Home | History | Annotate | Download | only in CodeGen
      1 //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The file defines the MachineFrameInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
     15 #define LLVM_CODEGEN_MACHINEFRAMEINFO_H
     16 
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/Support/DataTypes.h"
     19 #include <cassert>
     20 #include <vector>
     21 
     22 namespace llvm {
     23 class raw_ostream;
     24 class DataLayout;
     25 class TargetRegisterClass;
     26 class Type;
     27 class MachineFunction;
     28 class MachineBasicBlock;
     29 class TargetFrameLowering;
     30 class TargetMachine;
     31 class BitVector;
     32 class Value;
     33 class AllocaInst;
     34 
     35 /// The CalleeSavedInfo class tracks the information need to locate where a
     36 /// callee saved register is in the current frame.
     37 class CalleeSavedInfo {
     38   unsigned Reg;
     39   int FrameIdx;
     40 
     41 public:
     42   explicit CalleeSavedInfo(unsigned R, int FI = 0)
     43   : Reg(R), FrameIdx(FI) {}
     44 
     45   // Accessors.
     46   unsigned getReg()                        const { return Reg; }
     47   int getFrameIdx()                        const { return FrameIdx; }
     48   void setFrameIdx(int FI)                       { FrameIdx = FI; }
     49 };
     50 
     51 /// The MachineFrameInfo class represents an abstract stack frame until
     52 /// prolog/epilog code is inserted.  This class is key to allowing stack frame
     53 /// representation optimizations, such as frame pointer elimination.  It also
     54 /// allows more mundane (but still important) optimizations, such as reordering
     55 /// of abstract objects on the stack frame.
     56 ///
     57 /// To support this, the class assigns unique integer identifiers to stack
     58 /// objects requested clients.  These identifiers are negative integers for
     59 /// fixed stack objects (such as arguments passed on the stack) or nonnegative
     60 /// for objects that may be reordered.  Instructions which refer to stack
     61 /// objects use a special MO_FrameIndex operand to represent these frame
     62 /// indexes.
     63 ///
     64 /// Because this class keeps track of all references to the stack frame, it
     65 /// knows when a variable sized object is allocated on the stack.  This is the
     66 /// sole condition which prevents frame pointer elimination, which is an
     67 /// important optimization on register-poor architectures.  Because original
     68 /// variable sized alloca's in the source program are the only source of
     69 /// variable sized stack objects, it is safe to decide whether there will be
     70 /// any variable sized objects before all stack objects are known (for
     71 /// example, register allocator spill code never needs variable sized
     72 /// objects).
     73 ///
     74 /// When prolog/epilog code emission is performed, the final stack frame is
     75 /// built and the machine instructions are modified to refer to the actual
     76 /// stack offsets of the object, eliminating all MO_FrameIndex operands from
     77 /// the program.
     78 ///
     79 /// @brief Abstract Stack Frame Information
     80 class MachineFrameInfo {
     81 
     82   // Represent a single object allocated on the stack.
     83   struct StackObject {
     84     // The offset of this object from the stack pointer on entry to
     85     // the function.  This field has no meaning for a variable sized element.
     86     int64_t SPOffset;
     87 
     88     // The size of this object on the stack. 0 means a variable sized object,
     89     // ~0ULL means a dead object.
     90     uint64_t Size;
     91 
     92     // The required alignment of this stack slot.
     93     unsigned Alignment;
     94 
     95     // If true, the value of the stack object is set before
     96     // entering the function and is not modified inside the function. By
     97     // default, fixed objects are immutable unless marked otherwise.
     98     bool isImmutable;
     99 
    100     // If true the stack object is used as spill slot. It
    101     // cannot alias any other memory objects.
    102     bool isSpillSlot;
    103 
    104     /// If true, this stack slot is used to spill a value (could be deopt
    105     /// and/or GC related) over a statepoint. We know that the address of the
    106     /// slot can't alias any LLVM IR value.  This is very similiar to a Spill
    107     /// Slot, but is created by statepoint lowering is SelectionDAG, not the
    108     /// register allocator.
    109     bool isStatepointSpillSlot;
    110 
    111     /// If this stack object is originated from an Alloca instruction
    112     /// this value saves the original IR allocation. Can be NULL.
    113     const AllocaInst *Alloca;
    114 
    115     // If true, the object was mapped into the local frame
    116     // block and doesn't need additional handling for allocation beyond that.
