1 //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The file defines the MachineFrameInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H 15 #define LLVM_CODEGEN_MACHINEFRAMEINFO_H 16 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Support/DataTypes.h" 19 #include <cassert> 20 #include <vector> 21 22 namespace llvm { 23 class raw_ostream; 24 class DataLayout; 25 class TargetRegisterClass; 26 class Type; 27 class MachineFunction; 28 class MachineBasicBlock; 29 class TargetFrameLowering; 30 class TargetMachine; 31 class BitVector; 32 class Value; 33 class AllocaInst; 34 35 /// The CalleeSavedInfo class tracks the information need to locate where a 36 /// callee saved register is in the current frame. 37 class CalleeSavedInfo { 38 unsigned Reg; 39 int FrameIdx; 40 41 public: 42 explicit CalleeSavedInfo(unsigned R, int FI = 0) 43 : Reg(R), FrameIdx(FI) {} 44 45 // Accessors. 46 unsigned getReg() const { return Reg; } 47 int getFrameIdx() const { return FrameIdx; } 48 void setFrameIdx(int FI) { FrameIdx = FI; } 49 }; 50 51 /// The MachineFrameInfo class represents an abstract stack frame until 52 /// prolog/epilog code is inserted. This class is key to allowing stack frame 53 /// representation optimizations, such as frame pointer elimination. It also 54 /// allows more mundane (but still important) optimizations, such as reordering 55 /// of abstract objects on the stack frame. 56 /// 57 /// To support this, the class assigns unique integer identifiers to stack 58 /// objects requested clients. These identifiers are negative integers for 59 /// fixed stack objects (such as arguments passed on the stack) or nonnegative 60 /// for objects that may be reordered. Instructions which refer to stack 61 /// objects use a special MO_FrameIndex operand to represent these frame 62 /// indexes. 63 /// 64 /// Because this class keeps track of all references to the stack frame, it 65 /// knows when a variable sized object is allocated on the stack. This is the 66 /// sole condition which prevents frame pointer elimination, which is an 67 /// important optimization on register-poor architectures. Because original 68 /// variable sized alloca's in the source program are the only source of 69 /// variable sized stack objects, it is safe to decide whether there will be 70 /// any variable sized objects before all stack objects are known (for 71 /// example, register allocator spill code never needs variable sized 72 /// objects). 73 /// 74 /// When prolog/epilog code emission is performed, the final stack frame is 75 /// built and the machine instructions are modified to refer to the actual 76 /// stack offsets of the object, eliminating all MO_FrameIndex operands from 77 /// the program. 78 /// 79 /// @brief Abstract Stack Frame Information 80 class MachineFrameInfo { 81 82 // Represent a single object allocated on the stack. 83 struct StackObject { 84 // The offset of this object from the stack pointer on entry to 85 // the function. This field has no meaning for a variable sized element. 86 int64_t SPOffset; 87 88 // The size of this object on the stack. 0 means a variable sized object, 89 // ~0ULL means a dead object. 90 uint64_t Size; 91 92 // The required alignment of this stack slot. 93 unsigned Alignment; 94 95 // If true, the value of the stack object is set before 96 // entering the function and is not modified inside the function. By 97 // default, fixed objects are immutable unless marked otherwise. 98 bool isImmutable; 99 100 // If true the stack object is used as spill slot. It 101 // cannot alias any other memory objects. 102 bool isSpillSlot; 103 104 /// If true, this stack slot is used to spill a value (could be deopt 105 /// and/or GC related) over a statepoint. We know that the address of the 106 /// slot can't alias any LLVM IR value. This is very similiar to a Spill 107 /// Slot, but is created by statepoint lowering is SelectionDAG, not the 108 /// register allocator. 109 bool isStatepointSpillSlot; 110 111 /// If this stack object is originated from an Alloca instruction 112 /// this value saves the original IR allocation. Can be NULL. 113 const AllocaInst *Alloca; 114 115 // If true, the object was mapped into the local frame 116 // block and doesn't need additional handling for allocation beyond that. 117 bool PreAllocated; 118 119 // If true, an LLVM IR value might point to this object. 120 // Normally, spill slots and fixed-offset objects don't alias IR-accessible 121 // objects, but there are exceptions (on PowerPC, for example, some byval 122 // arguments have ABI-prescribed offsets). 123 bool isAliased; 124 125 /// If true, the object has been zero-extended. 