Home | History | Annotate | Download | only in heap
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_HEAP_HEAP_H_
      6 #define V8_HEAP_HEAP_H_
      7 
      8 #include <cmath>
      9 #include <map>
     10 
     11 // Clients of this interface shouldn't depend on lots of heap internals.
     12 // Do not include anything from src/heap here!
     13 #include "include/v8.h"
     14 #include "src/allocation.h"
     15 #include "src/assert-scope.h"
     16 #include "src/base/atomic-utils.h"
     17 #include "src/globals.h"
     18 #include "src/heap-symbols.h"
     19 #include "src/list.h"
     20 #include "src/objects.h"
     21 
     22 namespace v8 {
     23 namespace internal {
     24 
     25 using v8::MemoryPressureLevel;
     26 
     27 // Defines all the roots in Heap.
     28 #define STRONG_ROOT_LIST(V)                                                    \
     29   /* Cluster the most popular ones in a few cache lines here at the top.    */ \
     30   /* The first 32 entries are most often used in the startup snapshot and   */ \
     31   /* can use a shorter representation in the serialization format.          */ \
     32   V(Map, free_space_map, FreeSpaceMap)                                         \
     33   V(Map, one_pointer_filler_map, OnePointerFillerMap)                          \
     34   V(Map, two_pointer_filler_map, TwoPointerFillerMap)                          \
     35   V(Oddball, uninitialized_value, UninitializedValue)                          \
     36   V(Oddball, undefined_value, UndefinedValue)                                  \
     37   V(Oddball, the_hole_value, TheHoleValue)                                     \
     38   V(Oddball, null_value, NullValue)                                            \
     39   V(Oddball, true_value, TrueValue)                                            \
     40   V(Oddball, false_value, FalseValue)                                          \
     41   V(String, empty_string, empty_string)                                        \
     42   V(Map, meta_map, MetaMap)                                                    \
     43   V(Map, byte_array_map, ByteArrayMap)                                         \
     44   V(Map, fixed_array_map, FixedArrayMap)                                       \
     45   V(Map, fixed_cow_array_map, FixedCOWArrayMap)                                \
     46   V(Map, hash_table_map, HashTableMap)                                         \
     47   V(Map, symbol_map, SymbolMap)                                                \
     48   V(Map, one_byte_string_map, OneByteStringMap)                                \
     49   V(Map, one_byte_internalized_string_map, OneByteInternalizedStringMap)       \
     50   V(Map, scope_info_map, ScopeInfoMap)                                         \
     51   V(Map, shared_function_info_map, SharedFunctionInfoMap)                      \
     52   V(Map, code_map, CodeMap)                                                    \
     53   V(Map, function_context_map, FunctionContextMap)                             \
     54   V(Map, cell_map, CellMap)                                                    \
     55   V(Map, weak_cell_map, WeakCellMap)                                           \
     56   V(Map, global_property_cell_map, GlobalPropertyCellMap)                      \
     57   V(Map, foreign_map, ForeignMap)                                              \
     58   V(Map, heap_number_map, HeapNumberMap)                                       \
     59   V(Map, transition_array_map, TransitionArrayMap)                             \
     60   V(FixedArray, empty_literals_array, EmptyLiteralsArray)                      \
     61   V(FixedArray, empty_type_feedback_vector, EmptyTypeFeedbackVector)           \
     62   V(FixedArray, empty_fixed_array, EmptyFixedArray)                            \
     63   V(DescriptorArray, empty_descriptor_array, EmptyDescriptorArray)             \
     64   /* Entries beyond the first 32                                            */ \
     65   /* The roots above this line should be boring from a GC point of view.    */ \
     66   /* This means they are never in new space and never on a page that is     */ \
     67   /* being compacted.                                                       */ \
     68   /* Empty scope info */                                                       \
     69   V(ScopeInfo, empty_scope_info, EmptyScopeInfo)                               \
     70   /* Oddballs */                                                               \
     71   V(Oddball, no_interceptor_result_sentinel, NoInterceptorResultSentinel)      \
     72   V(Oddball, arguments_marker, ArgumentsMarker)                                \
     73   V(Oddball, exception, Exception)                                             \
     74   V(Oddball, termination_exception, TerminationException)                      \
     75   V(Oddball, optimized_out, OptimizedOut)                                      \
     76   V(Oddball, stale_register, StaleRegister)                                    \
     77   /* Context maps */                                                           \
     78   V(Map, native_context_map, NativeContextMap)                                 \
     79   V(Map, module_context_map, ModuleContextMap)                                 \
     80   V(Map, script_context_map, ScriptContextMap)                                 \
     81   V(Map, block_context_map, BlockContextMap)                                   \
     82   V(Map, catch_context_map, CatchContextMap)                                   \
     83   V(Map, with_context_map, WithContextMap)                                     \
     84   V(Map, debug_evaluate_context_map, DebugEvaluateContextMap)                  \
     85   V(Map, script_context_table_map, ScriptContextTableMap)                      \
     86   /* Maps */                                                                   \
     87   V(Map, fixed_double_array_map, FixedDoubleArrayMap)                          \
