1 // Copyright 2013 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #if V8_TARGET_ARCH_X64 6 7 #include "src/code-stubs.h" 8 #include "src/api-arguments.h" 9 #include "src/bootstrapper.h" 10 #include "src/codegen.h" 11 #include "src/ic/handler-compiler.h" 12 #include "src/ic/ic.h" 13 #include "src/ic/stub-cache.h" 14 #include "src/isolate.h" 15 #include "src/regexp/jsregexp.h" 16 #include "src/regexp/regexp-macro-assembler.h" 17 #include "src/runtime/runtime.h" 18 #include "src/x64/code-stubs-x64.h" 19 20 namespace v8 { 21 namespace internal { 22 23 #define __ ACCESS_MASM(masm) 24 25 void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) { 26 __ popq(rcx); 27 __ movq(MemOperand(rsp, rax, times_8, 0), rdi); 28 __ pushq(rdi); 29 __ pushq(rbx); 30 __ pushq(rcx); 31 __ addq(rax, Immediate(3)); 32 __ TailCallRuntime(Runtime::kNewArray); 33 } 34 35 void FastArrayPushStub::InitializeDescriptor(CodeStubDescriptor* descriptor) { 36 Address deopt_handler = Runtime::FunctionForId(Runtime::kArrayPush)->entry; 37 descriptor->Initialize(rax, deopt_handler, -1, JS_FUNCTION_STUB_MODE); 38 } 39 40 void FastFunctionBindStub::InitializeDescriptor( 41 CodeStubDescriptor* descriptor) { 42 Address deopt_handler = Runtime::FunctionForId(Runtime::kFunctionBind)->entry; 43 descriptor->Initialize(rax, deopt_handler, -1, JS_FUNCTION_STUB_MODE); 44 } 45 46 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm, 47 ExternalReference miss) { 48 // Update the static counter each time a new code stub is generated. 49 isolate()->counters()->code_stubs()->Increment(); 50 51 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor(); 52 int param_count = descriptor.GetRegisterParameterCount(); 53 { 54 // Call the runtime system in a fresh internal frame. 55 FrameScope scope(masm, StackFrame::INTERNAL); 56 DCHECK(param_count == 0 || 57 rax.is(descriptor.GetRegisterParameter(param_count - 1))); 58 // Push arguments 59 for (int i = 0; i < param_count; ++i) { 60 __ Push(descriptor.GetRegisterParameter(i)); 61 } 62 __ CallExternalReference(miss, param_count); 63 } 64 65 __ Ret(); 66 } 67 68 69 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { 70 __ PushCallerSaved(save_doubles() ? kSaveFPRegs : kDontSaveFPRegs); 71 const int argument_count = 1; 72 __ PrepareCallCFunction(argument_count); 73 __ LoadAddress(arg_reg_1, 74 ExternalReference::isolate_address(isolate())); 75 76 AllowExternalCallThatCantCauseGC scope(masm); 77 __ CallCFunction( 78 ExternalReference::store_buffer_overflow_function(isolate()), 79 argument_count); 80 __ PopCallerSaved(save_doubles() ? kSaveFPRegs : kDontSaveFPRegs); 81 __ ret(0); 82 } 83 84 85 class FloatingPointHelper : public AllStatic { 86 public: 87 enum ConvertUndefined { 88 CONVERT_UNDEFINED_TO_ZERO, 89 BAILOUT_ON_UNDEFINED 90 }; 91 // Load the operands from rdx and rax into xmm0 and xmm1, as doubles. 92 // If the operands are not both numbers, jump to not_numbers. 93 // Leaves rdx and rax unchanged. SmiOperands assumes both are smis. 94 // NumberOperands assumes both are smis or heap numbers. 95 static void LoadSSE2UnknownOperands(MacroAssembler* masm, 96 Label* not_numbers); 97 }; 98 99 100 void DoubleToIStub::Generate(MacroAssembler* masm) { 101 Register input_reg = this->source(); 102 Register final_result_reg = this->destination(); 103 DCHECK(is_truncating()); 104 105 Label check_negative, process_64_bits, done; 106 107 int double_offset = offset(); 108 109 // Account for return address and saved regs if input is rsp. 110 if (input_reg.is(rsp)) double_offset += 3 * kRegisterSize; 111 112 MemOperand mantissa_operand(MemOperand(input_reg, double_offset)); 113 MemOperand exponent_operand(MemOperand(input_reg, 114 double_offset + kDoubleSize / 2)); 115 116 Register scratch1; 117 Register scratch_candidates[3] = { rbx, rdx, rdi }; 118 for (int i = 0; i < 3; i++) { 119 scratch1 = scratch_candidates[i]; 120 if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break; 121 } 122 123 // Since we must use rcx for shifts below, use some other register (rax) 124 // to calculate the result if ecx is the requested return register. 125 Register result_reg = final_result_reg.is(rcx) ? rax : final_result_reg; 126 // Save ecx if it isn't the return register and therefore volatile, or if it 127 // is the return register, then save the temp register we use in its stead 128 // for the result. 129 Register save_reg = final_result_reg.is(rcx) ? rax : rcx; 130 __ pushq(scratch1); 131 __ pushq(save_reg); 132 133 bool stash_exponent_copy = !input_reg.is(rsp); 134 __ movl(scratch1, mantissa_operand); 135 __ Movsd(kScratchDoubleReg, mantissa_operand); 136 __ movl(rcx, exponent_operand); 137 if (stash_exponent_copy) __ pushq(rcx); 138 139 __ andl(rcx, Immediate(HeapNumber::kExponentMask)); 140 __ shrl(rcx, Immediate(HeapNumber::kExponentShift)); 141 __ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias)); 142 __ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits)); 143 __ j(below, &process_64_bits); 144 145 // Result is entirely in lower 32-bits of mantissa 146 int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize; 147 __ subl(rcx, Immediate(delta)); 148 __ xorl(result_reg, result_reg); 149 __ cmpl(rcx, Immediate(31)); 150 __ j(above, &done); 151 __ shll_cl(scratch1); 152 __ jmp(&check_negative); 153 154 __ bind(&process_64_bits); 155 __ Cvttsd2siq(result_reg, kScratchDoubleReg); 156 __ jmp(&done, Label::kNear); 157 158 // If the double was negative, negate the integer result. 159 __ bind(&check_negative); 160 __ movl(result_reg, scratch1); 161 __ negl(result_reg); 162 if (stash_exponent_copy) { 163 __ cmpl(MemOperand(rsp, 0), Immediate(0)); 164 } else { 165 __ cmpl(exponent_operand, Immediate(0)); 166 } 167 __ cmovl(greater, result_reg, scratch1); 168 169 // Restore registers 170 __ bind(&done); 171 if (stash_exponent_copy) { 172 __ addp(rsp, Immediate(kDoubleSize)); 173 } 174 if (!final_result_reg.is(result_reg)) { 175 DCHECK(final_result_reg.is(rcx)); 176 __ movl(final_result_reg, result_reg); 177 } 178 __ popq(save_reg); 179 __ popq(scratch1); 180 __ ret(0); 181 } 182 183 184 void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm, 185 Label* not_numbers) { 186 Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done; 187 // Load operand in rdx into xmm0, or branch to not_numbers. 188 __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex); 189 __ JumpIfSmi(rdx, &load_smi_rdx); 190 __ cmpp(FieldOperand(rdx, HeapObject::kMapOffset), rcx); 191 __ j(not_equal, not_numbers); // Argument in rdx is not a number. 192 __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); 193 // Load operand in rax into xmm1, or branch to not_numbers. 194 __ JumpIfSmi(rax, &load_smi_rax); 195 196 __ bind(&load_nonsmi_rax); 197 __ cmpp(FieldOperand(rax, HeapObject::kMapOffset), rcx); 198 __ j(not_equal, not_numbers); 199 __ Movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); 200 __ jmp(&done); 201 202 __ bind(&load_smi_rdx); 203 __ SmiToInteger32(kScratchRegister, rdx); 204 __ Cvtlsi2sd(xmm0, kScratchRegister); 205 __ JumpIfNotSmi(rax, &load_nonsmi_rax); 206 207 __ bind(&load_smi_rax); 208 __ SmiToInteger32(kScratchRegister, rax); 209 __ Cvtlsi2sd(xmm1, kScratchRegister); 210 __ bind(&done); 211 } 212 213 214 void MathPowStub::Generate(MacroAssembler* masm) { 215 const Register exponent = MathPowTaggedDescriptor::exponent(); 216 DCHECK(exponent.is(rdx)); 217 const Register scratch = rcx; 218 const XMMRegister double_result = xmm3; 219 const XMMRegister double_base = xmm2; 220 const XMMRegister double_exponent = xmm1; 221 const XMMRegister double_scratch = xmm4; 222 223 Label call_runtime, done, exponent_not_smi, int_exponent; 224 225 // Save 1 in double_result - we need this several times later on. 226 __ movp(scratch, Immediate(1)); 227 __ Cvtlsi2sd(double_result, scratch); 228 229 if (exponent_type() == TAGGED) { 230 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); 231 __ SmiToInteger32(exponent, exponent); 232 __ jmp(&int_exponent); 233 234 __ bind(&exponent_not_smi); 235 __ Movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset)); 236 } 237 238 if (exponent_type() != INTEGER) { 239 Label fast_power, try_arithmetic_simplification; 240 // Detect integer exponents stored as double. 241 __ DoubleToI(exponent, double_exponent, double_scratch, 242 TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification, 243 &try_arithmetic_simplification, 244 &try_arithmetic_simplification); 245 __ jmp(&int_exponent); 246 247 __ bind(&try_arithmetic_simplification); 248 __ Cvttsd2si(exponent, double_exponent); 249 // Skip to runtime if possibly NaN (indicated by the indefinite integer). 250 __ cmpl(exponent, Immediate(0x1)); 251 __ j(overflow, &call_runtime); 252 253 // Using FPU instructions to calculate power. 254 Label fast_power_failed; 255 __ bind(&fast_power); 256 __ fnclex(); // Clear flags to catch exceptions later. 257 // Transfer (B)ase and (E)xponent onto the FPU register stack. 258 __ subp(rsp, Immediate(kDoubleSize)); 259 __ Movsd(Operand(rsp, 0), double_exponent); 260 __ fld_d(Operand(rsp, 0)); // E 261 __ Movsd(Operand(rsp, 0), double_base); 262 __ fld_d(Operand(rsp, 0)); // B, E 263 264 // Exponent is in st(1) and base is in st(0) 265 // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B) 266 // FYL2X calculates st(1) * log2(st(0)) 267 __ fyl2x(); // X 268 __ fld(0); // X, X 269 __ frndint(); // rnd(X), X 270 __ fsub(1); // rnd(X), X-rnd(X) 271 __ fxch(1); // X - rnd(X), rnd(X) 272 // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1 273 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X) 274 __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X) 275 __ faddp(1); // 2^(X-rnd(X)), rnd(X) 276 // FSCALE calculates st(0) * 2^st(1) 277 __ fscale(); // 2^X, rnd(X) 278 __ fstp(1); 279 // Bail out to runtime in case of exceptions in the status word. 280 __ fnstsw_ax(); 281 __ testb(rax, Immediate(0x5F)); // Check for all but precision exception. 282 __ j(not_zero, &fast_power_failed, Label::kNear); 283 __ fstp_d(Operand(rsp, 0)); 284 __ Movsd(double_result, Operand(rsp, 0)); 285 __ addp(rsp, Immediate(kDoubleSize)); 286 __ jmp(&done); 287 288 __ bind(&fast_power_failed); 289 __ fninit(); 290 __ addp(rsp, Immediate(kDoubleSize)); 291 __ jmp(&call_runtime); 292 } 293 294 // Calculate power with integer exponent. 295 __ bind(&int_exponent); 296 const XMMRegister double_scratch2 = double_exponent; 297 // Back up exponent as we need to check if exponent is negative later. 298 __ movp(scratch, exponent); // Back up exponent. 299 __ Movsd(double_scratch, double_base); // Back up base. 300 __ Movsd(double_scratch2, double_result); // Load double_exponent with 1. 301 302 // Get absolute value of exponent. 303 Label no_neg, while_true, while_false; 304 __ testl(scratch, scratch); 305 __ j(positive, &no_neg, Label::kNear); 306 __ negl(scratch); 307 __ bind(&no_neg); 308 309 __ j(zero, &while_false, Label::kNear); 310 __ shrl(scratch, Immediate(1)); 311 // Above condition means CF==0 && ZF==0. This means that the 312 // bit that has been shifted out is 0 and the result is not 0. 313 __ j(above, &while_true, Label::kNear); 314 __ Movsd(double_result, double_scratch); 315 __ j(zero, &while_false, Label::kNear); 316 317 __ bind(&while_true); 318 __ shrl(scratch, Immediate(1)); 319 __ Mulsd(double_scratch, double_scratch); 320 __ j(above, &while_true, Label::kNear); 321 __ Mulsd(double_result, double_scratch); 322 __ j(not_zero, &while_true); 323 324 __ bind(&while_false); 325 // If the exponent is negative, return 1/result. 326 __ testl(exponent, exponent); 327 __ j(greater, &done); 328 __ Divsd(double_scratch2, double_result); 329 __ Movsd(double_result, double_scratch2); 330 // Test whether result is zero. Bail out to check for subnormal result. 331 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. 332 __ Xorpd(double_scratch2, double_scratch2); 333 __ Ucomisd(double_scratch2, double_result); 334 // double_exponent aliased as double_scratch2 has already been overwritten 335 // and may not have contained the exponent value in the first place when the 336 // input was a smi. We reset it with exponent value before bailing out. 337 __ j(not_equal, &done); 338 __ Cvtlsi2sd(double_exponent, exponent); 339 340 // Returning or bailing out. 341 __ bind(&call_runtime); 342 // Move base to the correct argument register. Exponent is already in xmm1. 343 __ Movsd(xmm0, double_base); 344 DCHECK(double_exponent.is(xmm1)); 345 { 346 AllowExternalCallThatCantCauseGC scope(masm); 347 __ PrepareCallCFunction(2); 348 __ CallCFunction(ExternalReference::power_double_double_function(isolate()), 349 2); 350 } 351 // Return value is in xmm0. 352 __ Movsd(double_result, xmm0); 353 354 __ bind(&done); 355 __ ret(0); 356 } 357 358 359 void FunctionPrototypeStub::Generate(MacroAssembler* masm) { 360 Label miss; 361 Register receiver = LoadDescriptor::ReceiverRegister(); 362 // Ensure that the vector and slot registers won't be clobbered before 363 // calling the miss handler. 364 DCHECK(!AreAliased(r8, r9, LoadWithVectorDescriptor::VectorRegister(), 365 LoadDescriptor::SlotRegister())); 366 367 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r8, 368 r9, &miss); 369 __ bind(&miss); 370 PropertyAccessCompiler::TailCallBuiltin( 371 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC)); 372 } 373 374 375 void LoadIndexedStringStub::Generate(MacroAssembler* masm) { 376 // Return address is on the stack. 377 Label miss; 378 379 Register receiver = LoadDescriptor::ReceiverRegister(); 380 Register index = LoadDescriptor::NameRegister(); 381 Register scratch = rdi; 382 Register result = rax; 383 DCHECK(!scratch.is(receiver) && !scratch.is(index)); 384 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) && 385 result.is(LoadDescriptor::SlotRegister())); 386 387 // StringCharAtGenerator doesn't use the result register until it's passed 388 // the different miss possibilities. If it did, we would have a conflict 389 // when FLAG_vector_ics is true. 390 StringCharAtGenerator char_at_generator(receiver, index, scratch, result, 391 &miss, // When not a string. 392 &miss, // When not a number. 393 &miss, // When index out of range. 394 RECEIVER_IS_STRING); 395 char_at_generator.GenerateFast(masm); 396 __ ret(0); 397 398 StubRuntimeCallHelper call_helper; 399 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper); 400 401 __ bind(&miss); 402 PropertyAccessCompiler::TailCallBuiltin( 403 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC)); 404 } 405 406 407 void RegExpExecStub::Generate(MacroAssembler* masm) { 408 // Just jump directly to runtime if native RegExp is not selected at compile 409 // time or if regexp entry in generated code is turned off runtime switch or 410 // at compilation. 411 #ifdef V8_INTERPRETED_REGEXP 412 __ TailCallRuntime(Runtime::kRegExpExec); 413 #else // V8_INTERPRETED_REGEXP 414 415 // Stack frame on entry. 416 // rsp[0] : return address 417 // rsp[8] : last_match_info (expected JSArray) 418 // rsp[16] : previous index 419 // rsp[24] : subject string 420 // rsp[32] : JSRegExp object 421 422 enum RegExpExecStubArgumentIndices { 423 JS_REG_EXP_OBJECT_ARGUMENT_INDEX, 424 SUBJECT_STRING_ARGUMENT_INDEX, 425 PREVIOUS_INDEX_ARGUMENT_INDEX, 426 LAST_MATCH_INFO_ARGUMENT_INDEX, 427 REG_EXP_EXEC_ARGUMENT_COUNT 428 }; 429 430 StackArgumentsAccessor args(rsp, REG_EXP_EXEC_ARGUMENT_COUNT, 431 ARGUMENTS_DONT_CONTAIN_RECEIVER); 432 Label runtime; 433 // Ensure that a RegExp stack is allocated. 434 ExternalReference address_of_regexp_stack_memory_address = 435 ExternalReference::address_of_regexp_stack_memory_address(isolate()); 436 ExternalReference address_of_regexp_stack_memory_size = 437 ExternalReference::address_of_regexp_stack_memory_size(isolate()); 438 __ Load(kScratchRegister, address_of_regexp_stack_memory_size); 439 __ testp(kScratchRegister, kScratchRegister); 440 __ j(zero, &runtime); 441 442 // Check that the first argument is a JSRegExp object. 443 __ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX)); 444 __ JumpIfSmi(rax, &runtime); 445 __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister); 446 __ j(not_equal, &runtime); 447 448 // Check that the RegExp has been compiled (data contains a fixed array). 449 __ movp(rax, FieldOperand(rax, JSRegExp::kDataOffset)); 450 if (FLAG_debug_code) { 451 Condition is_smi = masm->CheckSmi(rax); 452 __ Check(NegateCondition(is_smi), 453 kUnexpectedTypeForRegExpDataFixedArrayExpected); 454 __ CmpObjectType(rax, FIXED_ARRAY_TYPE, kScratchRegister); 455 __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected); 456 } 457 458 // rax: RegExp data (FixedArray) 459 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. 460 __ SmiToInteger32(rbx, FieldOperand(rax, JSRegExp::kDataTagOffset)); 461 __ cmpl(rbx, Immediate(JSRegExp::IRREGEXP)); 462 __ j(not_equal, &runtime); 463 464 // rax: RegExp data (FixedArray) 465 // Check that the number of captures fit in the static offsets vector buffer. 466 __ SmiToInteger32(rdx, 467 FieldOperand(rax, JSRegExp::kIrregexpCaptureCountOffset)); 468 // Check (number_of_captures + 1) * 2 <= offsets vector size 469 // Or number_of_captures <= offsets vector size / 2 - 1 470 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); 471 __ cmpl(rdx, Immediate(Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1)); 472 __ j(above, &runtime); 473 474 // Reset offset for possibly sliced string. 475 __ Set(r14, 0); 476 __ movp(rdi, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX)); 477 __ JumpIfSmi(rdi, &runtime); 478 __ movp(r15, rdi); // Make a copy of the original subject string. 479 // rax: RegExp data (FixedArray) 480 // rdi: subject string 481 // r15: subject string 482 // Handle subject string according to its encoding and representation: 483 // (1) Sequential two byte? If yes, go to (9). 484 // (2) Sequential one byte? If yes, go to (5). 485 // (3) Sequential or cons? If not, go to (6). 486 // (4) Cons string. If the string is flat, replace subject with first string 487 // and go to (1). Otherwise bail out to runtime. 488 // (5) One byte sequential. Load regexp code for one byte. 489 // (E) Carry on. 490 /// [...] 491 492 // Deferred code at the end of the stub: 493 // (6) Long external string? If not, go to (10). 494 // (7) External string. Make it, offset-wise, look like a sequential string. 495 // (8) Is the external string one byte? If yes, go to (5). 496 // (9) Two byte sequential. Load regexp code for two byte. Go to (E). 497 // (10) Short external string or not a string? If yes, bail out to runtime. 498 // (11) Sliced string. Replace subject with parent. Go to (1). 499 500 Label seq_one_byte_string /* 5 */, seq_two_byte_string /* 9 */, 501 external_string /* 7 */, check_underlying /* 1 */, 502 not_seq_nor_cons /* 6 */, check_code /* E */, not_long_external /* 10 */; 503 504 __ bind(&check_underlying); 505 __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); 506 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); 507 508 // (1) Sequential two byte? If yes, go to (9). 509 __ andb(rbx, Immediate(kIsNotStringMask | 510 kStringRepresentationMask | 511 kStringEncodingMask | 512 kShortExternalStringMask)); 513 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); 514 __ j(zero, &seq_two_byte_string); // Go to (9). 515 516 // (2) Sequential one byte? If yes, go to (5). 517 // Any other sequential string must be one byte. 518 __ andb(rbx, Immediate(kIsNotStringMask | 519 kStringRepresentationMask | 520 kShortExternalStringMask)); 521 __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (5). 522 523 // (3) Sequential or cons? If not, go to (6). 524 // We check whether the subject string is a cons, since sequential strings 525 // have already been covered. 526 STATIC_ASSERT(kConsStringTag < kExternalStringTag); 527 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); 528 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); 529 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); 530 __ cmpp(rbx, Immediate(kExternalStringTag)); 531 __ j(greater_equal, ¬_seq_nor_cons); // Go to (6). 532 533 // (4) Cons string. Check that it's flat. 534 // Replace subject with first string and reload instance type. 535 __ CompareRoot(FieldOperand(rdi, ConsString::kSecondOffset), 536 Heap::kempty_stringRootIndex); 537 __ j(not_equal, &runtime); 538 __ movp(rdi, FieldOperand(rdi, ConsString::kFirstOffset)); 539 __ jmp(&check_underlying); 540 541 // (5) One byte sequential. Load regexp code for one byte. 542 __ bind(&seq_one_byte_string); 543 // rax: RegExp data (FixedArray) 544 __ movp(r11, FieldOperand(rax, JSRegExp::kDataOneByteCodeOffset)); 545 __ Set(rcx, 1); // Type is one byte. 546 547 // (E) Carry on. String handling is done. 548 __ bind(&check_code); 549 // r11: irregexp code 550 // Check that the irregexp code has been generated for the actual string 551 // encoding. If it has, the field contains a code object otherwise it contains 552 // smi (code flushing support) 553 __ JumpIfSmi(r11, &runtime); 554 555 // rdi: sequential subject string (or look-alike, external string) 556 // r15: original subject string 557 // rcx: encoding of subject string (1 if one_byte, 0 if two_byte); 558 // r11: code 559 // Load used arguments before starting to push arguments for call to native 560 // RegExp code to avoid handling changing stack height. 