126 bool isZExt; 127 128 /// If true, the object has been zero-extended. 129 bool isSExt; 130 131 StackObject(uint64_t Sz, unsigned Al, int64_t SP, bool IM, 132 bool isSS, const AllocaInst *Val, bool A) 133 : SPOffset(SP), Size(Sz), Alignment(Al), isImmutable(IM), 134 isSpillSlot(isSS), isStatepointSpillSlot(false), Alloca(Val), 135 PreAllocated(false), isAliased(A), isZExt(false), isSExt(false) {} 136 }; 137 138 /// The alignment of the stack. 139 unsigned StackAlignment; 140 141 /// Can the stack be realigned. This can be false if the target does not 142 /// support stack realignment, or if the user asks us not to realign the 143 /// stack. In this situation, overaligned allocas are all treated as dynamic 144 /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC 145 /// lowering. All non-alloca stack objects have their alignment clamped to the 146 /// base ABI stack alignment. 147 /// FIXME: There is room for improvement in this case, in terms of 148 /// grouping overaligned allocas into a "secondary stack frame" and 149 /// then only use a single alloca to allocate this frame and only a 150 /// single virtual register to access it. Currently, without such an 151 /// optimization, each such alloca gets it's own dynamic 152 /// realignment. 153 bool StackRealignable; 154 155 /// Whether the function has the \c alignstack attribute. 156 bool ForcedRealign; 157 158 /// The list of stack objects allocated. 159 std::vector<StackObject> Objects; 160 161 /// This contains the number of fixed objects contained on 162 /// the stack. Because fixed objects are stored at a negative index in the 163 /// Objects list, this is also the index to the 0th object in the list. 164 unsigned NumFixedObjects = 0; 165 166 /// This boolean keeps track of whether any variable 167 /// sized objects have been allocated yet. 168 bool HasVarSizedObjects = false; 169 170 /// This boolean keeps track of whether there is a call 171 /// to builtin \@llvm.frameaddress. 172 bool FrameAddressTaken = false; 173 174 /// This boolean keeps track of whether there is a call 175 /// to builtin \@llvm.returnaddress. 176 bool ReturnAddressTaken = false; 177 178 /// This boolean keeps track of whether there is a call 179 /// to builtin \@llvm.experimental.stackmap. 180 bool HasStackMap = false; 181 182 /// This boolean keeps track of whether there is a call 183 /// to builtin \@llvm.experimental.patchpoint. 184 bool HasPatchPoint = false; 185 186 /// The prolog/epilog code inserter calculates the final stack 187 /// offsets for all of the fixed size objects, updating the Objects list 188 /// above. It then updates StackSize to contain the number of bytes that need 189 /// to be allocated on entry to the function. 190 uint64_t StackSize = 0; 191 192 /// The amount that a frame offset needs to be adjusted to 193 /// have the actual offset from the stack/frame pointer. The exact usage of 194 /// this is target-dependent, but it is typically used to adjust between 195 /// SP-relative and FP-relative offsets. E.G., if objects are accessed via 196 /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set 197 /// to the distance between the initial SP and the value in FP. For many 198 /// targets, this value is only used when generating debug info (via 199 /// TargetRegisterInfo::getFrameIndexReference); when generating code, the 200 /// corresponding adjustments are performed directly. 201 int OffsetAdjustment = 0; 202 203 /// The prolog/epilog code inserter may process objects that require greater 204 /// alignment than the default alignment the target provides. 205 /// To handle this, MaxAlignment is set to the maximum alignment 206 /// needed by the objects on the current frame. If this is greater than the 207 /// native alignment maintained by the compiler, dynamic alignment code will 208 /// be needed. 209 /// 210 unsigned MaxAlignment = 0; 211 212 /// Set to true if this function adjusts the stack -- e.g., 213 /// when calling another function. This is only valid during and after 214 /// prolog/epilog code insertion. 215 bool AdjustsStack = false; 216 217 /// Set to true if this function has any function calls. 218 bool HasCalls = false; 219 220 /// The frame index for the stack protector. 221 int StackProtectorIdx = -1; 222 223 /// The frame index for the function context. Used for SjLj exceptions. 224 int FunctionContextIdx = -1; 225 226 /// This contains the size of the largest call frame if the target uses frame 227 /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo 228 /// class). This information is important for frame pointer elimination. 229 /// It is only valid during and after prolog/epilog code insertion. 