     88   V(Map, mutable_heap_number_map, MutableHeapNumberMap)                        \
     89   V(Map, ordered_hash_table_map, OrderedHashTableMap)                          \
     90   V(Map, unseeded_number_dictionary_map, UnseededNumberDictionaryMap)          \
     91   V(Map, sloppy_arguments_elements_map, SloppyArgumentsElementsMap)            \
     92   V(Map, message_object_map, JSMessageObjectMap)                               \
     93   V(Map, external_map, ExternalMap)                                            \
     94   V(Map, bytecode_array_map, BytecodeArrayMap)                                 \
     95   V(Map, module_info_map, ModuleInfoMap)                                       \
     96   /* String maps */                                                            \
     97   V(Map, native_source_string_map, NativeSourceStringMap)                      \
     98   V(Map, string_map, StringMap)                                                \
     99   V(Map, cons_one_byte_string_map, ConsOneByteStringMap)                       \
    100   V(Map, cons_string_map, ConsStringMap)                                       \
    101   V(Map, sliced_string_map, SlicedStringMap)                                   \
    102   V(Map, sliced_one_byte_string_map, SlicedOneByteStringMap)                   \
    103   V(Map, external_string_map, ExternalStringMap)                               \
    104   V(Map, external_string_with_one_byte_data_map,                               \
    105     ExternalStringWithOneByteDataMap)                                          \
    106   V(Map, external_one_byte_string_map, ExternalOneByteStringMap)               \
    107   V(Map, short_external_string_map, ShortExternalStringMap)                    \
    108   V(Map, short_external_string_with_one_byte_data_map,                         \
    109     ShortExternalStringWithOneByteDataMap)                                     \
    110   V(Map, internalized_string_map, InternalizedStringMap)                       \
    111   V(Map, external_internalized_string_map, ExternalInternalizedStringMap)      \
    112   V(Map, external_internalized_string_with_one_byte_data_map,                  \
    113     ExternalInternalizedStringWithOneByteDataMap)                              \
    114   V(Map, external_one_byte_internalized_string_map,                            \
    115     ExternalOneByteInternalizedStringMap)                                      \
    116   V(Map, short_external_internalized_string_map,                               \
    117     ShortExternalInternalizedStringMap)                                        \
    118   V(Map, short_external_internalized_string_with_one_byte_data_map,            \
    119     ShortExternalInternalizedStringWithOneByteDataMap)                         \
    120   V(Map, short_external_one_byte_internalized_string_map,                      \
    121     ShortExternalOneByteInternalizedStringMap)                                 \
    122   V(Map, short_external_one_byte_string_map, ShortExternalOneByteStringMap)    \
    123   /* Array element maps */                                                     \
    124   V(Map, fixed_uint8_array_map, FixedUint8ArrayMap)                            \
    125   V(Map, fixed_int8_array_map, FixedInt8ArrayMap)                              \
    126   V(Map, fixed_uint16_array_map, FixedUint16ArrayMap)                          \
    127   V(Map, fixed_int16_array_map, FixedInt16ArrayMap)                            \
    128   V(Map, fixed_uint32_array_map, FixedUint32ArrayMap)                          \
    129   V(Map, fixed_int32_array_map, FixedInt32ArrayMap)                            \
    130   V(Map, fixed_float32_array_map, FixedFloat32ArrayMap)                        \
    131   V(Map, fixed_float64_array_map, FixedFloat64ArrayMap)                        \
    132   V(Map, fixed_uint8_clamped_array_map, FixedUint8ClampedArrayMap)             \
    133   V(Map, float32x4_map, Float32x4Map)                                          \
    134   V(Map, int32x4_map, Int32x4Map)                                              \
    135   V(Map, uint32x4_map, Uint32x4Map)                                            \
    136   V(Map, bool32x4_map, Bool32x4Map)                                            \
    137   V(Map, int16x8_map, Int16x8Map)                                              \
    138   V(Map, uint16x8_map, Uint16x8Map)                                            \
    139   V(Map, bool16x8_map, Bool16x8Map)                                            \
    140   V(Map, int8x16_map, Int8x16Map)                                              \
    141   V(Map, uint8x16_map, Uint8x16Map)                                            \
    142   V(Map, bool8x16_map, Bool8x16Map)                                            \
    143   /* Canonical empty values */                                                 \
    144   V(ByteArray, empty_byte_array, EmptyByteArray)                               \
    145   V(FixedTypedArrayBase, empty_fixed_uint8_array, EmptyFixedUint8Array)        \
    146   V(FixedTypedArrayBase, empty_fixed_int8_array, EmptyFixedInt8Array)          \
    147   V(FixedTypedArrayBase, empty_fixed_uint16_array, EmptyFixedUint16Array)      \
    148   V(FixedTypedArrayBase, empty_fixed_int16_array, EmptyFixedInt16Array)        \
    149   V(FixedTypedArrayBase, empty_fixed_uint32_array, EmptyFixedUint32Array)      \
    150   V(FixedTypedArrayBase, empty_fixed_int32_array, EmptyFixedInt32Array)        \
    151   V(FixedTypedArrayBase, empty_fixed_float32_array, EmptyFixedFloat32Array)    \
    152   V(FixedTypedArrayBase, empty_fixed_float64_array, EmptyFixedFloat64Array)    \
    153   V(FixedTypedArrayBase, empty_fixed_uint8_clamped_array,                      \
    154     EmptyFixedUint8ClampedArray)                                               \
    155   V(Script, empty_script, EmptyScript)                                         \
    156   V(Cell, undefined_cell, UndefinedCell)                                       \