    117     bool PreAllocated;
    118 
    119     // If true, an LLVM IR value might point to this object.
    120     // Normally, spill slots and fixed-offset objects don't alias IR-accessible
    121     // objects, but there are exceptions (on PowerPC, for example, some byval
    122     // arguments have ABI-prescribed offsets).
    123     bool isAliased;
    124 
    125     /// If true, the object has been zero-extended.
    126     bool isZExt;
    127 
    128     /// If true, the object has been zero-extended.
    129     bool isSExt;
    130 
    131     StackObject(uint64_t Sz, unsigned Al, int64_t SP, bool IM,
    132                 bool isSS, const AllocaInst *Val, bool A)
    133       : SPOffset(SP), Size(Sz), Alignment(Al), isImmutable(IM),
    134         isSpillSlot(isSS), isStatepointSpillSlot(false), Alloca(Val),
    135         PreAllocated(false), isAliased(A), isZExt(false), isSExt(false) {}
    136   };
    137 
    138   /// The alignment of the stack.
    139   unsigned StackAlignment;
    140 
    141   /// Can the stack be realigned. This can be false if the target does not
    142   /// support stack realignment, or if the user asks us not to realign the
    143   /// stack. In this situation, overaligned allocas are all treated as dynamic
    144   /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC
    145   /// lowering. All non-alloca stack objects have their alignment clamped to the
    146   /// base ABI stack alignment.
    147   /// FIXME: There is room for improvement in this case, in terms of
    148   /// grouping overaligned allocas into a "secondary stack frame" and
    149   /// then only use a single alloca to allocate this frame and only a
    150   /// single virtual register to access it. Currently, without such an
    151   /// optimization, each such alloca gets it's own dynamic
    152   /// realignment.
    153   bool StackRealignable;
    154 
    155   /// Whether the function has the \c alignstack attribute.
    156   bool ForcedRealign;
    157 
    158   /// The list of stack objects allocated.
    159   std::vector<StackObject> Objects;
    160 
    161   /// This contains the number of fixed objects contained on
    162   /// the stack.  Because fixed objects are stored at a negative index in the
    163   /// Objects list, this is also the index to the 0th object in the list.
    164   unsigned NumFixedObjects = 0;
    165 
    166   /// This boolean keeps track of whether any variable
    167   /// sized objects have been allocated yet.
    168   bool HasVarSizedObjects = false;
    169 
    170   /// This boolean keeps track of whether there is a call
    171   /// to builtin \@llvm.frameaddress.
    172   bool FrameAddressTaken = false;
    173 
    174   /// This boolean keeps track of whether there is a call
    175   /// to builtin \@llvm.returnaddress.
    176   bool ReturnAddressTaken = false;
    177 
    178   /// This boolean keeps track of whether there is a call
    179   /// to builtin \@llvm.experimental.stackmap.
    180   bool HasStackMap = false;
    181 
    182   /// This boolean keeps track of whether there is a call
    183   /// to builtin \@llvm.experimental.patchpoint.
    184   bool HasPatchPoint = false;
    185 
    186   /// The prolog/epilog code inserter calculates the final stack
    187   /// offsets for all of the fixed size objects, updating the Objects list
    188   /// above.  It then updates StackSize to contain the number of bytes that need
    189   /// to be allocated on entry to the function.
    190   uint64_t StackSize = 0;
    191 
    192   /// The amount that a frame offset needs to be adjusted to
    193   /// have the actual offset from the stack/frame pointer.  The exact usage of
    194   /// this is target-dependent, but it is typically used to adjust between
    195   /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
    196   /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
    197   /// to the distance between the initial SP and the value in FP.  For many
    198   /// targets, this value is only used when generating debug info (via
    199   /// TargetRegisterInfo::getFrameIndexReference); when generating code, the
    200   /// corresponding adjustments are performed directly.
    201   int OffsetAdjustment = 0;
    202 
    203   /// The prolog/epilog code inserter may process objects that require greater
    204   /// alignment than the default alignment the target provides.
    205   /// To handle this, MaxAlignment is set to the maximum alignment
    206   /// needed by the objects on the current frame.  If this is greater than the
    207   /// native alignment maintained by the compiler, dynamic alignment code will
    208   /// be needed.
    209   ///
    210   unsigned MaxAlignment = 0;
    211 
    212   /// Set to true if this function adjusts the stack -- e.g.,
    213   /// when calling another function. This is only valid during and after
    214   /// prolog/epilog code insertion.