230 unsigned MaxCallFrameSize = 0; 231 232 /// The prolog/epilog code inserter fills in this vector with each 233 /// callee saved register saved in the frame. Beyond its use by the prolog/ 234 /// epilog code inserter, this data used for debug info and exception 235 /// handling. 236 std::vector<CalleeSavedInfo> CSInfo; 237 238 /// Has CSInfo been set yet? 239 bool CSIValid = false; 240 241 /// References to frame indices which are mapped 242 /// into the local frame allocation block. <FrameIdx, LocalOffset> 243 SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects; 244 245 /// Size of the pre-allocated local frame block. 246 int64_t LocalFrameSize = 0; 247 248 /// Required alignment of the local object blob, which is the strictest 249 /// alignment of any object in it. 250 unsigned LocalFrameMaxAlign = 0; 251 252 /// Whether the local object blob needs to be allocated together. If not, 253 /// PEI should ignore the isPreAllocated flags on the stack objects and 254 /// just allocate them normally. 255 bool UseLocalStackAllocationBlock = false; 256 257 /// True if the function dynamically adjusts the stack pointer through some 258 /// opaque mechanism like inline assembly or Win32 EH. 259 bool HasOpaqueSPAdjustment = false; 260 261 /// True if the function contains operations which will lower down to 262 /// instructions which manipulate the stack pointer. 263 bool HasCopyImplyingStackAdjustment = false; 264 265 /// True if the function contains a call to the llvm.vastart intrinsic. 266 bool HasVAStart = false; 267 268 /// True if this is a varargs function that contains a musttail call. 269 bool HasMustTailInVarArgFunc = false; 270 271 /// True if this function contains a tail call. If so immutable objects like 272 /// function arguments are no longer so. A tail call *can* override fixed 273 /// stack objects like arguments so we can't treat them as immutable. 274 bool HasTailCall = false; 275 276 /// Not null, if shrink-wrapping found a better place for the prologue. 277 MachineBasicBlock *Save = nullptr; 278 /// Not null, if shrink-wrapping found a better place for the epilogue. 279 MachineBasicBlock *Restore = nullptr; 280 281 public: 282 explicit MachineFrameInfo(unsigned StackAlignment, bool StackRealignable, 283 bool ForcedRealign) 284 : StackAlignment(StackAlignment), StackRealignable(StackRealignable), 285 ForcedRealign(ForcedRealign) {} 286 287 /// Return true if there are any stack objects in this function. 288 bool hasStackObjects() const { return !Objects.empty(); } 289 290 /// This method may be called any time after instruction 291 /// selection is complete to determine if the stack frame for this function 292 /// contains any variable sized objects. 293 bool hasVarSizedObjects() const { return HasVarSizedObjects; } 294 295 /// Return the index for the stack protector object. 296 int getStackProtectorIndex() const { return StackProtectorIdx; } 297 void setStackProtectorIndex(int I) { StackProtectorIdx = I; } 298 bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; } 299 300 /// Return the index for the function context object. 301 /// This object is used for SjLj exceptions. 302 int getFunctionContextIndex() const { return FunctionContextIdx; } 303 void setFunctionContextIndex(int I) { FunctionContextIdx = I; } 304 305 /// This method may be called any time after instruction 306 /// selection is complete to determine if there is a call to 307 /// \@llvm.frameaddress in this function. 308 bool isFrameAddressTaken() const { return FrameAddressTaken; } 309 void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; } 310 311 /// This method may be called any time after 312 /// instruction selection is complete to determine if there is a call to 313 /// \@llvm.returnaddress in this function. 314 bool isReturnAddressTaken() const { return ReturnAddressTaken; } 315 void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; } 316 317 /// This method may be called any time after instruction 318 /// selection is complete to determine if there is a call to builtin 319 /// \@llvm.experimental.stackmap. 320 bool hasStackMap() const { return HasStackMap; } 321 void setHasStackMap(bool s = true) { HasStackMap = s; } 322 323 /// This method may be called any time after instruction 324 /// selection is complete to determine if there is a call to builtin 325 /// \@llvm.experimental.patchpoint. 326 bool hasPatchPoint() const { return HasPatchPoint; } 327 void setHasPatchPoint(bool s = true) { HasPatchPoint = s; } 328 329 /// Return the minimum frame object index. 330 int getObjectIndexBegin() const { return -NumFixedObjects; } 331 332 /// Return one past the maximum frame object index. 