    157   V(FixedArray, empty_sloppy_arguments_elements, EmptySloppyArgumentsElements) \
    158   V(SeededNumberDictionary, empty_slow_element_dictionary,                     \
    159     EmptySlowElementDictionary)                                                \
    160   V(TypeFeedbackVector, dummy_vector, DummyVector)                             \
    161   V(PropertyCell, empty_property_cell, EmptyPropertyCell)                      \
    162   V(WeakCell, empty_weak_cell, EmptyWeakCell)                                  \
    163   /* Protectors */                                                             \
    164   V(PropertyCell, array_protector, ArrayProtector)                             \
    165   V(Cell, is_concat_spreadable_protector, IsConcatSpreadableProtector)         \
    166   V(PropertyCell, has_instance_protector, HasInstanceProtector)                \
    167   V(Cell, species_protector, SpeciesProtector)                                 \
    168   V(PropertyCell, string_length_protector, StringLengthProtector)              \
    169   V(Cell, fast_array_iteration_protector, FastArrayIterationProtector)         \
    170   V(Cell, array_iterator_protector, ArrayIteratorProtector)                    \
    171   /* Special numbers */                                                        \
    172   V(HeapNumber, nan_value, NanValue)                                           \
    173   V(HeapNumber, hole_nan_value, HoleNanValue)                                  \
    174   V(HeapNumber, infinity_value, InfinityValue)                                 \
    175   V(HeapNumber, minus_zero_value, MinusZeroValue)                              \
    176   V(HeapNumber, minus_infinity_value, MinusInfinityValue)                      \
    177   /* Caches */                                                                 \
    178   V(FixedArray, number_string_cache, NumberStringCache)                        \
    179   V(FixedArray, single_character_string_cache, SingleCharacterStringCache)     \
    180   V(FixedArray, string_split_cache, StringSplitCache)                          \
    181   V(FixedArray, regexp_multiple_cache, RegExpMultipleCache)                    \
    182   V(Object, instanceof_cache_function, InstanceofCacheFunction)                \
    183   V(Object, instanceof_cache_map, InstanceofCacheMap)                          \
    184   V(Object, instanceof_cache_answer, InstanceofCacheAnswer)                    \
    185   V(FixedArray, natives_source_cache, NativesSourceCache)                      \
    186   V(FixedArray, experimental_natives_source_cache,                             \
    187     ExperimentalNativesSourceCache)                                            \
    188   V(FixedArray, extra_natives_source_cache, ExtraNativesSourceCache)           \
    189   V(FixedArray, experimental_extra_natives_source_cache,                       \
    190     ExperimentalExtraNativesSourceCache)                                       \
    191   /* Lists and dictionaries */                                                 \
    192   V(NameDictionary, empty_properties_dictionary, EmptyPropertiesDictionary)    \
    193   V(Object, symbol_registry, SymbolRegistry)                                   \
    194   V(Object, script_list, ScriptList)                                           \
    195   V(UnseededNumberDictionary, code_stubs, CodeStubs)                           \
    196   V(FixedArray, materialized_objects, MaterializedObjects)                     \
    197   V(FixedArray, microtask_queue, MicrotaskQueue)                               \
    198   V(FixedArray, detached_contexts, DetachedContexts)                           \
    199   V(ArrayList, retained_maps, RetainedMaps)                                    \
    200   V(WeakHashTable, weak_object_to_code_table, WeakObjectToCodeTable)           \
    201   /* weak_new_space_object_to_code_list is an array of weak cells, where */    \
    202   /* slots with even indices refer to the weak object, and the subsequent */   \
    203   /* slots refer to the code with the reference to the weak object. */         \
    204   V(ArrayList, weak_new_space_object_to_code_list,                             \
    205     WeakNewSpaceObjectToCodeList)                                              \
    206   V(Object, weak_stack_trace_list, WeakStackTraceList)                         \
    207   V(Object, noscript_shared_function_infos, NoScriptSharedFunctionInfos)       \
    208   V(FixedArray, serialized_templates, SerializedTemplates)                     \
    209   /* Configured values */                                                      \
    210   V(TemplateList, message_listeners, MessageListeners)                         \
    211   V(Code, js_entry_code, JsEntryCode)                                          \
    212   V(Code, js_construct_entry_code, JsConstructEntryCode)                       \
    213   /* Oddball maps */                                                           \
    214   V(Map, undefined_map, UndefinedMap)                                          \
    215   V(Map, the_hole_map, TheHoleMap)                                             \
    216   V(Map, null_map, NullMap)                                                    \
    217   V(Map, boolean_map, BooleanMap)                                              \
    218   V(Map, uninitialized_map, UninitializedMap)                                  \
    219   V(Map, arguments_marker_map, ArgumentsMarkerMap)                             \
    220   V(Map, no_interceptor_result_sentinel_map, NoInterceptorResultSentinelMap)   \
    221   V(Map, exception_map, ExceptionMap)                                          \
    222   V(Map, termination_exception_map, TerminationExceptionMap)                   \
    223   V(Map, optimized_out_map, OptimizedOutMap)                                   \
    224   V(Map, stale_register_map, StaleRegisterMap)
    225 
    226 // Entries in this list are limited to Smis and are not visited during GC.