    215   bool AdjustsStack = false;
    216 
    217   /// Set to true if this function has any function calls.
    218   bool HasCalls = false;
    219 
    220   /// The frame index for the stack protector.
    221   int StackProtectorIdx = -1;
    222 
    223   /// The frame index for the function context. Used for SjLj exceptions.
    224   int FunctionContextIdx = -1;
    225 
    226   /// This contains the size of the largest call frame if the target uses frame
    227   /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo
    228   /// class).  This information is important for frame pointer elimination.
    229   /// It is only valid during and after prolog/epilog code insertion.
    230   unsigned MaxCallFrameSize = 0;
    231 
    232   /// The prolog/epilog code inserter fills in this vector with each
    233   /// callee saved register saved in the frame.  Beyond its use by the prolog/
    234   /// epilog code inserter, this data used for debug info and exception
    235   /// handling.
    236   std::vector<CalleeSavedInfo> CSInfo;
    237 
    238   /// Has CSInfo been set yet?
    239   bool CSIValid = false;
    240 
    241   /// References to frame indices which are mapped
    242   /// into the local frame allocation block. <FrameIdx, LocalOffset>
    243   SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
    244 
    245   /// Size of the pre-allocated local frame block.
    246   int64_t LocalFrameSize = 0;
    247 
    248   /// Required alignment of the local object blob, which is the strictest
    249   /// alignment of any object in it.
    250   unsigned LocalFrameMaxAlign = 0;
    251 
    252   /// Whether the local object blob needs to be allocated together. If not,
    253   /// PEI should ignore the isPreAllocated flags on the stack objects and
    254   /// just allocate them normally.
    255   bool UseLocalStackAllocationBlock = false;
    256 
    257   /// True if the function dynamically adjusts the stack pointer through some
    258   /// opaque mechanism like inline assembly or Win32 EH.
    259   bool HasOpaqueSPAdjustment = false;
    260 
    261   /// True if the function contains operations which will lower down to
    262   /// instructions which manipulate the stack pointer.
    263   bool HasCopyImplyingStackAdjustment = false;
    264 
    265   /// True if the function contains a call to the llvm.vastart intrinsic.
    266   bool HasVAStart = false;
    267 
    268   /// True if this is a varargs function that contains a musttail call.
    269   bool HasMustTailInVarArgFunc = false;
    270 
    271   /// True if this function contains a tail call. If so immutable objects like
    272   /// function arguments are no longer so. A tail call *can* override fixed
    273   /// stack objects like arguments so we can't treat them as immutable.
    274   bool HasTailCall = false;
    275 
    276   /// Not null, if shrink-wrapping found a better place for the prologue.
    277   MachineBasicBlock *Save = nullptr;
    278   /// Not null, if shrink-wrapping found a better place for the epilogue.
    279   MachineBasicBlock *Restore = nullptr;
    280 
    281 public:
    282   explicit MachineFrameInfo(unsigned StackAlignment, bool StackRealignable,
    283                             bool ForcedRealign)
    284       : StackAlignment(StackAlignment), StackRealignable(StackRealignable),
    285         ForcedRealign(ForcedRealign) {}
    286 
    287   /// Return true if there are any stack objects in this function.
    288   bool hasStackObjects() const { return !Objects.empty(); }
    289 
    290   /// This method may be called any time after instruction
    291   /// selection is complete to determine if the stack frame for this function
    292   /// contains any variable sized objects.
    293   bool hasVarSizedObjects() const { return HasVarSizedObjects; }
    294 
    295   /// Return the index for the stack protector object.
    296   int getStackProtectorIndex() const { return StackProtectorIdx; }
    297   void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
    298   bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; }
    299 
    300   /// Return the index for the function context object.
    301   /// This object is used for SjLj exceptions.
    302   int getFunctionContextIndex() const { return FunctionContextIdx; }
    303   void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
    304 
    305   /// This method may be called any time after instruction
    306   /// selection is complete to determine if there is a call to
    307   /// \@llvm.frameaddress in this function.
    308   bool isFrameAddressTaken() const { return FrameAddressTaken; }
    309   void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
    310 
    311   /// This method may be called any time after
    312   /// instruction selection is complete to determine if there is a call to
    313   /// \@llvm.returnaddress in this function.