333 int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; } 334 335 /// Return the number of fixed objects. 336 unsigned getNumFixedObjects() const { return NumFixedObjects; } 337 338 /// Return the number of objects. 339 unsigned getNumObjects() const { return Objects.size(); } 340 341 /// Map a frame index into the local object block 342 void mapLocalFrameObject(int ObjectIndex, int64_t Offset) { 343 LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset)); 344 Objects[ObjectIndex + NumFixedObjects].PreAllocated = true; 345 } 346 347 /// Get the local offset mapping for a for an object. 348 std::pair<int, int64_t> getLocalFrameObjectMap(int i) const { 349 assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() && 350 "Invalid local object reference!"); 351 return LocalFrameObjects[i]; 352 } 353 354 /// Return the number of objects allocated into the local object block. 355 int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); } 356 357 /// Set the size of the local object blob. 358 void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; } 359 360 /// Get the size of the local object blob. 361 int64_t getLocalFrameSize() const { return LocalFrameSize; } 362 363 /// Required alignment of the local object blob, 364 /// which is the strictest alignment of any object in it. 365 void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; } 366 367 /// Return the required alignment of the local object blob. 368 unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; } 369 370 /// Get whether the local allocation blob should be allocated together or 371 /// let PEI allocate the locals in it directly. 372 bool getUseLocalStackAllocationBlock() const { 373 return UseLocalStackAllocationBlock; 374 } 375 376 /// setUseLocalStackAllocationBlock - Set whether the local allocation blob 377 /// should be allocated together or let PEI allocate the locals in it 378 /// directly. 379 void setUseLocalStackAllocationBlock(bool v) { 380 UseLocalStackAllocationBlock = v; 381 } 382 383 /// Return true if the object was pre-allocated into the local block. 384 bool isObjectPreAllocated(int ObjectIdx) const { 385 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 386 "Invalid Object Idx!"); 387 return Objects[ObjectIdx+NumFixedObjects].PreAllocated; 388 } 389 390 /// Return the size of the specified object. 391 int64_t getObjectSize(int ObjectIdx) const { 392 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 393 "Invalid Object Idx!"); 394 return Objects[ObjectIdx+NumFixedObjects].Size; 395 } 396 397 /// Change the size of the specified stack object. 398 void setObjectSize(int ObjectIdx, int64_t Size) { 399 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 400 "Invalid Object Idx!"); 401 Objects[ObjectIdx+NumFixedObjects].Size = Size; 402 } 403 404 /// Return the alignment of the specified stack object. 405 unsigned getObjectAlignment(int ObjectIdx) const { 406 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 407 "Invalid Object Idx!"); 408 return Objects[ObjectIdx+NumFixedObjects].Alignment; 409 } 410 411 /// setObjectAlignment - Change the alignment of the specified stack object. 412 void setObjectAlignment(int ObjectIdx, unsigned Align) { 413 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 414 "Invalid Object Idx!"); 415 Objects[ObjectIdx+NumFixedObjects].Alignment = Align; 416 ensureMaxAlignment(Align); 417 } 418 419 /// Return the underlying Alloca of the specified 420 /// stack object if it exists. Returns 0 if none exists. 421 const AllocaInst* getObjectAllocation(int ObjectIdx) const { 422 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 423 "Invalid Object Idx!"); 424 return Objects[ObjectIdx+NumFixedObjects].Alloca; 425 } 426 427 /// Return the assigned stack offset of the specified object 428 /// from the incoming stack pointer. 429 int64_t getObjectOffset(int ObjectIdx) const { 430 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 431 "Invalid Object Idx!"); 432 assert(!isDeadObjectIndex(ObjectIdx) && 433 "Getting frame offset for a dead object?"); 434 return Objects[ObjectIdx+NumFixedObjects].SPOffset; 435 } 436 437 bool isObjectZExt(int ObjectIdx) const { 438 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 439 "Invalid Object Idx!"); 440 return Objects[ObjectIdx+NumFixedObjects].isZExt; 441 } 442 443 void setObjectZExt(int ObjectIdx, bool IsZExt) { 444 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 445 "Invalid Object Idx!"); 446 Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt; 447 } 448 449 bool isObjectSExt(int ObjectIdx) const { 450 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 451 "Invalid Object Idx!"); 452 return Objects[ObjectIdx+NumFixedObjects].isSExt; 453 } 454 455 void setObjectSExt(int ObjectIdx, bool IsSExt) { 456 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 457 "Invalid Object Idx!"); 458 Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt; 459 } 460 461 /// Set the stack frame offset of the specified object. The 462 /// offset is relative to the stack pointer on entry to the function. 