    227 #define SMI_ROOT_LIST(V)                                                       \
    228   V(Smi, stack_limit, StackLimit)                                              \
    229   V(Smi, real_stack_limit, RealStackLimit)                                     \
    230   V(Smi, last_script_id, LastScriptId)                                         \
    231   V(Smi, hash_seed, HashSeed)                                                  \
    232   /* To distinguish the function templates, so that we can find them in the */ \
    233   /* function cache of the native context. */                                  \
    234   V(Smi, next_template_serial_number, NextTemplateSerialNumber)                \
    235   V(Smi, arguments_adaptor_deopt_pc_offset, ArgumentsAdaptorDeoptPCOffset)     \
    236   V(Smi, construct_stub_deopt_pc_offset, ConstructStubDeoptPCOffset)           \
    237   V(Smi, getter_stub_deopt_pc_offset, GetterStubDeoptPCOffset)                 \
    238   V(Smi, setter_stub_deopt_pc_offset, SetterStubDeoptPCOffset)                 \
    239   V(Smi, interpreter_entry_return_pc_offset, InterpreterEntryReturnPCOffset)
    240 
    241 #define ROOT_LIST(V)  \
    242   STRONG_ROOT_LIST(V) \
    243   SMI_ROOT_LIST(V)    \
    244   V(StringTable, string_table, StringTable)
    245 
    246 
    247 // Heap roots that are known to be immortal immovable, for which we can safely
    248 // skip write barriers. This list is not complete and has omissions.
    249 #define IMMORTAL_IMMOVABLE_ROOT_LIST(V) \
    250   V(ByteArrayMap)                       \
    251   V(BytecodeArrayMap)                   \
    252   V(FreeSpaceMap)                       \
    253   V(OnePointerFillerMap)                \
    254   V(TwoPointerFillerMap)                \
    255   V(UndefinedValue)                     \
    256   V(TheHoleValue)                       \
    257   V(NullValue)                          \
    258   V(TrueValue)                          \
    259   V(FalseValue)                         \
    260   V(UninitializedValue)                 \
    261   V(CellMap)                            \
    262   V(GlobalPropertyCellMap)              \
    263   V(SharedFunctionInfoMap)              \
    264   V(MetaMap)                            \
    265   V(HeapNumberMap)                      \
    266   V(MutableHeapNumberMap)               \
    267   V(Float32x4Map)                       \
    268   V(Int32x4Map)                         \
    269   V(Uint32x4Map)                        \
    270   V(Bool32x4Map)                        \
    271   V(Int16x8Map)                         \
    272   V(Uint16x8Map)                        \
    273   V(Bool16x8Map)                        \
    274   V(Int8x16Map)                         \
    275   V(Uint8x16Map)                        \
    276   V(Bool8x16Map)                        \
    277   V(NativeContextMap)                   \
    278   V(FixedArrayMap)                      \
    279   V(CodeMap)                            \
    280   V(ScopeInfoMap)                       \
    281   V(ModuleInfoMap)                      \
    282   V(FixedCOWArrayMap)                   \
    283   V(FixedDoubleArrayMap)                \
    284   V(WeakCellMap)                        \
    285   V(TransitionArrayMap)                 \
    286   V(NoInterceptorResultSentinel)        \
    287   V(HashTableMap)                       \
    288   V(OrderedHashTableMap)                \
    289   V(EmptyFixedArray)                    \
    290   V(EmptyByteArray)                     \
    291   V(EmptyDescriptorArray)               \
    292   V(ArgumentsMarker)                    \
    293   V(SymbolMap)                          \
    294   V(SloppyArgumentsElementsMap)         \
    295   V(FunctionContextMap)                 \
    296   V(CatchContextMap)                    \
    297   V(WithContextMap)                     \
    298   V(BlockContextMap)                    \
    299   V(ModuleContextMap)                   \
    300   V(ScriptContextMap)                   \
    301   V(UndefinedMap)                       \
    302   V(TheHoleMap)                         \
    303   V(NullMap)                            \
    304   V(BooleanMap)                         \
    305   V(UninitializedMap)                   \
    306   V(ArgumentsMarkerMap)                 \
    307   V(JSMessageObjectMap)                 \
    308   V(ForeignMap)                         \
    309   V(NanValue)                           \
    310   V(InfinityValue)                      \
    311   V(MinusZeroValue)                     \
    312   V(MinusInfinityValue)                 \
    313   V(EmptyWeakCell)                      \
    314   V(empty_string)                       \
    315   PRIVATE_SYMBOL_LIST(V)
    316 
    317 // Forward declarations.
