown) {
    617     ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
    618     env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
    619     return;
    620   }
    621 
    622   Thread* child_thread = new Thread(is_daemon);
    623   // Use global JNI ref to hold peer live while child thread starts.
    624   child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
    625   stack_size = FixStackSize(stack_size);
    626 
    627   // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
    628   // assign it.
    629   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
    630                     reinterpret_cast<jlong>(child_thread));
    631 
    632   // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
    633   // do not have a good way to report this on the child's side.
    634   std::string error_msg;
    635   std::unique_ptr<JNIEnvExt> child_jni_env_ext(
    636       JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
    637 
    638   int pthread_create_result = 0;
    639   if (child_jni_env_ext.get() != nullptr) {
    640     pthread_t new_pthread;
    641     pthread_attr_t attr;
    642     child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
    643     CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
    644     CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
    645                        "PTHREAD_CREATE_DETACHED");
    646     CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
    647     pthread_create_result = pthread_create(&new_pthread,
    648                                            &attr,
    649                                            Thread::CreateCallback,
    650                                            child_thread);
    651     CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
    652 
    653     if (pthread_create_result == 0) {
    654       // pthread_create started the new thread. The child is now responsible for managing the
    655       // JNIEnvExt we created.
    656       // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
    657       //       between the threads.
    658       child_jni_env_ext.release();
    659       return;
    660     }
    661   }
    662 
    663   // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
    664   {
    665     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    666     runtime->EndThreadBirth();
    667   }
    668   // Manually delete the global reference since Thread::Init will not have been run.
    669   env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
    670   child_thread->tlsPtr_.jpeer = nullptr;
    671   delete child_thread;
    672   child_thread = nullptr;
    673   // TODO: remove from thread group?
    674   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
    675   {
    676     std::string msg(child_jni_env_ext.get() == nullptr ?
    677         StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
    678         StringPrintf("pthread_create (%s stack) failed: %s",
    679                                  PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
    680     ScopedObjectAccess soa(env);
    681     soa.Self()->ThrowOutOfMemoryError(msg.c_str());
    682   }
    683 }
    684 
    685 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
    686   // This function does all the initialization that must be run by the native thread it applies to.
    687   // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
    688   // we can handshake with the corresponding native thread when it's ready.) Check this native
    689   // thread hasn't been through here already...
    690   CHECK(Thread::Current() == nullptr);
    691 
    692   // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
    693   // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
    694   tlsPtr_.pthread_self = pthread_self();
    695   CHECK(is_started_);
    696 
    697   SetUpAlternateSignalStack();
    698   if (!InitStackHwm()) {
    699     return false;
    700   }
    701   InitCpu();
    702   InitTlsEntryPoints();
    703   RemoveSuspendTrigger();
    704   InitCardTable();
    705   InitTid();
    706   interpreter::InitInterpreterTls(this);
    707 
    708 #ifdef ART_TARGET_ANDROID
    709   __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
    710 #else
    711   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
    712 #endif
    713   DCHECK_EQ(Thread::Current(), this);
    714 
    715   tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
    716 
    717   if (jni_env_ext != nullptr) {
    718     DCHECK_EQ(jni_env_ext->vm, java_vm);
    719     DCHECK_EQ(jni_env_ext->self, this);
    720     tlsPtr_.jni_env = jni_env_ext;
    721   } else {
    722     std::string error_msg;
    723     tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
    724     if (tlsPtr_.jni_env == nullptr) {
    725       LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
    726       return false;
    727     }
    728   }
    729 
    730   thread_list->Register(this);
    731   return true;
    732 }
    733 
    734 template <typename PeerAction>
    735 Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) {
    736   Runtime* runtime = Runtime::Current();
    737   if (runtime == nullptr) {
    738     LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
    739     return nullptr;
    740   }
    741   Thread* self;
    742   {
    743     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    744     if (runtime->IsShuttingDownLocked()) {
    745       LOG(WARNING) << "Thread attaching while runtime is shutting down: " << thread_name;
    746       return nullptr;
    747     } else {
    748       Runtime::Current()->StartThreadBirth();
    749       self = new Thread(as_daemon);
    750       bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
    751       Runtime::Current()->EndThreadBirth();
    752       if (!init_success) {
    753         delete self;
    754         return nullptr;
    755       }
    756     }
    757   }
    758 
    759   self->InitStringEntryPoints();
    760 
    761   CHECK_NE(self->GetState(), kRunnable);
    762   self->SetState(kNative);
    763 
    764   // Run the action that is acting on the peer.
    765   if (!peer_action(self)) {
    766     runtime->GetThreadList()->Unregister(self);
    767     // Unregister deletes self, no need to do this here.
    768     return nullptr;
    769   }
    770 
    771   if (VLOG_IS_ON(threads)) {
    772     if (thread_name != nullptr) {
    773       VLOG(threads) << "Attaching thread " << thread_name;
    774     } else {
    775       VLOG(threads) << "Attaching unnamed thread.";
    776     }
    777     ScopedObjectAccess soa(self);
    778     self->Dump(LOG_STREAM(INFO));
    779   }
    780 
    781   {
    782     ScopedObjectAccess soa(self);
    783     runtime->GetRuntimeCallbacks()->ThreadStart(self);
    784   }
    785 
    786   return self;
    787 }
    788 
    789 Thread* Thread::Attach(const char* thread_name,
    790                        bool as_daemon,
    791                        jobject thread_group,
    792                        bool create_peer) {
    793   auto create_peer_action = [&](Thread* self) {
    794     // If we're the main thread, ClassLinker won't be created until after we're attached,
    795     // so that thread needs a two-stage attach. Regular threads don't need this hack.
    796     // In the compiler, all threads need this hack, because no-one's going to be getting
    797     // a native peer!
    798     if (create_peer) {
    799       self->CreatePeer(thread_name, as_daemon, thread_group);
    800       if (self->IsExceptionPending()) {
    801         // We cannot keep the exception around, as we're deleting self. Try to be helpful and log it.
    802         {
    803           ScopedObjectAccess soa(self);
    804           LOG(ERROR) << "Exception creating thread peer:";
    805           LOG(ERROR) << self->GetException()->Dump();
    806           self->ClearException();
    807         }
    808         return false;
    809       }
    810     } else {
    811       // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
    812       if (thread_name != nullptr) {
    813         self->tlsPtr_.name->assign(thread_name);
    814         ::art::SetThreadName(thread_name);
    815       } else if (self->GetJniEnv()->check_jni) {
    816         LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
    817       }
    818     }
    819     return true;
    820   };
    821   return Attach(thread_name, as_daemon, create_peer_action);
    822 }
    823 
    824 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
    825   auto set_peer_action = [&](Thread* self) {
    826     // Install the given peer.
    827     {
    828       DCHECK(self == Thread::Current());
    829       ScopedObjectAccess soa(self);
    830       self->tlsPtr_.opeer = soa.Decode<mirror::Object>(thread_peer).Ptr();
    831     }
    832     self->GetJniEnv()->SetLongField(thread_peer,
    833                                     WellKnownClasses::java_lang_Thread_nativePeer,
    834                                     reinterpret_cast<jlong>(self));
    835     return true;
    836   };
    837   return Attach(thread_name, as_daemon, set_peer_action);
    838 }
    839 
    840 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
    841   Runtime* runtime = Runtime::Current();
    842   CHECK(runtime->IsStarted());
    843   JNIEnv* env = tlsPtr_.jni_env;
    844 
    845   if (thread_group == nullptr) {
    846     thread_group = runtime->GetMainThreadGroup();
    847   }
    848   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
    849   // Add missing null check in case of OOM b/18297817
    850   if (name != nullptr && thread_name.get() == nullptr) {
    851     CHECK(IsExceptionPending());
    852     return;
    853   }
    854   jint thread_priority = GetNativePriority();
    855   jboolean thread_is_daemon = as_daemon;
    856 
    857   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
    858   if (peer.get() == nullptr) {
    859     CHECK(IsExceptionPending());
    860     return;
    861   }
    862   {
    863     ScopedObjectAccess soa(this);
    864     tlsPtr_.opeer = soa.Decode<mirror::Object>(peer.get()).Ptr();
    865   }
    866   env->CallNonvirtualVoidMethod(peer.get(),
    867                                 WellKnownClasses::java_lang_Thread,
    868                                 WellKnownClasses::java_lang_Thread_init,
    869                                 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
    870   if (IsExceptionPending()) {
    871     return;
    872   }
    873 
    874   Thread* self = this;
    875   DCHECK_EQ(self, Thread::Current());
    876   env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
    877                     reinterpret_cast<jlong>(self));
    878 
    879   ScopedObjectAccess soa(self);
    880   StackHandleScope<1> hs(self);
    881   MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
    882   if (peer_thread_name == nullptr) {
    883     // The Thread constructor should have set the Thread.name to a
    884     // non-null value. However, because we can run without code
    885     // available (in the compiler, in tests), we manually assign the
    886     // fields the constructor should have set.
    887     if (runtime->IsActiveTransaction()) {
    888       InitPeer<true>(soa,
    889                      tlsPtr_.opeer,
    890                      thread_is_daemon,
    891                      thread_group,
    892                      thread_name.get(),
    893                      thread_priority);
    894     } else {
    895       InitPeer<false>(soa,
    896                       tlsPtr_.opeer,
    897                       thread_is_daemon,
    898                       thread_group,
    899                       thread_name.get(),
    900                       thread_priority);
    901     }
    902     peer_thread_name.Assign(GetThreadName());
    903   }
    904   // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
    905   if (peer_thread_name != nullptr) {
    906     SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
    907   }
    908 }
    909 
    910 jobject Thread::CreateCompileTimePeer(JNIEnv* env,
    911                                       const char* name,
    912                                       bool as_daemon,
    913                                       jobject thread_group) {
    914   Runtime* runtime = Runtime::Current();
    915   CHECK(!runtime->IsStarted());
    916 
    917   if (thread_group == nullptr) {
    918     thread_group = runtime->GetMainThreadGroup();
    919   }
    920   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
    921   // Add missing null check in case of OOM b/18297817
    922   if (name != nullptr && thread_name.get() == nullptr) {
    923     CHECK(Thread::Current()->IsExceptionPending());
    924     return nullptr;
    925   }
    926   jint thread_priority = GetNativePriority();
    927   jboolean thread_is_daemon = as_daemon;
    928 
    929   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
    930   if (peer.get() == nullptr) {
    931     CHECK(Thread::Current()->IsExceptionPending());
    932     return nullptr;
    933   }
    934 
    935   // We cannot call Thread.init, as it will recursively ask for currentThread.
    936 
    937   // The Thread constructor should have set the Thread.name to a
    938   // non-null value. However, because we can run without code
    939   // available (in the compiler, in tests), we manually assign the
    940   // fields the constructor should have set.
    941   ScopedObjectAccessUnchecked soa(Thread::Current());
    942   if (runtime->IsActiveTransaction()) {
    943     InitPeer<true>(soa,
    944                    soa.Decode<mirror::Object>(peer.get()),
    945                    thread_is_daemon,
    946                    thread_group,
    947                    thread_name.get(),
    948                    thread_priority);
    949   } else {
    950     InitPeer<false>(soa,
    951                     soa.Decode<mirror::Object>(peer.get()),
    952                     thread_is_daemon,
    953                     thread_group,
    954                     thread_name.get(),
    955                     thread_priority);
    956   }
    957 
    958   return peer.release();
    959 }
    960 
    961 template<bool kTransactionActive>
    962 void Thread::InitPeer(ScopedObjectAccessAlreadyRunnable& soa,
    963                       ObjPtr<mirror::Object> peer,
    964                       jboolean thread_is_daemon,
    965                       jobject thread_group,
    966                       jobject thread_name,
    967                       jint thread_priority) {
    968   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)->
    969       SetBoolean<kTransactionActive>(peer, thread_is_daemon);
    970   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)->
    971       SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_group));
    972   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name)->
    973       SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_name));
    974   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)->
    975       SetInt<kTransactionActive>(peer, thread_priority);
    976 }
    977 
    978 void Thread::SetThreadName(const char* name) {
    979   tlsPtr_.name->assign(name);
    980   ::art::SetThreadName(name);
    981   Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
    982 }
    983 
    984 static void GetThreadStack(pthread_t thread,
    985                            void** stack_base,
    986                            size_t* stack_size,
    987                            size_t* guard_size) {
    988 #if defined(__APPLE__)
    989   *stack_size = pthread_get_stacksize_np(thread);
    990   void* stack_addr = pthread_get_stackaddr_np(thread);
    991 
    992   // Check whether stack_addr is the base or end of the stack.
    993   // (On Mac OS 10.7, it's the end.)
    994   int stack_variable;
    995   if (stack_addr > &stack_variable) {
    996     *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
    997   } else {
    998     *stack_base = stack_addr;
    999   }
   1000 
   1001   // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
   1002   pthread_attr_t attributes;
   1003   CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
   1004   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
   1005   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
   1006 #else
   1007   pthread_attr_t attributes;
   1008   CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
   1009   CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
   1010   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
   1011   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
   1012 
   1013 #if defined(__GLIBC__)
   1014   // If we're the main thread, check whether we were run with an unlimited stack. In that case,
   1015   // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
   1016   // will be broken because we'll die long before we get close to 2GB.
   1017   bool is_main_thread = (::art::GetTid() == getpid());
   1018   if (is_main_thread) {
   1019     rlimit stack_limit;
   1020     if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
   1021       PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
   1022     }
   1023     if (stack_limit.rlim_cur == RLIM_INFINITY) {
   1024       size_t old_stack_size = *stack_size;
   1025 
   1026       // Use the kernel default limit as our size, and adjust the base to match.