561 // We have to use r15 instead of rdi to load the length because rdi might 562 // have been only made to look like a sequential string when it actually 563 // is an external string. 564 __ movp(rbx, args.GetArgumentOperand(PREVIOUS_INDEX_ARGUMENT_INDEX)); 565 __ JumpIfNotSmi(rbx, &runtime); 566 __ SmiCompare(rbx, FieldOperand(r15, String::kLengthOffset)); 567 __ j(above_equal, &runtime); 568 __ SmiToInteger64(rbx, rbx); 569 570 // rdi: subject string 571 // rbx: previous index 572 // rcx: encoding of subject string (1 if one_byte 0 if two_byte); 573 // r11: code 574 // All checks done. Now push arguments for native regexp code. 575 Counters* counters = isolate()->counters(); 576 __ IncrementCounter(counters->regexp_entry_native(), 1); 577 578 // Isolates: note we add an additional parameter here (isolate pointer). 579 static const int kRegExpExecuteArguments = 9; 580 int argument_slots_on_stack = 581 masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments); 582 __ EnterApiExitFrame(argument_slots_on_stack); 583 584 // Argument 9: Pass current isolate address. 585 __ LoadAddress(kScratchRegister, 586 ExternalReference::isolate_address(isolate())); 587 __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kRegisterSize), 588 kScratchRegister); 589 590 // Argument 8: Indicate that this is a direct call from JavaScript. 591 __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kRegisterSize), 592 Immediate(1)); 593 594 // Argument 7: Start (high end) of backtracking stack memory area. 595 __ Move(kScratchRegister, address_of_regexp_stack_memory_address); 596 __ movp(r9, Operand(kScratchRegister, 0)); 597 __ Move(kScratchRegister, address_of_regexp_stack_memory_size); 598 __ addp(r9, Operand(kScratchRegister, 0)); 599 __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kRegisterSize), r9); 600 601 // Argument 6: Set the number of capture registers to zero to force global 602 // regexps to behave as non-global. This does not affect non-global regexps. 603 // Argument 6 is passed in r9 on Linux and on the stack on Windows. 604 #ifdef _WIN64 605 __ movq(Operand(rsp, (argument_slots_on_stack - 4) * kRegisterSize), 606 Immediate(0)); 607 #else 608 __ Set(r9, 0); 609 #endif 610 611 // Argument 5: static offsets vector buffer. 612 __ LoadAddress( 613 r8, ExternalReference::address_of_static_offsets_vector(isolate())); 614 // Argument 5 passed in r8 on Linux and on the stack on Windows. 615 #ifdef _WIN64 616 __ movq(Operand(rsp, (argument_slots_on_stack - 5) * kRegisterSize), r8); 617 #endif 618 619 // rdi: subject string 620 // rbx: previous index 621 // rcx: encoding of subject string (1 if one_byte 0 if two_byte); 622 // r11: code 623 // r14: slice offset 624 // r15: original subject string 625 626 // Argument 2: Previous index. 627 __ movp(arg_reg_2, rbx); 628 629 // Argument 4: End of string data 630 // Argument 3: Start of string data 631 Label setup_two_byte, setup_rest, got_length, length_not_from_slice; 632 // Prepare start and end index of the input. 633 // Load the length from the original sliced string if that is the case. 634 __ addp(rbx, r14); 635 __ SmiToInteger32(arg_reg_3, FieldOperand(r15, String::kLengthOffset)); 636 __ addp(r14, arg_reg_3); // Using arg3 as scratch. 637 638 // rbx: start index of the input 639 // r14: end index of the input 640 // r15: original subject string 641 __ testb(rcx, rcx); // Last use of rcx as encoding of subject string. 642 __ j(zero, &setup_two_byte, Label::kNear); 643 __ leap(arg_reg_4, 644 FieldOperand(rdi, r14, times_1, SeqOneByteString::kHeaderSize)); 645 __ leap(arg_reg_3, 646 FieldOperand(rdi, rbx, times_1, SeqOneByteString::kHeaderSize)); 647 __ jmp(&setup_rest, Label::kNear); 648 __ bind(&setup_two_byte); 649 __ leap(arg_reg_4, 650 FieldOperand(rdi, r14, times_2, SeqTwoByteString::kHeaderSize)); 651 __ leap(arg_reg_3, 652 FieldOperand(rdi, rbx, times_2, SeqTwoByteString::kHeaderSize)); 653 __ bind(&setup_rest); 654 655 // Argument 1: Original subject string. 656 // The original subject is in the previous stack frame. Therefore we have to 657 // use rbp, which points exactly to one pointer size below the previous rsp. 658 // (Because creating a new stack frame pushes the previous rbp onto the stack 659 // and thereby moves up rsp by one kPointerSize.) 660 __ movp(arg_reg_1, r15); 661 662 // Locate the code entry and call it. 663 __ addp(r11, Immediate(Code::kHeaderSize - kHeapObjectTag)); 664 __ call(r11); 665 666 __ LeaveApiExitFrame(true); 667 668 // Check the result. 669 Label success; 670 Label exception; 671 __ cmpl(rax, Immediate(1)); 672 // We expect exactly one result since we force the called regexp to behave 673 // as non-global. 674 __ j(equal, &success, Label::kNear); 675 __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION)); 676 __ j(equal, &exception); 677 __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE)); 678 // If none of the above, it can only be retry. 679 // Handle that in the runtime system. 680 __ j(not_equal, &runtime); 681 682 // For failure return null. 683 __ LoadRoot(rax, Heap::kNullValueRootIndex); 684 __ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize); 685 686 // Load RegExp data. 687 __ bind(&success); 688 __ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX)); 689 __ movp(rcx, FieldOperand(rax, JSRegExp::kDataOffset)); 690 __ SmiToInteger32(rax, 691 FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset)); 692 // Calculate number of capture registers (number_of_captures + 1) * 2. 693 __ leal(rdx, Operand(rax, rax, times_1, 2)); 694 695 // rdx: Number of capture registers 696 // Check that the last match info is a FixedArray. 697 __ movp(rbx, args.GetArgumentOperand(LAST_MATCH_INFO_ARGUMENT_INDEX)); 698 __ JumpIfSmi(rbx, &runtime); 699 // Check that the object has fast elements. 700 __ movp(rax, FieldOperand(rbx, HeapObject::kMapOffset)); 701 __ CompareRoot(rax, Heap::kFixedArrayMapRootIndex); 702 __ j(not_equal, &runtime); 703 // Check that the last match info has space for the capture registers and the 704 // additional information. Ensure no overflow in add. 705 STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset); 706 __ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset)); 707 __ subl(rax, Immediate(RegExpMatchInfo::kLastMatchOverhead)); 708 __ cmpl(rdx, rax); 709 __ j(greater, &runtime); 710 711 // rbx: last_match_info (FixedArray) 712 // rdx: number of capture registers 713 // Store the capture count. 714 __ Integer32ToSmi(kScratchRegister, rdx); 715 __ movp(FieldOperand(rbx, RegExpMatchInfo::kNumberOfCapturesOffset), 716 kScratchRegister); 717 // Store last subject and last input. 718 __ movp(rax, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX)); 719 __ movp(FieldOperand(rbx, RegExpMatchInfo::kLastSubjectOffset), rax); 720 __ movp(rcx, rax); 721 __ RecordWriteField(rbx, RegExpMatchInfo::kLastSubjectOffset, rax, rdi, 722 kDontSaveFPRegs); 723 __ movp(rax, rcx); 724 __ movp(FieldOperand(rbx, RegExpMatchInfo::kLastInputOffset), rax); 725 __ RecordWriteField(rbx, RegExpMatchInfo::kLastInputOffset, rax, rdi, 726 kDontSaveFPRegs); 727 728 // Get the static offsets vector filled by the native regexp code. 729 __ LoadAddress( 730 rcx, ExternalReference::address_of_static_offsets_vector(isolate())); 731 732 // rbx: last_match_info (FixedArray) 733 // rcx: offsets vector 734 // rdx: number of capture registers 735 Label next_capture, done; 736 // Capture register counter starts from number of capture registers and 737 // counts down until wrapping after zero. 738 __ bind(&next_capture); 739 __ subp(rdx, Immediate(1)); 740 __ j(negative, &done, Label::kNear); 741 // Read the value from the static offsets vector buffer and make it a smi. 742 __ movl(rdi, Operand(rcx, rdx, times_int_size, 0)); 743 __ Integer32ToSmi(rdi, rdi); 744 // Store the smi value in the last match info. 745 __ movp(FieldOperand(rbx, rdx, times_pointer_size, 746 RegExpMatchInfo::kFirstCaptureOffset), 747 rdi); 748 __ jmp(&next_capture); 749 __ bind(&done); 750 751 // Return last match info. 752 __ movp(rax, rbx); 753 __ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize); 754 755 __ bind(&exception); 756 // Result must now be exception. If there is no pending exception already a 757 // stack overflow (on the backtrack stack) was detected in RegExp code but 758 // haven't created the exception yet. Handle that in the runtime system. 759 // TODO(592): Rerunning the RegExp to get the stack overflow exception. 760 ExternalReference pending_exception_address( 761 Isolate::kPendingExceptionAddress, isolate()); 762 Operand pending_exception_operand = 763 masm->ExternalOperand(pending_exception_address, rbx); 764 __ movp(rax, pending_exception_operand); 765 __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex); 766 __ cmpp(rax, rdx); 767 __ j(equal, &runtime); 768 769 // For exception, throw the exception again. 770 __ TailCallRuntime(Runtime::kRegExpExecReThrow); 771 772 // Do the runtime call to execute the regexp. 773 __ bind(&runtime); 774 __ TailCallRuntime(Runtime::kRegExpExec); 775 776 // Deferred code for string handling. 777 // (6) Long external string? If not, go to (10). 778 __ bind(¬_seq_nor_cons); 779 // Compare flags are still set from (3). 780 __ j(greater, ¬_long_external, Label::kNear); // Go to (10). 781 782 // (7) External string. Short external strings have been ruled out. 783 __ bind(&external_string); 784 __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); 785 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); 786 if (FLAG_debug_code) { 787 // Assert that we do not have a cons or slice (indirect strings) here. 788 // Sequential strings have already been ruled out. 789 __ testb(rbx, Immediate(kIsIndirectStringMask)); 790 __ Assert(zero, kExternalStringExpectedButNotFound); 791 } 792 __ movp(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset)); 793 // Move the pointer so that offset-wise, it looks like a sequential string. 794 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); 795 __ subp(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 796 STATIC_ASSERT(kTwoByteStringTag == 0); 797 // (8) Is the external string one byte? If yes, go to (5). 798 __ testb(rbx, Immediate(kStringEncodingMask)); 799 __ j(not_zero, &seq_one_byte_string); // Go to (5). 800 801 // rdi: subject string (flat two-byte) 802 // rax: RegExp data (FixedArray) 803 // (9) Two byte sequential. Load regexp code for two byte. Go to (E). 804 __ bind(&seq_two_byte_string); 805 __ movp(r11, FieldOperand(rax, JSRegExp::kDataUC16CodeOffset)); 806 __ Set(rcx, 0); // Type is two byte. 807 __ jmp(&check_code); // Go to (E). 808 809 // (10) Not a string or a short external string? If yes, bail out to runtime. 810 __ bind(¬_long_external); 811 // Catch non-string subject or short external string. 812 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); 813 __ testb(rbx, Immediate(kIsNotStringMask | kShortExternalStringMask)); 814 __ j(not_zero, &runtime); 815 816 // (11) Sliced string. Replace subject with parent. Go to (1). 817 // Load offset into r14 and replace subject string with parent. 818 __ SmiToInteger32(r14, FieldOperand(rdi, SlicedString::kOffsetOffset)); 819 __ movp(rdi, FieldOperand(rdi, SlicedString::kParentOffset)); 820 __ jmp(&check_underlying); 821 #endif // V8_INTERPRETED_REGEXP 822 } 823 824 825 static int NegativeComparisonResult(Condition cc) { 826 DCHECK(cc != equal); 827 DCHECK((cc == less) || (cc == less_equal) 828 || (cc == greater) || (cc == greater_equal)); 829 return (cc == greater || cc == greater_equal) ? LESS : GREATER; 830 } 831 832 833 static void CheckInputType(MacroAssembler* masm, Register input, 834 CompareICState::State expected, Label* fail) { 835 Label ok; 836 if (expected == CompareICState::SMI) { 837 __ JumpIfNotSmi(input, fail); 838 } else if (expected == CompareICState::NUMBER) { 839 __ JumpIfSmi(input, &ok); 840 __ CompareMap(input, masm->isolate()->factory()->heap_number_map()); 841 __ j(not_equal, fail); 842 } 843 // We could be strict about internalized/non-internalized here, but as long as 844 // hydrogen doesn't care, the stub doesn't have to care either. 845 __ bind(&ok); 846 } 847 848 849 static void BranchIfNotInternalizedString(MacroAssembler* masm, 850 Label* label, 851 Register object, 852 Register scratch) { 853 __ JumpIfSmi(object, label); 854 __ movp(scratch, FieldOperand(object, HeapObject::kMapOffset)); 855 __ movzxbp(scratch, 856 FieldOperand(scratch, Map::kInstanceTypeOffset)); 857 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); 858 __ testb(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask)); 859 __ j(not_zero, label); 860 } 861 862 863 void CompareICStub::GenerateGeneric(MacroAssembler* masm) { 864 Label runtime_call, check_unequal_objects, done; 865 Condition cc = GetCondition(); 866 Factory* factory = isolate()->factory(); 867 868 Label miss; 869 CheckInputType(masm, rdx, left(), &miss); 870 CheckInputType(masm, rax, right(), &miss); 871 872 // Compare two smis. 873 Label non_smi, smi_done; 874 __ JumpIfNotBothSmi(rax, rdx, &non_smi); 875 __ subp(rdx, rax); 876 __ j(no_overflow, &smi_done); 877 __ notp(rdx); // Correct sign in case of overflow. rdx cannot be 0 here. 878 __ bind(&smi_done); 879 __ movp(rax, rdx); 880 __ ret(0); 881 __ bind(&non_smi); 882 883 // The compare stub returns a positive, negative, or zero 64-bit integer 884 // value in rax, corresponding to result of comparing the two inputs. 885 // NOTICE! This code is only reached after a smi-fast-case check, so 886 // it is certain that at least one operand isn't a smi. 887 888 // Two identical objects are equal unless they are both NaN or undefined. 889 { 890 Label not_identical; 891 __ cmpp(rax, rdx); 892 __ j(not_equal, ¬_identical, Label::kNear); 893 894 if (cc != equal) { 895 // Check for undefined. undefined OP undefined is false even though 896 // undefined == undefined. 897 __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); 898 Label check_for_nan; 899 __ j(not_equal, &check_for_nan, Label::kNear); 900 __ Set(rax, NegativeComparisonResult(cc)); 901 __ ret(0); 902 __ bind(&check_for_nan); 903 } 904 905 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), 906 // so we do the second best thing - test it ourselves. 907 Label heap_number; 908 // If it's not a heap number, then return equal for (in)equality operator. 909 __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset), 910 factory->heap_number_map()); 911 __ j(equal, &heap_number, Label::kNear); 912 if (cc != equal) { 913 __ movp(rcx, FieldOperand(rax, HeapObject::kMapOffset)); 914 __ movzxbl(rcx, FieldOperand(rcx, Map::kInstanceTypeOffset)); 915 // Call runtime on identical objects. Otherwise return equal. 916 __ cmpb(rcx, Immediate(static_cast<uint8_t>(FIRST_JS_RECEIVER_TYPE))); 917 __ j(above_equal, &runtime_call, Label::kFar); 918 // Call runtime on identical symbols since we need to throw a TypeError. 919 __ cmpb(rcx, Immediate(static_cast<uint8_t>(SYMBOL_TYPE))); 920 __ j(equal, &runtime_call, Label::kFar); 921 // Call runtime on identical SIMD values since we must throw a TypeError. 922 __ cmpb(rcx, Immediate(static_cast<uint8_t>(SIMD128_VALUE_TYPE))); 923 __ j(equal, &runtime_call, Label::kFar); 924 } 925 __ Set(rax, EQUAL); 926 __ ret(0); 927 928 __ bind(&heap_number); 929 // It is a heap number, so return equal if it's not NaN. 930 // For NaN, return 1 for every condition except greater and 931 // greater-equal. Return -1 for them, so the comparison yields 932 // false for all conditions except not-equal. 933 __ Set(rax, EQUAL); 934 __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); 935 __ Ucomisd(xmm0, xmm0); 936 __ setcc(parity_even, rax); 937 // rax is 0 for equal non-NaN heapnumbers, 1 for NaNs. 938 if (cc == greater_equal || cc == greater) { 939 __ negp(rax); 940 } 941 __ ret(0); 942 943 __ bind(¬_identical); 944 } 945 946 if (cc == equal) { // Both strict and non-strict. 947 Label slow; // Fallthrough label. 948 949 // If we're doing a strict equality comparison, we don't have to do 950 // type conversion, so we generate code to do fast comparison for objects 951 // and oddballs. Non-smi numbers and strings still go through the usual 952 // slow-case code. 953 if (strict()) { 954 // If either is a Smi (we know that not both are), then they can only 955 // be equal if the other is a HeapNumber. If so, use the slow case. 956 { 957 Label not_smis; 958 __ SelectNonSmi(rbx, rax, rdx, ¬_smis); 959 960 // Check if the non-smi operand is a heap number. 961 __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset), 962 factory->heap_number_map()); 963 // If heap number, handle it in the slow case. 964 __ j(equal, &slow); 965 // Return non-equal. ebx (the lower half of rbx) is not zero. 966 __ movp(rax, rbx); 967 __ ret(0); 968 969 __ bind(¬_smis); 970 } 971 972 // If either operand is a JSObject or an oddball value, then they are not 973 // equal since their pointers are different 974 // There is no test for undetectability in strict equality. 975 976 // If the first object is a JS object, we have done pointer comparison. 977 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); 978 Label first_non_object; 979 __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx); 980 __ j(below, &first_non_object, Label::kNear); 981 // Return non-zero (rax (not rax) is not zero) 982 Label return_not_equal; 983 STATIC_ASSERT(kHeapObjectTag != 0); 984 __ bind(&return_not_equal); 985 __ ret(0); 986 987 __ bind(&first_non_object); 988 // Check for oddballs: true, false, null, undefined. 989 __ CmpInstanceType(rcx, ODDBALL_TYPE); 990 __ j(equal, &return_not_equal); 991 992 __ CmpObjectType(rdx, FIRST_JS_RECEIVER_TYPE, rcx); 993 __ j(above_equal, &return_not_equal); 994 995 // Check for oddballs: true, false, null, undefined. 996 __ CmpInstanceType(rcx, ODDBALL_TYPE); 997 __ j(equal, &return_not_equal); 998 999 // Fall through to the general case. 1000 } 1001 __ bind(&slow); 1002 } 1003 1004 // Generate the number comparison code. 1005 Label non_number_comparison; 1006 Label unordered; 1007 FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison); 1008 __ xorl(rax, rax); 1009 __ xorl(rcx, rcx); 1010 __ Ucomisd(xmm0, xmm1); 1011 1012 // Don't base result on EFLAGS when a NaN is involved. 1013 __ j(parity_even, &unordered, Label::kNear); 1014 // Return a result of -1, 0, or 1, based on EFLAGS. 1015 __ setcc(above, rax); 1016 __ setcc(below, rcx); 1017 __ subp(rax, rcx); 1018 __ ret(0); 1019 1020 // If one of the numbers was NaN, then the result is always false. 1021 // The cc is never not-equal. 1022 __ bind(&unordered); 1023 DCHECK(cc != not_equal); 1024 if (cc == less || cc == less_equal) { 1025 __ Set(rax, 1); 1026 } else { 1027 __ Set(rax, -1); 1028 } 1029 __ ret(0); 1030 1031 // The number comparison code did not provide a valid result. 1032 __ bind(&non_number_comparison); 1033 1034 // Fast negative check for internalized-to-internalized equality. 1035 Label check_for_strings; 1036 if (cc == equal) { 1037 BranchIfNotInternalizedString( 1038 masm, &check_for_strings, rax, kScratchRegister); 1039 BranchIfNotInternalizedString( 1040 masm, &check_for_strings, rdx, kScratchRegister); 1041 1042 // We've already checked for object identity, so if both operands are 1043 // internalized strings they aren't equal. Register rax (not rax) already 1044 // holds a non-zero value, which indicates not equal, so just return. 1045 __ ret(0); 1046 } 1047 1048 __ bind(&check_for_strings); 1049 1050 __ JumpIfNotBothSequentialOneByteStrings(rdx, rax, rcx, rbx, 1051 &check_unequal_objects); 1052 1053 // Inline comparison of one-byte strings. 1054 if (cc == equal) { 1055 StringHelper::GenerateFlatOneByteStringEquals(masm, rdx, rax, rcx, rbx); 1056 } else { 1057 StringHelper::GenerateCompareFlatOneByteStrings(masm, rdx, rax, rcx, rbx, 1058 rdi, r8); 1059 } 1060 1061 #ifdef DEBUG 1062 __ Abort(kUnexpectedFallThroughFromStringComparison); 1063 #endif 1064 1065 __ bind(&check_unequal_objects); 1066 if (cc == equal && !strict()) { 1067 // Not strict equality. Objects are unequal if 1068 // they are both JSObjects and not undetectable, 1069 // and their pointers are different. 1070 Label return_equal, return_unequal, undetectable; 1071 // At most one is a smi, so we can test for smi by adding the two. 1072 // A smi plus a heap object has the low bit set, a heap object plus 1073 // a heap object has the low bit clear. 