    318 class AllocationObserver;
    319 class ArrayBufferTracker;
    320 class GCIdleTimeAction;
    321 class GCIdleTimeHandler;
    322 class GCIdleTimeHeapState;
    323 class GCTracer;
    324 class HeapObjectsFilter;
    325 class HeapStats;
    326 class HistogramTimer;
    327 class Isolate;
    328 class MemoryAllocator;
    329 class MemoryReducer;
    330 class ObjectIterator;
    331 class ObjectStats;
    332 class Page;
    333 class PagedSpace;
    334 class Scavenger;
    335 class ScavengeJob;
    336 class Space;
    337 class StoreBuffer;
    338 class TracePossibleWrapperReporter;
    339 class WeakObjectRetainer;
    340 
    341 typedef void (*ObjectSlotCallback)(HeapObject** from, HeapObject* to);
    342 
    343 enum ArrayStorageAllocationMode {
    344   DONT_INITIALIZE_ARRAY_ELEMENTS,
    345   INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE
    346 };
    347 
    348 enum class ClearRecordedSlots { kYes, kNo };
    349 
    350 enum class ClearBlackArea { kYes, kNo };
    351 
    352 enum class GarbageCollectionReason {
    353   kUnknown = 0,
    354   kAllocationFailure = 1,
    355   kAllocationLimit = 2,
    356   kContextDisposal = 3,
    357   kCountersExtension = 4,
    358   kDebugger = 5,
    359   kDeserializer = 6,
    360   kExternalMemoryPressure = 7,
    361   kFinalizeMarkingViaStackGuard = 8,
    362   kFinalizeMarkingViaTask = 9,
    363   kFullHashtable = 10,
    364   kHeapProfiler = 11,
    365   kIdleTask = 12,
    366   kLastResort = 13,
    367   kLowMemoryNotification = 14,
    368   kMakeHeapIterable = 15,
    369   kMemoryPressure = 16,
    370   kMemoryReducer = 17,
    371   kRuntime = 18,
    372   kSamplingProfiler = 19,
    373   kSnapshotCreator = 20,
    374   kTesting = 21
    375   // If you add new items here, then update the incremental_marking_reason,
    376   // mark_compact_reason, and scavenge_reason counters in counters.h.
    377   // Also update src/tools/metrics/histograms/histograms.xml in chromium.
    378 };
    379 
    380 // A queue of objects promoted during scavenge. Each object is accompanied by
    381 // its size to avoid dereferencing a map pointer for scanning. The last page in
    382 // to-space is used for the promotion queue. On conflict during scavenge, the
    383 // promotion queue is allocated externally and all entries are copied to the
    384 // external queue.
    385 class PromotionQueue {
    386  public:
    387   explicit PromotionQueue(Heap* heap)
    388       : front_(nullptr),
    389         rear_(nullptr),
    390         limit_(nullptr),
    391         emergency_stack_(nullptr),
    392         heap_(heap) {}
    393 
    394   void Initialize();
    395   void Destroy();
    396 
    397   inline void SetNewLimit(Address limit);
    398   inline bool IsBelowPromotionQueue(Address to_space_top);
    399 
    400   inline void insert(HeapObject* target, int32_t size, bool was_marked_black);
    401   inline void remove(HeapObject** target, int32_t* size,
    402                      bool* was_marked_black);
    403 
    404   bool is_empty() {
    405     return (front_ == rear_) &&
    406            (emergency_stack_ == nullptr || emergency_stack_->length() == 0);
    407   }
    408 
    409  private:
    410   struct Entry {
    411     Entry(HeapObject* obj, int32_t size, bool was_marked_black)
    412         : obj_(obj), size_(size), was_marked_black_(was_marked_black) {}
    413 
    414     HeapObject* obj_;
    415     int32_t size_ : 31;
    416     bool was_marked_black_ : 1;
    417   };
    418 
    419   inline Page* GetHeadPage();
    420 
    421   void RelocateQueueHead();
    422 
    423   // The front of the queue is higher in the memory page chain than the rear.
    424   struct Entry* front_;
    425   struct Entry* rear_;
    426   struct Entry* limit_;
    427 
    428   List<Entry>* emergency_stack_;
    429   Heap* heap_;
    430 
    431   DISALLOW_COPY_AND_ASSIGN(PromotionQueue);
    432 };
    433 
    434 class AllocationResult {
    435  public:
    436   static inline AllocationResult Retry(AllocationSpace space = NEW_SPACE) {
    437     return AllocationResult(space);
    438   }
    439 
    440   // Implicit constructor from Object*.
    441   AllocationResult(Object* object)  // NOLINT
    442       : object_(object) {
    443     // AllocationResults can't return Smis, which are used to represent
    444     // failure and the space to retry in.
    445     CHECK(!object->IsSmi());
    446   }
    447 
    448   AllocationResult() : object_(Smi::FromInt(NEW_SPACE)) {}
    449 
    450   inline bool IsRetry() { return object_->IsSmi(); }
    451   inline HeapObject* ToObjectChecked();
    452   inline AllocationSpace RetrySpace();
    453 
    454   template <typename T>
    455   bool To(T** obj) {
    456     if (IsRetry()) return false;
    457     *obj = T::cast(object_);
    458     return true;
    459   }
    460 
    461  private:
    462   explicit AllocationResult(AllocationSpace space)
    463       : object_(Smi::FromInt(static_cast<int>(space))) {}
    464 
    465   Object* object_;
    466 };
    467 
    468 STATIC_ASSERT(sizeof(AllocationResult) == kPointerSize);
    469 
    470 #ifdef DEBUG
    471 struct CommentStatistic {
    472   const char* comment;
    473   int size;
    474   int count;
    475   void Clear() {
    476     comment = NULL;
    477     size = 0;
    478     count = 0;
    479   }
    480   // Must be small, since an iteration is used for lookup.
    481   static const int kMaxComments = 64;
    482 };
    483 #endif
    484 
    485 class NumberAndSizeInfo BASE_EMBEDDED {
    486  public:
    487   NumberAndSizeInfo() : number_(0), bytes_(0) {}
    488 
    489   int number() const { return number_; }
    490   void increment_number(int num) { number_ += num; }
    491 
    492   int bytes() const { return bytes_; }
    493   void increment_bytes(int size) { bytes_ += size; }
    494 
    495   void clear() {
    496     number_ = 0;
    497     bytes_ = 0;
    498   }
    499 
    500  private:
    501   int number_;
    502   int bytes_;
    503 };
    504 
    505 // HistogramInfo class for recording a single "bar" of a histogram.  This
    506 // class is used for collecting statistics to print to the log file.