   1027       *stack_size = 8 * MB;
   1028       *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
   1029 
   1030       VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
   1031                     << " to " << PrettySize(*stack_size)
   1032                     << " with base " << *stack_base;
   1033     }
   1034   }
   1035 #endif
   1036 
   1037 #endif
   1038 }
   1039 
   1040 bool Thread::InitStackHwm() {
   1041   void* read_stack_base;
   1042   size_t read_stack_size;
   1043   size_t read_guard_size;
   1044   GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
   1045 
   1046   tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
   1047   tlsPtr_.stack_size = read_stack_size;
   1048 
   1049   // The minimum stack size we can cope with is the overflow reserved bytes (typically
   1050   // 8K) + the protected region size (4K) + another page (4K).  Typically this will
   1051   // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
   1052   // between 8K and 12K.
   1053   uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
   1054     + 4 * KB;
   1055   if (read_stack_size <= min_stack) {
   1056     // Note, as we know the stack is small, avoid operations that could use a lot of stack.
   1057     LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
   1058                                __LINE__,
   1059                                ::android::base::ERROR,
   1060                                "Attempt to attach a thread with a too-small stack");
   1061     return false;
   1062   }
   1063 
   1064   // This is included in the SIGQUIT output, but it's useful here for thread debugging.
   1065   VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
   1066                                 read_stack_base,
   1067                                 PrettySize(read_stack_size).c_str(),
   1068                                 PrettySize(read_guard_size).c_str());
   1069 
   1070   // Set stack_end_ to the bottom of the stack saving space of stack overflows
   1071 
   1072   Runtime* runtime = Runtime::Current();
   1073   bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
   1074 
   1075   // Valgrind on arm doesn't give the right values here. Do not install the guard page, and
   1076   // effectively disable stack overflow checks (we'll get segfaults, potentially) by setting
   1077   // stack_begin to 0.
   1078   const bool valgrind_on_arm =
   1079       (kRuntimeISA == kArm || kRuntimeISA == kArm64) &&
   1080       kMemoryToolIsValgrind &&
   1081       RUNNING_ON_MEMORY_TOOL != 0;
   1082   if (valgrind_on_arm) {
   1083     tlsPtr_.stack_begin = nullptr;
   1084   }
   1085 
   1086   ResetDefaultStackEnd();
   1087 
   1088   // Install the protected region if we are doing implicit overflow checks.
   1089   if (implicit_stack_check && !valgrind_on_arm) {
   1090     // The thread might have protected region at the bottom.  We need
   1091     // to install our own region so we need to move the limits
   1092     // of the stack to make room for it.
   1093 
   1094     tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
   1095     tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
   1096     tlsPtr_.stack_size -= read_guard_size;
   1097 
   1098     InstallImplicitProtection();
   1099   }
   1100 
   1101   // Sanity check.
   1102   CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
   1103 
   1104   return true;
   1105 }
   1106 
   1107 void Thread::ShortDump(std::ostream& os) const {
   1108   os << "Thread[";
   1109   if (GetThreadId() != 0) {
   1110     // If we're in kStarting, we won't have a thin lock id or tid yet.
   1111     os << GetThreadId()
   1112        << ",tid=" << GetTid() << ',';
   1113   }
   1114   os << GetState()
   1115      << ",Thread*=" << this
   1116      << ",peer=" << tlsPtr_.opeer
   1117      << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
   1118      << "]";
   1119 }
   1120 
   1121 void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map,
   1122                   bool force_dump_stack) const {
   1123   DumpState(os);
   1124   DumpStack(os, dump_native_stack, backtrace_map, force_dump_stack);
   1125 }
   1126 
   1127 mirror::String* Thread::GetThreadName() const {
   1128   ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
   1129   if (tlsPtr_.opeer == nullptr) {
   1130     return nullptr;
   1131   }
   1132   ObjPtr<mirror::Object> name = f->GetObject(tlsPtr_.opeer);
   1133   return name == nullptr ? nullptr : name->AsString();
   1134 }
   1135 
   1136 void Thread::GetThreadName(std::string& name) const {
   1137   name.assign(*tlsPtr_.name);
   1138 }
   1139 
   1140 uint64_t Thread::GetCpuMicroTime() const {
   1141 #if defined(__linux__)
   1142   clockid_t cpu_clock_id;
   1143   pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
   1144   timespec now;
   1145   clock_gettime(cpu_clock_id, &now);
   1146   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
   1147 #else  // __APPLE__
   1148   UNIMPLEMENTED(WARNING);
   1149   return -1;
   1150 #endif
   1151 }
   1152 
   1153 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
   1154 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
   1155   LOG(ERROR) << *thread << " suspend count already zero.";
   1156   Locks::thread_suspend_count_lock_->Unlock(self);
   1157   if (!Locks::mutator_lock_->IsSharedHeld(self)) {
   1158     Locks::mutator_lock_->SharedTryLock(self);
   1159     if (!Locks::mutator_lock_->IsSharedHeld(self)) {
   1160       LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
   1161     }
   1162   }
   1163   if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
   1164     Locks::thread_list_lock_->TryLock(self);
   1165     if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
   1166       LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
   1167     }
   1168   }
   1169   std::ostringstream ss;
   1170   Runtime::Current()->GetThreadList()->Dump(ss);
   1171   LOG(FATAL) << ss.str();
   1172 }
   1173 
   1174 bool Thread::ModifySuspendCountInternal(Thread* self,
   1175                                         int delta,
   1176                                         AtomicInteger* suspend_barrier,
   1177                                         bool for_debugger) {
   1178   if (kIsDebugBuild) {
   1179     DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
   1180           << delta << " " << tls32_.debug_suspend_count << " " << this;
   1181     DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
   1182     Locks::thread_suspend_count_lock_->AssertHeld(self);
   1183     if (this != self && !IsSuspended()) {
   1184       Locks::thread_list_lock_->AssertHeld(self);
   1185     }
   1186   }
   1187   if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
   1188     UnsafeLogFatalForSuspendCount(self, this);
   1189     return false;
   1190   }
   1191 
   1192   if (kUseReadBarrier && delta > 0 && this != self && tlsPtr_.flip_function != nullptr) {
   1193     // Force retry of a suspend request if it's in the middle of a thread flip to avoid a
   1194     // deadlock. b/31683379.
   1195     return false;
   1196   }
   1197 
   1198   uint16_t flags = kSuspendRequest;
   1199   if (delta > 0 && suspend_barrier != nullptr) {
   1200     uint32_t available_barrier = kMaxSuspendBarriers;
   1201     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
   1202       if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
   1203         available_barrier = i;
   1204         break;
   1205       }
   1206     }
   1207     if (available_barrier == kMaxSuspendBarriers) {
   1208       // No barrier spaces available, we can't add another.
   1209       return false;
   1210     }
   1211     tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
   1212     flags |= kActiveSuspendBarrier;
   1213   }
   1214 
   1215   tls32_.suspend_count += delta;
   1216   if (for_debugger) {
   1217     tls32_.debug_suspend_count += delta;
   1218   }
   1219 
   1220   if (tls32_.suspend_count == 0) {
   1221     AtomicClearFlag(kSuspendRequest);
   1222   } else {
   1223     // Two bits might be set simultaneously.
   1224     tls32_.state_and_flags.as_atomic_int.FetchAndOrSequentiallyConsistent(flags);
   1225     TriggerSuspend();
   1226   }
   1227   return true;
   1228 }
   1229 
   1230 bool Thread::PassActiveSuspendBarriers(Thread* self) {
   1231   // Grab the suspend_count lock and copy the current set of
   1232   // barriers. Then clear the list and the flag. The ModifySuspendCount
   1233   // function requires the lock so we prevent a race between setting
   1234   // the kActiveSuspendBarrier flag and clearing it.
   1235   AtomicInteger* pass_barriers[kMaxSuspendBarriers];
   1236   {
   1237     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1238     if (!ReadFlag(kActiveSuspendBarrier)) {
   1239       // quick exit test: the barriers have already been claimed - this is
   1240       // possible as there may be a race to claim and it doesn't matter
   1241       // who wins.
   1242       // All of the callers of this function (except the SuspendAllInternal)
   1243       // will first test the kActiveSuspendBarrier flag without lock. Here
   1244       // double-check whether the barrier has been passed with the
   1245       // suspend_count lock.
   1246       return false;
   1247     }
   1248 
   1249     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
   1250       pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
   1251       tlsPtr_.active_suspend_barriers[i] = nullptr;
   1252     }
   1253     AtomicClearFlag(kActiveSuspendBarrier);
   1254   }
   1255 
   1256   uint32_t barrier_count = 0;
   1257   for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
   1258     AtomicInteger* pending_threads = pass_barriers[i];
   1259     if (pending_threads != nullptr) {
   1260       bool done = false;
   1261       do {
   1262         int32_t cur_val = pending_threads->LoadRelaxed();
   1263         CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
   1264         // Reduce value by 1.
   1265         done = pending_threads->CompareExchangeWeakRelaxed(cur_val, cur_val - 1);
   1266 #if ART_USE_FUTEXES
   1267         if (done && (cur_val - 1) == 0) {  // Weak CAS may fail spuriously.
   1268           futex(pending_threads->Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
   1269         }
   1270 #endif
   1271       } while (!done);
   1272       ++barrier_count;
   1273     }
   1274   }
   1275   CHECK_GT(barrier_count, 0U);
   1276   return true;
   1277 }
   1278 
   1279 void Thread::ClearSuspendBarrier(AtomicInteger* target) {
   1280   CHECK(ReadFlag(kActiveSuspendBarrier));
   1281   bool clear_flag = true;
   1282   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
   1283     AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
   1284     if (ptr == target) {
   1285       tlsPtr_.active_suspend_barriers[i] = nullptr;
   1286     } else if (ptr != nullptr) {
   1287       clear_flag = false;
   1288     }
   1289   }
   1290   if (LIKELY(clear_flag)) {
   1291     AtomicClearFlag(kActiveSuspendBarrier);
   1292   }
   1293 }
   1294 
   1295 void Thread::RunCheckpointFunction() {
   1296   bool done = false;
   1297   do {
   1298     // Grab the suspend_count lock and copy the checkpoints one by one. When the last checkpoint is
   1299     // copied, clear the list and the flag. The RequestCheckpoint function will also grab this lock
   1300     // to prevent a race between setting the kCheckpointRequest flag and clearing it.
   1301     Closure* checkpoint = nullptr;
   1302     {
   1303       MutexLock mu(this, *Locks::thread_suspend_count_lock_);
   1304       if (tlsPtr_.checkpoint_function != nullptr) {
   1305         checkpoint = tlsPtr_.checkpoint_function;
   1306         if (!checkpoint_overflow_.empty()) {
   1307           // Overflow list not empty, copy the first one out and continue.
   1308           tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
   1309           checkpoint_overflow_.pop_front();
   1310         } else {
   1311           // No overflow checkpoints, this means that we are on the last pending checkpoint.
   1312           tlsPtr_.checkpoint_function = nullptr;
   1313           AtomicClearFlag(kCheckpointRequest);
   1314           done = true;
   1315         }
   1316       } else {
   1317         LOG(FATAL) << "Checkpoint flag set without pending checkpoint";
   1318       }
   1319     }
   1320 
   1321     // Outside the lock, run the checkpoint functions that we collected.
   1322     ScopedTrace trace("Run checkpoint function");
   1323     DCHECK(checkpoint != nullptr);
   1324     checkpoint->Run(this);
   1325   } while (!done);
   1326 }
   1327 
   1328 void Thread::RunEmptyCheckpoint() {
   1329   DCHECK_EQ(Thread::Current(), this);
   1330   AtomicClearFlag(kEmptyCheckpointRequest);
   1331   Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
   1332 }
   1333 
   1334 bool Thread::RequestCheckpoint(Closure* function) {
   1335   union StateAndFlags old_state_and_flags;
   1336   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
   1337   if (old_state_and_flags.as_struct.state != kRunnable) {
   1338     return false;  // Fail, thread is suspended and so can't run a checkpoint.
   1339   }
   1340 
   1341   // We must be runnable to request a checkpoint.
   1342   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
   1343   union StateAndFlags new_state_and_flags;
   1344   new_state_and_flags.as_int = old_state_and_flags.as_int;
   1345   new_state_and_flags.as_struct.flags |= kCheckpointRequest;
   1346   bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
   1347       old_state_and_flags.as_int, new_state_and_flags.as_int);
   1348   if (success) {
   1349     // Succeeded setting checkpoint flag, now insert the actual checkpoint.
   1350     if (tlsPtr_.checkpoint_function == nullptr) {
   1351       tlsPtr_.checkpoint_function = function;
   1352     } else {
   1353       checkpoint_overflow_.push_back(function);
   1354     }
   1355     CHECK_EQ(ReadFlag(kCheckpointRequest), true);
   1356     TriggerSuspend();
   1357   }
   1358   return success;
   1359 }
   1360 
   1361 bool Thread::RequestEmptyCheckpoint() {
   1362   union StateAndFlags old_state_and_flags;
   1363   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
   1364   if (old_state_and_flags.as_struct.state != kRunnable) {
   1365     // If it's not runnable, we don't need to do anything because it won't be in the middle of a
   1366     // heap access (eg. the read barrier).
   1367     return false;
   1368   }
   1369 
   1370   // We must be runnable to request a checkpoint.
   1371   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
   1372   union StateAndFlags new_state_and_flags;
   1373   new_state_and_flags.as_int = old_state_and_flags.as_int;
   1374   new_state_and_flags.as_struct.flags |= kEmptyCheckpointRequest;
   1375   bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
   1376       old_state_and_flags.as_int, new_state_and_flags.as_int);
   1377   if (success) {
   1378     TriggerSuspend();
   1379   }
   1380   return success;
   1381 }
   1382 
   1383 class BarrierClosure : public Closure {
   1384  public:
   1385   explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
   1386 
   1387   void Run(Thread* self) OVERRIDE {
   1388     wrapped_->Run(self);
   1389     barrier_.Pass(self);
   1390   }
   1391 
   1392   void Wait(Thread* self) {
   1393     barrier_.Increment(self, 1);
   1394   }
   1395 
   1396  private:
   1397   Closure* wrapped_;
   1398   Barrier barrier_;
   1399 };
   1400 
   1401 void Thread::RequestSynchronousCheckpoint(Closure* function) {
   1402   if (this == Thread::Current()) {
   1403     // Asked to run on this thread. Just run.