1074 STATIC_ASSERT(kSmiTag == 0); 1075 STATIC_ASSERT(kSmiTagMask == 1); 1076 __ leap(rcx, Operand(rax, rdx, times_1, 0)); 1077 __ testb(rcx, Immediate(kSmiTagMask)); 1078 __ j(not_zero, &runtime_call, Label::kNear); 1079 1080 __ movp(rbx, FieldOperand(rax, HeapObject::kMapOffset)); 1081 __ movp(rcx, FieldOperand(rdx, HeapObject::kMapOffset)); 1082 __ testb(FieldOperand(rbx, Map::kBitFieldOffset), 1083 Immediate(1 << Map::kIsUndetectable)); 1084 __ j(not_zero, &undetectable, Label::kNear); 1085 __ testb(FieldOperand(rcx, Map::kBitFieldOffset), 1086 Immediate(1 << Map::kIsUndetectable)); 1087 __ j(not_zero, &return_unequal, Label::kNear); 1088 1089 __ CmpInstanceType(rbx, FIRST_JS_RECEIVER_TYPE); 1090 __ j(below, &runtime_call, Label::kNear); 1091 __ CmpInstanceType(rcx, FIRST_JS_RECEIVER_TYPE); 1092 __ j(below, &runtime_call, Label::kNear); 1093 1094 __ bind(&return_unequal); 1095 // Return non-equal by returning the non-zero object pointer in rax. 1096 __ ret(0); 1097 1098 __ bind(&undetectable); 1099 __ testb(FieldOperand(rcx, Map::kBitFieldOffset), 1100 Immediate(1 << Map::kIsUndetectable)); 1101 __ j(zero, &return_unequal, Label::kNear); 1102 1103 // If both sides are JSReceivers, then the result is false according to 1104 // the HTML specification, which says that only comparisons with null or 1105 // undefined are affected by special casing for document.all. 1106 __ CmpInstanceType(rbx, ODDBALL_TYPE); 1107 __ j(zero, &return_equal, Label::kNear); 1108 __ CmpInstanceType(rcx, ODDBALL_TYPE); 1109 __ j(not_zero, &return_unequal, Label::kNear); 1110 1111 __ bind(&return_equal); 1112 __ Set(rax, EQUAL); 1113 __ ret(0); 1114 } 1115 __ bind(&runtime_call); 1116 1117 if (cc == equal) { 1118 { 1119 FrameScope scope(masm, StackFrame::INTERNAL); 1120 __ Push(rdx); 1121 __ Push(rax); 1122 __ CallRuntime(strict() ? Runtime::kStrictEqual : Runtime::kEqual); 1123 } 1124 // Turn true into 0 and false into some non-zero value. 1125 STATIC_ASSERT(EQUAL == 0); 1126 __ LoadRoot(rdx, Heap::kTrueValueRootIndex); 1127 __ subp(rax, rdx); 1128 __ Ret(); 1129 } else { 1130 // Push arguments below the return address to prepare jump to builtin. 1131 __ PopReturnAddressTo(rcx); 1132 __ Push(rdx); 1133 __ Push(rax); 1134 __ Push(Smi::FromInt(NegativeComparisonResult(cc))); 1135 __ PushReturnAddressFrom(rcx); 1136 __ TailCallRuntime(Runtime::kCompare); 1137 } 1138 1139 __ bind(&miss); 1140 GenerateMiss(masm); 1141 } 1142 1143 1144 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) { 1145 // rax : number of arguments to the construct function 1146 // rbx : feedback vector 1147 // rdx : slot in feedback vector (Smi) 1148 // rdi : the function to call 1149 FrameScope scope(masm, StackFrame::INTERNAL); 1150 1151 // Number-of-arguments register must be smi-tagged to call out. 1152 __ Integer32ToSmi(rax, rax); 1153 __ Push(rax); 1154 __ Push(rdi); 1155 __ Integer32ToSmi(rdx, rdx); 1156 __ Push(rdx); 1157 __ Push(rbx); 1158 __ Push(rsi); 1159 1160 __ CallStub(stub); 1161 1162 __ Pop(rsi); 1163 __ Pop(rbx); 1164 __ Pop(rdx); 1165 __ Pop(rdi); 1166 __ Pop(rax); 1167 __ SmiToInteger32(rdx, rdx); 1168 __ SmiToInteger32(rax, rax); 1169 } 1170 1171 1172 static void GenerateRecordCallTarget(MacroAssembler* masm) { 1173 // Cache the called function in a feedback vector slot. Cache states 1174 // are uninitialized, monomorphic (indicated by a JSFunction), and 1175 // megamorphic. 1176 // rax : number of arguments to the construct function 1177 // rbx : feedback vector 1178 // rdx : slot in feedback vector (Smi) 1179 // rdi : the function to call 1180 Isolate* isolate = masm->isolate(); 1181 Label initialize, done, miss, megamorphic, not_array_function; 1182 1183 // Load the cache state into r11. 1184 __ SmiToInteger32(rdx, rdx); 1185 __ movp(r11, 1186 FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize)); 1187 1188 // A monomorphic cache hit or an already megamorphic state: invoke the 1189 // function without changing the state. 1190 // We don't know if r11 is a WeakCell or a Symbol, but it's harmless to read 1191 // at this position in a symbol (see static asserts in 1192 // type-feedback-vector.h). 1193 Label check_allocation_site; 1194 __ cmpp(rdi, FieldOperand(r11, WeakCell::kValueOffset)); 1195 __ j(equal, &done, Label::kFar); 1196 __ CompareRoot(r11, Heap::kmegamorphic_symbolRootIndex); 1197 __ j(equal, &done, Label::kFar); 1198 __ CompareRoot(FieldOperand(r11, HeapObject::kMapOffset), 1199 Heap::kWeakCellMapRootIndex); 1200 __ j(not_equal, &check_allocation_site); 1201 1202 // If the weak cell is cleared, we have a new chance to become monomorphic. 1203 __ CheckSmi(FieldOperand(r11, WeakCell::kValueOffset)); 1204 __ j(equal, &initialize); 1205 __ jmp(&megamorphic); 1206 1207 __ bind(&check_allocation_site); 1208 // If we came here, we need to see if we are the array function. 1209 // If we didn't have a matching function, and we didn't find the megamorph 1210 // sentinel, then we have in the slot either some other function or an 1211 // AllocationSite. 1212 __ CompareRoot(FieldOperand(r11, 0), Heap::kAllocationSiteMapRootIndex); 1213 __ j(not_equal, &miss); 1214 1215 // Make sure the function is the Array() function 1216 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r11); 1217 __ cmpp(rdi, r11); 1218 __ j(not_equal, &megamorphic); 1219 __ jmp(&done); 1220 1221 __ bind(&miss); 1222 1223 // A monomorphic miss (i.e, here the cache is not uninitialized) goes 1224 // megamorphic. 1225 __ CompareRoot(r11, Heap::kuninitialized_symbolRootIndex); 1226 __ j(equal, &initialize); 1227 // MegamorphicSentinel is an immortal immovable object (undefined) so no 1228 // write-barrier is needed. 1229 __ bind(&megamorphic); 1230 __ Move(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize), 1231 TypeFeedbackVector::MegamorphicSentinel(isolate)); 1232 __ jmp(&done); 1233 1234 // An uninitialized cache is patched with the function or sentinel to 1235 // indicate the ElementsKind if function is the Array constructor. 1236 __ bind(&initialize); 1237 1238 // Make sure the function is the Array() function 1239 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r11); 1240 __ cmpp(rdi, r11); 1241 __ j(not_equal, ¬_array_function); 1242 1243 CreateAllocationSiteStub create_stub(isolate); 1244 CallStubInRecordCallTarget(masm, &create_stub); 1245 __ jmp(&done); 1246 1247 __ bind(¬_array_function); 1248 CreateWeakCellStub weak_cell_stub(isolate); 1249 CallStubInRecordCallTarget(masm, &weak_cell_stub); 1250 1251 __ bind(&done); 1252 // Increment the call count for all function calls. 1253 __ SmiAddConstant(FieldOperand(rbx, rdx, times_pointer_size, 1254 FixedArray::kHeaderSize + kPointerSize), 1255 Smi::FromInt(1)); 1256 } 1257 1258 1259 void CallConstructStub::Generate(MacroAssembler* masm) { 1260 // rax : number of arguments 1261 // rbx : feedback vector 1262 // rdx : slot in feedback vector (Smi) 1263 // rdi : constructor function 1264 1265 Label non_function; 1266 // Check that the constructor is not a smi. 1267 __ JumpIfSmi(rdi, &non_function); 1268 // Check that constructor is a JSFunction. 1269 __ CmpObjectType(rdi, JS_FUNCTION_TYPE, r11); 1270 __ j(not_equal, &non_function); 1271 1272 GenerateRecordCallTarget(masm); 1273 1274 Label feedback_register_initialized; 1275 // Put the AllocationSite from the feedback vector into rbx, or undefined. 1276 __ movp(rbx, 1277 FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize)); 1278 __ CompareRoot(FieldOperand(rbx, 0), Heap::kAllocationSiteMapRootIndex); 1279 __ j(equal, &feedback_register_initialized, Label::kNear); 1280 __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); 1281 __ bind(&feedback_register_initialized); 1282 1283 __ AssertUndefinedOrAllocationSite(rbx); 1284 1285 // Pass new target to construct stub. 1286 __ movp(rdx, rdi); 1287 1288 // Tail call to the function-specific construct stub (still in the caller 1289 // context at this point). 1290 __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); 1291 __ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kConstructStubOffset)); 1292 __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize)); 1293 __ jmp(rcx); 1294 1295 __ bind(&non_function); 1296 __ movp(rdx, rdi); 1297 __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); 1298 } 1299 1300 static void IncrementCallCount(MacroAssembler* masm, Register feedback_vector, 1301 Register slot) { 1302 __ SmiAddConstant(FieldOperand(feedback_vector, slot, times_pointer_size, 1303 FixedArray::kHeaderSize + kPointerSize), 1304 Smi::FromInt(1)); 1305 } 1306 1307 void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) { 1308 // rdi - function 1309 // rdx - slot id 1310 // rbx - vector 1311 // rcx - allocation site (loaded from vector[slot]). 1312 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r8); 1313 __ cmpp(rdi, r8); 1314 __ j(not_equal, miss); 1315 1316 // Increment the call count for monomorphic function calls. 1317 IncrementCallCount(masm, rbx, rdx); 1318 1319 __ movp(rbx, rcx); 1320 __ movp(rdx, rdi); 1321 ArrayConstructorStub stub(masm->isolate()); 1322 __ TailCallStub(&stub); 1323 } 1324 1325 1326 void CallICStub::Generate(MacroAssembler* masm) { 1327 // ----------- S t a t e ------------- 1328 // -- rax - number of arguments 1329 // -- rdi - function 1330 // -- rdx - slot id 1331 // -- rbx - vector 1332 // ----------------------------------- 1333 Isolate* isolate = masm->isolate(); 1334 Label extra_checks_or_miss, call, call_function, call_count_incremented; 1335 1336 // The checks. First, does rdi match the recorded monomorphic target? 1337 __ SmiToInteger32(rdx, rdx); 1338 __ movp(rcx, 1339 FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize)); 1340 1341 // We don't know that we have a weak cell. We might have a private symbol 1342 // or an AllocationSite, but the memory is safe to examine. 1343 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to 1344 // FixedArray. 1345 // WeakCell::kValueOffset - contains a JSFunction or Smi(0) 1346 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not 1347 // computed, meaning that it can't appear to be a pointer. If the low bit is 1348 // 0, then hash is computed, but the 0 bit prevents the field from appearing 1349 // to be a pointer. 1350 STATIC_ASSERT(WeakCell::kSize >= kPointerSize); 1351 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset == 1352 WeakCell::kValueOffset && 1353 WeakCell::kValueOffset == Symbol::kHashFieldSlot); 1354 1355 __ cmpp(rdi, FieldOperand(rcx, WeakCell::kValueOffset)); 1356 __ j(not_equal, &extra_checks_or_miss); 1357 1358 // The compare above could have been a SMI/SMI comparison. Guard against this 1359 // convincing us that we have a monomorphic JSFunction. 1360 __ JumpIfSmi(rdi, &extra_checks_or_miss); 1361 1362 __ bind(&call_function); 1363 // Increment the call count for monomorphic function calls. 1364 IncrementCallCount(masm, rbx, rdx); 1365 1366 __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode(), 1367 tail_call_mode()), 1368 RelocInfo::CODE_TARGET); 1369 1370 __ bind(&extra_checks_or_miss); 1371 Label uninitialized, miss, not_allocation_site; 1372 1373 __ Cmp(rcx, TypeFeedbackVector::MegamorphicSentinel(isolate)); 1374 __ j(equal, &call); 1375 1376 // Check if we have an allocation site. 1377 __ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset), 1378 Heap::kAllocationSiteMapRootIndex); 1379 __ j(not_equal, ¬_allocation_site); 1380 1381 // We have an allocation site. 1382 HandleArrayCase(masm, &miss); 1383 1384 __ bind(¬_allocation_site); 1385 1386 // The following cases attempt to handle MISS cases without going to the 1387 // runtime. 1388 if (FLAG_trace_ic) { 1389 __ jmp(&miss); 1390 } 1391 1392 __ Cmp(rcx, TypeFeedbackVector::UninitializedSentinel(isolate)); 1393 __ j(equal, &uninitialized); 1394 1395 // We are going megamorphic. If the feedback is a JSFunction, it is fine 1396 // to handle it here. More complex cases are dealt with in the runtime. 1397 __ AssertNotSmi(rcx); 1398 __ CmpObjectType(rcx, JS_FUNCTION_TYPE, rcx); 1399 __ j(not_equal, &miss); 1400 __ Move(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize), 1401 TypeFeedbackVector::MegamorphicSentinel(isolate)); 1402 1403 __ bind(&call); 1404 1405 // Increment the call count for megamorphic function calls. 1406 IncrementCallCount(masm, rbx, rdx); 1407 1408 __ bind(&call_count_incremented); 1409 __ Jump(masm->isolate()->builtins()->Call(convert_mode(), tail_call_mode()), 1410 RelocInfo::CODE_TARGET); 1411 1412 __ bind(&uninitialized); 1413 1414 // We are going monomorphic, provided we actually have a JSFunction. 1415 __ JumpIfSmi(rdi, &miss); 1416 1417 // Goto miss case if we do not have a function. 1418 __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); 1419 __ j(not_equal, &miss); 1420 1421 // Make sure the function is not the Array() function, which requires special 1422 // behavior on MISS. 1423 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, rcx); 1424 __ cmpp(rdi, rcx); 1425 __ j(equal, &miss); 1426 1427 // Make sure the function belongs to the same native context. 1428 __ movp(rcx, FieldOperand(rdi, JSFunction::kContextOffset)); 1429 __ movp(rcx, ContextOperand(rcx, Context::NATIVE_CONTEXT_INDEX)); 1430 __ cmpp(rcx, NativeContextOperand()); 1431 __ j(not_equal, &miss); 1432 1433 // Store the function. Use a stub since we need a frame for allocation. 1434 // rbx - vector 1435 // rdx - slot (needs to be in smi form) 1436 // rdi - function 1437 { 1438 FrameScope scope(masm, StackFrame::INTERNAL); 1439 CreateWeakCellStub create_stub(isolate); 1440 1441 __ Integer32ToSmi(rax, rax); 1442 __ Integer32ToSmi(rdx, rdx); 1443 __ Push(rax); 1444 __ Push(rbx); 1445 __ Push(rdx); 1446 __ Push(rdi); 1447 __ Push(rsi); 1448 __ CallStub(&create_stub); 1449 __ Pop(rsi); 1450 __ Pop(rdi); 1451 __ Pop(rdx); 1452 __ Pop(rbx); 1453 __ Pop(rax); 1454 __ SmiToInteger32(rdx, rdx); 1455 __ SmiToInteger32(rax, rax); 1456 } 1457 1458 __ jmp(&call_function); 1459 1460 // We are here because tracing is on or we encountered a MISS case we can't 1461 // handle here. 1462 __ bind(&miss); 1463 GenerateMiss(masm); 1464 1465 __ jmp(&call_count_incremented); 1466 1467 // Unreachable 1468 __ int3(); 1469 } 1470 1471 void CallICStub::GenerateMiss(MacroAssembler* masm) { 1472 FrameScope scope(masm, StackFrame::INTERNAL); 1473 1474 // Preserve the number of arguments. 1475 __ Integer32ToSmi(rax, rax); 1476 __ Push(rax); 1477 1478 // Push the receiver and the function and feedback info. 1479 __ Integer32ToSmi(rdx, rdx); 1480 __ Push(rdi); 1481 __ Push(rbx); 1482 __ Push(rdx); 1483 1484 // Call the entry. 1485 __ CallRuntime(Runtime::kCallIC_Miss); 1486 1487 // Move result to edi and exit the internal frame. 1488 __ movp(rdi, rax); 1489 1490 // Restore number of arguments. 1491 __ Pop(rax); 1492 __ SmiToInteger32(rax, rax); 1493 } 1494 1495 bool CEntryStub::NeedsImmovableCode() { 1496 return false; 1497 } 1498 1499 1500 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { 1501 CEntryStub::GenerateAheadOfTime(isolate); 1502 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); 1503 StubFailureTrampolineStub::GenerateAheadOfTime(isolate); 1504 // It is important that the store buffer overflow stubs are generated first. 1505 CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate); 1506 CreateAllocationSiteStub::GenerateAheadOfTime(isolate); 1507 CreateWeakCellStub::GenerateAheadOfTime(isolate); 1508 BinaryOpICStub::GenerateAheadOfTime(isolate); 1509 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); 1510 StoreFastElementStub::GenerateAheadOfTime(isolate); 1511 } 1512 1513 1514 void CodeStub::GenerateFPStubs(Isolate* isolate) { 1515 } 1516 1517 1518 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { 1519 CEntryStub stub(isolate, 1, kDontSaveFPRegs); 1520 stub.GetCode(); 1521 CEntryStub save_doubles(isolate, 1, kSaveFPRegs); 1522 save_doubles.GetCode(); 1523 } 1524 1525 1526 void CEntryStub::Generate(MacroAssembler* masm) { 1527 // rax: number of arguments including receiver 1528 // rbx: pointer to C function (C callee-saved) 1529 // rbp: frame pointer of calling JS frame (restored after C call) 1530 // rsp: stack pointer (restored after C call) 1531 // rsi: current context (restored) 1532 // 1533 // If argv_in_register(): 1534 // r15: pointer to the first argument 1535 1536 ProfileEntryHookStub::MaybeCallEntryHook(masm); 1537 1538 #ifdef _WIN64 1539 // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9. It requires the 1540 // stack to be aligned to 16 bytes. It only allows a single-word to be 1541 // returned in register rax. Larger return sizes must be written to an address 1542 // passed as a hidden first argument. 1543 const Register kCCallArg0 = rcx; 1544 const Register kCCallArg1 = rdx; 1545 const Register kCCallArg2 = r8; 1546 const Register kCCallArg3 = r9; 1547 const int kArgExtraStackSpace = 2; 1548 const int kMaxRegisterResultSize = 1; 1549 #else 1550 // GCC / Clang passes arguments in rdi, rsi, rdx, rcx, r8, r9. Simple results 1551 // are returned in rax, and a struct of two pointers are returned in rax+rdx. 1552 // Larger return sizes must be written to an address passed as a hidden first 1553 // argument. 1554 const Register kCCallArg0 = rdi; 1555 const Register kCCallArg1 = rsi; 1556 const Register kCCallArg2 = rdx; 1557 const Register kCCallArg3 = rcx; 1558 const int kArgExtraStackSpace = 0; 1559 const int kMaxRegisterResultSize = 2; 1560 #endif // _WIN64 1561 1562 // Enter the exit frame that transitions from JavaScript to C++. 1563 int arg_stack_space = 1564 kArgExtraStackSpace + 1565 (result_size() <= kMaxRegisterResultSize ? 0 : result_size()); 1566 if (argv_in_register()) { 1567 DCHECK(!save_doubles()); 1568 DCHECK(!is_builtin_exit()); 1569 __ EnterApiExitFrame(arg_stack_space); 1570 // Move argc into r14 (argv is already in r15). 1571 __ movp(r14, rax); 1572 } else { 1573 __ EnterExitFrame( 1574 arg_stack_space, save_doubles(), 1575 is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); 1576 } 1577 1578 // rbx: pointer to builtin function (C callee-saved). 1579 // rbp: frame pointer of exit frame (restored after C call). 1580 // rsp: stack pointer (restored after C call). 1581 // r14: number of arguments including receiver (C callee-saved). 1582 // r15: argv pointer (C callee-saved). 1583 1584 // Check stack alignment. 1585 if (FLAG_debug_code) { 1586 __ CheckStackAlignment(); 1587 } 1588 1589 // Call C function. The arguments object will be created by stubs declared by 1590 // DECLARE_RUNTIME_FUNCTION(). 1591 if (result_size() <= kMaxRegisterResultSize) { 1592 // Pass a pointer to the Arguments object as the first argument. 1593 // Return result in single register (rax), or a register pair (rax, rdx). 1594 __ movp(kCCallArg0, r14); // argc. 1595 __ movp(kCCallArg1, r15); // argv. 1596 __ Move(kCCallArg2, ExternalReference::isolate_address(isolate())); 1597 } else { 1598 DCHECK_LE(result_size(), 3); 1599 // Pass a pointer to the result location as the first argument. 1600 __ leap(kCCallArg0, StackSpaceOperand(kArgExtraStackSpace)); 1601 // Pass a pointer to the Arguments object as the second argument. 1602 __ movp(kCCallArg1, r14); // argc. 1603 __ movp(kCCallArg2, r15); // argv. 1604 __ Move(kCCallArg3, ExternalReference::isolate_address(isolate())); 1605 } 1606 __ call(rbx); 1607 1608 if (result_size() > kMaxRegisterResultSize) { 1609 // Read result values stored on stack. Result is stored 1610 // above the the two Arguments object slots on Win64. 1611 DCHECK_LE(result_size(), 3); 1612 __ movq(kReturnRegister0, StackSpaceOperand(kArgExtraStackSpace + 0)); 1613 __ movq(kReturnRegister1, StackSpaceOperand(kArgExtraStackSpace + 1)); 1614 if (result_size() > 2) { 1615 __ movq(kReturnRegister2, StackSpaceOperand(kArgExtraStackSpace + 2)); 1616 } 1617 } 1618 // Result is in rax, rdx:rax or r8:rdx:rax - do not destroy these registers! 1619 1620 // Check result for exception sentinel. 1621 Label exception_returned; 1622 __ CompareRoot(rax, Heap::kExceptionRootIndex); 1623 __ j(equal, &exception_returned); 1624 1625 // Check that there is no pending exception, otherwise we 1626 // should have returned the exception sentinel. 1627 if (FLAG_debug_code) { 1628 Label okay; 1629 __ LoadRoot(r14, Heap::kTheHoleValueRootIndex); 1630 ExternalReference pending_exception_address( 1631 Isolate::kPendingExceptionAddress, isolate()); 1632 Operand pending_exception_operand = 1633 masm->ExternalOperand(pending_exception_address); 1634 __ cmpp(r14, pending_exception_operand); 1635 __ j(equal, &okay, Label::kNear); 1636 __ int3(); 1637 __ bind(&okay); 1638 } 1639 1640 // Exit the JavaScript to C++ exit frame. 1641 __ LeaveExitFrame(save_doubles(), !argv_in_register()); 1642 __ ret(0); 1643 1644 // Handling of exception. 