    507 class HistogramInfo : public NumberAndSizeInfo {
    508  public:
    509   HistogramInfo() : NumberAndSizeInfo(), name_(nullptr) {}
    510 
    511   const char* name() { return name_; }
    512   void set_name(const char* name) { name_ = name; }
    513 
    514  private:
    515   const char* name_;
    516 };
    517 
    518 class Heap {
    519  public:
    520   // Declare all the root indices.  This defines the root list order.
    521   enum RootListIndex {
    522 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
    523     STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION)
    524 #undef ROOT_INDEX_DECLARATION
    525 
    526 #define STRING_INDEX_DECLARATION(name, str) k##name##RootIndex,
    527         INTERNALIZED_STRING_LIST(STRING_INDEX_DECLARATION)
    528 #undef STRING_DECLARATION
    529 
    530 #define SYMBOL_INDEX_DECLARATION(name) k##name##RootIndex,
    531             PRIVATE_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
    532 #undef SYMBOL_INDEX_DECLARATION
    533 
    534 #define SYMBOL_INDEX_DECLARATION(name, description) k##name##RootIndex,
    535                 PUBLIC_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
    536                     WELL_KNOWN_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
    537 #undef SYMBOL_INDEX_DECLARATION
    538 
    539 // Utility type maps
    540 #define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex,
    541                         STRUCT_LIST(DECLARE_STRUCT_MAP)
    542 #undef DECLARE_STRUCT_MAP
    543                             kStringTableRootIndex,
    544 
    545 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
    546     SMI_ROOT_LIST(ROOT_INDEX_DECLARATION)
    547 #undef ROOT_INDEX_DECLARATION
    548         kRootListLength,
    549     kStrongRootListLength = kStringTableRootIndex,
    550     kSmiRootsStart = kStringTableRootIndex + 1
    551   };
    552 
    553   enum FindMementoMode { kForRuntime, kForGC };
    554 
    555   enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT };
    556 
    557   // Indicates whether live bytes adjustment is triggered
    558   // - from within the GC code before sweeping started (SEQUENTIAL_TO_SWEEPER),
    559   // - or from within GC (CONCURRENT_TO_SWEEPER),
    560   // - or mutator code (CONCURRENT_TO_SWEEPER).
    561   enum InvocationMode { SEQUENTIAL_TO_SWEEPER, CONCURRENT_TO_SWEEPER };
    562 
    563   enum UpdateAllocationSiteMode { kGlobal, kCached };
    564 
    565   // Taking this lock prevents the GC from entering a phase that relocates
    566   // object references.
    567   class RelocationLock {
    568    public:
    569     explicit RelocationLock(Heap* heap) : heap_(heap) {
    570       heap_->relocation_mutex_.Lock();
    571     }
    572 
    573     ~RelocationLock() { heap_->relocation_mutex_.Unlock(); }
    574 
    575    private:
    576     Heap* heap_;
    577   };
    578 
    579   // Support for partial snapshots.  After calling this we have a linear
    580   // space to write objects in each space.
    581   struct Chunk {
    582     uint32_t size;
    583     Address start;
    584     Address end;
    585   };
    586   typedef List<Chunk> Reservation;
    587 
    588   static const int kInitalOldGenerationLimitFactor = 2;
    589 
    590 #if V8_OS_ANDROID
    591   // Don't apply pointer multiplier on Android since it has no swap space and
    592   // should instead adapt it's heap size based on available physical memory.
    593   static const int kPointerMultiplier = 1;
    594 #else
    595   static const int kPointerMultiplier = i::kPointerSize / 4;
    596 #endif
    597 
    598   // The new space size has to be a power of 2. Sizes are in MB.
    599   static const int kMaxSemiSpaceSizeLowMemoryDevice = 1 * kPointerMultiplier;
    600   static const int kMaxSemiSpaceSizeMediumMemoryDevice = 4 * kPointerMultiplier;
    601   static const int kMaxSemiSpaceSizeHighMemoryDevice = 8 * kPointerMultiplier;
    602   static const int kMaxSemiSpaceSizeHugeMemoryDevice = 8 * kPointerMultiplier;
    603 
    604   // The old space size has to be a multiple of Page::kPageSize.
    605   // Sizes are in MB.
    606   static const int kMaxOldSpaceSizeLowMemoryDevice = 128 * kPointerMultiplier;
    607   static const int kMaxOldSpaceSizeMediumMemoryDevice =
    608       256 * kPointerMultiplier;
    609   static const int kMaxOldSpaceSizeHighMemoryDevice = 512 * kPointerMultiplier;
    610   static const int kMaxOldSpaceSizeHugeMemoryDevice = 700 * kPointerMultiplier;
    611 
    612   // The executable size has to be a multiple of Page::kPageSize.
    613   // Sizes are in MB.