   1404     function->Run(this);
   1405     return;
   1406   }
   1407   Thread* self = Thread::Current();
   1408 
   1409   // The current thread is not this thread.
   1410 
   1411   for (;;) {
   1412     // If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the
   1413     // suspend-count lock for too long.
   1414     if (GetState() == ThreadState::kRunnable) {
   1415       BarrierClosure barrier_closure(function);
   1416       bool installed = false;
   1417       {
   1418         MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1419         installed = RequestCheckpoint(&barrier_closure);
   1420       }
   1421       if (installed) {
   1422         barrier_closure.Wait(self);
   1423         return;
   1424       }
   1425       // Fall-through.
   1426     }
   1427 
   1428     // This thread is not runnable, make sure we stay suspended, then run the checkpoint.
   1429     // Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in
   1430     //       certain situations.
   1431     {
   1432       MutexLock mu(self, *Locks::thread_list_lock_);
   1433       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1434 
   1435       if (!ModifySuspendCount(self, +1, nullptr, false)) {
   1436         // Just retry the loop.
   1437         sched_yield();
   1438         continue;
   1439       }
   1440     }
   1441 
   1442     while (GetState() == ThreadState::kRunnable) {
   1443       // We became runnable again. Wait till the suspend triggered in ModifySuspendCount
   1444       // moves us to suspended.
   1445       sched_yield();
   1446     }
   1447 
   1448     function->Run(this);
   1449 
   1450     {
   1451       MutexLock mu(self, *Locks::thread_list_lock_);
   1452       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1453 
   1454       DCHECK_NE(GetState(), ThreadState::kRunnable);
   1455       bool updated = ModifySuspendCount(self, -1, nullptr, false);
   1456       DCHECK(updated);
   1457     }
   1458 
   1459     return;  // We're done, break out of the loop.
   1460   }
   1461 }
   1462 
   1463 Closure* Thread::GetFlipFunction() {
   1464   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
   1465   Closure* func;
   1466   do {
   1467     func = atomic_func->LoadRelaxed();
   1468     if (func == nullptr) {
   1469       return nullptr;
   1470     }
   1471   } while (!atomic_func->CompareExchangeWeakSequentiallyConsistent(func, nullptr));
   1472   DCHECK(func != nullptr);
   1473   return func;
   1474 }
   1475 
   1476 void Thread::SetFlipFunction(Closure* function) {
   1477   CHECK(function != nullptr);
   1478   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
   1479   atomic_func->StoreSequentiallyConsistent(function);
   1480 }
   1481 
   1482 void Thread::FullSuspendCheck() {
   1483   ScopedTrace trace(__FUNCTION__);
   1484   VLOG(threads) << this << " self-suspending";
   1485   // Make thread appear suspended to other threads, release mutator_lock_.
   1486   // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
   1487   ScopedThreadSuspension(this, kSuspended);
   1488   VLOG(threads) << this << " self-reviving";
   1489 }
   1490 
   1491 static std::string GetSchedulerGroupName(pid_t tid) {
   1492   // /proc/<pid>/cgroup looks like this:
   1493   // 2:devices:/
   1494   // 1:cpuacct,cpu:/
   1495   // We want the third field from the line whose second field contains the "cpu" token.
   1496   std::string cgroup_file;
   1497   if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
   1498     return "";
   1499   }
   1500   std::vector<std::string> cgroup_lines;
   1501   Split(cgroup_file, '\n', &cgroup_lines);
   1502   for (size_t i = 0; i < cgroup_lines.size(); ++i) {
   1503     std::vector<std::string> cgroup_fields;
   1504     Split(cgroup_lines[i], ':', &cgroup_fields);
   1505     std::vector<std::string> cgroups;
   1506     Split(cgroup_fields[1], ',', &cgroups);
   1507     for (size_t j = 0; j < cgroups.size(); ++j) {
   1508       if (cgroups[j] == "cpu") {
   1509         return cgroup_fields[2].substr(1);  // Skip the leading slash.
   1510       }
   1511     }
   1512   }
   1513   return "";
   1514 }
   1515 
   1516 
   1517 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
   1518   std::string group_name;
   1519   int priority;
   1520   bool is_daemon = false;
   1521   Thread* self = Thread::Current();
   1522 
   1523   // If flip_function is not null, it means we have run a checkpoint
   1524   // before the thread wakes up to execute the flip function and the
   1525   // thread roots haven't been forwarded.  So the following access to
   1526   // the roots (opeer or methods in the frames) would be bad. Run it
   1527   // here. TODO: clean up.
   1528   if (thread != nullptr) {
   1529     ScopedObjectAccessUnchecked soa(self);
   1530     Thread* this_thread = const_cast<Thread*>(thread);
   1531     Closure* flip_func = this_thread->GetFlipFunction();
   1532     if (flip_func != nullptr) {
   1533       flip_func->Run(this_thread);
   1534     }
   1535   }
   1536 
   1537   // Don't do this if we are aborting since the GC may have all the threads suspended. This will
   1538   // cause ScopedObjectAccessUnchecked to deadlock.
   1539   if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
   1540     ScopedObjectAccessUnchecked soa(self);
   1541     priority = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)
   1542         ->GetInt(thread->tlsPtr_.opeer);
   1543     is_daemon = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)
   1544         ->GetBoolean(thread->tlsPtr_.opeer);
   1545 
   1546     ObjPtr<mirror::Object> thread_group =
   1547         jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
   1548             ->GetObject(thread->tlsPtr_.opeer);
   1549 
   1550     if (thread_group != nullptr) {
   1551       ArtField* group_name_field =
   1552           jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name);
   1553       ObjPtr<mirror::String> group_name_string =
   1554           group_name_field->GetObject(thread_group)->AsString();
   1555       group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
   1556     }
   1557   } else {
   1558     priority = GetNativePriority();
   1559   }
   1560 
   1561   std::string scheduler_group_name(GetSchedulerGroupName(tid));
   1562   if (scheduler_group_name.empty()) {
   1563     scheduler_group_name = "default";
   1564   }
   1565 
   1566   if (thread != nullptr) {
   1567     os << '"' << *thread->tlsPtr_.name << '"';
   1568     if (is_daemon) {
   1569       os << " daemon";
   1570     }
   1571     os << " prio=" << priority
   1572        << " tid=" << thread->GetThreadId()
   1573        << " " << thread->GetState();
   1574     if (thread->IsStillStarting()) {
   1575       os << " (still starting up)";
   1576     }
   1577     os << "\n";
   1578   } else {
   1579     os << '"' << ::art::GetThreadName(tid) << '"'
   1580        << " prio=" << priority
   1581        << " (not attached)\n";
   1582   }
   1583 
   1584   if (thread != nullptr) {
   1585     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1586     os << "  | group=\"" << group_name << "\""
   1587        << " sCount=" << thread->tls32_.suspend_count
   1588        << " dsCount=" << thread->tls32_.debug_suspend_count
   1589        << " flags=" << thread->tls32_.state_and_flags.as_struct.flags
   1590        << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
   1591        << " self=" << reinterpret_cast<const void*>(thread) << "\n";
   1592   }
   1593 
   1594   os << "  | sysTid=" << tid
   1595      << " nice=" << getpriority(PRIO_PROCESS, tid)
   1596      << " cgrp=" << scheduler_group_name;
   1597   if (thread != nullptr) {
   1598     int policy;
   1599     sched_param sp;
   1600 #if !defined(__APPLE__)
   1601     // b/36445592 Don't use pthread_getschedparam since pthread may have exited.
   1602     policy = sched_getscheduler(tid);
   1603     if (policy == -1) {
   1604       PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
   1605     }
   1606     int sched_getparam_result = sched_getparam(tid, &sp);
   1607     if (sched_getparam_result == -1) {
   1608       PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
   1609       sp.sched_priority = -1;
   1610     }
   1611 #else
   1612     CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
   1613                        __FUNCTION__);
   1614 #endif
   1615     os << " sched=" << policy << "/" << sp.sched_priority
   1616        << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
   1617   }
   1618   os << "\n";
   1619 
   1620   // Grab the scheduler stats for this thread.
   1621   std::string scheduler_stats;
   1622   if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
   1623     scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
   1624   } else {
   1625     scheduler_stats = "0 0 0";
   1626   }
   1627 
   1628   char native_thread_state = '?';
   1629   int utime = 0;
   1630   int stime = 0;
   1631   int task_cpu = 0;
   1632   GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
   1633 
   1634   os << "  | state=" << native_thread_state
   1635      << " schedstat=( " << scheduler_stats << " )"
   1636      << " utm=" << utime
   1637      << " stm=" << stime
   1638      << " core=" << task_cpu
   1639      << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
   1640   if (thread != nullptr) {
   1641     os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
   1642         << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
   1643         << PrettySize(thread->tlsPtr_.stack_size) << "\n";
   1644     // Dump the held mutexes.
   1645     os << "  | held mutexes=";
   1646     for (size_t i = 0; i < kLockLevelCount; ++i) {
   1647       if (i != kMonitorLock) {
   1648         BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
   1649         if (mutex != nullptr) {
   1650           os << " \"" << mutex->GetName() << "\"";
   1651           if (mutex->IsReaderWriterMutex()) {
   1652             ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
   1653             if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
   1654               os << "(exclusive held)";
   1655             } else {
   1656               os << "(shared held)";
   1657             }
   1658           }
   1659         }
   1660       }
   1661     }
   1662     os << "\n";
   1663   }
   1664 }
   1665 
   1666 void Thread::DumpState(std::ostream& os) const {
   1667   Thread::DumpState(os, this, GetTid());
   1668 }
   1669 
   1670 struct StackDumpVisitor : public StackVisitor {
   1671   StackDumpVisitor(std::ostream& os_in,
   1672                    Thread* thread_in,
   1673                    Context* context,
   1674                    bool can_allocate_in,
   1675                    bool check_suspended = true,
   1676                    bool dump_locks_in = true)
   1677       REQUIRES_SHARED(Locks::mutator_lock_)
   1678       : StackVisitor(thread_in,
   1679                      context,
   1680                      StackVisitor::StackWalkKind::kIncludeInlinedFrames,
   1681                      check_suspended),
   1682         os(os_in),
   1683         can_allocate(can_allocate_in),
   1684         last_method(nullptr),
   1685         last_line_number(0),
   1686         repetition_count(0),
   1687         frame_count(0),
   1688         dump_locks(dump_locks_in) {}
   1689 
   1690   virtual ~StackDumpVisitor() {
   1691     if (frame_count == 0) {
   1692       os << "  (no managed stack frames)\n";
   1693     }
   1694   }
   1695 
   1696   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
   1697     ArtMethod* m = GetMethod();
   1698     if (m->IsRuntimeMethod()) {
   1699       return true;
   1700     }
   1701     m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
   1702     const int kMaxRepetition = 3;
   1703     ObjPtr<mirror::Class> c = m->GetDeclaringClass();
   1704     ObjPtr<mirror::DexCache> dex_cache = c->GetDexCache();
   1705     int line_number = -1;
   1706     if (dex_cache != nullptr) {  // be tolerant of bad input
   1707       const DexFile* dex_file = dex_cache->GetDexFile();
   1708       line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc(false));
   1709     }
   1710     if (line_number == last_line_number && last_method == m) {
   1711       ++repetition_count;
   1712     } else {
   1713       if (repetition_count >= kMaxRepetition) {
   1714         os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
   1715       }
   1716       repetition_count = 0;
   1717       last_line_number = line_number;
   1718       last_method = m;
   1719     }
   1720     if (repetition_count < kMaxRepetition) {
   1721       os << "  at " << m->PrettyMethod(false);
   1722       if (m->IsNative()) {
   1723         os << "(Native method)";
   1724       } else {
   1725         const char* source_file(m->GetDeclaringClassSourceFile());
   1726         os << "(" << (source_file != nullptr ? source_file : "unavailable")
   1727            << ":" << line_number << ")";
   1728       }
   1729       os << "\n";
   1730       if (frame_count == 0) {
   1731         Monitor::DescribeWait(os, GetThread());
   1732       }
   1733       if (can_allocate && dump_locks) {
   1734         // Visit locks, but do not abort on errors. This would trigger a nested abort.
   1735         // Skip visiting locks if dump_locks is false as it would cause a bad_mutexes_held in
   1736         // RegTypeCache::RegTypeCache due to thread_list_lock.
   1737         Monitor::VisitLocks(this, DumpLockedObject, &os, false);
   1738       }
   1739     }
   1740 
   1741     ++frame_count;
   1742     return true;
   1743   }
   1744 
   1745   static void DumpLockedObject(mirror::Object* o, void* context)
   1746       REQUIRES_SHARED(Locks::mutator_lock_) {
   1747     std::ostream& os = *reinterpret_cast<std::ostream*>(context);
   1748     os << "  - locked ";
   1749     if (o == nullptr) {
   1750       os << "an unknown object";
   1751     } else {
   1752       if (kUseReadBarrier && Thread::Current()->GetIsGcMarking()) {
   1753         // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
   1754         // may have not been flipped yet and "o" may be a from-space (stale) ref, in which case the
   1755         // IdentityHashCode call below will crash. So explicitly mark/forward it here.
   1756         o = ReadBarrier::Mark(o);
   1757       }
   1758       if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
   1759           Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
   1760         // Getting the identity hashcode here would result in lock inflation and suspension of the
   1761         // current thread, which isn't safe if this is the only runnable thread.