463 void setObjectOffset(int ObjectIdx, int64_t SPOffset) { 464 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 465 "Invalid Object Idx!"); 466 assert(!isDeadObjectIndex(ObjectIdx) && 467 "Setting frame offset for a dead object?"); 468 Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset; 469 } 470 471 /// Return the number of bytes that must be allocated to hold 472 /// all of the fixed size frame objects. This is only valid after 473 /// Prolog/Epilog code insertion has finalized the stack frame layout. 474 uint64_t getStackSize() const { return StackSize; } 475 476 /// Set the size of the stack. 477 void setStackSize(uint64_t Size) { StackSize = Size; } 478 479 /// Estimate and return the size of the stack frame. 480 unsigned estimateStackSize(const MachineFunction &MF) const; 481 482 /// Return the correction for frame offsets. 483 int getOffsetAdjustment() const { return OffsetAdjustment; } 484 485 /// Set the correction for frame offsets. 486 void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; } 487 488 /// Return the alignment in bytes that this function must be aligned to, 489 /// which is greater than the default stack alignment provided by the target. 490 unsigned getMaxAlignment() const { return MaxAlignment; } 491 492 /// Make sure the function is at least Align bytes aligned. 493 void ensureMaxAlignment(unsigned Align); 494 495 /// Return true if this function adjusts the stack -- e.g., 496 /// when calling another function. This is only valid during and after 497 /// prolog/epilog code insertion. 498 bool adjustsStack() const { return AdjustsStack; } 499 void setAdjustsStack(bool V) { AdjustsStack = V; } 500 501 /// Return true if the current function has any function calls. 502 bool hasCalls() const { return HasCalls; } 503 void setHasCalls(bool V) { HasCalls = V; } 504 505 /// Returns true if the function contains opaque dynamic stack adjustments. 506 bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; } 507 void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; } 508 509 /// Returns true if the function contains operations which will lower down to 510 /// instructions which manipulate the stack pointer. 511 bool hasCopyImplyingStackAdjustment() const { 512 return HasCopyImplyingStackAdjustment; 513 } 514 void setHasCopyImplyingStackAdjustment(bool B) { 515 HasCopyImplyingStackAdjustment = B; 516 } 517 518 /// Returns true if the function calls the llvm.va_start intrinsic. 519 bool hasVAStart() const { return HasVAStart; } 520 void setHasVAStart(bool B) { HasVAStart = B; } 521 522 /// Returns true if the function is variadic and contains a musttail call. 523 bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; } 524 void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; } 525 526 /// Returns true if the function contains a tail call. 527 bool hasTailCall() const { return HasTailCall; } 528 void setHasTailCall() { HasTailCall = true; } 529 530 /// Return the maximum size of a call frame that must be 531 /// allocated for an outgoing function call. This is only available if 532 /// CallFrameSetup/Destroy pseudo instructions are used by the target, and 533 /// then only during or after prolog/epilog code insertion. 534 /// 535 unsigned getMaxCallFrameSize() const { return MaxCallFrameSize; } 536 void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; } 537 538 /// Create a new object at a fixed location on the stack. 539 /// All fixed objects should be created before other objects are created for 540 /// efficiency. By default, fixed objects are not pointed to by LLVM IR 541 /// values. This returns an index with a negative value. 542 int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool Immutable, 543 bool isAliased = false); 544 545 /// Create a spill slot at a fixed location on the stack. 546 /// Returns an index with a negative value. 547 int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset); 548 549 /// Returns true if the specified index corresponds to a fixed stack object. 550 bool isFixedObjectIndex(int ObjectIdx) const { 551 return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects); 552 } 553 554 /// Returns true if the specified index corresponds 555 /// to an object that might be pointed to by an LLVM IR value. 