    314   bool isReturnAddressTaken() const { return ReturnAddressTaken; }
    315   void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
    316 
    317   /// This method may be called any time after instruction
    318   /// selection is complete to determine if there is a call to builtin
    319   /// \@llvm.experimental.stackmap.
    320   bool hasStackMap() const { return HasStackMap; }
    321   void setHasStackMap(bool s = true) { HasStackMap = s; }
    322 
    323   /// This method may be called any time after instruction
    324   /// selection is complete to determine if there is a call to builtin
    325   /// \@llvm.experimental.patchpoint.
    326   bool hasPatchPoint() const { return HasPatchPoint; }
    327   void setHasPatchPoint(bool s = true) { HasPatchPoint = s; }
    328 
    329   /// Return the minimum frame object index.
    330   int getObjectIndexBegin() const { return -NumFixedObjects; }
    331 
    332   /// Return one past the maximum frame object index.
    333   int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
    334 
    335   /// Return the number of fixed objects.
    336   unsigned getNumFixedObjects() const { return NumFixedObjects; }
    337 
    338   /// Return the number of objects.
    339   unsigned getNumObjects() const { return Objects.size(); }
    340 
    341   /// Map a frame index into the local object block
    342   void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
    343     LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
    344     Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
    345   }
    346 
    347   /// Get the local offset mapping for a for an object.
    348   std::pair<int, int64_t> getLocalFrameObjectMap(int i) const {
    349     assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
    350             "Invalid local object reference!");
    351     return LocalFrameObjects[i];
    352   }
    353 
    354   /// Return the number of objects allocated into the local object block.
    355   int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); }
    356 
    357   /// Set the size of the local object blob.
    358   void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
    359 
    360   /// Get the size of the local object blob.
    361   int64_t getLocalFrameSize() const { return LocalFrameSize; }
    362 
    363   /// Required alignment of the local object blob,
    364   /// which is the strictest alignment of any object in it.
    365   void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; }
    366 
    367   /// Return the required alignment of the local object blob.
    368   unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
    369 
    370   /// Get whether the local allocation blob should be allocated together or
    371   /// let PEI allocate the locals in it directly.
    372   bool getUseLocalStackAllocationBlock() const {
    373     return UseLocalStackAllocationBlock;
    374   }
    375 
    376   /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
    377   /// should be allocated together or let PEI allocate the locals in it
    378   /// directly.
    379   void setUseLocalStackAllocationBlock(bool v) {
    380     UseLocalStackAllocationBlock = v;
    381   }
    382 
    383   /// Return true if the object was pre-allocated into the local block.
    384   bool isObjectPreAllocated(int ObjectIdx) const {
    385     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    386            "Invalid Object Idx!");
    387     return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
    388   }
    389 
    390   /// Return the size of the specified object.
    391   int64_t getObjectSize(int ObjectIdx) const {
    392     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    393            "Invalid Object Idx!");
    394     return Objects[ObjectIdx+NumFixedObjects].Size;
    395   }
    396 
    397   /// Change the size of the specified stack object.
    398   void setObjectSize(int ObjectIdx, int64_t Size) {
    399     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    400            "Invalid Object Idx!");
    401     Objects[ObjectIdx+NumFixedObjects].Size = Size;
    402   }
    403 
    404   /// Return the alignment of the specified stack object.
    405   unsigned getObjectAlignment(int ObjectIdx) const {
    406     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    407            "Invalid Object Idx!");
    408     return Objects[ObjectIdx+NumFixedObjects].Alignment;
    409   }
    410 
    411   /// setObjectAlignment - Change the alignment of the specified stack object.
    412   void setObjectAlignment(int ObjectIdx, unsigned Align) {
    413     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    414            "Invalid Object Idx!");
    415     Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
    416     ensureMaxAlignment(Align);
    417   }
    418 
    419   /// Return the underlying Alloca of the specified
    420   /// stack object if it exists. Returns 0 if none exists.
    421   const AllocaInst* getObjectAllocation(int ObjectIdx) const {
    422     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    423            "Invalid Object Idx!");
    424     return Objects[ObjectIdx+NumFixedObjects].Alloca;
    425   }
    426 
    427   /// Return the assigned stack offset of the specified object
    428   /// from the incoming stack pointer.