   1762         os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
   1763                            o->PrettyTypeOf().c_str());
   1764       } else {
   1765         // IdentityHashCode can cause thread suspension, which would invalidate o if it moved. So
   1766         // we get the pretty type beofre we call IdentityHashCode.
   1767         const std::string pretty_type(o->PrettyTypeOf());
   1768         os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), pretty_type.c_str());
   1769       }
   1770     }
   1771     os << "\n";
   1772   }
   1773 
   1774   std::ostream& os;
   1775   const bool can_allocate;
   1776   ArtMethod* last_method;
   1777   int last_line_number;
   1778   int repetition_count;
   1779   int frame_count;
   1780   const bool dump_locks;
   1781 };
   1782 
   1783 static bool ShouldShowNativeStack(const Thread* thread)
   1784     REQUIRES_SHARED(Locks::mutator_lock_) {
   1785   ThreadState state = thread->GetState();
   1786 
   1787   // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
   1788   if (state > kWaiting && state < kStarting) {
   1789     return true;
   1790   }
   1791 
   1792   // In an Object.wait variant or Thread.sleep? That's not interesting.
   1793   if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
   1794     return false;
   1795   }
   1796 
   1797   // Threads with no managed stack frames should be shown.
   1798   const ManagedStack* managed_stack = thread->GetManagedStack();
   1799   if (managed_stack == nullptr || (managed_stack->GetTopQuickFrame() == nullptr &&
   1800       managed_stack->GetTopShadowFrame() == nullptr)) {
   1801     return true;
   1802   }
   1803 
   1804   // In some other native method? That's interesting.
   1805   // We don't just check kNative because native methods will be in state kSuspended if they're
   1806   // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
   1807   // thread-startup states if it's early enough in their life cycle (http://b/7432159).
   1808   ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
   1809   return current_method != nullptr && current_method->IsNative();
   1810 }
   1811 
   1812 void Thread::DumpJavaStack(std::ostream& os, bool check_suspended, bool dump_locks) const {
   1813   // If flip_function is not null, it means we have run a checkpoint
   1814   // before the thread wakes up to execute the flip function and the
   1815   // thread roots haven't been forwarded.  So the following access to
   1816   // the roots (locks or methods in the frames) would be bad. Run it
   1817   // here. TODO: clean up.
   1818   {
   1819     Thread* this_thread = const_cast<Thread*>(this);
   1820     Closure* flip_func = this_thread->GetFlipFunction();
   1821     if (flip_func != nullptr) {
   1822       flip_func->Run(this_thread);
   1823     }
   1824   }
   1825 
   1826   // Dumping the Java stack involves the verifier for locks. The verifier operates under the
   1827   // assumption that there is no exception pending on entry. Thus, stash any pending exception.
   1828   // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
   1829   // thread.
   1830   StackHandleScope<1> scope(Thread::Current());
   1831   Handle<mirror::Throwable> exc;
   1832   bool have_exception = false;
   1833   if (IsExceptionPending()) {
   1834     exc = scope.NewHandle(GetException());
   1835     const_cast<Thread*>(this)->ClearException();
   1836     have_exception = true;
   1837   }
   1838 
   1839   std::unique_ptr<Context> context(Context::Create());
   1840   StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
   1841                           !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
   1842   dumper.WalkStack();
   1843 
   1844   if (have_exception) {
   1845     const_cast<Thread*>(this)->SetException(exc.Get());
   1846   }
   1847 }
   1848 
   1849 void Thread::DumpStack(std::ostream& os,
   1850                        bool dump_native_stack,
   1851                        BacktraceMap* backtrace_map,
   1852                        bool force_dump_stack) const {
   1853   // TODO: we call this code when dying but may not have suspended the thread ourself. The
   1854   //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
   1855   //       the race with the thread_suspend_count_lock_).
   1856   bool dump_for_abort = (gAborting > 0);
   1857   bool safe_to_dump = (this == Thread::Current() || IsSuspended());
   1858   if (!kIsDebugBuild) {
   1859     // We always want to dump the stack for an abort, however, there is no point dumping another
   1860     // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
   1861     safe_to_dump = (safe_to_dump || dump_for_abort);
   1862   }
   1863   if (safe_to_dump || force_dump_stack) {
   1864     // If we're currently in native code, dump that stack before dumping the managed stack.
   1865     if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
   1866       DumpKernelStack(os, GetTid(), "  kernel: ", false);
   1867       ArtMethod* method =
   1868           GetCurrentMethod(nullptr,
   1869                            /*check_suspended*/ !force_dump_stack,
   1870                            /*abort_on_error*/ !(dump_for_abort || force_dump_stack));
   1871       DumpNativeStack(os, GetTid(), backtrace_map, "  native: ", method);
   1872     }
   1873     DumpJavaStack(os,
   1874                   /*check_suspended*/ !force_dump_stack,
   1875                   /*dump_locks*/ !force_dump_stack);
   1876   } else {
   1877     os << "Not able to dump stack of thread that isn't suspended";
   1878   }
   1879 }
   1880 
   1881 void Thread::ThreadExitCallback(void* arg) {
   1882   Thread* self = reinterpret_cast<Thread*>(arg);
   1883   if (self->tls32_.thread_exit_check_count == 0) {
   1884     LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
   1885         "going to use a pthread_key_create destructor?): " << *self;
   1886     CHECK(is_started_);
   1887 #ifdef ART_TARGET_ANDROID
   1888     __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
   1889 #else
   1890     CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
   1891 #endif
   1892     self->tls32_.thread_exit_check_count = 1;
   1893   } else {
   1894     LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
   1895   }
   1896 }
   1897 
   1898 void Thread::Startup() {
   1899   CHECK(!is_started_);
   1900   is_started_ = true;
   1901   {
   1902     // MutexLock to keep annotalysis happy.
   1903     //
   1904     // Note we use null for the thread because Thread::Current can
   1905     // return garbage since (is_started_ == true) and
   1906     // Thread::pthread_key_self_ is not yet initialized.
   1907     // This was seen on glibc.
   1908     MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
   1909     resume_cond_ = new ConditionVariable("Thread resumption condition variable",
   1910                                          *Locks::thread_suspend_count_lock_);
   1911   }
   1912 
   1913   // Allocate a TLS slot.
   1914   CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
   1915                      "self key");
   1916 
   1917   // Double-check the TLS slot allocation.
   1918   if (pthread_getspecific(pthread_key_self_) != nullptr) {
   1919     LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
   1920   }
   1921 }
   1922 
   1923 void Thread::FinishStartup() {
   1924   Runtime* runtime = Runtime::Current();
   1925   CHECK(runtime->IsStarted());
   1926 
   1927   // Finish attaching the main thread.
   1928   ScopedObjectAccess soa(Thread::Current());
   1929   Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
   1930   Thread::Current()->AssertNoPendingException();
   1931 
   1932   Runtime::Current()->GetClassLinker()->RunRootClinits();
   1933 
   1934   // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
   1935   // threads, this is done in Thread.start() on the Java side.
   1936   {
   1937     // This is only ever done once. There's no benefit in caching the method.
   1938     jmethodID thread_group_add = soa.Env()->GetMethodID(WellKnownClasses::java_lang_ThreadGroup,
   1939                                                         "add",
   1940                                                         "(Ljava/lang/Thread;)V");
   1941     CHECK(thread_group_add != nullptr);
   1942     ScopedLocalRef<jobject> thread_jobject(
   1943         soa.Env(), soa.Env()->AddLocalReference<jobject>(Thread::Current()->GetPeer()));
   1944     soa.Env()->CallNonvirtualVoidMethod(runtime->GetMainThreadGroup(),
   1945                                         WellKnownClasses::java_lang_ThreadGroup,
   1946                                         thread_group_add,
   1947                                         thread_jobject.get());
   1948     Thread::Current()->AssertNoPendingException();
   1949   }
   1950 }
   1951 
   1952 void Thread::Shutdown() {
   1953   CHECK(is_started_);
   1954   is_started_ = false;
   1955   CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
   1956   MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
   1957   if (resume_cond_ != nullptr) {
   1958     delete resume_cond_;
   1959     resume_cond_ = nullptr;
   1960   }
   1961 }
   1962 
   1963 Thread::Thread(bool daemon)
   1964     : tls32_(daemon),
   1965       wait_monitor_(nullptr),
   1966       interrupted_(false),
   1967       custom_tls_(nullptr),
   1968       can_call_into_java_(true) {
   1969   wait_mutex_ = new Mutex("a thread wait mutex");
   1970   wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
   1971   tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
   1972   tlsPtr_.name = new std::string(kThreadNameDuringStartup);
   1973 
   1974   static_assert((sizeof(Thread) % 4) == 0U,
   1975                 "art::Thread has a size which is not a multiple of 4.");
   1976   tls32_.state_and_flags.as_struct.flags = 0;
   1977   tls32_.state_and_flags.as_struct.state = kNative;
   1978   memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
   1979   std::fill(tlsPtr_.rosalloc_runs,
   1980             tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
   1981             gc::allocator::RosAlloc::GetDedicatedFullRun());
   1982   tlsPtr_.checkpoint_function = nullptr;
   1983   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
   1984     tlsPtr_.active_suspend_barriers[i] = nullptr;
   1985   }
   1986   tlsPtr_.flip_function = nullptr;
   1987   tlsPtr_.thread_local_mark_stack = nullptr;
   1988   tls32_.is_transitioning_to_runnable = false;
   1989 }
   1990 
   1991 bool Thread::IsStillStarting() const {
   1992   // You might think you can check whether the state is kStarting, but for much of thread startup,
   1993   // the thread is in kNative; it might also be in kVmWait.
   1994   // You might think you can check whether the peer is null, but the peer is actually created and
   1995   // assigned fairly early on, and needs to be.
   1996   // It turns out that the last thing to change is the thread name; that's a good proxy for "has
   1997   // this thread _ever_ entered kRunnable".
   1998   return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
   1999       (*tlsPtr_.name == kThreadNameDuringStartup);
   2000 }
   2001 
   2002 void Thread::AssertPendingException() const {
   2003   CHECK(IsExceptionPending()) << "Pending exception expected.";
   2004 }
   2005 
   2006 void Thread::AssertPendingOOMException() const {
   2007   AssertPendingException();
   2008   auto* e = GetException();
   2009   CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
   2010       << e->Dump();
   2011 }
   2012 
   2013 void Thread::AssertNoPendingException() const {
   2014   if (UNLIKELY(IsExceptionPending())) {
   2015     ScopedObjectAccess soa(Thread::Current());
   2016     LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
   2017   }
   2018 }
   2019 
   2020 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
   2021   if (UNLIKELY(IsExceptionPending())) {
   2022     ScopedObjectAccess soa(Thread::Current());
   2023     LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
   2024         << GetException()->Dump();
   2025   }
   2026 }
   2027 
   2028 class MonitorExitVisitor : public SingleRootVisitor {
   2029  public:
   2030   explicit MonitorExitVisitor(Thread* self) : self_(self) { }
   2031 
   2032   // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
   2033   void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
   2034       OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
   2035     if (self_->HoldsLock(entered_monitor)) {
   2036       LOG(WARNING) << "Calling MonitorExit on object "
   2037                    << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
   2038                    << " left locked by native thread "
   2039                    << *Thread::Current() << " which is detaching";
   2040       entered_monitor->MonitorExit(self_);
   2041     }
   2042   }
   2043 
   2044  private:
   2045   Thread* const self_;
   2046 };
   2047 
   2048 void Thread::Destroy() {
   2049   Thread* self = this;
   2050   DCHECK_EQ(self, Thread::Current());
   2051 
   2052   if (tlsPtr_.jni_env != nullptr) {
   2053     {
   2054       ScopedObjectAccess soa(self);
   2055       MonitorExitVisitor visitor(self);
   2056       // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
   2057       tlsPtr_.jni_env->monitors.VisitRoots(&visitor, RootInfo(kRootVMInternal));
   2058     }
   2059     // Release locally held global references which releasing may require the mutator lock.
   2060     if (tlsPtr_.jpeer != nullptr) {
   2061       // If pthread_create fails we don't have a jni env here.
   2062       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
   2063       tlsPtr_.jpeer = nullptr;
   2064     }
   2065     if (tlsPtr_.class_loader_override != nullptr) {
   2066       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
   2067       tlsPtr_.class_loader_override = nullptr;
   2068     }
   2069   }
   2070 
   2071   if (tlsPtr_.opeer != nullptr) {
   2072     ScopedObjectAccess soa(self);
   2073     // We may need to call user-supplied managed code, do this before final clean-up.
   2074     HandleUncaughtExceptions(soa);
   2075     RemoveFromThreadGroup(soa);
   2076 
   2077     // this.nativePeer = 0;
   2078     if (Runtime::Current()->IsActiveTransaction()) {
   2079       jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
   2080           ->SetLong<true>(tlsPtr_.opeer, 0);
   2081     } else {
   2082       jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
   2083           ->SetLong<false>(tlsPtr_.opeer, 0);
   2084     }
   2085     Runtime* runtime = Runtime::Current();
   2086     if (runtime != nullptr) {
   2087       runtime->GetRuntimeCallbacks()->ThreadDeath(self);
   2088     }
   2089 
   2090 
   2091     // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
   2092     // who is waiting.
   2093     ObjPtr<mirror::Object> lock =
   2094         jni::DecodeArtField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
   2095     // (This conditional is only needed for tests, where Thread.lock won't have been set.)