1645 __ bind(&exception_returned); 1646 1647 ExternalReference pending_handler_context_address( 1648 Isolate::kPendingHandlerContextAddress, isolate()); 1649 ExternalReference pending_handler_code_address( 1650 Isolate::kPendingHandlerCodeAddress, isolate()); 1651 ExternalReference pending_handler_offset_address( 1652 Isolate::kPendingHandlerOffsetAddress, isolate()); 1653 ExternalReference pending_handler_fp_address( 1654 Isolate::kPendingHandlerFPAddress, isolate()); 1655 ExternalReference pending_handler_sp_address( 1656 Isolate::kPendingHandlerSPAddress, isolate()); 1657 1658 // Ask the runtime for help to determine the handler. This will set rax to 1659 // contain the current pending exception, don't clobber it. 1660 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler, 1661 isolate()); 1662 { 1663 FrameScope scope(masm, StackFrame::MANUAL); 1664 __ movp(arg_reg_1, Immediate(0)); // argc. 1665 __ movp(arg_reg_2, Immediate(0)); // argv. 1666 __ Move(arg_reg_3, ExternalReference::isolate_address(isolate())); 1667 __ PrepareCallCFunction(3); 1668 __ CallCFunction(find_handler, 3); 1669 } 1670 1671 // Retrieve the handler context, SP and FP. 1672 __ movp(rsi, masm->ExternalOperand(pending_handler_context_address)); 1673 __ movp(rsp, masm->ExternalOperand(pending_handler_sp_address)); 1674 __ movp(rbp, masm->ExternalOperand(pending_handler_fp_address)); 1675 1676 // If the handler is a JS frame, restore the context to the frame. Note that 1677 // the context will be set to (rsi == 0) for non-JS frames. 1678 Label skip; 1679 __ testp(rsi, rsi); 1680 __ j(zero, &skip, Label::kNear); 1681 __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rsi); 1682 __ bind(&skip); 1683 1684 // Compute the handler entry address and jump to it. 1685 __ movp(rdi, masm->ExternalOperand(pending_handler_code_address)); 1686 __ movp(rdx, masm->ExternalOperand(pending_handler_offset_address)); 1687 __ leap(rdi, FieldOperand(rdi, rdx, times_1, Code::kHeaderSize)); 1688 __ jmp(rdi); 1689 } 1690 1691 1692 void JSEntryStub::Generate(MacroAssembler* masm) { 1693 Label invoke, handler_entry, exit; 1694 Label not_outermost_js, not_outermost_js_2; 1695 1696 ProfileEntryHookStub::MaybeCallEntryHook(masm); 1697 1698 { // NOLINT. Scope block confuses linter. 1699 MacroAssembler::NoRootArrayScope uninitialized_root_register(masm); 1700 // Set up frame. 1701 __ pushq(rbp); 1702 __ movp(rbp, rsp); 1703 1704 // Push the stack frame type. 1705 int marker = type(); 1706 __ Push(Smi::FromInt(marker)); // context slot 1707 ExternalReference context_address(Isolate::kContextAddress, isolate()); 1708 __ Load(kScratchRegister, context_address); 1709 __ Push(kScratchRegister); // context 1710 // Save callee-saved registers (X64/X32/Win64 calling conventions). 1711 __ pushq(r12); 1712 __ pushq(r13); 1713 __ pushq(r14); 1714 __ pushq(r15); 1715 #ifdef _WIN64 1716 __ pushq(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI. 1717 __ pushq(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI. 1718 #endif 1719 __ pushq(rbx); 1720 1721 #ifdef _WIN64 1722 // On Win64 XMM6-XMM15 are callee-save 1723 __ subp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize)); 1724 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6); 1725 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7); 1726 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8); 1727 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9); 1728 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10); 1729 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11); 1730 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12); 1731 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13); 1732 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14); 1733 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15); 1734 #endif 1735 1736 // Set up the roots and smi constant registers. 1737 // Needs to be done before any further smi loads. 1738 __ InitializeRootRegister(); 1739 } 1740 1741 // Save copies of the top frame descriptor on the stack. 1742 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate()); 1743 { 1744 Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp); 1745 __ Push(c_entry_fp_operand); 1746 } 1747 1748 // If this is the outermost JS call, set js_entry_sp value. 1749 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate()); 1750 __ Load(rax, js_entry_sp); 1751 __ testp(rax, rax); 1752 __ j(not_zero, ¬_outermost_js); 1753 __ Push(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)); 1754 __ movp(rax, rbp); 1755 __ Store(js_entry_sp, rax); 1756 Label cont; 1757 __ jmp(&cont); 1758 __ bind(¬_outermost_js); 1759 __ Push(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)); 1760 __ bind(&cont); 1761 1762 // Jump to a faked try block that does the invoke, with a faked catch 1763 // block that sets the pending exception. 1764 __ jmp(&invoke); 1765 __ bind(&handler_entry); 1766 handler_offset_ = handler_entry.pos(); 1767 // Caught exception: Store result (exception) in the pending exception 1768 // field in the JSEnv and return a failure sentinel. 1769 ExternalReference pending_exception(Isolate::kPendingExceptionAddress, 1770 isolate()); 1771 __ Store(pending_exception, rax); 1772 __ LoadRoot(rax, Heap::kExceptionRootIndex); 1773 __ jmp(&exit); 1774 1775 // Invoke: Link this frame into the handler chain. 1776 __ bind(&invoke); 1777 __ PushStackHandler(); 1778 1779 // Fake a receiver (NULL). 1780 __ Push(Immediate(0)); // receiver 1781 1782 // Invoke the function by calling through JS entry trampoline builtin and 1783 // pop the faked function when we return. We load the address from an 1784 // external reference instead of inlining the call target address directly 1785 // in the code, because the builtin stubs may not have been generated yet 1786 // at the time this code is generated. 1787 if (type() == StackFrame::ENTRY_CONSTRUCT) { 1788 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, 1789 isolate()); 1790 __ Load(rax, construct_entry); 1791 } else { 1792 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate()); 1793 __ Load(rax, entry); 1794 } 1795 __ leap(kScratchRegister, FieldOperand(rax, Code::kHeaderSize)); 1796 __ call(kScratchRegister); 1797 1798 // Unlink this frame from the handler chain. 1799 __ PopStackHandler(); 1800 1801 __ bind(&exit); 1802 // Check if the current stack frame is marked as the outermost JS frame. 1803 __ Pop(rbx); 1804 __ Cmp(rbx, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)); 1805 __ j(not_equal, ¬_outermost_js_2); 1806 __ Move(kScratchRegister, js_entry_sp); 1807 __ movp(Operand(kScratchRegister, 0), Immediate(0)); 1808 __ bind(¬_outermost_js_2); 1809 1810 // Restore the top frame descriptor from the stack. 1811 { Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp); 1812 __ Pop(c_entry_fp_operand); 1813 } 1814 1815 // Restore callee-saved registers (X64 conventions). 1816 #ifdef _WIN64 1817 // On Win64 XMM6-XMM15 are callee-save 1818 __ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0)); 1819 __ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1)); 1820 __ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2)); 1821 __ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3)); 1822 __ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4)); 1823 __ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5)); 1824 __ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6)); 1825 __ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7)); 1826 __ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8)); 1827 __ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9)); 1828 __ addp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize)); 1829 #endif 1830 1831 __ popq(rbx); 1832 #ifdef _WIN64 1833 // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI. 1834 __ popq(rsi); 1835 __ popq(rdi); 1836 #endif 1837 __ popq(r15); 1838 __ popq(r14); 1839 __ popq(r13); 1840 __ popq(r12); 1841 __ addp(rsp, Immediate(2 * kPointerSize)); // remove markers 1842 1843 // Restore frame pointer and return. 1844 __ popq(rbp); 1845 __ ret(0); 1846 } 1847 1848 1849 // ------------------------------------------------------------------------- 1850 // StringCharCodeAtGenerator 1851 1852 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { 1853 // If the receiver is a smi trigger the non-string case. 1854 if (check_mode_ == RECEIVER_IS_UNKNOWN) { 1855 __ JumpIfSmi(object_, receiver_not_string_); 1856 1857 // Fetch the instance type of the receiver into result register. 1858 __ movp(result_, FieldOperand(object_, HeapObject::kMapOffset)); 1859 __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); 1860 // If the receiver is not a string trigger the non-string case. 1861 __ testb(result_, Immediate(kIsNotStringMask)); 1862 __ j(not_zero, receiver_not_string_); 1863 } 1864 1865 // If the index is non-smi trigger the non-smi case. 1866 __ JumpIfNotSmi(index_, &index_not_smi_); 1867 __ bind(&got_smi_index_); 1868 1869 // Check for index out of range. 1870 __ SmiCompare(index_, FieldOperand(object_, String::kLengthOffset)); 1871 __ j(above_equal, index_out_of_range_); 1872 1873 __ SmiToInteger32(index_, index_); 1874 1875 StringCharLoadGenerator::Generate( 1876 masm, object_, index_, result_, &call_runtime_); 1877 1878 __ Integer32ToSmi(result_, result_); 1879 __ bind(&exit_); 1880 } 1881 1882 1883 void StringCharCodeAtGenerator::GenerateSlow( 1884 MacroAssembler* masm, EmbedMode embed_mode, 1885 const RuntimeCallHelper& call_helper) { 1886 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); 1887 1888 Factory* factory = masm->isolate()->factory(); 1889 // Index is not a smi. 1890 __ bind(&index_not_smi_); 1891 // If index is a heap number, try converting it to an integer. 1892 __ CheckMap(index_, 1893 factory->heap_number_map(), 1894 index_not_number_, 1895 DONT_DO_SMI_CHECK); 1896 call_helper.BeforeCall(masm); 1897 if (embed_mode == PART_OF_IC_HANDLER) { 1898 __ Push(LoadWithVectorDescriptor::VectorRegister()); 1899 __ Push(LoadDescriptor::SlotRegister()); 1900 } 1901 __ Push(object_); 1902 __ Push(index_); // Consumed by runtime conversion function. 1903 __ CallRuntime(Runtime::kNumberToSmi); 1904 if (!index_.is(rax)) { 1905 // Save the conversion result before the pop instructions below 1906 // have a chance to overwrite it. 1907 __ movp(index_, rax); 1908 } 1909 __ Pop(object_); 1910 if (embed_mode == PART_OF_IC_HANDLER) { 1911 __ Pop(LoadDescriptor::SlotRegister()); 1912 __ Pop(LoadWithVectorDescriptor::VectorRegister()); 1913 } 1914 // Reload the instance type. 1915 __ movp(result_, FieldOperand(object_, HeapObject::kMapOffset)); 1916 __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); 1917 call_helper.AfterCall(masm); 1918 // If index is still not a smi, it must be out of range. 1919 __ JumpIfNotSmi(index_, index_out_of_range_); 1920 // Otherwise, return to the fast path. 1921 __ jmp(&got_smi_index_); 1922 1923 // Call runtime. We get here when the receiver is a string and the 1924 // index is a number, but the code of getting the actual character 1925 // is too complex (e.g., when the string needs to be flattened). 1926 __ bind(&call_runtime_); 1927 call_helper.BeforeCall(masm); 1928 __ Push(object_); 1929 __ Integer32ToSmi(index_, index_); 1930 __ Push(index_); 1931 __ CallRuntime(Runtime::kStringCharCodeAtRT); 1932 if (!result_.is(rax)) { 1933 __ movp(result_, rax); 1934 } 1935 call_helper.AfterCall(masm); 1936 __ jmp(&exit_); 1937 1938 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); 1939 } 1940 1941 1942 // ------------------------------------------------------------------------- 1943 // StringCharFromCodeGenerator 1944 1945 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { 1946 // Fast case of Heap::LookupSingleCharacterStringFromCode. 1947 __ JumpIfNotSmi(code_, &slow_case_); 1948 __ SmiCompare(code_, Smi::FromInt(String::kMaxOneByteCharCode)); 1949 __ j(above, &slow_case_); 1950 1951 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); 1952 SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2); 1953 __ movp(result_, FieldOperand(result_, index.reg, index.scale, 1954 FixedArray::kHeaderSize)); 1955 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex); 1956 __ j(equal, &slow_case_); 1957 __ bind(&exit_); 1958 } 1959 1960 1961 void StringCharFromCodeGenerator::GenerateSlow( 1962 MacroAssembler* masm, 1963 const RuntimeCallHelper& call_helper) { 1964 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase); 1965 1966 __ bind(&slow_case_); 1967 call_helper.BeforeCall(masm); 1968 __ Push(code_); 1969 __ CallRuntime(Runtime::kStringCharFromCode); 1970 if (!result_.is(rax)) { 1971 __ movp(result_, rax); 1972 } 1973 call_helper.AfterCall(masm); 1974 __ jmp(&exit_); 1975 1976 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase); 1977 } 1978 1979 1980 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, 1981 Register dest, 1982 Register src, 1983 Register count, 1984 String::Encoding encoding) { 1985 // Nothing to do for zero characters. 1986 Label done; 1987 __ testl(count, count); 1988 __ j(zero, &done, Label::kNear); 1989 1990 // Make count the number of bytes to copy. 1991 if (encoding == String::TWO_BYTE_ENCODING) { 1992 STATIC_ASSERT(2 == sizeof(uc16)); 1993 __ addl(count, count); 1994 } 1995 1996 // Copy remaining characters. 1997 Label loop; 1998 __ bind(&loop); 1999 __ movb(kScratchRegister, Operand(src, 0)); 2000 __ movb(Operand(dest, 0), kScratchRegister); 2001 __ incp(src); 2002 __ incp(dest); 2003 __ decl(count); 2004 __ j(not_zero, &loop); 2005 2006 __ bind(&done); 2007 } 2008 2009 2010 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm, 2011 Register left, 2012 Register right, 2013 Register scratch1, 2014 Register scratch2) { 2015 Register length = scratch1; 2016 2017 // Compare lengths. 2018 Label check_zero_length; 2019 __ movp(length, FieldOperand(left, String::kLengthOffset)); 2020 __ SmiCompare(length, FieldOperand(right, String::kLengthOffset)); 2021 __ j(equal, &check_zero_length, Label::kNear); 2022 __ Move(rax, Smi::FromInt(NOT_EQUAL)); 2023 __ ret(0); 2024 2025 // Check if the length is zero. 2026 Label compare_chars; 2027 __ bind(&check_zero_length); 2028 STATIC_ASSERT(kSmiTag == 0); 2029 __ SmiTest(length); 2030 __ j(not_zero, &compare_chars, Label::kNear); 2031 __ Move(rax, Smi::FromInt(EQUAL)); 2032 __ ret(0); 2033 2034 // Compare characters. 2035 __ bind(&compare_chars); 2036 Label strings_not_equal; 2037 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, 2038 &strings_not_equal, Label::kNear); 2039 2040 // Characters are equal. 2041 __ Move(rax, Smi::FromInt(EQUAL)); 2042 __ ret(0); 2043 2044 // Characters are not equal. 2045 __ bind(&strings_not_equal); 2046 __ Move(rax, Smi::FromInt(NOT_EQUAL)); 2047 __ ret(0); 2048 } 2049 2050 2051 void StringHelper::GenerateCompareFlatOneByteStrings( 2052 MacroAssembler* masm, Register left, Register right, Register scratch1, 2053 Register scratch2, Register scratch3, Register scratch4) { 2054 // Ensure that you can always subtract a string length from a non-negative 2055 // number (e.g. another length). 2056 STATIC_ASSERT(String::kMaxLength < 0x7fffffff); 2057 2058 // Find minimum length and length difference. 2059 __ movp(scratch1, FieldOperand(left, String::kLengthOffset)); 2060 __ movp(scratch4, scratch1); 2061 __ SmiSub(scratch4, 2062 scratch4, 2063 FieldOperand(right, String::kLengthOffset)); 2064 // Register scratch4 now holds left.length - right.length. 2065 const Register length_difference = scratch4; 2066 Label left_shorter; 2067 __ j(less, &left_shorter, Label::kNear); 2068 // The right string isn't longer that the left one. 2069 // Get the right string's length by subtracting the (non-negative) difference 2070 // from the left string's length. 2071 __ SmiSub(scratch1, scratch1, length_difference); 2072 __ bind(&left_shorter); 2073 // Register scratch1 now holds Min(left.length, right.length). 2074 const Register min_length = scratch1; 2075 2076 Label compare_lengths; 2077 // If min-length is zero, go directly to comparing lengths. 2078 __ SmiTest(min_length); 2079 __ j(zero, &compare_lengths, Label::kNear); 2080 2081 // Compare loop. 2082 Label result_not_equal; 2083 GenerateOneByteCharsCompareLoop( 2084 masm, left, right, min_length, scratch2, &result_not_equal, 2085 // In debug-code mode, SmiTest below might push 2086 // the target label outside the near range. 2087 Label::kFar); 2088 2089 // Completed loop without finding different characters. 2090 // Compare lengths (precomputed). 2091 __ bind(&compare_lengths); 2092 __ SmiTest(length_difference); 2093 Label length_not_equal; 2094 __ j(not_zero, &length_not_equal, Label::kNear); 2095 2096 // Result is EQUAL. 2097 __ Move(rax, Smi::FromInt(EQUAL)); 2098 __ ret(0); 2099 2100 Label result_greater; 2101 Label result_less; 2102 __ bind(&length_not_equal); 2103 __ j(greater, &result_greater, Label::kNear); 2104 __ jmp(&result_less, Label::kNear); 2105 __ bind(&result_not_equal); 2106 // Unequal comparison of left to right, either character or length. 2107 __ j(above, &result_greater, Label::kNear); 2108 __ bind(&result_less); 2109 2110 // Result is LESS. 2111 __ Move(rax, Smi::FromInt(LESS)); 2112 __ ret(0); 2113 2114 // Result is GREATER. 2115 __ bind(&result_greater); 2116 __ Move(rax, Smi::FromInt(GREATER)); 2117 __ ret(0); 2118 } 2119 2120 2121 void StringHelper::GenerateOneByteCharsCompareLoop( 2122 MacroAssembler* masm, Register left, Register right, Register length, 2123 Register scratch, Label* chars_not_equal, Label::Distance near_jump) { 2124 // Change index to run from -length to -1 by adding length to string 2125 // start. This means that loop ends when index reaches zero, which 2126 // doesn't need an additional compare. 2127 __ SmiToInteger32(length, length); 2128 __ leap(left, 2129 FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize)); 2130 __ leap(right, 2131 FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize)); 2132 __ negq(length); 2133 Register index = length; // index = -length; 2134 2135 // Compare loop. 2136 Label loop; 2137 __ bind(&loop); 2138 __ movb(scratch, Operand(left, index, times_1, 0)); 2139 __ cmpb(scratch, Operand(right, index, times_1, 0)); 2140 __ j(not_equal, chars_not_equal, near_jump); 2141 __ incq(index); 2142 __ j(not_zero, &loop); 2143 } 2144 2145 2146 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { 2147 // ----------- S t a t e ------------- 2148 // -- rdx : left 2149 // -- rax : right 2150 // -- rsp[0] : return address 2151 // ----------------------------------- 2152 2153 // Load rcx with the allocation site. We stick an undefined dummy value here 2154 // and replace it with the real allocation site later when we instantiate this 2155 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). 2156 __ Move(rcx, isolate()->factory()->undefined_value()); 2157 2158 // Make sure that we actually patched the allocation site. 2159 if (FLAG_debug_code) { 2160 __ testb(rcx, Immediate(kSmiTagMask)); 2161 __ Assert(not_equal, kExpectedAllocationSite); 2162 __ Cmp(FieldOperand(rcx, HeapObject::kMapOffset), 2163 isolate()->factory()->allocation_site_map()); 2164 __ Assert(equal, kExpectedAllocationSite); 2165 } 2166 2167 // Tail call into the stub that handles binary operations with allocation 2168 // sites. 2169 BinaryOpWithAllocationSiteStub stub(isolate(), state()); 2170 __ TailCallStub(&stub); 2171 } 2172 2173 2174 void CompareICStub::GenerateBooleans(MacroAssembler* masm) { 2175 DCHECK_EQ(CompareICState::BOOLEAN, state()); 2176 Label miss; 2177 Label::Distance const miss_distance = 2178 masm->emit_debug_code() ? Label::kFar : Label::kNear; 2179 2180 __ JumpIfSmi(rdx, &miss, miss_distance); 2181 __ movp(rcx, FieldOperand(rdx, HeapObject::kMapOffset)); 2182 __ JumpIfSmi(rax, &miss, miss_distance); 2183 __ movp(rbx, FieldOperand(rax, HeapObject::kMapOffset)); 2184 __ JumpIfNotRoot(rcx, Heap::kBooleanMapRootIndex, &miss, miss_distance); 2185 __ JumpIfNotRoot(rbx, Heap::kBooleanMapRootIndex, &miss, miss_distance); 2186 if (!Token::IsEqualityOp(op())) { 2187 __ movp(rax, FieldOperand(rax, Oddball::kToNumberOffset)); 2188 __ AssertSmi(rax); 2189 __ movp(rdx, FieldOperand(rdx, Oddball::kToNumberOffset)); 2190 __ AssertSmi(rdx); 2191 __ pushq(rax); 2192 __ movq(rax, rdx); 2193 __ popq(rdx); 2194 } 2195 __ subp(rax, rdx); 2196 __ Ret(); 2197 2198 __ bind(&miss); 2199 GenerateMiss(masm); 2200 } 2201 2202 2203 void CompareICStub::GenerateSmis(MacroAssembler* masm) { 2204 DCHECK(state() == CompareICState::SMI); 2205 Label miss; 2206 __ JumpIfNotBothSmi(rdx, rax, &miss, Label::kNear); 2207 2208 if (GetCondition() == equal) { 2209 // For equality we do not care about the sign of the result. 2210 __ subp(rax, rdx); 2211 } else { 2212 Label done; 2213 __ subp(rdx, rax); 2214 __ j(no_overflow, &done, Label::kNear); 2215 // Correct sign of result in case of overflow. 2216 __ notp(rdx); 2217 __ bind(&done); 2218 __ movp(rax, rdx); 2219 } 2220 __ ret(0); 2221 2222 __ bind(&miss); 2223 GenerateMiss(masm); 2224 } 2225 2226 2227 void CompareICStub::GenerateNumbers(MacroAssembler* masm) { 2228 DCHECK(state() == CompareICState::NUMBER); 2229 2230 Label generic_stub; 2231 Label unordered, maybe_undefined1, maybe_undefined2; 2232 Label miss; 2233 2234 if (left() == CompareICState::SMI) { 2235 __ JumpIfNotSmi(rdx, &miss); 2236 } 2237 if (right() == CompareICState::SMI) { 2238 __ JumpIfNotSmi(rax, &miss); 2239 } 2240 2241 // Load left and right operand. 