    429   int64_t getObjectOffset(int ObjectIdx) const {
    430     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    431            "Invalid Object Idx!");
    432     assert(!isDeadObjectIndex(ObjectIdx) &&
    433            "Getting frame offset for a dead object?");
    434     return Objects[ObjectIdx+NumFixedObjects].SPOffset;
    435   }
    436 
    437   bool isObjectZExt(int ObjectIdx) const {
    438     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    439            "Invalid Object Idx!");
    440     return Objects[ObjectIdx+NumFixedObjects].isZExt;
    441   }
    442 
    443   void setObjectZExt(int ObjectIdx, bool IsZExt) {
    444     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    445            "Invalid Object Idx!");
    446     Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt;
    447   }
    448 
    449   bool isObjectSExt(int ObjectIdx) const {
    450     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    451            "Invalid Object Idx!");
    452     return Objects[ObjectIdx+NumFixedObjects].isSExt;
    453   }
    454 
    455   void setObjectSExt(int ObjectIdx, bool IsSExt) {
    456     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    457            "Invalid Object Idx!");
    458     Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt;
    459   }
    460 
    461   /// Set the stack frame offset of the specified object. The
    462   /// offset is relative to the stack pointer on entry to the function.
    463   void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
    464     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    465            "Invalid Object Idx!");
    466     assert(!isDeadObjectIndex(ObjectIdx) &&
    467            "Setting frame offset for a dead object?");
    468     Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
    469   }
    470 
    471   /// Return the number of bytes that must be allocated to hold
    472   /// all of the fixed size frame objects.  This is only valid after
    473   /// Prolog/Epilog code insertion has finalized the stack frame layout.
    474   uint64_t getStackSize() const { return StackSize; }
    475 
    476   /// Set the size of the stack.
    477   void setStackSize(uint64_t Size) { StackSize = Size; }
    478 
    479   /// Estimate and return the size of the stack frame.
    480   unsigned estimateStackSize(const MachineFunction &MF) const;
    481 
    482   /// Return the correction for frame offsets.
    483   int getOffsetAdjustment() const { return OffsetAdjustment; }
    484 
    485   /// Set the correction for frame offsets.
    486   void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
    487 
    488   /// Return the alignment in bytes that this function must be aligned to,
    489   /// which is greater than the default stack alignment provided by the target.
    490   unsigned getMaxAlignment() const { return MaxAlignment; }
    491 
    492   /// Make sure the function is at least Align bytes aligned.
    493   void ensureMaxAlignment(unsigned Align);
    494 
    495   /// Return true if this function adjusts the stack -- e.g.,
    496   /// when calling another function. This is only valid during and after
    497   /// prolog/epilog code insertion.
    498   bool adjustsStack() const { return AdjustsStack; }
    499   void setAdjustsStack(bool V) { AdjustsStack = V; }
    500 
    501   /// Return true if the current function has any function calls.
    502   bool hasCalls() const { return HasCalls; }
    503   void setHasCalls(bool V) { HasCalls = V; }
    504 
    505   /// Returns true if the function contains opaque dynamic stack adjustments.
    506   bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; }
    507   void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; }
    508 
    509   /// Returns true if the function contains operations which will lower down to
    510   /// instructions which manipulate the stack pointer.
    511   bool hasCopyImplyingStackAdjustment() const {
    512     return HasCopyImplyingStackAdjustment;
    513   }
    514   void setHasCopyImplyingStackAdjustment(bool B) {
    515     HasCopyImplyingStackAdjustment = B;
    516   }
    517 
    518   /// Returns true if the function calls the llvm.va_start intrinsic.
    519   bool hasVAStart() const { return HasVAStart; }
    520   void setHasVAStart(bool B) { HasVAStart = B; }
    521 
    522   /// Returns true if the function is variadic and contains a musttail call.
    523   bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; }
    524   void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; }
    525 
    526   /// Returns true if the function contains a tail call.
    527   bool hasTailCall() const { return HasTailCall; }
    528   void setHasTailCall() { HasTailCall = true; }
    529 
    530   /// Return the maximum size of a call frame that must be
    531   /// allocated for an outgoing function call.  This is only available if
    532   /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
    533   /// then only during or after prolog/epilog code insertion.
    534   ///
    535   unsigned getMaxCallFrameSize() const { return MaxCallFrameSize; }
    536   void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
    537 
    538   /// Create a new object at a fixed location on the stack.
    539   /// All fixed objects should be created before other objects are created for
    540   /// efficiency. By default, fixed objects are not pointed to by LLVM IR
    541   /// values. This returns an index with a negative value.
    542   int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool Immutable,
    543                         bool isAliased = false);
    544 
    545   /// Create a spill slot at a fixed location on the stack.