   2096     if (lock != nullptr) {
   2097       StackHandleScope<1> hs(self);
   2098       Handle<mirror::Object> h_obj(hs.NewHandle(lock));
   2099       ObjectLock<mirror::Object> locker(self, h_obj);
   2100       locker.NotifyAll();
   2101     }
   2102     tlsPtr_.opeer = nullptr;
   2103   }
   2104 
   2105   {
   2106     ScopedObjectAccess soa(self);
   2107     Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
   2108     if (kUseReadBarrier) {
   2109       Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
   2110     }
   2111   }
   2112 }
   2113 
   2114 Thread::~Thread() {
   2115   CHECK(tlsPtr_.class_loader_override == nullptr);
   2116   CHECK(tlsPtr_.jpeer == nullptr);
   2117   CHECK(tlsPtr_.opeer == nullptr);
   2118   bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
   2119   if (initialized) {
   2120     delete tlsPtr_.jni_env;
   2121     tlsPtr_.jni_env = nullptr;
   2122   }
   2123   CHECK_NE(GetState(), kRunnable);
   2124   CHECK(!ReadFlag(kCheckpointRequest));
   2125   CHECK(!ReadFlag(kEmptyCheckpointRequest));
   2126   CHECK(tlsPtr_.checkpoint_function == nullptr);
   2127   CHECK_EQ(checkpoint_overflow_.size(), 0u);
   2128   CHECK(tlsPtr_.flip_function == nullptr);
   2129   CHECK_EQ(tls32_.is_transitioning_to_runnable, false);
   2130 
   2131   // Make sure we processed all deoptimization requests.
   2132   CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
   2133   CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
   2134       "Not all deoptimized frames have been consumed by the debugger.";
   2135 
   2136   // We may be deleting a still born thread.
   2137   SetStateUnsafe(kTerminated);
   2138 
   2139   delete wait_cond_;
   2140   delete wait_mutex_;
   2141 
   2142   if (tlsPtr_.long_jump_context != nullptr) {
   2143     delete tlsPtr_.long_jump_context;
   2144   }
   2145 
   2146   if (initialized) {
   2147     CleanupCpu();
   2148   }
   2149 
   2150   if (tlsPtr_.single_step_control != nullptr) {
   2151     delete tlsPtr_.single_step_control;
   2152   }
   2153   delete tlsPtr_.instrumentation_stack;
   2154   delete tlsPtr_.name;
   2155   delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
   2156 
   2157   Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
   2158 
   2159   TearDownAlternateSignalStack();
   2160 }
   2161 
   2162 void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
   2163   if (!IsExceptionPending()) {
   2164     return;
   2165   }
   2166   ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
   2167   ScopedThreadStateChange tsc(this, kNative);
   2168 
   2169   // Get and clear the exception.
   2170   ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
   2171   tlsPtr_.jni_env->ExceptionClear();
   2172 
   2173   // Call the Thread instance's dispatchUncaughtException(Throwable)
   2174   tlsPtr_.jni_env->CallVoidMethod(peer.get(),
   2175       WellKnownClasses::java_lang_Thread_dispatchUncaughtException,
   2176       exception.get());
   2177 
   2178   // If the dispatchUncaughtException threw, clear that exception too.
   2179   tlsPtr_.jni_env->ExceptionClear();
   2180 }
   2181 
   2182 void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
   2183   // this.group.removeThread(this);
   2184   // group can be null if we're in the compiler or a test.
   2185   ObjPtr<mirror::Object> ogroup = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
   2186       ->GetObject(tlsPtr_.opeer);
   2187   if (ogroup != nullptr) {
   2188     ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
   2189     ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
   2190     ScopedThreadStateChange tsc(soa.Self(), kNative);
   2191     tlsPtr_.jni_env->CallVoidMethod(group.get(),
   2192                                     WellKnownClasses::java_lang_ThreadGroup_removeThread,
   2193                                     peer.get());
   2194   }
   2195 }
   2196 
   2197 bool Thread::HandleScopeContains(jobject obj) const {
   2198   StackReference<mirror::Object>* hs_entry =
   2199       reinterpret_cast<StackReference<mirror::Object>*>(obj);
   2200   for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
   2201     if (cur->Contains(hs_entry)) {
   2202       return true;
   2203     }
   2204   }
   2205   // JNI code invoked from portable code uses shadow frames rather than the handle scope.
   2206   return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
   2207 }
   2208 
   2209 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) {
   2210   BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
   2211       visitor, RootInfo(kRootNativeStack, thread_id));
   2212   for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
   2213     cur->VisitRoots(buffered_visitor);
   2214   }
   2215 }
   2216 
   2217 ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const {
   2218   if (obj == nullptr) {
   2219     return nullptr;
   2220   }
   2221   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
   2222   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
   2223   ObjPtr<mirror::Object> result;
   2224   bool expect_null = false;
   2225   // The "kinds" below are sorted by the frequency we expect to encounter them.
   2226   if (kind == kLocal) {
   2227     IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
   2228     // Local references do not need a read barrier.
   2229     result = locals.Get<kWithoutReadBarrier>(ref);
   2230   } else if (kind == kHandleScopeOrInvalid) {
   2231     // TODO: make stack indirect reference table lookup more efficient.
   2232     // Check if this is a local reference in the handle scope.
   2233     if (LIKELY(HandleScopeContains(obj))) {
   2234       // Read from handle scope.
   2235       result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
   2236       VerifyObject(result);
   2237     } else {
   2238       tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of invalid jobject %p", obj);
   2239       expect_null = true;
   2240       result = nullptr;
   2241     }
   2242   } else if (kind == kGlobal) {
   2243     result = tlsPtr_.jni_env->vm->DecodeGlobal(ref);
   2244   } else {
   2245     DCHECK_EQ(kind, kWeakGlobal);
   2246     result = tlsPtr_.jni_env->vm->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
   2247     if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
   2248       // This is a special case where it's okay to return null.
   2249       expect_null = true;
   2250       result = nullptr;
   2251     }
   2252   }
   2253 
   2254   if (UNLIKELY(!expect_null && result == nullptr)) {
   2255     tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of deleted %s %p",
   2256                                    ToStr<IndirectRefKind>(kind).c_str(), obj);
   2257   }
   2258   return result;
   2259 }
   2260 
   2261 bool Thread::IsJWeakCleared(jweak obj) const {
   2262   CHECK(obj != nullptr);
   2263   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
   2264   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
   2265   CHECK_EQ(kind, kWeakGlobal);
   2266   return tlsPtr_.jni_env->vm->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
   2267 }
   2268 
   2269 // Implements java.lang.Thread.interrupted.
   2270 bool Thread::Interrupted() {
   2271   MutexLock mu(Thread::Current(), *wait_mutex_);
   2272   bool interrupted = IsInterruptedLocked();
   2273   SetInterruptedLocked(false);
   2274   return interrupted;
   2275 }
   2276 
   2277 // Implements java.lang.Thread.isInterrupted.
   2278 bool Thread::IsInterrupted() {
   2279   MutexLock mu(Thread::Current(), *wait_mutex_);
   2280   return IsInterruptedLocked();
   2281 }
   2282 
   2283 void Thread::Interrupt(Thread* self) {
   2284   MutexLock mu(self, *wait_mutex_);
   2285   if (interrupted_) {
   2286     return;
   2287   }
   2288   interrupted_ = true;
   2289   NotifyLocked(self);
   2290 }
   2291 
   2292 void Thread::Notify() {
   2293   Thread* self = Thread::Current();
   2294   MutexLock mu(self, *wait_mutex_);
   2295   NotifyLocked(self);
   2296 }
   2297 
   2298 void Thread::NotifyLocked(Thread* self) {
   2299   if (wait_monitor_ != nullptr) {
   2300     wait_cond_->Signal(self);
   2301   }
   2302 }
   2303 
   2304 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
   2305   if (tlsPtr_.class_loader_override != nullptr) {
   2306     GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
   2307   }
   2308   tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
   2309 }
   2310 
   2311 using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
   2312 
   2313 // Counts the stack trace depth and also fetches the first max_saved_frames frames.
   2314 class FetchStackTraceVisitor : public StackVisitor {
   2315  public:
   2316   explicit FetchStackTraceVisitor(Thread* thread,
   2317                                   ArtMethodDexPcPair* saved_frames = nullptr,
   2318                                   size_t max_saved_frames = 0)
   2319       REQUIRES_SHARED(Locks::mutator_lock_)
   2320       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
   2321         saved_frames_(saved_frames),
   2322         max_saved_frames_(max_saved_frames) {}
   2323 
   2324   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
   2325     // We want to skip frames up to and including the exception's constructor.
   2326     // Note we also skip the frame if it doesn't have a method (namely the callee
   2327     // save frame)
   2328     ArtMethod* m = GetMethod();
   2329     if (skipping_ && !m->IsRuntimeMethod() &&
   2330         !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
   2331       skipping_ = false;
   2332     }
   2333     if (!skipping_) {
   2334       if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
   2335         if (depth_ < max_saved_frames_) {
   2336           saved_frames_[depth_].first = m;
   2337           saved_frames_[depth_].second = m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc();
   2338         }
   2339         ++depth_;
   2340       }
   2341     } else {
   2342       ++skip_depth_;
   2343     }
   2344     return true;
   2345   }
   2346 
   2347   uint32_t GetDepth() const {
   2348     return depth_;
   2349   }
   2350 
   2351   uint32_t GetSkipDepth() const {
   2352     return skip_depth_;
   2353   }
   2354 
   2355  private:
   2356   uint32_t depth_ = 0;
   2357   uint32_t skip_depth_ = 0;
   2358   bool skipping_ = true;
   2359   ArtMethodDexPcPair* saved_frames_;
   2360   const size_t max_saved_frames_;
   2361 
   2362   DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
   2363 };
   2364 
   2365 template<bool kTransactionActive>
   2366 class BuildInternalStackTraceVisitor : public StackVisitor {
   2367  public:
   2368   BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
   2369       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
   2370         self_(self),
   2371         skip_depth_(skip_depth),
   2372         pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
   2373 
   2374   bool Init(int depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
   2375     // Allocate method trace as an object array where the first element is a pointer array that
   2376     // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
   2377     // class of the ArtMethod pointers.
   2378     ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   2379     StackHandleScope<1> hs(self_);
   2380     ObjPtr<mirror::Class> array_class = class_linker->GetClassRoot(ClassLinker::kObjectArrayClass);
   2381     // The first element is the methods and dex pc array, the other elements are declaring classes
   2382     // for the methods to ensure classes in the stack trace don't get unloaded.
   2383     Handle<mirror::ObjectArray<mirror::Object>> trace(
   2384         hs.NewHandle(
   2385             mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1)));
   2386     if (trace == nullptr) {
   2387       // Acquire uninterruptible_ in all paths.
   2388       self_->StartAssertNoThreadSuspension("Building internal stack trace");
   2389       self_->AssertPendingOOMException();
   2390       return false;
   2391     }
   2392     ObjPtr<mirror::PointerArray> methods_and_pcs =
   2393         class_linker->AllocPointerArray(self_, depth * 2);
   2394     const char* last_no_suspend_cause =
   2395         self_->StartAssertNoThreadSuspension("Building internal stack trace");
   2396     if (methods_and_pcs == nullptr) {
   2397       self_->AssertPendingOOMException();
   2398       return false;
   2399     }
   2400     trace->Set(0, methods_and_pcs);
   2401     trace_ = trace.Get();
   2402     // If We are called from native, use non-transactional mode.
   2403     CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
   2404     return true;
   2405   }
   2406 
   2407   virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
   2408     self_->EndAssertNoThreadSuspension(nullptr);
   2409   }
   2410 
   2411   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
   2412     if (trace_ == nullptr) {
   2413       return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
   2414     }
   2415     if (skip_depth_ > 0) {
   2416       skip_depth_--;
   2417       return true;
   2418     }
   2419     ArtMethod* m = GetMethod();
   2420     if (m->IsRuntimeMethod()) {
   2421       return true;  // Ignore runtime frames (in particular callee save).
   2422     }
   2423     AddFrame(m, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
   2424     return true;
   2425   }
   2426 
   2427   void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
   2428     ObjPtr<mirror::PointerArray> trace_methods_and_pcs = GetTraceMethodsAndPCs();
   2429     trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, method, pointer_size_);
   2430     trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(
   2431         trace_methods_and_pcs->GetLength() / 2 + count_,
   2432         dex_pc,
   2433         pointer_size_);
   2434     // Save the declaring class of the method to ensure that the declaring classes of the methods
   2435     // do not get unloaded while the stack trace is live.
   2436     trace_->Set(count_ + 1, method->GetDeclaringClass());
   2437     ++count_;
   2438   }
   2439 
   2440   ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
   2441     return ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(trace_->Get(0)));
   2442   }
   2443 
   2444   mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
   2445     return trace_;
   2446   }
   2447 
   2448  private:
   2449   Thread* const self_;
   2450   // How many more frames to skip.
   2451   int32_t skip_depth_;
   2452   // Current position down stack trace.
   2453   uint32_t count_ = 0;
   2454   // An object array where the first element is a pointer array that contains the ArtMethod
   2455   // pointers on the stack and dex PCs. The rest of the elements are the declaring
   2456   // class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of
   2457   // the i'th frame.
   2458   mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
   2459   // For cross compilation.
   2460   const PointerSize pointer_size_;
   2461 
   2462   DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
   2463 };
   2464 
   2465 template<bool kTransactionActive>
   2466 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
   2467   // Compute depth of stack, save frames if possible to avoid needing to recompute many.
   2468   constexpr size_t kMaxSavedFrames = 256;
   2469   std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
   2470   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
   2471                                        &saved_frames[0],
   2472                                        kMaxSavedFrames);
   2473   count_visitor.WalkStack();
   2474   const uint32_t depth = count_visitor.GetDepth();
   2475   const uint32_t skip_depth = count_visitor.GetSkipDepth();
   2476 
   2477   // Build internal stack trace.
   2478   BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
   2479                                                                          const_cast<Thread*>(this),
   2480                                                                          skip_depth);
   2481   if (!build_trace_visitor.Init(depth)) {
   2482     return nullptr;  // Allocation failed.
   2483   }
   2484   // If we saved all of the frames we don't even need to do the actual stack walk. This is faster
   2485   // than doing the stack walk twice.