    614   static const int kMaxExecutableSizeLowMemoryDevice = 96 * kPointerMultiplier;
    615   static const int kMaxExecutableSizeMediumMemoryDevice =
    616       192 * kPointerMultiplier;
    617   static const int kMaxExecutableSizeHighMemoryDevice =
    618       256 * kPointerMultiplier;
    619   static const int kMaxExecutableSizeHugeMemoryDevice =
    620       256 * kPointerMultiplier;
    621 
    622   static const int kTraceRingBufferSize = 512;
    623   static const int kStacktraceBufferSize = 512;
    624 
    625   V8_EXPORT_PRIVATE static const double kMinHeapGrowingFactor;
    626   V8_EXPORT_PRIVATE static const double kMaxHeapGrowingFactor;
    627   static const double kMaxHeapGrowingFactorMemoryConstrained;
    628   static const double kMaxHeapGrowingFactorIdle;
    629   static const double kConservativeHeapGrowingFactor;
    630   static const double kTargetMutatorUtilization;
    631 
    632   static const int kNoGCFlags = 0;
    633   static const int kReduceMemoryFootprintMask = 1;
    634   static const int kAbortIncrementalMarkingMask = 2;
    635   static const int kFinalizeIncrementalMarkingMask = 4;
    636 
    637   // Making the heap iterable requires us to abort incremental marking.
    638   static const int kMakeHeapIterableMask = kAbortIncrementalMarkingMask;
    639 
    640   // The roots that have an index less than this are always in old space.
    641   static const int kOldSpaceRoots = 0x20;
    642 
    643   // The minimum size of a HeapObject on the heap.
    644   static const int kMinObjectSizeInWords = 2;
    645 
    646   STATIC_ASSERT(kUndefinedValueRootIndex ==
    647                 Internals::kUndefinedValueRootIndex);
    648   STATIC_ASSERT(kTheHoleValueRootIndex == Internals::kTheHoleValueRootIndex);
    649   STATIC_ASSERT(kNullValueRootIndex == Internals::kNullValueRootIndex);
    650   STATIC_ASSERT(kTrueValueRootIndex == Internals::kTrueValueRootIndex);
    651   STATIC_ASSERT(kFalseValueRootIndex == Internals::kFalseValueRootIndex);
    652   STATIC_ASSERT(kempty_stringRootIndex == Internals::kEmptyStringRootIndex);
    653 
    654   // Calculates the maximum amount of filler that could be required by the
    655   // given alignment.
    656   static int GetMaximumFillToAlign(AllocationAlignment alignment);
    657   // Calculates the actual amount of filler required for a given address at the
    658   // given alignment.
    659   static int GetFillToAlign(Address address, AllocationAlignment alignment);
    660 
    661   template <typename T>
    662   static inline bool IsOneByte(T t, int chars);
    663 
    664   static void FatalProcessOutOfMemory(const char* location,
    665                                       bool is_heap_oom = false);
    666 
    667   static bool RootIsImmortalImmovable(int root_index);
    668 
    669   // Checks whether the space is valid.
    670   static bool IsValidAllocationSpace(AllocationSpace space);
    671 
    672   // Generated code can embed direct references to non-writable roots if
    673   // they are in new space.
    674   static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index);
    675 
    676   // Zapping is needed for verify heap, and always done in debug builds.
    677   static inline bool ShouldZapGarbage() {
    678 #ifdef DEBUG
    679     return true;
    680 #else
    681 #ifdef VERIFY_HEAP
    682     return FLAG_verify_heap;
    683 #else
    684     return false;
    685 #endif
    686 #endif
    687   }
    688 
    689   static inline bool IsYoungGenerationCollector(GarbageCollector collector) {
    690     return collector == SCAVENGER || collector == MINOR_MARK_COMPACTOR;
    691   }
    692 
    693   static inline GarbageCollector YoungGenerationCollector() {
    694     return (FLAG_minor_mc) ? MINOR_MARK_COMPACTOR : SCAVENGER;
    695   }
    696 
    697   static inline const char* CollectorName(GarbageCollector collector) {
    698     switch (collector) {
    699       case SCAVENGER:
    700         return "Scavenger";
    701       case MARK_COMPACTOR:
    702         return "Mark-Compact";
    703       case MINOR_MARK_COMPACTOR:
    704         return "Minor Mark-Compact";
    705     }
    706     return "Unknown collector";
    707   }
    708 
    709   V8_EXPORT_PRIVATE static double HeapGrowingFactor(double gc_speed,
    710                                                     double mutator_speed);
    711 
    712   // Copy block of memory from src to dst. Size of block should be aligned
    713   // by pointer size.
    714   static inline void CopyBlock(Address dst, Address src, int byte_size);
    715 
    716   // Determines a static visitor id based on the given {map} that can then be
    717   // stored on the map to facilitate fast dispatch for {StaticVisitorBase}.
    718   static int GetStaticVisitorIdForMap(Map* map);
    719 
    720   // Notifies the heap that is ok to start marking or other activities that
    721   // should not happen during deserialization.
    722   void NotifyDeserializationComplete();
    723 
    724   inline Address* NewSpaceAllocationTopAddress();
    725   inline Address* NewSpaceAllocationLimitAddress();
    726   inline Address* OldSpaceAllocationTopAddress();
    727   inline Address* OldSpaceAllocationLimitAddress();
    728 
    729   // Clear the Instanceof cache (used when a prototype changes).
    730   inline void ClearInstanceofCache();
    731 
    732   // FreeSpace objects have a null map after deserialization. Update the map.