2242 Label done, left, left_smi, right_smi; 2243 __ JumpIfSmi(rax, &right_smi, Label::kNear); 2244 __ CompareMap(rax, isolate()->factory()->heap_number_map()); 2245 __ j(not_equal, &maybe_undefined1, Label::kNear); 2246 __ Movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); 2247 __ jmp(&left, Label::kNear); 2248 __ bind(&right_smi); 2249 __ SmiToInteger32(rcx, rax); // Can't clobber rax yet. 2250 __ Cvtlsi2sd(xmm1, rcx); 2251 2252 __ bind(&left); 2253 __ JumpIfSmi(rdx, &left_smi, Label::kNear); 2254 __ CompareMap(rdx, isolate()->factory()->heap_number_map()); 2255 __ j(not_equal, &maybe_undefined2, Label::kNear); 2256 __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); 2257 __ jmp(&done); 2258 __ bind(&left_smi); 2259 __ SmiToInteger32(rcx, rdx); // Can't clobber rdx yet. 2260 __ Cvtlsi2sd(xmm0, rcx); 2261 2262 __ bind(&done); 2263 // Compare operands 2264 __ Ucomisd(xmm0, xmm1); 2265 2266 // Don't base result on EFLAGS when a NaN is involved. 2267 __ j(parity_even, &unordered, Label::kNear); 2268 2269 // Return a result of -1, 0, or 1, based on EFLAGS. 2270 // Performing mov, because xor would destroy the flag register. 2271 __ movl(rax, Immediate(0)); 2272 __ movl(rcx, Immediate(0)); 2273 __ setcc(above, rax); // Add one to zero if carry clear and not equal. 2274 __ sbbp(rax, rcx); // Subtract one if below (aka. carry set). 2275 __ ret(0); 2276 2277 __ bind(&unordered); 2278 __ bind(&generic_stub); 2279 CompareICStub stub(isolate(), op(), CompareICState::GENERIC, 2280 CompareICState::GENERIC, CompareICState::GENERIC); 2281 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET); 2282 2283 __ bind(&maybe_undefined1); 2284 if (Token::IsOrderedRelationalCompareOp(op())) { 2285 __ Cmp(rax, isolate()->factory()->undefined_value()); 2286 __ j(not_equal, &miss); 2287 __ JumpIfSmi(rdx, &unordered); 2288 __ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx); 2289 __ j(not_equal, &maybe_undefined2, Label::kNear); 2290 __ jmp(&unordered); 2291 } 2292 2293 __ bind(&maybe_undefined2); 2294 if (Token::IsOrderedRelationalCompareOp(op())) { 2295 __ Cmp(rdx, isolate()->factory()->undefined_value()); 2296 __ j(equal, &unordered); 2297 } 2298 2299 __ bind(&miss); 2300 GenerateMiss(masm); 2301 } 2302 2303 2304 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) { 2305 DCHECK(state() == CompareICState::INTERNALIZED_STRING); 2306 DCHECK(GetCondition() == equal); 2307 2308 // Registers containing left and right operands respectively. 2309 Register left = rdx; 2310 Register right = rax; 2311 Register tmp1 = rcx; 2312 Register tmp2 = rbx; 2313 2314 // Check that both operands are heap objects. 2315 Label miss; 2316 Condition cond = masm->CheckEitherSmi(left, right, tmp1); 2317 __ j(cond, &miss, Label::kNear); 2318 2319 // Check that both operands are internalized strings. 2320 __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset)); 2321 __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset)); 2322 __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); 2323 __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); 2324 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); 2325 __ orp(tmp1, tmp2); 2326 __ testb(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask)); 2327 __ j(not_zero, &miss, Label::kNear); 2328 2329 // Internalized strings are compared by identity. 2330 Label done; 2331 __ cmpp(left, right); 2332 // Make sure rax is non-zero. At this point input operands are 2333 // guaranteed to be non-zero. 2334 DCHECK(right.is(rax)); 2335 __ j(not_equal, &done, Label::kNear); 2336 STATIC_ASSERT(EQUAL == 0); 2337 STATIC_ASSERT(kSmiTag == 0); 2338 __ Move(rax, Smi::FromInt(EQUAL)); 2339 __ bind(&done); 2340 __ ret(0); 2341 2342 __ bind(&miss); 2343 GenerateMiss(masm); 2344 } 2345 2346 2347 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) { 2348 DCHECK(state() == CompareICState::UNIQUE_NAME); 2349 DCHECK(GetCondition() == equal); 2350 2351 // Registers containing left and right operands respectively. 2352 Register left = rdx; 2353 Register right = rax; 2354 Register tmp1 = rcx; 2355 Register tmp2 = rbx; 2356 2357 // Check that both operands are heap objects. 2358 Label miss; 2359 Condition cond = masm->CheckEitherSmi(left, right, tmp1); 2360 __ j(cond, &miss, Label::kNear); 2361 2362 // Check that both operands are unique names. This leaves the instance 2363 // types loaded in tmp1 and tmp2. 2364 __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset)); 2365 __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset)); 2366 __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); 2367 __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); 2368 2369 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear); 2370 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear); 2371 2372 // Unique names are compared by identity. 2373 Label done; 2374 __ cmpp(left, right); 2375 // Make sure rax is non-zero. At this point input operands are 2376 // guaranteed to be non-zero. 2377 DCHECK(right.is(rax)); 2378 __ j(not_equal, &done, Label::kNear); 2379 STATIC_ASSERT(EQUAL == 0); 2380 STATIC_ASSERT(kSmiTag == 0); 2381 __ Move(rax, Smi::FromInt(EQUAL)); 2382 __ bind(&done); 2383 __ ret(0); 2384 2385 __ bind(&miss); 2386 GenerateMiss(masm); 2387 } 2388 2389 2390 void CompareICStub::GenerateStrings(MacroAssembler* masm) { 2391 DCHECK(state() == CompareICState::STRING); 2392 Label miss; 2393 2394 bool equality = Token::IsEqualityOp(op()); 2395 2396 // Registers containing left and right operands respectively. 2397 Register left = rdx; 2398 Register right = rax; 2399 Register tmp1 = rcx; 2400 Register tmp2 = rbx; 2401 Register tmp3 = rdi; 2402 2403 // Check that both operands are heap objects. 2404 Condition cond = masm->CheckEitherSmi(left, right, tmp1); 2405 __ j(cond, &miss); 2406 2407 // Check that both operands are strings. This leaves the instance 2408 // types loaded in tmp1 and tmp2. 2409 __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset)); 2410 __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset)); 2411 __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); 2412 __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); 2413 __ movp(tmp3, tmp1); 2414 STATIC_ASSERT(kNotStringTag != 0); 2415 __ orp(tmp3, tmp2); 2416 __ testb(tmp3, Immediate(kIsNotStringMask)); 2417 __ j(not_zero, &miss); 2418 2419 // Fast check for identical strings. 2420 Label not_same; 2421 __ cmpp(left, right); 2422 __ j(not_equal, ¬_same, Label::kNear); 2423 STATIC_ASSERT(EQUAL == 0); 2424 STATIC_ASSERT(kSmiTag == 0); 2425 __ Move(rax, Smi::FromInt(EQUAL)); 2426 __ ret(0); 2427 2428 // Handle not identical strings. 2429 __ bind(¬_same); 2430 2431 // Check that both strings are internalized strings. If they are, we're done 2432 // because we already know they are not identical. We also know they are both 2433 // strings. 2434 if (equality) { 2435 Label do_compare; 2436 STATIC_ASSERT(kInternalizedTag == 0); 2437 __ orp(tmp1, tmp2); 2438 __ testb(tmp1, Immediate(kIsNotInternalizedMask)); 2439 __ j(not_zero, &do_compare, Label::kNear); 2440 // Make sure rax is non-zero. At this point input operands are 2441 // guaranteed to be non-zero. 2442 DCHECK(right.is(rax)); 2443 __ ret(0); 2444 __ bind(&do_compare); 2445 } 2446 2447 // Check that both strings are sequential one-byte. 2448 Label runtime; 2449 __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime); 2450 2451 // Compare flat one-byte strings. Returns when done. 2452 if (equality) { 2453 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, 2454 tmp2); 2455 } else { 2456 StringHelper::GenerateCompareFlatOneByteStrings( 2457 masm, left, right, tmp1, tmp2, tmp3, kScratchRegister); 2458 } 2459 2460 // Handle more complex cases in runtime. 2461 __ bind(&runtime); 2462 if (equality) { 2463 { 2464 FrameScope scope(masm, StackFrame::INTERNAL); 2465 __ Push(left); 2466 __ Push(right); 2467 __ CallRuntime(Runtime::kStringEqual); 2468 } 2469 __ LoadRoot(rdx, Heap::kTrueValueRootIndex); 2470 __ subp(rax, rdx); 2471 __ Ret(); 2472 } else { 2473 __ PopReturnAddressTo(tmp1); 2474 __ Push(left); 2475 __ Push(right); 2476 __ PushReturnAddressFrom(tmp1); 2477 __ TailCallRuntime(Runtime::kStringCompare); 2478 } 2479 2480 __ bind(&miss); 2481 GenerateMiss(masm); 2482 } 2483 2484 2485 void CompareICStub::GenerateReceivers(MacroAssembler* masm) { 2486 DCHECK_EQ(CompareICState::RECEIVER, state()); 2487 Label miss; 2488 Condition either_smi = masm->CheckEitherSmi(rdx, rax); 2489 __ j(either_smi, &miss, Label::kNear); 2490 2491 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); 2492 __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx); 2493 __ j(below, &miss, Label::kNear); 2494 __ CmpObjectType(rdx, FIRST_JS_RECEIVER_TYPE, rcx); 2495 __ j(below, &miss, Label::kNear); 2496 2497 DCHECK_EQ(equal, GetCondition()); 2498 __ subp(rax, rdx); 2499 __ ret(0); 2500 2501 __ bind(&miss); 2502 GenerateMiss(masm); 2503 } 2504 2505 2506 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) { 2507 Label miss; 2508 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_); 2509 Condition either_smi = masm->CheckEitherSmi(rdx, rax); 2510 __ j(either_smi, &miss, Label::kNear); 2511 2512 __ GetWeakValue(rdi, cell); 2513 __ cmpp(FieldOperand(rdx, HeapObject::kMapOffset), rdi); 2514 __ j(not_equal, &miss, Label::kNear); 2515 __ cmpp(FieldOperand(rax, HeapObject::kMapOffset), rdi); 2516 __ j(not_equal, &miss, Label::kNear); 2517 2518 if (Token::IsEqualityOp(op())) { 2519 __ subp(rax, rdx); 2520 __ ret(0); 2521 } else { 2522 __ PopReturnAddressTo(rcx); 2523 __ Push(rdx); 2524 __ Push(rax); 2525 __ Push(Smi::FromInt(NegativeComparisonResult(GetCondition()))); 2526 __ PushReturnAddressFrom(rcx); 2527 __ TailCallRuntime(Runtime::kCompare); 2528 } 2529 2530 __ bind(&miss); 2531 GenerateMiss(masm); 2532 } 2533 2534 2535 void CompareICStub::GenerateMiss(MacroAssembler* masm) { 2536 { 2537 // Call the runtime system in a fresh internal frame. 2538 FrameScope scope(masm, StackFrame::INTERNAL); 2539 __ Push(rdx); 2540 __ Push(rax); 2541 __ Push(rdx); 2542 __ Push(rax); 2543 __ Push(Smi::FromInt(op())); 2544 __ CallRuntime(Runtime::kCompareIC_Miss); 2545 2546 // Compute the entry point of the rewritten stub. 2547 __ leap(rdi, FieldOperand(rax, Code::kHeaderSize)); 2548 __ Pop(rax); 2549 __ Pop(rdx); 2550 } 2551 2552 // Do a tail call to the rewritten stub. 2553 __ jmp(rdi); 2554 } 2555 2556 2557 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, 2558 Label* miss, 2559 Label* done, 2560 Register properties, 2561 Handle<Name> name, 2562 Register r0) { 2563 DCHECK(name->IsUniqueName()); 2564 // If names of slots in range from 1 to kProbes - 1 for the hash value are 2565 // not equal to the name and kProbes-th slot is not used (its name is the 2566 // undefined value), it guarantees the hash table doesn't contain the 2567 // property. It's true even if some slots represent deleted properties 2568 // (their names are the hole value). 2569 for (int i = 0; i < kInlinedProbes; i++) { 2570 // r0 points to properties hash. 2571 // Compute the masked index: (hash + i + i * i) & mask. 2572 Register index = r0; 2573 // Capacity is smi 2^n. 2574 __ SmiToInteger32(index, FieldOperand(properties, kCapacityOffset)); 2575 __ decl(index); 2576 __ andp(index, 2577 Immediate(name->Hash() + NameDictionary::GetProbeOffset(i))); 2578 2579 // Scale the index by multiplying by the entry size. 2580 STATIC_ASSERT(NameDictionary::kEntrySize == 3); 2581 __ leap(index, Operand(index, index, times_2, 0)); // index *= 3. 2582 2583 Register entity_name = r0; 2584 // Having undefined at this place means the name is not contained. 2585 STATIC_ASSERT(kSmiTagSize == 1); 2586 __ movp(entity_name, Operand(properties, 2587 index, 2588 times_pointer_size, 2589 kElementsStartOffset - kHeapObjectTag)); 2590 __ Cmp(entity_name, masm->isolate()->factory()->undefined_value()); 2591 __ j(equal, done); 2592 2593 // Stop if found the property. 2594 __ Cmp(entity_name, Handle<Name>(name)); 2595 __ j(equal, miss); 2596 2597 Label good; 2598 // Check for the hole and skip. 2599 __ CompareRoot(entity_name, Heap::kTheHoleValueRootIndex); 2600 __ j(equal, &good, Label::kNear); 2601 2602 // Check if the entry name is not a unique name. 2603 __ movp(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset)); 2604 __ JumpIfNotUniqueNameInstanceType( 2605 FieldOperand(entity_name, Map::kInstanceTypeOffset), miss); 2606 __ bind(&good); 2607 } 2608 2609 NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0, 2610 NEGATIVE_LOOKUP); 2611 __ Push(Handle<Object>(name)); 2612 __ Push(Immediate(name->Hash())); 2613 __ CallStub(&stub); 2614 __ testp(r0, r0); 2615 __ j(not_zero, miss); 2616 __ jmp(done); 2617 } 2618 2619 2620 // Probe the name dictionary in the |elements| register. Jump to the 2621 // |done| label if a property with the given name is found leaving the 2622 // index into the dictionary in |r1|. Jump to the |miss| label 2623 // otherwise. 2624 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm, 2625 Label* miss, 2626 Label* done, 2627 Register elements, 2628 Register name, 2629 Register r0, 2630 Register r1) { 2631 DCHECK(!elements.is(r0)); 2632 DCHECK(!elements.is(r1)); 2633 DCHECK(!name.is(r0)); 2634 DCHECK(!name.is(r1)); 2635 2636 __ AssertName(name); 2637 2638 __ SmiToInteger32(r0, FieldOperand(elements, kCapacityOffset)); 2639 __ decl(r0); 2640 2641 for (int i = 0; i < kInlinedProbes; i++) { 2642 // Compute the masked index: (hash + i + i * i) & mask. 2643 __ movl(r1, FieldOperand(name, Name::kHashFieldOffset)); 2644 __ shrl(r1, Immediate(Name::kHashShift)); 2645 if (i > 0) { 2646 __ addl(r1, Immediate(NameDictionary::GetProbeOffset(i))); 2647 } 2648 __ andp(r1, r0); 2649 2650 // Scale the index by multiplying by the entry size. 2651 STATIC_ASSERT(NameDictionary::kEntrySize == 3); 2652 __ leap(r1, Operand(r1, r1, times_2, 0)); // r1 = r1 * 3 2653 2654 // Check if the key is identical to the name. 2655 __ cmpp(name, Operand(elements, r1, times_pointer_size, 2656 kElementsStartOffset - kHeapObjectTag)); 2657 __ j(equal, done); 2658 } 2659 2660 NameDictionaryLookupStub stub(masm->isolate(), elements, r0, r1, 2661 POSITIVE_LOOKUP); 2662 __ Push(name); 2663 __ movl(r0, FieldOperand(name, Name::kHashFieldOffset)); 2664 __ shrl(r0, Immediate(Name::kHashShift)); 2665 __ Push(r0); 2666 __ CallStub(&stub); 2667 2668 __ testp(r0, r0); 2669 __ j(zero, miss); 2670 __ jmp(done); 2671 } 2672 2673 2674 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { 2675 // This stub overrides SometimesSetsUpAFrame() to return false. That means 2676 // we cannot call anything that could cause a GC from this stub. 2677 // Stack frame on entry: 2678 // rsp[0 * kPointerSize] : return address. 2679 // rsp[1 * kPointerSize] : key's hash. 2680 // rsp[2 * kPointerSize] : key. 2681 // Registers: 2682 // dictionary_: NameDictionary to probe. 2683 // result_: used as scratch. 2684 // index_: will hold an index of entry if lookup is successful. 2685 // might alias with result_. 2686 // Returns: 2687 // result_ is zero if lookup failed, non zero otherwise. 2688 2689 Label in_dictionary, maybe_in_dictionary, not_in_dictionary; 2690 2691 Register scratch = result(); 2692 2693 __ SmiToInteger32(scratch, FieldOperand(dictionary(), kCapacityOffset)); 2694 __ decl(scratch); 2695 __ Push(scratch); 2696 2697 // If names of slots in range from 1 to kProbes - 1 for the hash value are 2698 // not equal to the name and kProbes-th slot is not used (its name is the 2699 // undefined value), it guarantees the hash table doesn't contain the 2700 // property. It's true even if some slots represent deleted properties 2701 // (their names are the null value). 2702 StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER, 2703 kPointerSize); 2704 for (int i = kInlinedProbes; i < kTotalProbes; i++) { 2705 // Compute the masked index: (hash + i + i * i) & mask. 2706 __ movp(scratch, args.GetArgumentOperand(1)); 2707 if (i > 0) { 2708 __ addl(scratch, Immediate(NameDictionary::GetProbeOffset(i))); 2709 } 2710 __ andp(scratch, Operand(rsp, 0)); 2711 2712 // Scale the index by multiplying by the entry size. 2713 STATIC_ASSERT(NameDictionary::kEntrySize == 3); 2714 __ leap(index(), Operand(scratch, scratch, times_2, 0)); // index *= 3. 2715 2716 // Having undefined at this place means the name is not contained. 2717 __ movp(scratch, Operand(dictionary(), index(), times_pointer_size, 2718 kElementsStartOffset - kHeapObjectTag)); 2719 2720 __ Cmp(scratch, isolate()->factory()->undefined_value()); 2721 __ j(equal, ¬_in_dictionary); 2722 2723 // Stop if found the property. 2724 __ cmpp(scratch, args.GetArgumentOperand(0)); 2725 __ j(equal, &in_dictionary); 2726 2727 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) { 2728 // If we hit a key that is not a unique name during negative 2729 // lookup we have to bailout as this key might be equal to the 2730 // key we are looking for. 2731 2732 // Check if the entry name is not a unique name. 2733 __ movp(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); 2734 __ JumpIfNotUniqueNameInstanceType( 2735 FieldOperand(scratch, Map::kInstanceTypeOffset), 2736 &maybe_in_dictionary); 2737 } 2738 } 2739 2740 __ bind(&maybe_in_dictionary); 2741 // If we are doing negative lookup then probing failure should be 2742 // treated as a lookup success. For positive lookup probing failure 2743 // should be treated as lookup failure. 2744 if (mode() == POSITIVE_LOOKUP) { 2745 __ movp(scratch, Immediate(0)); 2746 __ Drop(1); 2747 __ ret(2 * kPointerSize); 2748 } 2749 2750 __ bind(&in_dictionary); 2751 __ movp(scratch, Immediate(1)); 2752 __ Drop(1); 2753 __ ret(2 * kPointerSize); 2754 2755 __ bind(¬_in_dictionary); 2756 __ movp(scratch, Immediate(0)); 2757 __ Drop(1); 2758 __ ret(2 * kPointerSize); 2759 } 2760 2761 2762 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( 2763 Isolate* isolate) { 2764 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs); 2765 stub1.GetCode(); 2766 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs); 2767 stub2.GetCode(); 2768 } 2769 2770 2771 // Takes the input in 3 registers: address_ value_ and object_. A pointer to 2772 // the value has just been written into the object, now this stub makes sure 2773 // we keep the GC informed. The word in the object where the value has been 2774 // written is in the address register. 2775 void RecordWriteStub::Generate(MacroAssembler* masm) { 2776 Label skip_to_incremental_noncompacting; 2777 Label skip_to_incremental_compacting; 2778 2779 // The first two instructions are generated with labels so as to get the 2780 // offset fixed up correctly by the bind(Label*) call. We patch it back and 2781 // forth between a compare instructions (a nop in this position) and the 2782 // real branch when we start and stop incremental heap marking. 2783 // See RecordWriteStub::Patch for details. 2784 __ jmp(&skip_to_incremental_noncompacting, Label::kNear); 2785 __ jmp(&skip_to_incremental_compacting, Label::kFar); 2786 2787 if (remembered_set_action() == EMIT_REMEMBERED_SET) { 2788 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), 2789 MacroAssembler::kReturnAtEnd); 2790 } else { 2791 __ ret(0); 2792 } 2793 2794 __ bind(&skip_to_incremental_noncompacting); 2795 GenerateIncremental(masm, INCREMENTAL); 2796 2797 __ bind(&skip_to_incremental_compacting); 2798 GenerateIncremental(masm, INCREMENTAL_COMPACTION); 2799 2800 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. 2801 // Will be checked in IncrementalMarking::ActivateGeneratedStub. 2802 masm->set_byte_at(0, kTwoByteNopInstruction); 2803 masm->set_byte_at(2, kFiveByteNopInstruction); 2804 } 2805 2806 2807 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { 2808 regs_.Save(masm); 2809 2810 if (remembered_set_action() == EMIT_REMEMBERED_SET) { 2811 Label dont_need_remembered_set; 2812 2813 __ movp(regs_.scratch0(), Operand(regs_.address(), 0)); 2814 __ JumpIfNotInNewSpace(regs_.scratch0(), 2815 regs_.scratch0(), 2816 &dont_need_remembered_set); 2817 2818 __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(), 2819 &dont_need_remembered_set); 2820 2821 // First notify the incremental marker if necessary, then update the 2822 // remembered set. 2823 CheckNeedsToInformIncrementalMarker( 2824 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); 2825 InformIncrementalMarker(masm); 2826 regs_.Restore(masm); 2827 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), 2828 MacroAssembler::kReturnAtEnd); 2829 2830 __ bind(&dont_need_remembered_set); 2831 } 2832 2833 CheckNeedsToInformIncrementalMarker( 2834 masm, kReturnOnNoNeedToInformIncrementalMarker, mode); 2835 InformIncrementalMarker(masm); 2836 regs_.Restore(masm); 2837 __ ret(0); 2838 } 2839 2840 2841 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { 2842 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode()); 2843 Register address = 2844 arg_reg_1.is(regs_.address()) ? kScratchRegister : regs_.address(); 2845 DCHECK(!address.is(regs_.object())); 2846 DCHECK(!address.is(arg_reg_1)); 2847 __ Move(address, regs_.address()); 2848 __ Move(arg_reg_1, regs_.object()); 2849 // TODO(gc) Can we just set address arg2 in the beginning? 