   2486   if (depth < kMaxSavedFrames) {
   2487     for (size_t i = 0; i < depth; ++i) {
   2488       build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
   2489     }
   2490   } else {
   2491     build_trace_visitor.WalkStack();
   2492   }
   2493 
   2494   mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
   2495   if (kIsDebugBuild) {
   2496     ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
   2497     // Second half of trace_methods is dex PCs.
   2498     for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
   2499       auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
   2500           i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
   2501       CHECK(method != nullptr);
   2502     }
   2503   }
   2504   return soa.AddLocalReference<jobject>(trace);
   2505 }
   2506 template jobject Thread::CreateInternalStackTrace<false>(
   2507     const ScopedObjectAccessAlreadyRunnable& soa) const;
   2508 template jobject Thread::CreateInternalStackTrace<true>(
   2509     const ScopedObjectAccessAlreadyRunnable& soa) const;
   2510 
   2511 bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
   2512   // Only count the depth since we do not pass a stack frame array as an argument.
   2513   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
   2514   count_visitor.WalkStack();
   2515   return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
   2516 }
   2517 
   2518 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
   2519     const ScopedObjectAccessAlreadyRunnable& soa,
   2520     jobject internal,
   2521     jobjectArray output_array,
   2522     int* stack_depth) {
   2523   // Decode the internal stack trace into the depth, method trace and PC trace.
   2524   // Subtract one for the methods and PC trace.
   2525   int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
   2526   DCHECK_GE(depth, 0);
   2527 
   2528   ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
   2529 
   2530   jobjectArray result;
   2531 
   2532   if (output_array != nullptr) {
   2533     // Reuse the array we were given.
   2534     result = output_array;
   2535     // ...adjusting the number of frames we'll write to not exceed the array length.
   2536     const int32_t traces_length =
   2537         soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
   2538     depth = std::min(depth, traces_length);
   2539   } else {
   2540     // Create java_trace array and place in local reference table
   2541     mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
   2542         class_linker->AllocStackTraceElementArray(soa.Self(), depth);
   2543     if (java_traces == nullptr) {
   2544       return nullptr;
   2545     }
   2546     result = soa.AddLocalReference<jobjectArray>(java_traces);
   2547   }
   2548 
   2549   if (stack_depth != nullptr) {
   2550     *stack_depth = depth;
   2551   }
   2552 
   2553   for (int32_t i = 0; i < depth; ++i) {
   2554     ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
   2555         soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
   2556     // Methods and dex PC trace is element 0.
   2557     DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
   2558     ObjPtr<mirror::PointerArray> const method_trace =
   2559         ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(decoded_traces->Get(0)));
   2560     // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
   2561     ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
   2562     uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
   2563         i + method_trace->GetLength() / 2, kRuntimePointerSize);
   2564     int32_t line_number;
   2565     StackHandleScope<3> hs(soa.Self());
   2566     auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
   2567     auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
   2568     if (method->IsProxyMethod()) {
   2569       line_number = -1;
   2570       class_name_object.Assign(method->GetDeclaringClass()->GetName());
   2571       // source_name_object intentionally left null for proxy methods
   2572     } else {
   2573       line_number = method->GetLineNumFromDexPC(dex_pc);
   2574       // Allocate element, potentially triggering GC
   2575       // TODO: reuse class_name_object via Class::name_?
   2576       const char* descriptor = method->GetDeclaringClassDescriptor();
   2577       CHECK(descriptor != nullptr);
   2578       std::string class_name(PrettyDescriptor(descriptor));
   2579       class_name_object.Assign(
   2580           mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
   2581       if (class_name_object == nullptr) {
   2582         soa.Self()->AssertPendingOOMException();
   2583         return nullptr;
   2584       }
   2585       const char* source_file = method->GetDeclaringClassSourceFile();
   2586       if (line_number == -1) {
   2587         // Make the line_number field of StackTraceElement hold the dex pc.
   2588         // source_name_object is intentionally left null if we failed to map the dex pc to
   2589         // a line number (most probably because there is no debug info). See b/30183883.
   2590         line_number = dex_pc;
   2591       } else {
   2592         if (source_file != nullptr) {
   2593           source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
   2594           if (source_name_object == nullptr) {
   2595             soa.Self()->AssertPendingOOMException();
   2596             return nullptr;
   2597           }
   2598         }
   2599       }
   2600     }
   2601     const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
   2602     CHECK(method_name != nullptr);
   2603     Handle<mirror::String> method_name_object(
   2604         hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
   2605     if (method_name_object == nullptr) {
   2606       return nullptr;
   2607     }
   2608     ObjPtr<mirror::StackTraceElement> obj = mirror::StackTraceElement::Alloc(soa.Self(),
   2609                                                                              class_name_object,
   2610                                                                              method_name_object,
   2611                                                                              source_name_object,
   2612                                                                              line_number);
   2613     if (obj == nullptr) {
   2614       return nullptr;
   2615     }
   2616     // We are called from native: use non-transactional mode.
   2617     soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(i, obj);
   2618   }
   2619   return result;
   2620 }
   2621 
   2622 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
   2623   va_list args;
   2624   va_start(args, fmt);
   2625   ThrowNewExceptionV(exception_class_descriptor, fmt, args);
   2626   va_end(args);
   2627 }
   2628 
   2629 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
   2630                                 const char* fmt, va_list ap) {
   2631   std::string msg;
   2632   StringAppendV(&msg, fmt, ap);
   2633   ThrowNewException(exception_class_descriptor, msg.c_str());
   2634 }
   2635 
   2636 void Thread::ThrowNewException(const char* exception_class_descriptor,
   2637                                const char* msg) {
   2638   // Callers should either clear or call ThrowNewWrappedException.
   2639   AssertNoPendingExceptionForNewException(msg);
   2640   ThrowNewWrappedException(exception_class_descriptor, msg);
   2641 }
   2642 
   2643 static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
   2644     REQUIRES_SHARED(Locks::mutator_lock_) {
   2645   ArtMethod* method = self->GetCurrentMethod(nullptr);
   2646   return method != nullptr
   2647       ? method->GetDeclaringClass()->GetClassLoader()
   2648       : nullptr;
   2649 }
   2650 
   2651 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
   2652                                       const char* msg) {
   2653   DCHECK_EQ(this, Thread::Current());
   2654   ScopedObjectAccessUnchecked soa(this);
   2655   StackHandleScope<3> hs(soa.Self());
   2656   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
   2657   ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
   2658   ClearException();
   2659   Runtime* runtime = Runtime::Current();
   2660   auto* cl = runtime->GetClassLinker();
   2661   Handle<mirror::Class> exception_class(
   2662       hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
   2663   if (UNLIKELY(exception_class == nullptr)) {
   2664     CHECK(IsExceptionPending());
   2665     LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
   2666     return;
   2667   }
   2668 
   2669   if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
   2670                                                              true))) {
   2671     DCHECK(IsExceptionPending());
   2672     return;
   2673   }
   2674   DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
   2675   Handle<mirror::Throwable> exception(
   2676       hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
   2677 
   2678   // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
   2679   if (exception == nullptr) {
   2680     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
   2681     return;
   2682   }
   2683 
   2684   // Choose an appropriate constructor and set up the arguments.
   2685   const char* signature;
   2686   ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
   2687   if (msg != nullptr) {
   2688     // Ensure we remember this and the method over the String allocation.
   2689     msg_string.reset(
   2690         soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
   2691     if (UNLIKELY(msg_string.get() == nullptr)) {
   2692       CHECK(IsExceptionPending());  // OOME.
   2693       return;
   2694     }
   2695     if (cause.get() == nullptr) {
   2696       signature = "(Ljava/lang/String;)V";
   2697     } else {
   2698       signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
   2699     }
   2700   } else {
   2701     if (cause.get() == nullptr) {
   2702       signature = "()V";
   2703     } else {
   2704       signature = "(Ljava/lang/Throwable;)V";
   2705     }
   2706   }
   2707   ArtMethod* exception_init_method =
   2708       exception_class->FindDeclaredDirectMethod("<init>", signature, cl->GetImagePointerSize());
   2709 
   2710   CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
   2711       << PrettyDescriptor(exception_class_descriptor);
   2712 
   2713   if (UNLIKELY(!runtime->IsStarted())) {
   2714     // Something is trying to throw an exception without a started runtime, which is the common
   2715     // case in the compiler. We won't be able to invoke the constructor of the exception, so set
   2716     // the exception fields directly.
   2717     if (msg != nullptr) {
   2718       exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
   2719     }
   2720     if (cause.get() != nullptr) {
   2721       exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
   2722     }
   2723     ScopedLocalRef<jobject> trace(GetJniEnv(),
   2724                                   Runtime::Current()->IsActiveTransaction()
   2725                                       ? CreateInternalStackTrace<true>(soa)
   2726                                       : CreateInternalStackTrace<false>(soa));
   2727     if (trace.get() != nullptr) {
   2728       exception->SetStackState(DecodeJObject(trace.get()).Ptr());
   2729     }
   2730     SetException(exception.Get());
   2731   } else {
   2732     jvalue jv_args[2];
   2733     size_t i = 0;
   2734 
   2735     if (msg != nullptr) {
   2736       jv_args[i].l = msg_string.get();
   2737       ++i;
   2738     }
   2739     if (cause.get() != nullptr) {
   2740       jv_args[i].l = cause.get();
   2741       ++i;
   2742     }
   2743     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
   2744     InvokeWithJValues(soa, ref.get(), jni::EncodeArtMethod(exception_init_method), jv_args);
   2745     if (LIKELY(!IsExceptionPending())) {
   2746       SetException(exception.Get());
   2747     }
   2748   }
   2749 }
   2750 
   2751 void Thread::ThrowOutOfMemoryError(const char* msg) {
   2752   LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
   2753       msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
   2754   if (!tls32_.throwing_OutOfMemoryError) {
   2755     tls32_.throwing_OutOfMemoryError = true;
   2756     ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
   2757     tls32_.throwing_OutOfMemoryError = false;
   2758   } else {
   2759     Dump(LOG_STREAM(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
   2760     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
   2761   }
   2762 }
   2763 
   2764 Thread* Thread::CurrentFromGdb() {
   2765   return Thread::Current();
   2766 }
   2767 
   2768 void Thread::DumpFromGdb() const {
   2769   std::ostringstream ss;
   2770   Dump(ss);
   2771   std::string str(ss.str());
   2772   // log to stderr for debugging command line processes
   2773   std::cerr << str;
   2774 #ifdef ART_TARGET_ANDROID
   2775   // log to logcat for debugging frameworks processes
   2776   LOG(INFO) << str;
   2777 #endif
   2778 }
   2779 
   2780 // Explicitly instantiate 32 and 64bit thread offset dumping support.