556 bool isAliasedObjectIndex(int ObjectIdx) const { 557 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 558 "Invalid Object Idx!"); 559 return Objects[ObjectIdx+NumFixedObjects].isAliased; 560 } 561 562 /// isImmutableObjectIndex - Returns true if the specified index corresponds 563 /// to an immutable object. 564 bool isImmutableObjectIndex(int ObjectIdx) const { 565 // Tail calling functions can clobber their function arguments. 566 if (HasTailCall) 567 return false; 568 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 569 "Invalid Object Idx!"); 570 return Objects[ObjectIdx+NumFixedObjects].isImmutable; 571 } 572 573 /// Returns true if the specified index corresponds to a spill slot. 574 bool isSpillSlotObjectIndex(int ObjectIdx) const { 575 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 576 "Invalid Object Idx!"); 577 return Objects[ObjectIdx+NumFixedObjects].isSpillSlot; 578 } 579 580 bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const { 581 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 582 "Invalid Object Idx!"); 583 return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot; 584 } 585 586 /// Returns true if the specified index corresponds to a dead object. 587 bool isDeadObjectIndex(int ObjectIdx) const { 588 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 589 "Invalid Object Idx!"); 590 return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL; 591 } 592 593 /// Returns true if the specified index corresponds to a variable sized 594 /// object. 595 bool isVariableSizedObjectIndex(int ObjectIdx) const { 596 assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() && 597 "Invalid Object Idx!"); 598 return Objects[ObjectIdx + NumFixedObjects].Size == 0; 599 } 600 601 void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) { 602 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 603 "Invalid Object Idx!"); 604 Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true; 605 assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent"); 606 } 607 608 /// Create a new statically sized stack object, returning 609 /// a nonnegative identifier to represent it. 610 int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSS, 611 const AllocaInst *Alloca = nullptr); 612 613 /// Create a new statically sized stack object that represents a spill slot, 614 /// returning a nonnegative identifier to represent it. 615 int CreateSpillStackObject(uint64_t Size, unsigned Alignment); 616 617 /// Remove or mark dead a statically sized stack object. 618 void RemoveStackObject(int ObjectIdx) { 619 // Mark it dead. 620 Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL; 621 } 622 623 /// Notify the MachineFrameInfo object that a variable sized object has been 624 /// created. This must be created whenever a variable sized object is 625 /// created, whether or not the index returned is actually used. 626 int CreateVariableSizedObject(unsigned Alignment, const AllocaInst *Alloca); 627 628 /// Returns a reference to call saved info vector for the current function. 629 const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const { 630 return CSInfo; 631 } 632 633 /// Used by prolog/epilog inserter to set the function's callee saved 634 /// information. 635 void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) { 636 CSInfo = CSI; 637 } 638 639 /// Has the callee saved info been calculated yet? 640 bool isCalleeSavedInfoValid() const { return CSIValid; } 641 642 void setCalleeSavedInfoValid(bool v) { CSIValid = v; } 643 644 MachineBasicBlock *getSavePoint() const { return Save; } 645 void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; } 646 MachineBasicBlock *getRestorePoint() const { return Restore; } 647 void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; } 648 649 /// Return a set of physical registers that are pristine. 650 /// 651 /// Pristine registers hold a value that is useless to the current function, 652 /// but that must be preserved - they are callee saved registers that are not 653 /// saved. 654 /// 655 /// Before the PrologueEpilogueInserter has placed the CSR spill code, this 656 /// method always returns an empty set. 657 BitVector getPristineRegs(const MachineFunction &MF) const; 658 659 /// Used by the MachineFunction printer to print information about 660 /// stack objects. Implemented in MachineFunction.cpp. 661 void print(const MachineFunction &MF, raw_ostream &OS) const; 662 663 /// dump - Print the function to stderr. 664 void dump(const MachineFunction &MF) const; 665 }; 666 667 } // End llvm namespace 668 669 #endif 670