    546   /// Returns an index with a negative value.
    547   int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset);
    548 
    549   /// Returns true if the specified index corresponds to a fixed stack object.
    550   bool isFixedObjectIndex(int ObjectIdx) const {
    551     return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
    552   }
    553 
    554   /// Returns true if the specified index corresponds
    555   /// to an object that might be pointed to by an LLVM IR value.
    556   bool isAliasedObjectIndex(int ObjectIdx) const {
    557     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    558            "Invalid Object Idx!");
    559     return Objects[ObjectIdx+NumFixedObjects].isAliased;
    560   }
    561 
    562   /// isImmutableObjectIndex - Returns true if the specified index corresponds
    563   /// to an immutable object.
    564   bool isImmutableObjectIndex(int ObjectIdx) const {
    565     // Tail calling functions can clobber their function arguments.
    566     if (HasTailCall)
    567       return false;
    568     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    569            "Invalid Object Idx!");
    570     return Objects[ObjectIdx+NumFixedObjects].isImmutable;
    571   }
    572 
    573   /// Returns true if the specified index corresponds to a spill slot.
    574   bool isSpillSlotObjectIndex(int ObjectIdx) const {
    575     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    576            "Invalid Object Idx!");
    577     return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
    578   }
    579 
    580   bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const {
    581     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    582            "Invalid Object Idx!");
    583     return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot;
    584   }
    585 
    586   /// Returns true if the specified index corresponds to a dead object.
    587   bool isDeadObjectIndex(int ObjectIdx) const {
    588     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    589            "Invalid Object Idx!");
    590     return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
    591   }
    592 
    593   /// Returns true if the specified index corresponds to a variable sized
    594   /// object.
    595   bool isVariableSizedObjectIndex(int ObjectIdx) const {
    596     assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
    597            "Invalid Object Idx!");
    598     return Objects[ObjectIdx + NumFixedObjects].Size == 0;
    599   }
    600 
    601   void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) {
    602     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
    603            "Invalid Object Idx!");
    604     Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true;
    605     assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent");
    606   }
    607 
    608   /// Create a new statically sized stack object, returning
    609   /// a nonnegative identifier to represent it.
    610   int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSS,
    611                         const AllocaInst *Alloca = nullptr);
    612 
    613   /// Create a new statically sized stack object that represents a spill slot,
    614   /// returning a nonnegative identifier to represent it.
    615   int CreateSpillStackObject(uint64_t Size, unsigned Alignment);
    616 
    617   /// Remove or mark dead a statically sized stack object.
    618   void RemoveStackObject(int ObjectIdx) {
    619     // Mark it dead.
    620     Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
    621   }
    622 
    623   /// Notify the MachineFrameInfo object that a variable sized object has been
    624   /// created.  This must be created whenever a variable sized object is
    625   /// created, whether or not the index returned is actually used.
    626   int CreateVariableSizedObject(unsigned Alignment, const AllocaInst *Alloca);
    627 
    628   /// Returns a reference to call saved info vector for the current function.
    629   const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
    630     return CSInfo;
    631   }
    632 
    633   /// Used by prolog/epilog inserter to set the function's callee saved
    634   /// information.
    635   void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
    636     CSInfo = CSI;
    637   }
    638 
    639   /// Has the callee saved info been calculated yet?
    640   bool isCalleeSavedInfoValid() const { return CSIValid; }
    641 
    642   void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
    643 
    644   MachineBasicBlock *getSavePoint() const { return Save; }
    645   void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; }
    646   MachineBasicBlock *getRestorePoint() const { return Restore; }
    647   void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; }
    648 
    649   /// Return a set of physical registers that are pristine.
    650   ///
    651   /// Pristine registers hold a value that is useless to the current function,
    652   /// but that must be preserved - they are callee saved registers that are not
    653   /// saved.
    654   ///
    655   /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
    656   /// method always returns an empty set.
    657   BitVector getPristineRegs(const MachineFunction &MF) const;
    658 
    659   /// Used by the MachineFunction printer to print information about
    660   /// stack objects. Implemented in MachineFunction.cpp.
    661   void print(const MachineFunction &MF, raw_ostream &OS) const;
    662 
    663   /// dump - Print the function to stderr.
    664   void dump(const MachineFunction &MF) const;
    665 };
    666 
    667 } // End llvm namespace
    668 
    669 #endif
    670