   2781 template
   2782 void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
   2783 template
   2784 void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
   2785 
   2786 template<PointerSize ptr_size>
   2787 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
   2788 #define DO_THREAD_OFFSET(x, y) \
   2789     if (offset == (x).Uint32Value()) { \
   2790       os << (y); \
   2791       return; \
   2792     }
   2793   DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
   2794   DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
   2795   DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
   2796   DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
   2797   DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
   2798   DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
   2799   DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
   2800   DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
   2801   DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
   2802   DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
   2803   DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
   2804   DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
   2805 #undef DO_THREAD_OFFSET
   2806 
   2807 #define JNI_ENTRY_POINT_INFO(x) \
   2808     if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
   2809       os << #x; \
   2810       return; \
   2811     }
   2812   JNI_ENTRY_POINT_INFO(pDlsymLookup)
   2813 #undef JNI_ENTRY_POINT_INFO
   2814 
   2815 #define QUICK_ENTRY_POINT_INFO(x) \
   2816     if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
   2817       os << #x; \
   2818       return; \
   2819     }
   2820   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
   2821   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
   2822   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
   2823   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
   2824   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
   2825   QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
   2826   QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
   2827   QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
   2828   QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
   2829   QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
   2830   QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
   2831   QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
   2832   QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
   2833   QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
   2834   QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
   2835   QUICK_ENTRY_POINT_INFO(pInitializeType)
   2836   QUICK_ENTRY_POINT_INFO(pResolveString)
   2837   QUICK_ENTRY_POINT_INFO(pSet8Instance)
   2838   QUICK_ENTRY_POINT_INFO(pSet8Static)
   2839   QUICK_ENTRY_POINT_INFO(pSet16Instance)
   2840   QUICK_ENTRY_POINT_INFO(pSet16Static)
   2841   QUICK_ENTRY_POINT_INFO(pSet32Instance)
   2842   QUICK_ENTRY_POINT_INFO(pSet32Static)
   2843   QUICK_ENTRY_POINT_INFO(pSet64Instance)
   2844   QUICK_ENTRY_POINT_INFO(pSet64Static)
   2845   QUICK_ENTRY_POINT_INFO(pSetObjInstance)
   2846   QUICK_ENTRY_POINT_INFO(pSetObjStatic)
   2847   QUICK_ENTRY_POINT_INFO(pGetByteInstance)
   2848   QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
   2849   QUICK_ENTRY_POINT_INFO(pGetByteStatic)
   2850   QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
   2851   QUICK_ENTRY_POINT_INFO(pGetShortInstance)
   2852   QUICK_ENTRY_POINT_INFO(pGetCharInstance)
   2853   QUICK_ENTRY_POINT_INFO(pGetShortStatic)
   2854   QUICK_ENTRY_POINT_INFO(pGetCharStatic)
   2855   QUICK_ENTRY_POINT_INFO(pGet32Instance)
   2856   QUICK_ENTRY_POINT_INFO(pGet32Static)
   2857   QUICK_ENTRY_POINT_INFO(pGet64Instance)
   2858   QUICK_ENTRY_POINT_INFO(pGet64Static)
   2859   QUICK_ENTRY_POINT_INFO(pGetObjInstance)
   2860   QUICK_ENTRY_POINT_INFO(pGetObjStatic)
   2861   QUICK_ENTRY_POINT_INFO(pAputObject)
   2862   QUICK_ENTRY_POINT_INFO(pJniMethodStart)
   2863   QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
   2864   QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
   2865   QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
   2866   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
   2867   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
   2868   QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
   2869   QUICK_ENTRY_POINT_INFO(pLockObject)
   2870   QUICK_ENTRY_POINT_INFO(pUnlockObject)
   2871   QUICK_ENTRY_POINT_INFO(pCmpgDouble)
   2872   QUICK_ENTRY_POINT_INFO(pCmpgFloat)
   2873   QUICK_ENTRY_POINT_INFO(pCmplDouble)
   2874   QUICK_ENTRY_POINT_INFO(pCmplFloat)
   2875   QUICK_ENTRY_POINT_INFO(pCos)
   2876   QUICK_ENTRY_POINT_INFO(pSin)
   2877   QUICK_ENTRY_POINT_INFO(pAcos)
   2878   QUICK_ENTRY_POINT_INFO(pAsin)
   2879   QUICK_ENTRY_POINT_INFO(pAtan)
   2880   QUICK_ENTRY_POINT_INFO(pAtan2)
   2881   QUICK_ENTRY_POINT_INFO(pCbrt)
   2882   QUICK_ENTRY_POINT_INFO(pCosh)
   2883   QUICK_ENTRY_POINT_INFO(pExp)
   2884   QUICK_ENTRY_POINT_INFO(pExpm1)
   2885   QUICK_ENTRY_POINT_INFO(pHypot)
   2886   QUICK_ENTRY_POINT_INFO(pLog)
   2887   QUICK_ENTRY_POINT_INFO(pLog10)
   2888   QUICK_ENTRY_POINT_INFO(pNextAfter)
   2889   QUICK_ENTRY_POINT_INFO(pSinh)
   2890   QUICK_ENTRY_POINT_INFO(pTan)
   2891   QUICK_ENTRY_POINT_INFO(pTanh)
   2892   QUICK_ENTRY_POINT_INFO(pFmod)
   2893   QUICK_ENTRY_POINT_INFO(pL2d)
   2894   QUICK_ENTRY_POINT_INFO(pFmodf)
   2895   QUICK_ENTRY_POINT_INFO(pL2f)
   2896   QUICK_ENTRY_POINT_INFO(pD2iz)
   2897   QUICK_ENTRY_POINT_INFO(pF2iz)
   2898   QUICK_ENTRY_POINT_INFO(pIdivmod)
   2899   QUICK_ENTRY_POINT_INFO(pD2l)
   2900   QUICK_ENTRY_POINT_INFO(pF2l)
   2901   QUICK_ENTRY_POINT_INFO(pLdiv)
   2902   QUICK_ENTRY_POINT_INFO(pLmod)
   2903   QUICK_ENTRY_POINT_INFO(pLmul)
   2904   QUICK_ENTRY_POINT_INFO(pShlLong)
   2905   QUICK_ENTRY_POINT_INFO(pShrLong)
   2906   QUICK_ENTRY_POINT_INFO(pUshrLong)
   2907   QUICK_ENTRY_POINT_INFO(pIndexOf)
   2908   QUICK_ENTRY_POINT_INFO(pStringCompareTo)
   2909   QUICK_ENTRY_POINT_INFO(pMemcpy)
   2910   QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
   2911   QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
   2912   QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
   2913   QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
   2914   QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
   2915   QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
   2916   QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
   2917   QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
   2918   QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
   2919   QUICK_ENTRY_POINT_INFO(pTestSuspend)
   2920   QUICK_ENTRY_POINT_INFO(pDeliverException)
   2921   QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
   2922   QUICK_ENTRY_POINT_INFO(pThrowDivZero)
   2923   QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
   2924   QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
   2925   QUICK_ENTRY_POINT_INFO(pDeoptimize)
   2926   QUICK_ENTRY_POINT_INFO(pA64Load)
   2927   QUICK_ENTRY_POINT_INFO(pA64Store)
   2928   QUICK_ENTRY_POINT_INFO(pNewEmptyString)
   2929   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
   2930   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
   2931   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
   2932   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
   2933   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
   2934   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
   2935   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
   2936   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
   2937   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
   2938   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
   2939   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
   2940   QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
   2941   QUICK_ENTRY_POINT_INFO(pNewStringFromString)
   2942   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
   2943   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
   2944   QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
   2945   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
   2946   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
   2947   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
   2948   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
   2949   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
   2950   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
   2951   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
   2952   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
   2953   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
   2954   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
   2955   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
   2956   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
   2957   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
   2958   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
   2959   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
   2960   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
   2961   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
   2962   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
   2963   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
   2964   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
   2965   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
   2966   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
   2967   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
   2968   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
   2969   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
   2970   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
   2971   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
   2972   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
   2973   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
   2974   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
   2975   QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
   2976   QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
   2977 
   2978   QUICK_ENTRY_POINT_INFO(pJniMethodFastStart)
   2979   QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd)
   2980 #undef QUICK_ENTRY_POINT_INFO
   2981 
   2982   os << offset;
   2983 }
   2984 
   2985 void Thread::QuickDeliverException() {
   2986   // Get exception from thread.
   2987   ObjPtr<mirror::Throwable> exception = GetException();
   2988   CHECK(exception != nullptr);
   2989   if (exception == GetDeoptimizationException()) {
   2990     artDeoptimize(this);
   2991     UNREACHABLE();
   2992   }
   2993 
   2994   // This is a real exception: let the instrumentation know about it.
   2995   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
   2996   if (instrumentation->HasExceptionCaughtListeners() &&
   2997       IsExceptionThrownByCurrentMethod(exception)) {
   2998     // Instrumentation may cause GC so keep the exception object safe.
   2999     StackHandleScope<1> hs(this);
   3000     HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
   3001     instrumentation->ExceptionCaughtEvent(this, exception.Ptr());
   3002   }
   3003   // Does instrumentation need to deoptimize the stack?
   3004   // Note: we do this *after* reporting the exception to instrumentation in case it
   3005   // now requires deoptimization. It may happen if a debugger is attached and requests
   3006   // new events (single-step, breakpoint, ...) when the exception is reported.
   3007   if (Dbg::IsForcedInterpreterNeededForException(this)) {
   3008     NthCallerVisitor visitor(this, 0, false);
   3009     visitor.WalkStack();
   3010     if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.caller_pc)) {
   3011       // Save the exception into the deoptimization context so it can be restored
   3012       // before entering the interpreter.
   3013       PushDeoptimizationContext(
   3014           JValue(), /*is_reference */ false, /* from_code */ false, exception);
   3015       artDeoptimize(this);
   3016       UNREACHABLE();
   3017     } else {
   3018       LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
   3019                    << visitor.caller->PrettyMethod();
   3020     }
   3021   }
   3022 
   3023   // Don't leave exception visible while we try to find the handler, which may cause class
   3024   // resolution.
   3025   ClearException();
   3026   QuickExceptionHandler exception_handler(this, false);
   3027   exception_handler.FindCatch(exception);
   3028   exception_handler.UpdateInstrumentationStack();
   3029   exception_handler.DoLongJump();
   3030 }
   3031 
   3032 Context* Thread::GetLongJumpContext() {
   3033   Context* result = tlsPtr_.long_jump_context;
   3034   if (result == nullptr) {
   3035     result = Context::Create();
   3036   } else {
   3037     tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
   3038     result->Reset();
   3039   }
   3040   return result;
   3041 }
   3042 
   3043 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
   3044 //       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
   3045 struct CurrentMethodVisitor FINAL : public StackVisitor {
   3046   CurrentMethodVisitor(Thread* thread, Context* context, bool check_suspended, bool abort_on_error)
   3047       REQUIRES_SHARED(Locks::mutator_lock_)
   3048       : StackVisitor(thread,
   3049                      context,
   3050                      StackVisitor::StackWalkKind::kIncludeInlinedFrames,
   3051                      check_suspended),
   3052         this_object_(nullptr),
   3053         method_(nullptr),
   3054         dex_pc_(0),
   3055         abort_on_error_(abort_on_error) {}
   3056   bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
   3057     ArtMethod* m = GetMethod();
   3058     if (m->IsRuntimeMethod()) {
   3059       // Continue if this is a runtime method.
   3060       return true;
   3061     }
   3062     if (context_ != nullptr) {
   3063       this_object_ = GetThisObject();
   3064     }
   3065     method_ = m;
   3066     dex_pc_ = GetDexPc(abort_on_error_);
   3067     return false;
   3068   }
   3069   ObjPtr<mirror::Object> this_object_;
   3070   ArtMethod* method_;
   3071   uint32_t dex_pc_;
   3072   const bool abort_on_error_;
   3073 };
   3074 
   3075 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc,
   3076                                     bool check_suspended,
   3077                                     bool abort_on_error) const {
   3078   CurrentMethodVisitor visitor(const_cast<Thread*>(this),
   3079                                nullptr,
   3080                                check_suspended,
   3081                                abort_on_error);
   3082   visitor.WalkStack(false);
   3083   if (dex_pc != nullptr) {
   3084     *dex_pc = visitor.dex_pc_;
   3085   }
   3086   return visitor.method_;
   3087 }
   3088 
   3089 bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
   3090   return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
   3091 }
   3092 
   3093 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
   3094 template <typename RootVisitor, bool kPrecise = false>
   3095 class ReferenceMapVisitor : public StackVisitor {
   3096  public:
   3097   ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
   3098       REQUIRES_SHARED(Locks::mutator_lock_)
   3099         // We are visiting the references in compiled frames, so we do not need
   3100         // to know the inlined frames.
   3101       : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
   3102         visitor_(visitor) {}
   3103 
   3104   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
   3105     if (false) {
   3106       LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
   3107                 << StringPrintf("@ PC:%04x", GetDexPc());
   3108     }
   3109     ShadowFrame* shadow_frame = GetCurrentShadowFrame();
   3110     if (shadow_frame != nullptr) {
   3111       VisitShadowFrame(shadow_frame);
   3112     } else {
   3113       VisitQuickFrame();
   3114     }
   3115     return true;
   3116   }
   3117 
   3118   void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
   3119     ArtMethod* m = shadow_frame->GetMethod();
   3120     VisitDeclaringClass(m);
   3121     DCHECK(m != nullptr);
   3122     size_t num_regs = shadow_frame->NumberOfVRegs();
   3123     DCHECK(m->IsNative() || shadow_frame->HasReferenceArray());
   3124     // handle scope for JNI or References for interpreter.
   3125     for (size_t reg = 0; reg < num_regs; ++reg) {
   3126       mirror::Object* ref = shadow_frame->GetVRegReference(reg);
   3127       if (ref != nullptr) {
   3128         mirror::Object* new_ref = ref;
   3129         visitor_(&new_ref, reg, this);
   3130         if (new_ref != ref) {
   3131           shadow_frame->SetVRegReference(reg, new_ref);
   3132         }
   3133       }
   3134     }
   3135     // Mark lock count map required for structured locking checks.
   3136     shadow_frame->GetLockCountData().VisitMonitors(visitor_, -1, this);
   3137   }
   3138 
   3139  private:
   3140   // Visiting the declaring class is necessary so that we don't unload the class of a method that
   3141   // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
   3142   // the threads do not all hold the heap bitmap lock for parallel GC.
   3143   void VisitDeclaringClass(ArtMethod* method)
   3144       REQUIRES_SHARED(Locks::mutator_lock_)
   3145       NO_THREAD_SAFETY_ANALYSIS {
   3146     ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
   3147     // klass can be null for runtime methods.
   3148     if (klass != nullptr) {
   3149       if (kVerifyImageObjectsMarked) {
   3150         gc::Heap* const heap = Runtime::Current()->GetHeap();
   3151         gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
   3152                                                                                 /*fail_ok*/true);
   3153         if (space != nullptr && space->IsImageSpace()) {
   3154           bool failed = false;
   3155           if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
   3156             failed = true;
   3157             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
   3158           } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
   3159             failed = true;
   3160             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
   3161           }
   3162           if (failed) {
   3163             GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
   3164             space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
   3165             LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
   3166                                      << " klass@" << klass.Ptr();
   3167             // Pretty info last in case it crashes.
   3168             LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
   3169                        << klass->PrettyClass();
   3170           }
   3171         }
   3172       }
   3173       mirror::Object* new_ref = klass.Ptr();
   3174       visitor_(&new_ref, -1, this);
   3175       if (new_ref != klass) {
   3176         method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
   3177       }
   3178     }
   3179   }
   3180 
   3181   template <typename T>
   3182   ALWAYS_INLINE
   3183   inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
   3184     ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
   3185     DCHECK(cur_quick_frame != nullptr);
   3186     ArtMethod* m = *cur_quick_frame;
   3187     VisitDeclaringClass(m);
   3188 
   3189     // Process register map (which native and runtime methods don't have)
   3190     if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
   3191       const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
   3192       DCHECK(method_header->IsOptimized());
   3193       auto* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>(
   3194           reinterpret_cast<uintptr_t>(cur_quick_frame));
   3195       uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
   3196       CodeInfo code_info = method_header->GetOptimizedCodeInfo();
   3197       CodeInfoEncoding encoding = code_info.ExtractEncoding();
   3198       StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
   3199       DCHECK(map.IsValid());
   3200 
   3201       T vreg_info(m, code_info, encoding, map, visitor_);
   3202 
   3203       // Visit stack entries that hold pointers.