2850 __ Move(arg_reg_2, address); 2851 __ LoadAddress(arg_reg_3, 2852 ExternalReference::isolate_address(isolate())); 2853 int argument_count = 3; 2854 2855 AllowExternalCallThatCantCauseGC scope(masm); 2856 __ PrepareCallCFunction(argument_count); 2857 __ CallCFunction( 2858 ExternalReference::incremental_marking_record_write_function(isolate()), 2859 argument_count); 2860 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode()); 2861 } 2862 2863 2864 void RecordWriteStub::CheckNeedsToInformIncrementalMarker( 2865 MacroAssembler* masm, 2866 OnNoNeedToInformIncrementalMarker on_no_need, 2867 Mode mode) { 2868 Label on_black; 2869 Label need_incremental; 2870 Label need_incremental_pop_object; 2871 2872 // Let's look at the color of the object: If it is not black we don't have 2873 // to inform the incremental marker. 2874 __ JumpIfBlack(regs_.object(), 2875 regs_.scratch0(), 2876 regs_.scratch1(), 2877 &on_black, 2878 Label::kNear); 2879 2880 regs_.Restore(masm); 2881 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { 2882 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), 2883 MacroAssembler::kReturnAtEnd); 2884 } else { 2885 __ ret(0); 2886 } 2887 2888 __ bind(&on_black); 2889 2890 // Get the value from the slot. 2891 __ movp(regs_.scratch0(), Operand(regs_.address(), 0)); 2892 2893 if (mode == INCREMENTAL_COMPACTION) { 2894 Label ensure_not_white; 2895 2896 __ CheckPageFlag(regs_.scratch0(), // Contains value. 2897 regs_.scratch1(), // Scratch. 2898 MemoryChunk::kEvacuationCandidateMask, 2899 zero, 2900 &ensure_not_white, 2901 Label::kNear); 2902 2903 __ CheckPageFlag(regs_.object(), 2904 regs_.scratch1(), // Scratch. 2905 MemoryChunk::kSkipEvacuationSlotsRecordingMask, 2906 zero, 2907 &need_incremental); 2908 2909 __ bind(&ensure_not_white); 2910 } 2911 2912 // We need an extra register for this, so we push the object register 2913 // temporarily. 2914 __ Push(regs_.object()); 2915 __ JumpIfWhite(regs_.scratch0(), // The value. 2916 regs_.scratch1(), // Scratch. 2917 regs_.object(), // Scratch. 2918 &need_incremental_pop_object, Label::kNear); 2919 __ Pop(regs_.object()); 2920 2921 regs_.Restore(masm); 2922 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { 2923 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), 2924 MacroAssembler::kReturnAtEnd); 2925 } else { 2926 __ ret(0); 2927 } 2928 2929 __ bind(&need_incremental_pop_object); 2930 __ Pop(regs_.object()); 2931 2932 __ bind(&need_incremental); 2933 2934 // Fall through when we need to inform the incremental marker. 2935 } 2936 2937 2938 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { 2939 CEntryStub ces(isolate(), 1, kSaveFPRegs); 2940 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET); 2941 int parameter_count_offset = 2942 StubFailureTrampolineFrameConstants::kArgumentsLengthOffset; 2943 __ movp(rbx, MemOperand(rbp, parameter_count_offset)); 2944 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); 2945 __ PopReturnAddressTo(rcx); 2946 int additional_offset = 2947 function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0; 2948 __ leap(rsp, MemOperand(rsp, rbx, times_pointer_size, additional_offset)); 2949 __ jmp(rcx); // Return to IC Miss stub, continuation still on stack. 2950 } 2951 2952 static void HandleArrayCases(MacroAssembler* masm, Register feedback, 2953 Register receiver_map, Register scratch1, 2954 Register scratch2, Register scratch3, 2955 bool is_polymorphic, Label* miss) { 2956 // feedback initially contains the feedback array 2957 Label next_loop, prepare_next; 2958 Label start_polymorphic; 2959 2960 Register counter = scratch1; 2961 Register length = scratch2; 2962 Register cached_map = scratch3; 2963 2964 __ movp(cached_map, FieldOperand(feedback, FixedArray::OffsetOfElementAt(0))); 2965 __ cmpp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset)); 2966 __ j(not_equal, &start_polymorphic); 2967 2968 // found, now call handler. 2969 Register handler = feedback; 2970 __ movp(handler, FieldOperand(feedback, FixedArray::OffsetOfElementAt(1))); 2971 __ leap(handler, FieldOperand(handler, Code::kHeaderSize)); 2972 __ jmp(handler); 2973 2974 // Polymorphic, we have to loop from 2 to N 2975 __ bind(&start_polymorphic); 2976 __ SmiToInteger32(length, FieldOperand(feedback, FixedArray::kLengthOffset)); 2977 if (!is_polymorphic) { 2978 // If the IC could be monomorphic we have to make sure we don't go past the 2979 // end of the feedback array. 2980 __ cmpl(length, Immediate(2)); 2981 __ j(equal, miss); 2982 } 2983 __ movl(counter, Immediate(2)); 2984 2985 __ bind(&next_loop); 2986 __ movp(cached_map, FieldOperand(feedback, counter, times_pointer_size, 2987 FixedArray::kHeaderSize)); 2988 __ cmpp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset)); 2989 __ j(not_equal, &prepare_next); 2990 __ movp(handler, FieldOperand(feedback, counter, times_pointer_size, 2991 FixedArray::kHeaderSize + kPointerSize)); 2992 __ leap(handler, FieldOperand(handler, Code::kHeaderSize)); 2993 __ jmp(handler); 2994 2995 __ bind(&prepare_next); 2996 __ addl(counter, Immediate(2)); 2997 __ cmpl(counter, length); 2998 __ j(less, &next_loop); 2999 3000 // We exhausted our array of map handler pairs. 3001 __ jmp(miss); 3002 } 3003 3004 3005 static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver, 3006 Register receiver_map, Register feedback, 3007 Register vector, Register integer_slot, 3008 Label* compare_map, Label* load_smi_map, 3009 Label* try_array) { 3010 __ JumpIfSmi(receiver, load_smi_map); 3011 __ movp(receiver_map, FieldOperand(receiver, 0)); 3012 3013 __ bind(compare_map); 3014 __ cmpp(receiver_map, FieldOperand(feedback, WeakCell::kValueOffset)); 3015 __ j(not_equal, try_array); 3016 Register handler = feedback; 3017 __ movp(handler, FieldOperand(vector, integer_slot, times_pointer_size, 3018 FixedArray::kHeaderSize + kPointerSize)); 3019 __ leap(handler, FieldOperand(handler, Code::kHeaderSize)); 3020 __ jmp(handler); 3021 } 3022 3023 void KeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) { 3024 __ EmitLoadTypeFeedbackVector(StoreWithVectorDescriptor::VectorRegister()); 3025 KeyedStoreICStub stub(isolate(), state()); 3026 stub.GenerateForTrampoline(masm); 3027 } 3028 3029 void KeyedStoreICStub::Generate(MacroAssembler* masm) { 3030 GenerateImpl(masm, false); 3031 } 3032 3033 void KeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) { 3034 GenerateImpl(masm, true); 3035 } 3036 3037 3038 static void HandlePolymorphicKeyedStoreCase(MacroAssembler* masm, 3039 Register receiver_map, 3040 Register feedback, Register scratch, 3041 Register scratch1, 3042 Register scratch2, Label* miss) { 3043 // feedback initially contains the feedback array 3044 Label next, next_loop, prepare_next; 3045 Label transition_call; 3046 3047 Register cached_map = scratch; 3048 Register counter = scratch1; 3049 Register length = scratch2; 3050 3051 // Polymorphic, we have to loop from 0 to N - 1 3052 __ movp(counter, Immediate(0)); 3053 __ movp(length, FieldOperand(feedback, FixedArray::kLengthOffset)); 3054 __ SmiToInteger32(length, length); 3055 3056 __ bind(&next_loop); 3057 __ movp(cached_map, FieldOperand(feedback, counter, times_pointer_size, 3058 FixedArray::kHeaderSize)); 3059 __ cmpp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset)); 3060 __ j(not_equal, &prepare_next); 3061 __ movp(cached_map, FieldOperand(feedback, counter, times_pointer_size, 3062 FixedArray::kHeaderSize + kPointerSize)); 3063 __ CompareRoot(cached_map, Heap::kUndefinedValueRootIndex); 3064 __ j(not_equal, &transition_call); 3065 __ movp(feedback, FieldOperand(feedback, counter, times_pointer_size, 3066 FixedArray::kHeaderSize + 2 * kPointerSize)); 3067 __ leap(feedback, FieldOperand(feedback, Code::kHeaderSize)); 3068 __ jmp(feedback); 3069 3070 __ bind(&transition_call); 3071 DCHECK(receiver_map.is(StoreTransitionDescriptor::MapRegister())); 3072 __ movp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset)); 3073 // The weak cell may have been cleared. 3074 __ JumpIfSmi(receiver_map, miss); 3075 // Get the handler in value. 3076 __ movp(feedback, FieldOperand(feedback, counter, times_pointer_size, 3077 FixedArray::kHeaderSize + 2 * kPointerSize)); 3078 __ leap(feedback, FieldOperand(feedback, Code::kHeaderSize)); 3079 __ jmp(feedback); 3080 3081 __ bind(&prepare_next); 3082 __ addl(counter, Immediate(3)); 3083 __ cmpl(counter, length); 3084 __ j(less, &next_loop); 3085 3086 // We exhausted our array of map handler pairs. 3087 __ jmp(miss); 3088 } 3089 3090 void KeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) { 3091 Register receiver = StoreWithVectorDescriptor::ReceiverRegister(); // rdx 3092 Register key = StoreWithVectorDescriptor::NameRegister(); // rcx 3093 Register vector = StoreWithVectorDescriptor::VectorRegister(); // rbx 3094 Register slot = StoreWithVectorDescriptor::SlotRegister(); // rdi 3095 DCHECK(StoreWithVectorDescriptor::ValueRegister().is(rax)); // rax 3096 Register feedback = r8; 3097 Register integer_slot = r9; 3098 Register receiver_map = r11; 3099 DCHECK(!AreAliased(feedback, integer_slot, vector, slot, receiver_map)); 3100 3101 __ SmiToInteger32(integer_slot, slot); 3102 __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size, 3103 FixedArray::kHeaderSize)); 3104 3105 // Try to quickly handle the monomorphic case without knowing for sure 3106 // if we have a weak cell in feedback. We do know it's safe to look 3107 // at WeakCell::kValueOffset. 3108 Label try_array, load_smi_map, compare_map; 3109 Label not_array, miss; 3110 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, 3111 integer_slot, &compare_map, &load_smi_map, &try_array); 3112 3113 // Is it a fixed array? 3114 __ bind(&try_array); 3115 __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex); 3116 __ j(not_equal, ¬_array); 3117 HandlePolymorphicKeyedStoreCase(masm, receiver_map, feedback, integer_slot, 3118 r15, r14, &miss); 3119 3120 __ bind(¬_array); 3121 Label try_poly_name; 3122 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex); 3123 __ j(not_equal, &try_poly_name); 3124 3125 Handle<Code> megamorphic_stub = 3126 KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState()); 3127 __ jmp(megamorphic_stub, RelocInfo::CODE_TARGET); 3128 3129 __ bind(&try_poly_name); 3130 // We might have a name in feedback, and a fixed array in the next slot. 3131 __ cmpp(key, feedback); 3132 __ j(not_equal, &miss); 3133 // If the name comparison succeeded, we know we have a fixed array with 3134 // at least one map/handler pair. 3135 __ movp(feedback, FieldOperand(vector, integer_slot, times_pointer_size, 3136 FixedArray::kHeaderSize + kPointerSize)); 3137 HandleArrayCases(masm, feedback, receiver_map, integer_slot, r14, r15, false, 3138 &miss); 3139 3140 __ bind(&miss); 3141 KeyedStoreIC::GenerateMiss(masm); 3142 3143 __ bind(&load_smi_map); 3144 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex); 3145 __ jmp(&compare_map); 3146 } 3147 3148 3149 void CallICTrampolineStub::Generate(MacroAssembler* masm) { 3150 __ EmitLoadTypeFeedbackVector(rbx); 3151 CallICStub stub(isolate(), state()); 3152 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET); 3153 } 3154 3155 3156 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { 3157 if (masm->isolate()->function_entry_hook() != NULL) { 3158 ProfileEntryHookStub stub(masm->isolate()); 3159 masm->CallStub(&stub); 3160 } 3161 } 3162 3163 3164 void ProfileEntryHookStub::Generate(MacroAssembler* masm) { 3165 // This stub can be called from essentially anywhere, so it needs to save 3166 // all volatile and callee-save registers. 3167 const size_t kNumSavedRegisters = 2; 3168 __ pushq(arg_reg_1); 3169 __ pushq(arg_reg_2); 3170 3171 // Calculate the original stack pointer and store it in the second arg. 3172 __ leap(arg_reg_2, 3173 Operand(rsp, kNumSavedRegisters * kRegisterSize + kPCOnStackSize)); 3174 3175 // Calculate the function address to the first arg. 3176 __ movp(arg_reg_1, Operand(rsp, kNumSavedRegisters * kRegisterSize)); 3177 __ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength)); 3178 3179 // Save the remainder of the volatile registers. 3180 masm->PushCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2); 3181 3182 // Call the entry hook function. 3183 __ Move(rax, FUNCTION_ADDR(isolate()->function_entry_hook()), 3184 Assembler::RelocInfoNone()); 3185 3186 AllowExternalCallThatCantCauseGC scope(masm); 3187 3188 const int kArgumentCount = 2; 3189 __ PrepareCallCFunction(kArgumentCount); 3190 __ CallCFunction(rax, kArgumentCount); 3191 3192 // Restore volatile regs. 3193 masm->PopCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2); 3194 __ popq(arg_reg_2); 3195 __ popq(arg_reg_1); 3196 3197 __ Ret(); 3198 } 3199 3200 3201 template<class T> 3202 static void CreateArrayDispatch(MacroAssembler* masm, 3203 AllocationSiteOverrideMode mode) { 3204 if (mode == DISABLE_ALLOCATION_SITES) { 3205 T stub(masm->isolate(), GetInitialFastElementsKind(), mode); 3206 __ TailCallStub(&stub); 3207 } else if (mode == DONT_OVERRIDE) { 3208 int last_index = GetSequenceIndexFromFastElementsKind( 3209 TERMINAL_FAST_ELEMENTS_KIND); 3210 for (int i = 0; i <= last_index; ++i) { 3211 Label next; 3212 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); 3213 __ cmpl(rdx, Immediate(kind)); 3214 __ j(not_equal, &next); 3215 T stub(masm->isolate(), kind); 3216 __ TailCallStub(&stub); 3217 __ bind(&next); 3218 } 3219 3220 // If we reached this point there is a problem. 3221 __ Abort(kUnexpectedElementsKindInArrayConstructor); 3222 } else { 3223 UNREACHABLE(); 3224 } 3225 } 3226 3227 3228 static void CreateArrayDispatchOneArgument(MacroAssembler* masm, 3229 AllocationSiteOverrideMode mode) { 3230 // rbx - allocation site (if mode != DISABLE_ALLOCATION_SITES) 3231 // rdx - kind (if mode != DISABLE_ALLOCATION_SITES) 3232 // rax - number of arguments 3233 // rdi - constructor? 3234 // rsp[0] - return address 3235 // rsp[8] - last argument 3236 3237 Label normal_sequence; 3238 if (mode == DONT_OVERRIDE) { 3239 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); 3240 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); 3241 STATIC_ASSERT(FAST_ELEMENTS == 2); 3242 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); 3243 STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4); 3244 STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5); 3245 3246 // is the low bit set? If so, we are holey and that is good. 3247 __ testb(rdx, Immediate(1)); 3248 __ j(not_zero, &normal_sequence); 3249 } 3250 3251 // look at the first argument 3252 StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER); 3253 __ movp(rcx, args.GetArgumentOperand(0)); 3254 __ testp(rcx, rcx); 3255 __ j(zero, &normal_sequence); 3256 3257 if (mode == DISABLE_ALLOCATION_SITES) { 3258 ElementsKind initial = GetInitialFastElementsKind(); 3259 ElementsKind holey_initial = GetHoleyElementsKind(initial); 3260 3261 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), 3262 holey_initial, 3263 DISABLE_ALLOCATION_SITES); 3264 __ TailCallStub(&stub_holey); 3265 3266 __ bind(&normal_sequence); 3267 ArraySingleArgumentConstructorStub stub(masm->isolate(), 3268 initial, 3269 DISABLE_ALLOCATION_SITES); 3270 __ TailCallStub(&stub); 3271 } else if (mode == DONT_OVERRIDE) { 3272 // We are going to create a holey array, but our kind is non-holey. 3273 // Fix kind and retry (only if we have an allocation site in the slot). 3274 __ incl(rdx); 3275 3276 if (FLAG_debug_code) { 3277 Handle<Map> allocation_site_map = 3278 masm->isolate()->factory()->allocation_site_map(); 3279 __ Cmp(FieldOperand(rbx, 0), allocation_site_map); 3280 __ Assert(equal, kExpectedAllocationSite); 3281 } 3282 3283 // Save the resulting elements kind in type info. We can't just store r3 3284 // in the AllocationSite::transition_info field because elements kind is 3285 // restricted to a portion of the field...upper bits need to be left alone. 3286 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); 3287 __ SmiAddConstant(FieldOperand(rbx, AllocationSite::kTransitionInfoOffset), 3288 Smi::FromInt(kFastElementsKindPackedToHoley)); 3289 3290 __ bind(&normal_sequence); 3291 int last_index = GetSequenceIndexFromFastElementsKind( 3292 TERMINAL_FAST_ELEMENTS_KIND); 3293 for (int i = 0; i <= last_index; ++i) { 3294 Label next; 3295 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); 3296 __ cmpl(rdx, Immediate(kind)); 3297 __ j(not_equal, &next); 3298 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); 3299 __ TailCallStub(&stub); 3300 __ bind(&next); 3301 } 3302 3303 // If we reached this point there is a problem. 3304 __ Abort(kUnexpectedElementsKindInArrayConstructor); 3305 } else { 3306 UNREACHABLE(); 3307 } 3308 } 3309 3310 3311 template<class T> 3312 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { 3313 int to_index = GetSequenceIndexFromFastElementsKind( 3314 TERMINAL_FAST_ELEMENTS_KIND); 3315 for (int i = 0; i <= to_index; ++i) { 3316 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); 3317 T stub(isolate, kind); 3318 stub.GetCode(); 3319 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { 3320 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); 3321 stub1.GetCode(); 3322 } 3323 } 3324 } 3325 3326 void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) { 3327 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>( 3328 isolate); 3329 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>( 3330 isolate); 3331 ArrayNArgumentsConstructorStub stub(isolate); 3332 stub.GetCode(); 3333 3334 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS }; 3335 for (int i = 0; i < 2; i++) { 3336 // For internal arrays we only need a few things 3337 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); 3338 stubh1.GetCode(); 3339 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); 3340 stubh2.GetCode(); 3341 } 3342 } 3343 3344 void ArrayConstructorStub::GenerateDispatchToArrayStub( 3345 MacroAssembler* masm, AllocationSiteOverrideMode mode) { 3346 Label not_zero_case, not_one_case; 3347 __ testp(rax, rax); 3348 __ j(not_zero, ¬_zero_case); 3349 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); 3350 3351 __ bind(¬_zero_case); 3352 __ cmpl(rax, Immediate(1)); 3353 __ j(greater, ¬_one_case); 3354 CreateArrayDispatchOneArgument(masm, mode); 3355 3356 __ bind(¬_one_case); 3357 ArrayNArgumentsConstructorStub stub(masm->isolate()); 3358 __ TailCallStub(&stub); 3359 } 3360 3361 void ArrayConstructorStub::Generate(MacroAssembler* masm) { 3362 // ----------- S t a t e ------------- 3363 // -- rax : argc 3364 // -- rbx : AllocationSite or undefined 3365 // -- rdi : constructor 3366 // -- rdx : new target 3367 // -- rsp[0] : return address 3368 // -- rsp[8] : last argument 3369 // ----------------------------------- 3370 if (FLAG_debug_code) { 3371 // The array construct code is only set for the global and natives 3372 // builtin Array functions which always have maps. 3373 3374 // Initial map for the builtin Array function should be a map. 3375 __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); 3376 // Will both indicate a NULL and a Smi. 3377 STATIC_ASSERT(kSmiTag == 0); 3378 Condition not_smi = NegateCondition(masm->CheckSmi(rcx)); 3379 __ Check(not_smi, kUnexpectedInitialMapForArrayFunction); 3380 __ CmpObjectType(rcx, MAP_TYPE, rcx); 3381 __ Check(equal, kUnexpectedInitialMapForArrayFunction); 3382 3383 // We should either have undefined in rbx or a valid AllocationSite 3384 __ AssertUndefinedOrAllocationSite(rbx); 3385 } 3386 3387 // Enter the context of the Array function. 3388 __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); 3389 3390 Label subclassing; 3391 __ cmpp(rdi, rdx); 3392 __ j(not_equal, &subclassing); 3393 3394 Label no_info; 3395 // If the feedback vector is the undefined value call an array constructor 3396 // that doesn't use AllocationSites. 