   3204       const size_t number_of_bits = code_info.GetNumberOfStackMaskBits(encoding);
   3205       BitMemoryRegion stack_mask = code_info.GetStackMaskOf(encoding, map);
   3206       for (size_t i = 0; i < number_of_bits; ++i) {
   3207         if (stack_mask.LoadBit(i)) {
   3208           auto* ref_addr = vreg_base + i;
   3209           mirror::Object* ref = ref_addr->AsMirrorPtr();
   3210           if (ref != nullptr) {
   3211             mirror::Object* new_ref = ref;
   3212             vreg_info.VisitStack(&new_ref, i, this);
   3213             if (ref != new_ref) {
   3214               ref_addr->Assign(new_ref);
   3215            }
   3216           }
   3217         }
   3218       }
   3219       // Visit callee-save registers that hold pointers.
   3220       uint32_t register_mask = code_info.GetRegisterMaskOf(encoding, map);
   3221       for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
   3222         if (register_mask & (1 << i)) {
   3223           mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
   3224           if (kIsDebugBuild && ref_addr == nullptr) {
   3225             std::string thread_name;
   3226             GetThread()->GetThreadName(thread_name);
   3227             LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
   3228             DescribeStack(GetThread());
   3229             LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
   3230                        << "set in register_mask=" << register_mask << " at " << DescribeLocation();
   3231           }
   3232           if (*ref_addr != nullptr) {
   3233             vreg_info.VisitRegister(ref_addr, i, this);
   3234           }
   3235         }
   3236       }
   3237     }
   3238   }
   3239 
   3240   void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
   3241     if (kPrecise) {
   3242       VisitQuickFramePrecise();
   3243     } else {
   3244       VisitQuickFrameNonPrecise();
   3245     }
   3246   }
   3247 
   3248   void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
   3249     struct UndefinedVRegInfo {
   3250       UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED,
   3251                         const CodeInfo& code_info ATTRIBUTE_UNUSED,
   3252                         const CodeInfoEncoding& encoding ATTRIBUTE_UNUSED,
   3253                         const StackMap& map ATTRIBUTE_UNUSED,
   3254                         RootVisitor& _visitor)
   3255           : visitor(_visitor) {
   3256       }
   3257 
   3258       ALWAYS_INLINE
   3259       void VisitStack(mirror::Object** ref,
   3260                       size_t stack_index ATTRIBUTE_UNUSED,
   3261                       const StackVisitor* stack_visitor)
   3262           REQUIRES_SHARED(Locks::mutator_lock_) {
   3263         visitor(ref, -1, stack_visitor);
   3264       }
   3265 
   3266       ALWAYS_INLINE
   3267       void VisitRegister(mirror::Object** ref,
   3268                          size_t register_index ATTRIBUTE_UNUSED,
   3269                          const StackVisitor* stack_visitor)
   3270           REQUIRES_SHARED(Locks::mutator_lock_) {
   3271         visitor(ref, -1, stack_visitor);
   3272       }
   3273 
   3274       RootVisitor& visitor;
   3275     };
   3276     VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
   3277   }
   3278 
   3279   void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
   3280     struct StackMapVRegInfo {
   3281       StackMapVRegInfo(ArtMethod* method,
   3282                        const CodeInfo& _code_info,
   3283                        const CodeInfoEncoding& _encoding,
   3284                        const StackMap& map,
   3285                        RootVisitor& _visitor)
   3286           : number_of_dex_registers(method->GetCodeItem()->registers_size_),
   3287             code_info(_code_info),
   3288             encoding(_encoding),
   3289             dex_register_map(code_info.GetDexRegisterMapOf(map,
   3290                                                            encoding,
   3291                                                            number_of_dex_registers)),
   3292             visitor(_visitor) {
   3293       }
   3294 
   3295       // TODO: If necessary, we should consider caching a reverse map instead of the linear
   3296       //       lookups for each location.
   3297       void FindWithType(const size_t index,
   3298                         const DexRegisterLocation::Kind kind,
   3299                         mirror::Object** ref,
   3300                         const StackVisitor* stack_visitor)
   3301           REQUIRES_SHARED(Locks::mutator_lock_) {
   3302         bool found = false;
   3303         for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
   3304           DexRegisterLocation location = dex_register_map.GetDexRegisterLocation(
   3305               dex_reg, number_of_dex_registers, code_info, encoding);
   3306           if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
   3307             visitor(ref, dex_reg, stack_visitor);
   3308             found = true;
   3309           }
   3310         }
   3311 
   3312         if (!found) {
   3313           // If nothing found, report with -1.
   3314           visitor(ref, -1, stack_visitor);
   3315         }
   3316       }
   3317 
   3318       void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
   3319           REQUIRES_SHARED(Locks::mutator_lock_) {
   3320         const size_t stack_offset = stack_index * kFrameSlotSize;
   3321         FindWithType(stack_offset,
   3322                      DexRegisterLocation::Kind::kInStack,
   3323                      ref,
   3324                      stack_visitor);
   3325       }
   3326 
   3327       void VisitRegister(mirror::Object** ref,
   3328                          size_t register_index,
   3329                          const StackVisitor* stack_visitor)
   3330           REQUIRES_SHARED(Locks::mutator_lock_) {
   3331         FindWithType(register_index,
   3332                      DexRegisterLocation::Kind::kInRegister,
   3333                      ref,
   3334                      stack_visitor);
   3335       }
   3336 
   3337       size_t number_of_dex_registers;
   3338       const CodeInfo& code_info;
   3339       const CodeInfoEncoding& encoding;
   3340       DexRegisterMap dex_register_map;
   3341       RootVisitor& visitor;
   3342     };
   3343     VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
   3344   }
   3345 
   3346   // Visitor for when we visit a root.
   3347   RootVisitor& visitor_;
   3348 };
   3349 
   3350 class RootCallbackVisitor {
   3351  public:
   3352   RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
   3353 
   3354   void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
   3355       REQUIRES_SHARED(Locks::mutator_lock_) {
   3356     visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
   3357   }
   3358 
   3359  private:
   3360   RootVisitor* const visitor_;
   3361   const uint32_t tid_;
   3362 };
   3363 
   3364 template <bool kPrecise>
   3365 void Thread::VisitRoots(RootVisitor* visitor) {
   3366   const uint32_t thread_id = GetThreadId();
   3367   visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
   3368   if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
   3369     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
   3370                        RootInfo(kRootNativeStack, thread_id));
   3371   }
   3372   visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
   3373   tlsPtr_.jni_env->locals.VisitRoots(visitor, RootInfo(kRootJNILocal, thread_id));
   3374   tlsPtr_.jni_env->monitors.VisitRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
   3375   HandleScopeVisitRoots(visitor, thread_id);
   3376   if (tlsPtr_.debug_invoke_req != nullptr) {
   3377     tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
   3378   }
   3379   // Visit roots for deoptimization.
   3380   if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
   3381     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
   3382     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
   3383     for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
   3384          record != nullptr;
   3385          record = record->GetLink()) {
   3386       for (ShadowFrame* shadow_frame = record->GetShadowFrame();
   3387            shadow_frame != nullptr;
   3388            shadow_frame = shadow_frame->GetLink()) {
   3389         mapper.VisitShadowFrame(shadow_frame);
   3390       }
   3391     }
   3392   }
   3393   for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
   3394        record != nullptr;
   3395        record = record->GetLink()) {
   3396     if (record->IsReference()) {
   3397       visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
   3398                                   RootInfo(kRootThreadObject, thread_id));
   3399     }
   3400     visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
   3401                                 RootInfo(kRootThreadObject, thread_id));
   3402   }
   3403   if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
   3404     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
   3405     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
   3406     for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
   3407          record != nullptr;
   3408          record = record->GetNext()) {
   3409       mapper.VisitShadowFrame(record->GetShadowFrame());
   3410     }
   3411   }
   3412   for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
   3413     verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
   3414   }
   3415   // Visit roots on this thread's stack
   3416   Context* context = GetLongJumpContext();
   3417   RootCallbackVisitor visitor_to_callback(visitor, thread_id);
   3418   ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, context, visitor_to_callback);
   3419   mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
   3420   ReleaseLongJumpContext(context);
   3421   for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
   3422     visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
   3423   }
   3424 }
   3425 
   3426 void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
   3427   if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
   3428     VisitRoots<true>(visitor);
   3429   } else {
   3430     VisitRoots<false>(visitor);
   3431   }
   3432 }
   3433 
   3434 class VerifyRootVisitor : public SingleRootVisitor {
   3435  public:
   3436   void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
   3437       OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
   3438     VerifyObject(root);
   3439   }
   3440 };
   3441 
   3442 void Thread::VerifyStackImpl() {
   3443   VerifyRootVisitor visitor;
   3444   std::unique_ptr<Context> context(Context::Create());
   3445   RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
   3446   ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
   3447   mapper.WalkStack();
   3448 }
   3449 
   3450 // Set the stack end to that to be used during a stack overflow
   3451 void Thread::SetStackEndForStackOverflow() {
   3452   // During stack overflow we allow use of the full stack.
   3453   if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
   3454     // However, we seem to have already extended to use the full stack.
   3455     LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
   3456                << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
   3457     DumpStack(LOG_STREAM(ERROR));
   3458     LOG(FATAL) << "Recursive stack overflow.";
   3459   }
   3460 
   3461   tlsPtr_.stack_end = tlsPtr_.stack_begin;
   3462 
   3463   // Remove the stack overflow protection if is it set up.
   3464   bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
   3465   if (implicit_stack_check) {
   3466     if (!UnprotectStack()) {
   3467       LOG(ERROR) << "Unable to remove stack protection for stack overflow";
   3468     }
   3469   }
   3470 }
   3471 
   3472 void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
   3473   DCHECK_LE(start, end);
   3474   DCHECK_LE(end, limit);
   3475   tlsPtr_.thread_local_start = start;
   3476   tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
   3477   tlsPtr_.thread_local_end = end;
   3478   tlsPtr_.thread_local_limit = limit;
   3479   tlsPtr_.thread_local_objects = 0;
   3480 }
   3481 
   3482 bool Thread::HasTlab() const {
   3483   bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
   3484   if (has_tlab) {
   3485     DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
   3486   } else {
   3487     DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
   3488   }
   3489   return has_tlab;
   3490 }
   3491 
   3492 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
   3493   thread.ShortDump(os);
   3494   return os;
   3495 }
   3496 
   3497 bool Thread::ProtectStack(bool fatal_on_error) {
   3498   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
   3499   VLOG(threads) << "Protecting stack at " << pregion;
   3500   if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
   3501     if (fatal_on_error) {
   3502       LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
   3503           "Reason: "
   3504           << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
   3505     }
   3506     return false;
   3507   }
   3508   return true;
   3509 }
   3510 
   3511 bool Thread::UnprotectStack() {
   3512   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
   3513   VLOG(threads) << "Unprotecting stack at " << pregion;
   3514   return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
   3515 }
   3516 
   3517 void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
   3518   CHECK(Dbg::IsDebuggerActive());
   3519   CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
   3520   CHECK(ssc != nullptr);
   3521   tlsPtr_.single_step_control = ssc;
   3522 }
   3523 
   3524 void Thread::DeactivateSingleStepControl() {
   3525   CHECK(Dbg::IsDebuggerActive());
   3526   CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
   3527   SingleStepControl* ssc = GetSingleStepControl();
   3528   tlsPtr_.single_step_control = nullptr;
   3529   delete ssc;
   3530 }
   3531 
   3532 void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
   3533   CHECK(Dbg::IsDebuggerActive());
   3534   CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
   3535   CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
   3536   CHECK(req != nullptr);
   3537   tlsPtr_.debug_invoke_req = req;
   3538 }
   3539 
   3540 void Thread::ClearDebugInvokeReq() {
   3541   CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
   3542   CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
   3543   DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
   3544   tlsPtr_.debug_invoke_req = nullptr;
   3545   delete req;
   3546 }
   3547 
   3548 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
   3549   verifier->link_ = tlsPtr_.method_verifier;
   3550   tlsPtr_.method_verifier = verifier;
   3551 }
   3552 
   3553 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
   3554   CHECK_EQ(tlsPtr_.method_verifier, verifier);
   3555   tlsPtr_.method_verifier = verifier->link_;
   3556 }
   3557 
   3558 size_t Thread::NumberOfHeldMutexes() const {
   3559   size_t count = 0;
   3560   for (BaseMutex* mu : tlsPtr_.held_mutexes) {
   3561     count += mu != nullptr ? 1 : 0;
   3562   }
   3563   return count;
   3564 }
   3565 
   3566 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
   3567   DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
   3568   ClearException();
   3569   ShadowFrame* shadow_frame =
   3570       PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
   3571   ObjPtr<mirror::Throwable> pending_exception;
   3572   bool from_code = false;
   3573   PopDeoptimizationContext(result, &pending_exception, &from_code);
   3574   SetTopOfStack(nullptr);
   3575   SetTopOfShadowStack(shadow_frame);
   3576 
   3577   // Restore the exception that was pending before deoptimization then interpret the
   3578   // deoptimized frames.
   3579   if (pending_exception != nullptr) {
   3580     SetException(pending_exception);
   3581   }
   3582   interpreter::EnterInterpreterFromDeoptimize(this, shadow_frame, from_code, result);
   3583 }
   3584 
   3585 void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
   3586   CHECK(new_exception != nullptr);
   3587   // TODO: DCHECK(!IsExceptionPending());
   3588   tlsPtr_.exception = new_exception.Ptr();
   3589 }
   3590 
   3591 bool Thread::IsAotCompiler() {
   3592   return Runtime::Current()->IsAotCompiler();
   3593 }
   3594 
   3595 mirror::Object* Thread::GetPeerFromOtherThread() const {
   3596   DCHECK(tlsPtr_.jpeer == nullptr);
   3597   mirror::Object* peer = tlsPtr_.opeer;
   3598   if (kUseReadBarrier && Current()->GetIsGcMarking()) {
   3599     // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
   3600     // may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly
   3601     // mark/forward it here.
   3602     peer = art::ReadBarrier::Mark(peer);
   3603   }
   3604   return peer;
   3605 }
   3606 
   3607 }  // namespace art
   3608