3397 __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex); 3398 __ j(equal, &no_info); 3399 3400 // Only look at the lower 16 bits of the transition info. 3401 __ movp(rdx, FieldOperand(rbx, AllocationSite::kTransitionInfoOffset)); 3402 __ SmiToInteger32(rdx, rdx); 3403 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); 3404 __ andp(rdx, Immediate(AllocationSite::ElementsKindBits::kMask)); 3405 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); 3406 3407 __ bind(&no_info); 3408 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); 3409 3410 // Subclassing 3411 __ bind(&subclassing); 3412 StackArgumentsAccessor args(rsp, rax); 3413 __ movp(args.GetReceiverOperand(), rdi); 3414 __ addp(rax, Immediate(3)); 3415 __ PopReturnAddressTo(rcx); 3416 __ Push(rdx); 3417 __ Push(rbx); 3418 __ PushReturnAddressFrom(rcx); 3419 __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate())); 3420 } 3421 3422 3423 void InternalArrayConstructorStub::GenerateCase( 3424 MacroAssembler* masm, ElementsKind kind) { 3425 Label not_zero_case, not_one_case; 3426 Label normal_sequence; 3427 3428 __ testp(rax, rax); 3429 __ j(not_zero, ¬_zero_case); 3430 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); 3431 __ TailCallStub(&stub0); 3432 3433 __ bind(¬_zero_case); 3434 __ cmpl(rax, Immediate(1)); 3435 __ j(greater, ¬_one_case); 3436 3437 if (IsFastPackedElementsKind(kind)) { 3438 // We might need to create a holey array 3439 // look at the first argument 3440 StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER); 3441 __ movp(rcx, args.GetArgumentOperand(0)); 3442 __ testp(rcx, rcx); 3443 __ j(zero, &normal_sequence); 3444 3445 InternalArraySingleArgumentConstructorStub 3446 stub1_holey(isolate(), GetHoleyElementsKind(kind)); 3447 __ TailCallStub(&stub1_holey); 3448 } 3449 3450 __ bind(&normal_sequence); 3451 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); 3452 __ TailCallStub(&stub1); 3453 3454 __ bind(¬_one_case); 3455 ArrayNArgumentsConstructorStub stubN(isolate()); 3456 __ TailCallStub(&stubN); 3457 } 3458 3459 3460 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { 3461 // ----------- S t a t e ------------- 3462 // -- rax : argc 3463 // -- rdi : constructor 3464 // -- rsp[0] : return address 3465 // -- rsp[8] : last argument 3466 // ----------------------------------- 3467 3468 if (FLAG_debug_code) { 3469 // The array construct code is only set for the global and natives 3470 // builtin Array functions which always have maps. 3471 3472 // Initial map for the builtin Array function should be a map. 3473 __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); 3474 // Will both indicate a NULL and a Smi. 3475 STATIC_ASSERT(kSmiTag == 0); 3476 Condition not_smi = NegateCondition(masm->CheckSmi(rcx)); 3477 __ Check(not_smi, kUnexpectedInitialMapForArrayFunction); 3478 __ CmpObjectType(rcx, MAP_TYPE, rcx); 3479 __ Check(equal, kUnexpectedInitialMapForArrayFunction); 3480 } 3481 3482 // Figure out the right elements kind 3483 __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); 3484 3485 // Load the map's "bit field 2" into |result|. We only need the first byte, 3486 // but the following masking takes care of that anyway. 3487 __ movzxbp(rcx, FieldOperand(rcx, Map::kBitField2Offset)); 3488 // Retrieve elements_kind from bit field 2. 3489 __ DecodeField<Map::ElementsKindBits>(rcx); 3490 3491 if (FLAG_debug_code) { 3492 Label done; 3493 __ cmpl(rcx, Immediate(FAST_ELEMENTS)); 3494 __ j(equal, &done); 3495 __ cmpl(rcx, Immediate(FAST_HOLEY_ELEMENTS)); 3496 __ Assert(equal, 3497 kInvalidElementsKindForInternalArrayOrInternalPackedArray); 3498 __ bind(&done); 3499 } 3500 3501 Label fast_elements_case; 3502 __ cmpl(rcx, Immediate(FAST_ELEMENTS)); 3503 __ j(equal, &fast_elements_case); 3504 GenerateCase(masm, FAST_HOLEY_ELEMENTS); 3505 3506 __ bind(&fast_elements_case); 3507 GenerateCase(masm, FAST_ELEMENTS); 3508 } 3509 3510 3511 void FastNewObjectStub::Generate(MacroAssembler* masm) { 3512 // ----------- S t a t e ------------- 3513 // -- rdi : target 3514 // -- rdx : new target 3515 // -- rsi : context 3516 // -- rsp[0] : return address 3517 // ----------------------------------- 3518 __ AssertFunction(rdi); 3519 __ AssertReceiver(rdx); 3520 3521 // Verify that the new target is a JSFunction. 3522 Label new_object; 3523 __ CmpObjectType(rdx, JS_FUNCTION_TYPE, rbx); 3524 __ j(not_equal, &new_object); 3525 3526 // Load the initial map and verify that it's in fact a map. 3527 __ movp(rcx, FieldOperand(rdx, JSFunction::kPrototypeOrInitialMapOffset)); 3528 __ JumpIfSmi(rcx, &new_object); 3529 __ CmpObjectType(rcx, MAP_TYPE, rbx); 3530 __ j(not_equal, &new_object); 3531 3532 // Fall back to runtime if the target differs from the new target's 3533 // initial map constructor. 3534 __ cmpp(rdi, FieldOperand(rcx, Map::kConstructorOrBackPointerOffset)); 3535 __ j(not_equal, &new_object); 3536 3537 // Allocate the JSObject on the heap. 3538 Label allocate, done_allocate; 3539 __ movzxbl(rbx, FieldOperand(rcx, Map::kInstanceSizeOffset)); 3540 __ leal(rbx, Operand(rbx, times_pointer_size, 0)); 3541 __ Allocate(rbx, rax, rdi, no_reg, &allocate, NO_ALLOCATION_FLAGS); 3542 __ bind(&done_allocate); 3543 3544 // Initialize the JSObject fields. 3545 __ movp(FieldOperand(rax, JSObject::kMapOffset), rcx); 3546 __ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex); 3547 __ movp(FieldOperand(rax, JSObject::kPropertiesOffset), rbx); 3548 __ movp(FieldOperand(rax, JSObject::kElementsOffset), rbx); 3549 STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize); 3550 __ leap(rbx, FieldOperand(rax, JSObject::kHeaderSize)); 3551 3552 // ----------- S t a t e ------------- 3553 // -- rax : result (tagged) 3554 // -- rbx : result fields (untagged) 3555 // -- rdi : result end (untagged) 3556 // -- rcx : initial map 3557 // -- rsi : context 3558 // -- rsp[0] : return address 3559 // ----------------------------------- 3560 3561 // Perform in-object slack tracking if requested. 3562 Label slack_tracking; 3563 STATIC_ASSERT(Map::kNoSlackTracking == 0); 3564 __ LoadRoot(r11, Heap::kUndefinedValueRootIndex); 3565 __ testl(FieldOperand(rcx, Map::kBitField3Offset), 3566 Immediate(Map::ConstructionCounter::kMask)); 3567 __ j(not_zero, &slack_tracking, Label::kNear); 3568 { 3569 // Initialize all in-object fields with undefined. 3570 __ InitializeFieldsWithFiller(rbx, rdi, r11); 3571 __ Ret(); 3572 } 3573 __ bind(&slack_tracking); 3574 { 3575 // Decrease generous allocation count. 3576 STATIC_ASSERT(Map::ConstructionCounter::kNext == 32); 3577 __ subl(FieldOperand(rcx, Map::kBitField3Offset), 3578 Immediate(1 << Map::ConstructionCounter::kShift)); 3579 3580 // Initialize the in-object fields with undefined. 3581 __ movzxbl(rdx, FieldOperand(rcx, Map::kUnusedPropertyFieldsOffset)); 3582 __ negp(rdx); 3583 __ leap(rdx, Operand(rdi, rdx, times_pointer_size, 0)); 3584 __ InitializeFieldsWithFiller(rbx, rdx, r11); 3585 3586 // Initialize the remaining (reserved) fields with one pointer filler map. 3587 __ LoadRoot(r11, Heap::kOnePointerFillerMapRootIndex); 3588 __ InitializeFieldsWithFiller(rdx, rdi, r11); 3589 3590 // Check if we can finalize the instance size. 3591 Label finalize; 3592 STATIC_ASSERT(Map::kSlackTrackingCounterEnd == 1); 3593 __ testl(FieldOperand(rcx, Map::kBitField3Offset), 3594 Immediate(Map::ConstructionCounter::kMask)); 3595 __ j(zero, &finalize, Label::kNear); 3596 __ Ret(); 3597 3598 // Finalize the instance size. 3599 __ bind(&finalize); 3600 { 3601 FrameScope scope(masm, StackFrame::INTERNAL); 3602 __ Push(rax); 3603 __ Push(rcx); 3604 __ CallRuntime(Runtime::kFinalizeInstanceSize); 3605 __ Pop(rax); 3606 } 3607 __ Ret(); 3608 } 3609 3610 // Fall back to %AllocateInNewSpace. 3611 __ bind(&allocate); 3612 { 3613 FrameScope scope(masm, StackFrame::INTERNAL); 3614 __ Integer32ToSmi(rbx, rbx); 3615 __ Push(rcx); 3616 __ Push(rbx); 3617 __ CallRuntime(Runtime::kAllocateInNewSpace); 3618 __ Pop(rcx); 3619 } 3620 __ movzxbl(rbx, FieldOperand(rcx, Map::kInstanceSizeOffset)); 3621 __ leap(rdi, Operand(rax, rbx, times_pointer_size, 0)); 3622 STATIC_ASSERT(kHeapObjectTag == 1); 3623 __ decp(rdi); // Remove the tag from the end address. 3624 __ jmp(&done_allocate); 3625 3626 // Fall back to %NewObject. 3627 __ bind(&new_object); 3628 __ PopReturnAddressTo(rcx); 3629 __ Push(rdi); 3630 __ Push(rdx); 3631 __ PushReturnAddressFrom(rcx); 3632 __ TailCallRuntime(Runtime::kNewObject); 3633 } 3634 3635 3636 void FastNewRestParameterStub::Generate(MacroAssembler* masm) { 3637 // ----------- S t a t e ------------- 3638 // -- rdi : function 3639 // -- rsi : context 3640 // -- rbp : frame pointer 3641 // -- rsp[0] : return address 3642 // ----------------------------------- 3643 __ AssertFunction(rdi); 3644 3645 // Make rdx point to the JavaScript frame. 3646 __ movp(rdx, rbp); 3647 if (skip_stub_frame()) { 3648 // For Ignition we need to skip the handler/stub frame to reach the 3649 // JavaScript frame for the function. 3650 __ movp(rdx, Operand(rdx, StandardFrameConstants::kCallerFPOffset)); 3651 } 3652 if (FLAG_debug_code) { 3653 Label ok; 3654 __ cmpp(rdi, Operand(rdx, StandardFrameConstants::kFunctionOffset)); 3655 __ j(equal, &ok); 3656 __ Abort(kInvalidFrameForFastNewRestArgumentsStub); 3657 __ bind(&ok); 3658 } 3659 3660 // Check if we have rest parameters (only possible if we have an 3661 // arguments adaptor frame below the function frame). 3662 Label no_rest_parameters; 3663 __ movp(rbx, Operand(rdx, StandardFrameConstants::kCallerFPOffset)); 3664 __ Cmp(Operand(rbx, CommonFrameConstants::kContextOrFrameTypeOffset), 3665 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); 3666 __ j(not_equal, &no_rest_parameters, Label::kNear); 3667 3668 // Check if the arguments adaptor frame contains more arguments than 3669 // specified by the function's internal formal parameter count. 3670 Label rest_parameters; 3671 __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); 3672 __ LoadSharedFunctionInfoSpecialField( 3673 rcx, rcx, SharedFunctionInfo::kFormalParameterCountOffset); 3674 __ SmiToInteger32( 3675 rax, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); 3676 __ subl(rax, rcx); 3677 __ j(greater, &rest_parameters); 3678 3679 // Return an empty rest parameter array. 3680 __ bind(&no_rest_parameters); 3681 { 3682 // ----------- S t a t e ------------- 3683 // -- rsi : context 3684 // -- rsp[0] : return address 3685 // ----------------------------------- 3686 3687 // Allocate an empty rest parameter array. 3688 Label allocate, done_allocate; 3689 __ Allocate(JSArray::kSize, rax, rdx, rcx, &allocate, NO_ALLOCATION_FLAGS); 3690 __ bind(&done_allocate); 3691 3692 // Setup the rest parameter array in rax. 3693 __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, rcx); 3694 __ movp(FieldOperand(rax, JSArray::kMapOffset), rcx); 3695 __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex); 3696 __ movp(FieldOperand(rax, JSArray::kPropertiesOffset), rcx); 3697 __ movp(FieldOperand(rax, JSArray::kElementsOffset), rcx); 3698 __ movp(FieldOperand(rax, JSArray::kLengthOffset), Immediate(0)); 3699 STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize); 3700 __ Ret(); 3701 3702 // Fall back to %AllocateInNewSpace. 3703 __ bind(&allocate); 3704 { 3705 FrameScope scope(masm, StackFrame::INTERNAL); 3706 __ Push(Smi::FromInt(JSArray::kSize)); 3707 __ CallRuntime(Runtime::kAllocateInNewSpace); 3708 } 3709 __ jmp(&done_allocate); 3710 } 3711 3712 __ bind(&rest_parameters); 3713 { 3714 // Compute the pointer to the first rest parameter (skippping the receiver). 3715 __ leap(rbx, Operand(rbx, rax, times_pointer_size, 3716 StandardFrameConstants::kCallerSPOffset - 3717 1 * kPointerSize)); 3718 3719 // ----------- S t a t e ------------- 3720 // -- rdi : function 3721 // -- rsi : context 3722 // -- rax : number of rest parameters 3723 // -- rbx : pointer to first rest parameters 3724 // -- rsp[0] : return address 3725 // ----------------------------------- 3726 3727 // Allocate space for the rest parameter array plus the backing store. 3728 Label allocate, done_allocate; 3729 __ leal(rcx, Operand(rax, times_pointer_size, 3730 JSArray::kSize + FixedArray::kHeaderSize)); 3731 __ Allocate(rcx, rdx, r8, no_reg, &allocate, NO_ALLOCATION_FLAGS); 3732 __ bind(&done_allocate); 3733 3734 // Compute the arguments.length in rdi. 3735 __ Integer32ToSmi(rdi, rax); 3736 3737 // Setup the elements array in rdx. 3738 __ LoadRoot(rcx, Heap::kFixedArrayMapRootIndex); 3739 __ movp(FieldOperand(rdx, FixedArray::kMapOffset), rcx); 3740 __ movp(FieldOperand(rdx, FixedArray::kLengthOffset), rdi); 3741 { 3742 Label loop, done_loop; 3743 __ Set(rcx, 0); 3744 __ bind(&loop); 3745 __ cmpl(rcx, rax); 3746 __ j(equal, &done_loop, Label::kNear); 3747 __ movp(kScratchRegister, Operand(rbx, 0 * kPointerSize)); 3748 __ movp( 3749 FieldOperand(rdx, rcx, times_pointer_size, FixedArray::kHeaderSize), 3750 kScratchRegister); 3751 __ subp(rbx, Immediate(1 * kPointerSize)); 3752 __ addl(rcx, Immediate(1)); 3753 __ jmp(&loop); 3754 __ bind(&done_loop); 3755 } 3756 3757 // Setup the rest parameter array in rax. 3758 __ leap(rax, 3759 Operand(rdx, rax, times_pointer_size, FixedArray::kHeaderSize)); 3760 __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, rcx); 3761 __ movp(FieldOperand(rax, JSArray::kMapOffset), rcx); 3762 __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex); 3763 __ movp(FieldOperand(rax, JSArray::kPropertiesOffset), rcx); 3764 __ movp(FieldOperand(rax, JSArray::kElementsOffset), rdx); 3765 __ movp(FieldOperand(rax, JSArray::kLengthOffset), rdi); 3766 STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize); 3767 __ Ret(); 3768 3769 // Fall back to %AllocateInNewSpace (if not too big). 3770 Label too_big_for_new_space; 3771 __ bind(&allocate); 3772 __ cmpl(rcx, Immediate(kMaxRegularHeapObjectSize)); 3773 __ j(greater, &too_big_for_new_space); 3774 { 3775 FrameScope scope(masm, StackFrame::INTERNAL); 3776 __ Integer32ToSmi(rax, rax); 3777 __ Integer32ToSmi(rcx, rcx); 3778 __ Push(rax); 3779 __ Push(rbx); 3780 __ Push(rcx); 3781 __ CallRuntime(Runtime::kAllocateInNewSpace); 3782 __ movp(rdx, rax); 3783 __ Pop(rbx); 3784 __ Pop(rax); 3785 __ SmiToInteger32(rax, rax); 3786 } 3787 __ jmp(&done_allocate); 3788 3789 // Fall back to %NewRestParameter. 3790 __ bind(&too_big_for_new_space); 3791 __ PopReturnAddressTo(kScratchRegister); 3792 __ Push(rdi); 3793 __ PushReturnAddressFrom(kScratchRegister); 3794 __ TailCallRuntime(Runtime::kNewRestParameter); 3795 } 3796 } 3797 3798 3799 void FastNewSloppyArgumentsStub::Generate(MacroAssembler* masm) { 3800 // ----------- S t a t e ------------- 3801 // -- rdi : function 3802 // -- rsi : context 3803 // -- rbp : frame pointer 3804 // -- rsp[0] : return address 3805 // ----------------------------------- 3806 __ AssertFunction(rdi); 3807 3808 // Make r9 point to the JavaScript frame. 3809 __ movp(r9, rbp); 3810 if (skip_stub_frame()) { 3811 // For Ignition we need to skip the handler/stub frame to reach the 3812 // JavaScript frame for the function. 3813 __ movp(r9, Operand(r9, StandardFrameConstants::kCallerFPOffset)); 3814 } 3815 if (FLAG_debug_code) { 3816 Label ok; 3817 __ cmpp(rdi, Operand(r9, StandardFrameConstants::kFunctionOffset)); 3818 __ j(equal, &ok); 3819 __ Abort(kInvalidFrameForFastNewRestArgumentsStub); 3820 __ bind(&ok); 3821 } 3822 3823 // TODO(bmeurer): Cleanup to match the FastNewStrictArgumentsStub. 3824 __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); 3825 __ LoadSharedFunctionInfoSpecialField( 3826 rcx, rcx, SharedFunctionInfo::kFormalParameterCountOffset); 3827 __ leap(rdx, Operand(r9, rcx, times_pointer_size, 3828 StandardFrameConstants::kCallerSPOffset)); 3829 __ Integer32ToSmi(rcx, rcx); 3830 3831 // rcx : number of parameters (tagged) 3832 // rdx : parameters pointer 3833 // rdi : function 3834 // rsp[0] : return address 3835 // r9 : JavaScript frame pointer. 3836 // Registers used over the whole function: 3837 // rbx: the mapped parameter count (untagged) 3838 // rax: the allocated object (tagged). 3839 Factory* factory = isolate()->factory(); 3840 3841 __ SmiToInteger64(rbx, rcx); 3842 // rbx = parameter count (untagged) 3843 3844 // Check if the calling frame is an arguments adaptor frame. 3845 Label adaptor_frame, try_allocate, runtime; 3846 __ movp(rax, Operand(r9, StandardFrameConstants::kCallerFPOffset)); 3847 __ movp(r8, Operand(rax, CommonFrameConstants::kContextOrFrameTypeOffset)); 3848 __ Cmp(r8, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); 3849 __ j(equal, &adaptor_frame); 3850 3851 // No adaptor, parameter count = argument count. 3852 __ movp(r11, rbx); 3853 __ jmp(&try_allocate, Label::kNear); 3854 3855 // We have an adaptor frame. Patch the parameters pointer. 3856 __ bind(&adaptor_frame); 3857 __ SmiToInteger64( 3858 r11, Operand(rax, ArgumentsAdaptorFrameConstants::kLengthOffset)); 3859 __ leap(rdx, Operand(rax, r11, times_pointer_size, 3860 StandardFrameConstants::kCallerSPOffset)); 3861 3862 // rbx = parameter count (untagged) 3863 // r11 = argument count (untagged) 3864 // Compute the mapped parameter count = min(rbx, r11) in rbx. 3865 __ cmpp(rbx, r11); 3866 __ j(less_equal, &try_allocate, Label::kNear); 3867 __ movp(rbx, r11); 3868 3869 __ bind(&try_allocate); 3870 3871 // Compute the sizes of backing store, parameter map, and arguments object. 3872 // 1. Parameter map, has 2 extra words containing context and backing store. 3873 const int kParameterMapHeaderSize = 3874 FixedArray::kHeaderSize + 2 * kPointerSize; 3875 Label no_parameter_map; 3876 __ xorp(r8, r8); 3877 __ testp(rbx, rbx); 3878 __ j(zero, &no_parameter_map, Label::kNear); 3879 __ leap(r8, Operand(rbx, times_pointer_size, kParameterMapHeaderSize)); 3880 __ bind(&no_parameter_map); 3881 3882 // 2. Backing store. 3883 __ leap(r8, Operand(r8, r11, times_pointer_size, FixedArray::kHeaderSize)); 3884 3885 // 3. Arguments object. 3886 __ addp(r8, Immediate(JSSloppyArgumentsObject::kSize)); 3887 3888 // Do the allocation of all three objects in one go. 3889 __ Allocate(r8, rax, r9, no_reg, &runtime, NO_ALLOCATION_FLAGS); 3890 3891 // rax = address of new object(s) (tagged) 3892 // r11 = argument count (untagged) 3893 // Get the arguments map from the current native context into r9. 3894 Label has_mapped_parameters, instantiate; 3895 __ movp(r9, NativeContextOperand()); 3896 __ testp(rbx, rbx); 3897 __ j(not_zero, &has_mapped_parameters, Label::kNear); 3898 3899 const int kIndex = Context::SLOPPY_ARGUMENTS_MAP_INDEX; 3900 __ movp(r9, Operand(r9, Context::SlotOffset(kIndex))); 3901 __ jmp(&instantiate, Label::kNear); 3902 3903 const int kAliasedIndex = Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX; 3904 __ bind(&has_mapped_parameters); 3905 __ movp(r9, Operand(r9, Context::SlotOffset(kAliasedIndex))); 3906 __ bind(&instantiate); 3907 3908 // rax = address of new object (tagged) 3909 // rbx = mapped parameter count (untagged) 3910 // r11 = argument count (untagged) 3911 // r9 = address of arguments map (tagged) 3912 __ movp(FieldOperand(rax, JSObject::kMapOffset), r9); 3913 __ LoadRoot(kScratchRegister, Heap::kEmptyFixedArrayRootIndex); 3914 __ movp(FieldOperand(rax, JSObject::kPropertiesOffset), kScratchRegister); 3915 __ movp(FieldOperand(rax, JSObject::kElementsOffset), kScratchRegister); 3916 3917 // Set up the callee in-object property. 3918 __ AssertNotSmi(rdi); 3919 __ movp(FieldOperand(rax, JSSloppyArgumentsObject::kCalleeOffset), rdi); 3920 3921 // Use the length (smi tagged) and set that as an in-object property too. 3922 // Note: r11 is tagged from here on. 3923 __ Integer32ToSmi(r11, r11); 3924 __ movp(FieldOperand(rax, JSSloppyArgumentsObject::kLengthOffset), r11); 3925 3926 // Set up the elements pointer in the allocated arguments object. 3927 // If we allocated a parameter map, rdi will point there, otherwise to the 3928 // backing store. 3929 __ leap(rdi, Operand(rax, JSSloppyArgumentsObject::kSize)); 3930 __ movp(FieldOperand(rax, JSObject::kElementsOffset), rdi); 3931 3932 // rax = address of new object (tagged) 3933 // rbx = mapped parameter count (untagged) 3934 // r11 = argument count (tagged) 3935 // rdi = address of parameter map or backing store (tagged) 3936 3937 // Initialize parameter map. If there are no mapped arguments, we're done. 3938 Label skip_parameter_map; 3939 __ testp(rbx, rbx); 3940 __ j(zero, &skip_parameter_map); 3941 3942 __ LoadRoot(kScratchRegister, Heap::kSloppyArgumentsElementsMapRootIndex); 3943 // rbx contains the untagged argument count. Add 2 and tag to write. 3944 __ movp(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister); 3945 __ Integer64PlusConstantToSmi(r9, rbx, 2); 3946 __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), r9); 3947 __ movp(FieldOperand(rdi, FixedArray::kHeaderSize + 0 * kPointerSize), rsi); 3948 __ leap(r9, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize)); 3949 __ movp(FieldOperand(rdi, FixedArray::kHeaderSize + 1 * kPointerSize), r9); 3950 3951 // Copy the parameter slots and the holes in the arguments. 3952 // We need to fill in mapped_parameter_count slots. They index the context, 3953 // where parameters are stored in reverse order, at 3954 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1 3955 // The mapped parameter thus need to get indices 3956 // MIN_CONTEXT_SLOTS+parameter_count-1 .. 3957 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count 3958 // We loop from right to left. 3959 Label parameters_loop, parameters_test; 3960 3961 // Load tagged parameter count into r9. 3962 __ Integer32ToSmi(r9, rbx); 3963 __ Move(r8, Smi::FromInt(Context::MIN_CONTEXT_SLOTS)); 3964 __ addp(r8, rcx); 3965 __ subp(r8, r9); 3966 __ movp(rcx, rdi); 3967 __ leap(rdi, Operand(rdi, rbx, times_pointer_size, kParameterMapHeaderSize)); 3968 __ SmiToInteger64(r9, r9); 3969 // r9 = loop variable (untagged) 3970 // r8 = mapping index (tagged) 3971 // rcx = address of parameter map (tagged) 3972 // rdi = address of backing store (tagged) 3973 __ jmp(¶meters_test, Label::kNear); 3974 3975 __ bind(¶meters_loop); 3976 __ subp(r9, Immediate(1)); 3977 __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex); 3978 __ movp(FieldOperand(rcx, r9, times_pointer_size, kParameterMapHeaderSize), 3979 r8); 3980 __ movp(FieldOperand(rdi, r9, times_pointer_size, FixedArray::kHeaderSize), 3981 kScratchRegister); 3982 __ SmiAddConstant(r8, r8, Smi::FromInt(1)); 3983 __ bind(¶meters_test); 3984 __ testp(r9, r9); 3985 __ j(not_zero, ¶meters_loop, Label::kNear); 3986 3987 __ bind(&skip_parameter_map); 3988 3989 // r11 = argument count (tagged) 3990 // rdi = address of backing store (tagged) 3991 // Copy arguments header and remaining slots (if there are any). 3992 __ Move(FieldOperand(rdi, FixedArray::kMapOffset), 3993 factory->fixed_array_map()); 3994 __ movp(FieldOperand(rdi, FixedArray::kLengthOffset), r11); 3995 3996 Label arguments_loop, arguments_test; 3997 __ movp(r8, rbx); 3998 // Untag r11 for the loop below. 3999 __ SmiToInteger64(r11, r11); 4000 __ leap(kScratchRegister, Operand(r8, times_pointer_size, 0)); 4001 __ subp(rdx, kScratchRegister); 4002 __ jmp(&arguments_test, Label::kNear); 4003 4004 __ bind(&arguments_loop); 4005 __ subp(rdx, Immediate(kPointerSize)); 4006 __ movp(r9, Operand(rdx, 0)); 4007 __ movp(FieldOperand(rdi, r8, 4008 times_pointer_size, 4009 FixedArray::kHeaderSize), 4010 r9); 4011 __ addp(r8, Immediate(1)); 4012 4013 __ bind(&arguments_test); 4014 __ cmpp(r8, r11); 4015 __ j(less, &arguments_loop, Label::kNear); 4016 4017 // Return. 4018 __ ret(0); 4019 4020 // Do the runtime call to allocate the arguments object. 4021 // r11 = argument count (untagged) 4022 __ bind(&runtime); 4023 __ Integer32ToSmi(r11, r11); 4024 __ PopReturnAddressTo(rax); 4025 __ Push(rdi); // Push function. 4026 __ Push(rdx); // Push parameters pointer. 4027 __ Push(r11); // Push parameter count. 4028 __ PushReturnAddressFrom(rax); 4029 __ TailCallRuntime(Runtime::kNewSloppyArguments); 4030 } 4031 4032 4033 void FastNewStrictArgumentsStub::Generate(MacroAssembler* masm) { 4034 // ----------- S t a t e ------------- 4035 // -- rdi : function 4036 // -- rsi : context 4037 // -- rbp : frame pointer 4038 // -- rsp[0] : return address 4039 // ----------------------------------- 4040 __ AssertFunction(rdi); 4041 4042 // Make rdx point to the JavaScript frame. 4043 __ movp(rdx, rbp); 4044 if (skip_stub_frame()) { 4045 // For Ignition we need to skip the handler/stub frame to reach the 4046 // JavaScript frame for the function. 4047 __ movp(rdx, Operand(rdx, StandardFrameConstants::kCallerFPOffset)); 4048 } 4049 if (FLAG_debug_code) { 4050 Label ok; 4051 __ cmpp(rdi, Operand(rdx, StandardFrameConstants::kFunctionOffset)); 4052 __ j(equal, &ok); 4053 __ Abort(kInvalidFrameForFastNewRestArgumentsStub); 4054 __ bind(&ok); 4055 } 4056 4057 // Check if we have an arguments adaptor frame below the function frame. 4058 Label arguments_adaptor, arguments_done; 4059 __ movp(rbx, Operand(rdx, StandardFrameConstants::kCallerFPOffset)); 4060 __ Cmp(Operand(rbx, CommonFrameConstants::kContextOrFrameTypeOffset), 4061 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); 4062 __ j(equal, &arguments_adaptor, Label::kNear); 4063 { 4064 __ movp(rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); 4065 __ LoadSharedFunctionInfoSpecialField( 4066 rax, rax, SharedFunctionInfo::kFormalParameterCountOffset); 4067 __ leap(rbx, Operand(rdx, rax, times_pointer_size, 4068 StandardFrameConstants::kCallerSPOffset - 4069 1 * kPointerSize)); 4070 } 4071 __ jmp(&arguments_done, Label::kNear); 4072 __ bind(&arguments_adaptor); 4073 { 4074 __ SmiToInteger32( 4075 rax, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); 4076 __ leap(rbx, Operand(rbx, rax, times_pointer_size, 4077 StandardFrameConstants::kCallerSPOffset - 4078 1 * kPointerSize)); 4079 } 4080 __ bind(&arguments_done); 4081 4082 // ----------- S t a t e ------------- 4083 // -- rax : number of arguments 4084 // -- rbx : pointer to the first argument 4085 // -- rdi : function 4086 // -- rsi : context 4087 // -- rsp[0] : return address 4088 // ----------------------------------- 4089 4090 // Allocate space for the strict arguments object plus the backing store. 4091 Label allocate, done_allocate; 4092 __ leal(rcx, Operand(rax, times_pointer_size, JSStrictArgumentsObject::kSize + 4093 FixedArray::kHeaderSize)); 4094 __ Allocate(rcx, rdx, r8, no_reg, &allocate, NO_ALLOCATION_FLAGS); 4095 __ bind(&done_allocate); 4096 4097 // Compute the arguments.length in rdi. 4098 __ Integer32ToSmi(rdi, rax); 4099 4100 // Setup the elements array in rdx. 4101 __ LoadRoot(rcx, Heap::kFixedArrayMapRootIndex); 4102 __ movp(FieldOperand(rdx, FixedArray::kMapOffset), rcx); 4103 __ movp(FieldOperand(rdx, FixedArray::kLengthOffset), rdi); 4104 { 4105 Label loop, done_loop; 4106 __ Set(rcx, 0); 4107 __ bind(&loop); 4108 __ cmpl(rcx, rax); 4109 __ j(equal, &done_loop, Label::kNear); 4110 __ movp(kScratchRegister, Operand(rbx, 0 * kPointerSize)); 4111 __ movp( 4112 FieldOperand(rdx, rcx, times_pointer_size, FixedArray::kHeaderSize), 4113 kScratchRegister); 4114 __ subp(rbx, Immediate(1 * kPointerSize)); 4115 __ addl(rcx, Immediate(1)); 4116 __ jmp(&loop); 4117 __ bind(&done_loop); 4118 } 4119 4120 // Setup the strict arguments object in rax. 4121 __ leap(rax, 4122 Operand(rdx, rax, times_pointer_size, FixedArray::kHeaderSize)); 4123 __ LoadNativeContextSlot(Context::STRICT_ARGUMENTS_MAP_INDEX, rcx); 4124 __ movp(FieldOperand(rax, JSStrictArgumentsObject::kMapOffset), rcx); 4125 __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex); 4126 __ movp(FieldOperand(rax, JSStrictArgumentsObject::kPropertiesOffset), rcx); 4127 __ movp(FieldOperand(rax, JSStrictArgumentsObject::kElementsOffset), rdx); 4128 __ movp(FieldOperand(rax, JSStrictArgumentsObject::kLengthOffset), rdi); 4129 STATIC_ASSERT(JSStrictArgumentsObject::kSize == 4 * kPointerSize); 4130 __ Ret(); 4131 4132 // Fall back to %AllocateInNewSpace (if not too big). 4133 Label too_big_for_new_space; 4134 __ bind(&allocate); 4135 __ cmpl(rcx, Immediate(kMaxRegularHeapObjectSize)); 4136 __ j(greater, &too_big_for_new_space); 4137 { 4138 FrameScope scope(masm, StackFrame::INTERNAL); 4139 __ Integer32ToSmi(rax, rax); 4140 __ Integer32ToSmi(rcx, rcx); 4141 __ Push(rax); 4142 __ Push(rbx); 4143 __ Push(rcx); 4144 __ CallRuntime(Runtime::kAllocateInNewSpace); 4145 __ movp(rdx, rax); 4146 __ Pop(rbx); 4147 __ Pop(rax); 4148 __ SmiToInteger32(rax, rax); 4149 } 4150 __ jmp(&done_allocate); 4151 4152 // Fall back to %NewStrictArguments. 4153 __ bind(&too_big_for_new_space); 4154 __ PopReturnAddressTo(kScratchRegister); 4155 __ Push(rdi); 4156 __ PushReturnAddressFrom(kScratchRegister); 4157 __ TailCallRuntime(Runtime::kNewStrictArguments); 4158 } 4159 4160 4161 static int Offset(ExternalReference ref0, ExternalReference ref1) { 4162 int64_t offset = (ref0.address() - ref1.address()); 4163 // Check that fits into int. 4164 DCHECK(static_cast<int>(offset) == offset); 4165 return static_cast<int>(offset); 4166 } 4167 4168 4169 // Prepares stack to put arguments (aligns and so on). WIN64 calling 4170 // convention requires to put the pointer to the return value slot into 4171 // rcx (rcx must be preserverd until CallApiFunctionAndReturn). Saves 4172 // context (rsi). Clobbers rax. Allocates arg_stack_space * kPointerSize 4173 // inside the exit frame (not GCed) accessible via StackSpaceOperand. 4174 static void PrepareCallApiFunction(MacroAssembler* masm, int arg_stack_space) { 4175 __ EnterApiExitFrame(arg_stack_space); 4176 } 4177 4178 4179 // Calls an API function. Allocates HandleScope, extracts returned value 4180 // from handle and propagates exceptions. Clobbers r14, r15, rbx and 4181 // caller-save registers. Restores context. On return removes 4182 // stack_space * kPointerSize (GCed). 4183 static void CallApiFunctionAndReturn(MacroAssembler* masm, 4184 Register function_address, 4185 ExternalReference thunk_ref, 4186 Register thunk_last_arg, int stack_space, 4187 Operand* stack_space_operand, 4188 Operand return_value_operand, 4189 Operand* context_restore_operand) { 4190 Label prologue; 4191 Label promote_scheduled_exception; 4192 Label delete_allocated_handles; 4193 Label leave_exit_frame; 4194 Label write_back; 4195 4196 Isolate* isolate = masm->isolate(); 4197 Factory* factory = isolate->factory(); 4198 ExternalReference next_address = 4199 ExternalReference::handle_scope_next_address(isolate); 4200 const int kNextOffset = 0; 4201 const int kLimitOffset = Offset( 4202 ExternalReference::handle_scope_limit_address(isolate), next_address); 4203 const int kLevelOffset = Offset( 4204 ExternalReference::handle_scope_level_address(isolate), next_address); 4205 ExternalReference scheduled_exception_address = 4206 ExternalReference::scheduled_exception_address(isolate); 4207 4208 DCHECK(rdx.is(function_address) || r8.is(function_address)); 4209 // Allocate HandleScope in callee-save registers. 4210 Register prev_next_address_reg = r14; 4211 Register prev_limit_reg = rbx; 4212 Register base_reg = r15; 4213 __ Move(base_reg, next_address); 4214 __ movp(prev_next_address_reg, Operand(base_reg, kNextOffset)); 4215 __ movp(prev_limit_reg, Operand(base_reg, kLimitOffset)); 4216 __ addl(Operand(base_reg, kLevelOffset), Immediate(1)); 4217 4218 if (FLAG_log_timer_events) { 4219 FrameScope frame(masm, StackFrame::MANUAL); 4220 __ PushSafepointRegisters(); 4221 __ PrepareCallCFunction(1); 4222 __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate)); 4223 __ CallCFunction(ExternalReference::log_enter_external_function(isolate), 4224 1); 4225 __ PopSafepointRegisters(); 4226 } 4227 4228 Label profiler_disabled; 4229 Label end_profiler_check; 4230 __ Move(rax, ExternalReference::is_profiling_address(isolate)); 4231 __ cmpb(Operand(rax, 0), Immediate(0)); 4232 __ j(zero, &profiler_disabled); 4233 4234 // Third parameter is the address of the actual getter function. 4235 __ Move(thunk_last_arg, function_address); 4236 __ Move(rax, thunk_ref); 4237 __ jmp(&end_profiler_check); 4238 4239 __ bind(&profiler_disabled); 4240 // Call the api function! 4241 __ Move(rax, function_address); 4242 4243 __ bind(&end_profiler_check); 4244 4245 // Call the api function! 4246 __ call(rax); 4247 4248 if (FLAG_log_timer_events) { 4249 FrameScope frame(masm, StackFrame::MANUAL); 4250 __ PushSafepointRegisters(); 4251 __ PrepareCallCFunction(1); 4252 __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate)); 4253 __ CallCFunction(ExternalReference::log_leave_external_function(isolate), 4254 1); 4255 __ PopSafepointRegisters(); 4256 } 4257 4258 // Load the value from ReturnValue 4259 __ movp(rax, return_value_operand); 4260 __ bind(&prologue); 4261 4262 // No more valid handles (the result handle was the last one). Restore 4263 // previous handle scope. 4264 __ subl(Operand(base_reg, kLevelOffset), Immediate(1)); 4265 __ movp(Operand(base_reg, kNextOffset), prev_next_address_reg); 4266 __ cmpp(prev_limit_reg, Operand(base_reg, kLimitOffset)); 4267 __ j(not_equal, &delete_allocated_handles); 4268 4269 // Leave the API exit frame. 4270 __ bind(&leave_exit_frame); 4271 bool restore_context = context_restore_operand != NULL; 4272 if (restore_context) { 4273 __ movp(rsi, *context_restore_operand); 4274 } 4275 if (stack_space_operand != nullptr) { 4276 __ movp(rbx, *stack_space_operand); 4277 } 4278 __ LeaveApiExitFrame(!restore_context); 4279 4280 // Check if the function scheduled an exception. 4281 __ Move(rdi, scheduled_exception_address); 4282 __ Cmp(Operand(rdi, 0), factory->the_hole_value()); 4283 __ j(not_equal, &promote_scheduled_exception); 4284 4285 #if DEBUG 4286 // Check if the function returned a valid JavaScript value. 4287 Label ok; 4288 Register return_value = rax; 4289 Register map = rcx; 4290 4291 __ JumpIfSmi(return_value, &ok, Label::kNear); 4292 __ movp(map, FieldOperand(return_value, HeapObject::kMapOffset)); 4293 4294 __ CmpInstanceType(map, LAST_NAME_TYPE); 4295 __ j(below_equal, &ok, Label::kNear); 4296 4297 __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE); 4298 __ j(above_equal, &ok, Label::kNear); 4299 4300 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex); 4301 __ j(equal, &ok, Label::kNear); 4302 4303 __ CompareRoot(return_value, Heap::kUndefinedValueRootIndex); 4304 __ j(equal, &ok, Label::kNear); 4305 4306 __ CompareRoot(return_value, Heap::kTrueValueRootIndex); 4307 __ j(equal, &ok, Label::kNear); 4308 4309 __ CompareRoot(return_value, Heap::kFalseValueRootIndex); 4310 __ j(equal, &ok, Label::kNear); 4311 4312 __ CompareRoot(return_value, Heap::kNullValueRootIndex); 4313 __ j(equal, &ok, Label::kNear); 4314 4315 __ Abort(kAPICallReturnedInvalidObject); 4316 4317 __ bind(&ok); 4318 #endif 4319 4320 if (stack_space_operand != nullptr) { 4321 DCHECK_EQ(stack_space, 0); 4322 __ PopReturnAddressTo(rcx); 4323 __ addq(rsp, rbx); 4324 __ jmp(rcx); 4325 } else { 4326 __ ret(stack_space * kPointerSize); 4327 } 4328 4329 // Re-throw by promoting a scheduled exception. 4330 __ bind(&promote_scheduled_exception); 4331 __ TailCallRuntime(Runtime::kPromoteScheduledException); 4332 4333 // HandleScope limit has changed. Delete allocated extensions. 4334 __ bind(&delete_allocated_handles); 4335 __ movp(Operand(base_reg, kLimitOffset), prev_limit_reg); 4336 __ movp(prev_limit_reg, rax); 4337 __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate)); 4338 __ LoadAddress(rax, 4339 ExternalReference::delete_handle_scope_extensions(isolate)); 4340 __ call(rax); 4341 __ movp(rax, prev_limit_reg); 4342 __ jmp(&leave_exit_frame); 4343 } 4344 4345 void CallApiCallbackStub::Generate(MacroAssembler* masm) { 4346 // ----------- S t a t e ------------- 4347 // -- rdi : callee 4348 // -- rbx : call_data 4349 // -- rcx : holder 4350 // -- rdx : api_function_address 4351 // -- rsi : context 4352 // -- rax : number of arguments if argc is a register 4353 // -- rsp[0] : return address 4354 // -- rsp[8] : last argument 4355 // -- ... 4356 // -- rsp[argc * 8] : first argument 4357 // -- rsp[(argc + 1) * 8] : receiver 4358 // ----------------------------------- 4359 4360 Register callee = rdi; 4361 Register call_data = rbx; 4362 Register holder = rcx; 4363 Register api_function_address = rdx; 4364 Register context = rsi; 4365 Register return_address = r8; 4366 4367 typedef FunctionCallbackArguments FCA; 4368 4369 STATIC_ASSERT(FCA::kContextSaveIndex == 6); 4370 STATIC_ASSERT(FCA::kCalleeIndex == 5); 4371 STATIC_ASSERT(FCA::kDataIndex == 4); 4372 STATIC_ASSERT(FCA::kReturnValueOffset == 3); 4373 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); 4374 STATIC_ASSERT(FCA::kIsolateIndex == 1); 4375 STATIC_ASSERT(FCA::kHolderIndex == 0); 4376 STATIC_ASSERT(FCA::kNewTargetIndex == 7); 4377 STATIC_ASSERT(FCA::kArgsLength == 8); 4378 4379 __ PopReturnAddressTo(return_address); 4380 4381 // new target 4382 __ PushRoot(Heap::kUndefinedValueRootIndex); 4383 4384 // context save 4385 __ Push(context); 4386 4387 // callee 4388 __ Push(callee); 4389 4390 // call data 4391 __ Push(call_data); 4392 Register scratch = call_data; 4393 if (!this->call_data_undefined()) { 4394 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); 4395 } 4396 // return value 4397 __ Push(scratch); 4398 // return value default 4399 __ Push(scratch); 4400 // isolate 4401 __ Move(scratch, ExternalReference::isolate_address(masm->isolate())); 4402 __ Push(scratch); 4403 // holder 4404 __ Push(holder); 4405 4406 __ movp(scratch, rsp); 4407 // Push return address back on stack. 4408 __ PushReturnAddressFrom(return_address); 4409 4410 if (!this->is_lazy()) { 4411 // load context from callee 4412 __ movp(context, FieldOperand(callee, JSFunction::kContextOffset)); 4413 } 4414 4415 // Allocate the v8::Arguments structure in the arguments' space since 4416 // it's not controlled by GC. 4417 const int kApiStackSpace = 3; 4418 4419 PrepareCallApiFunction(masm, kApiStackSpace); 4420 4421 // FunctionCallbackInfo::implicit_args_. 4422 int argc = this->argc(); 4423 __ movp(StackSpaceOperand(0), scratch); 4424 __ addp(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize)); 4425 // FunctionCallbackInfo::values_. 4426 __ movp(StackSpaceOperand(1), scratch); 4427 // FunctionCallbackInfo::length_. 4428 __ Set(StackSpaceOperand(2), argc); 4429 4430 #if defined(__MINGW64__) || defined(_WIN64) 4431 Register arguments_arg = rcx; 4432 Register callback_arg = rdx; 4433 #else 4434 Register arguments_arg = rdi; 4435 Register callback_arg = rsi; 4436 #endif 4437 4438 // It's okay if api_function_address == callback_arg 4439 // but not arguments_arg 4440 DCHECK(!api_function_address.is(arguments_arg)); 4441 4442 // v8::InvocationCallback's argument. 4443 __ leap(arguments_arg, StackSpaceOperand(0)); 4444 4445 ExternalReference thunk_ref = 4446 ExternalReference::invoke_function_callback(masm->isolate()); 4447 4448 // Accessor for FunctionCallbackInfo and first js arg. 4449 StackArgumentsAccessor args_from_rbp(rbp, FCA::kArgsLength + 1, 4450 ARGUMENTS_DONT_CONTAIN_RECEIVER); 4451 Operand context_restore_operand = args_from_rbp.GetArgumentOperand( 4452 FCA::kArgsLength - FCA::kContextSaveIndex); 4453 Operand length_operand = StackSpaceOperand(2); 4454 Operand return_value_operand = args_from_rbp.GetArgumentOperand( 4455 this->is_store() ? 0 : FCA::kArgsLength - FCA::kReturnValueOffset); 4456 int stack_space = 0; 4457 Operand* stack_space_operand = &length_operand; 4458 stack_space = argc + FCA::kArgsLength + 1; 4459 stack_space_operand = nullptr; 4460 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, callback_arg, 4461 stack_space, stack_space_operand, 4462 return_value_operand, &context_restore_operand); 4463 } 4464 4465 4466 void CallApiGetterStub::Generate(MacroAssembler* masm) { 4467 #if defined(__MINGW64__) || defined(_WIN64) 4468 Register getter_arg = r8; 4469 Register accessor_info_arg = rdx; 4470 Register name_arg = rcx; 4471 #else 4472 Register getter_arg = rdx; 4473 Register accessor_info_arg = rsi; 4474 Register name_arg = rdi; 4475 #endif 4476 Register api_function_address = r8; 4477 Register receiver = ApiGetterDescriptor::ReceiverRegister(); 4478 Register holder = ApiGetterDescriptor::HolderRegister(); 4479 Register callback = ApiGetterDescriptor::CallbackRegister(); 4480 Register scratch = rax; 4481 DCHECK(!AreAliased(receiver, holder, callback, scratch)); 4482 4483 // Build v8::PropertyCallbackInfo::args_ array on the stack and push property 4484 // name below the exit frame to make GC aware of them. 4485 STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); 4486 STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); 4487 STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); 4488 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); 4489 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); 4490 STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); 4491 STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); 4492 STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); 4493 4494 // Insert additional parameters into the stack frame above return address. 4495 __ PopReturnAddressTo(scratch); 4496 __ Push(receiver); 4497 __ Push(FieldOperand(callback, AccessorInfo::kDataOffset)); 4498 __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex); 4499 __ Push(kScratchRegister); // return value 4500 __ Push(kScratchRegister); // return value default 4501 __ PushAddress(ExternalReference::isolate_address(isolate())); 4502 __ Push(holder); 4503 __ Push(Smi::kZero); // should_throw_on_error -> false 4504 __ Push(FieldOperand(callback, AccessorInfo::kNameOffset)); 4505 __ PushReturnAddressFrom(scratch); 4506 4507 // v8::PropertyCallbackInfo::args_ array and name handle. 4508 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; 4509 4510 // Allocate v8::PropertyCallbackInfo in non-GCed stack space. 4511 const int kArgStackSpace = 1; 4512 4513 // Load address of v8::PropertyAccessorInfo::args_ array. 4514 __ leap(scratch, Operand(rsp, 2 * kPointerSize)); 4515 4516 PrepareCallApiFunction(masm, kArgStackSpace); 4517 // Create v8::PropertyCallbackInfo object on the stack and initialize 4518 // it's args_ field. 4519 Operand info_object = StackSpaceOperand(0); 4520 __ movp(info_object, scratch); 4521 4522 __ leap(name_arg, Operand(scratch, -kPointerSize)); 4523 // The context register (rsi) has been saved in PrepareCallApiFunction and 4524 // could be used to pass arguments. 4525 __ leap(accessor_info_arg, info_object); 4526 4527 ExternalReference thunk_ref = 4528 ExternalReference::invoke_accessor_getter_callback(isolate()); 4529 4530 // It's okay if api_function_address == getter_arg 4531 // but not accessor_info_arg or name_arg 4532 DCHECK(!api_function_address.is(accessor_info_arg)); 4533 DCHECK(!api_function_address.is(name_arg)); 4534 __ movp(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset)); 4535 __ movp(api_function_address, 4536 FieldOperand(scratch, Foreign::kForeignAddressOffset)); 4537 4538 // +3 is to skip prolog, return address and name handle. 4539 Operand return_value_operand( 4540 rbp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize); 4541 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, getter_arg, 4542 kStackUnwindSpace, nullptr, return_value_operand, 4543 NULL); 4544 } 4545 4546 #undef __ 4547 4548 } // namespace internal 4549 } // namespace v8 4550 4551 #endif // V8_TARGET_ARCH_X64 4552