    733   void RepairFreeListsAfterDeserialization();
    734 
    735   // Move len elements within a given array from src_index index to dst_index
    736   // index.
    737   void MoveElements(FixedArray* array, int dst_index, int src_index, int len);
    738 
    739   // Initialize a filler object to keep the ability to iterate over the heap
    740   // when introducing gaps within pages. If slots could have been recorded in
    741   // the freed area, then pass ClearRecordedSlots::kYes as the mode. Otherwise,
    742   // pass ClearRecordedSlots::kNo. If the filler was created in a black area
    743   // we may want to clear the corresponding mark bits with ClearBlackArea::kYes,
    744   // which is the default. ClearBlackArea::kNo does not clear the mark bits.
    745   void CreateFillerObjectAt(
    746       Address addr, int size, ClearRecordedSlots mode,
    747       ClearBlackArea black_area_mode = ClearBlackArea::kYes);
    748 
    749   bool CanMoveObjectStart(HeapObject* object);
    750 
    751   // Maintain consistency of live bytes during incremental marking.
    752   void AdjustLiveBytes(HeapObject* object, int by, InvocationMode mode);
    753 
    754   // Trim the given array from the left. Note that this relocates the object
    755   // start and hence is only valid if there is only a single reference to it.
    756   FixedArrayBase* LeftTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
    757 
    758   // Trim the given array from the right.
    759   template<Heap::InvocationMode mode>
    760   void RightTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
    761 
    762   // Converts the given boolean condition to JavaScript boolean value.
    763   inline Oddball* ToBoolean(bool condition);
    764 
    765   // Check whether the heap is currently iterable.
    766   bool IsHeapIterable();
    767 
    768   // Notify the heap that a context has been disposed.
    769   int NotifyContextDisposed(bool dependant_context);
    770 
    771   void set_native_contexts_list(Object* object) {
    772     native_contexts_list_ = object;
    773   }
    774   Object* native_contexts_list() const { return native_contexts_list_; }
    775 
    776   void set_allocation_sites_list(Object* object) {
    777     allocation_sites_list_ = object;
    778   }
    779   Object* allocation_sites_list() { return allocation_sites_list_; }
    780 
    781   // Used in CreateAllocationSiteStub and the (de)serializer.
    782   Object** allocation_sites_list_address() { return &allocation_sites_list_; }
    783 
    784   void set_encountered_weak_collections(Object* weak_collection) {
    785     encountered_weak_collections_ = weak_collection;
    786   }
    787   Object* encountered_weak_collections() const {
    788     return encountered_weak_collections_;
    789   }
    790 
    791   void set_encountered_weak_cells(Object* weak_cell) {
    792     encountered_weak_cells_ = weak_cell;
    793   }
    794   Object* encountered_weak_cells() const { return encountered_weak_cells_; }
    795 
    796   void set_encountered_transition_arrays(Object* transition_array) {
    797     encountered_transition_arrays_ = transition_array;
    798   }
    799   Object* encountered_transition_arrays() const {
    800     return encountered_transition_arrays_;
    801   }
    802 
    803   // Number of mark-sweeps.
    804   int ms_count() const { return ms_count_; }
    805 
    806   // Checks whether the given object is allowed to be migrated from it's
    807   // current space into the given destination space. Used for debugging.
    808   inline bool AllowedToBeMigrated(HeapObject* object, AllocationSpace dest);
    809 
    810   void CheckHandleCount();
    811 
    812   // Number of "runtime allocations" done so far.
    813   uint32_t allocations_count() { return allocations_count_; }
    814 
    815   // Print short heap statistics.
    816   void PrintShortHeapStatistics();
    817 
    818   inline HeapState gc_state() { return gc_state_; }
    819 
    820   inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; }
    821 
    822   // If an object has an AllocationMemento trailing it, return it, otherwise
    823   // return NULL;
    824   template <FindMementoMode mode>
    825   inline AllocationMemento* FindAllocationMemento(HeapObject* object);
    826 
    827   // Returns false if not able to reserve.
    828   bool ReserveSpace(Reservation* reservations, List<Address>* maps);
    829 
    830   //
    831   // Support for the API.
    832   //
    833 
    834   void CreateApiObjects();
    835 
    836   // Implements the corresponding V8 API function.
    837   bool IdleNotification(double deadline_in_seconds);
    838   bool IdleNotification(int idle_time_in_ms);
    839 
    840   void MemoryPressureNotification(MemoryPressureLevel level,
    841                                   bool is_isolate_locked);
    842   void CheckMemoryPressure();
    843 
    844   double MonotonicallyIncreasingTimeInMs();
    845 
    846   void RecordStats(HeapStats* stats, bool take_snapshot = false);
    847 
    848   // Check new space expansion criteria and expand semispaces if it was hit.
    849   void CheckNewSpaceExpansionCriteria();
    850 
    851   void VisitExternalResources(v8::ExternalResourceVisitor* visitor);
    852 
    853   // An object should be promoted if the object has survived a
    854   // scavenge operation.
    855   inline bool ShouldBePromoted(Address old_address, int object_size);
    856 
    857   void ClearNormalizedMapCaches();
    858 
    859   void IncrementDeferredCount(v8::Isolate::UseCounterFeature feature);
    860 
    861   // Completely clear the Instanceof cache (to stop it keeping objects alive
    862   // around a GC).
    863   inline void CompletelyClearInstanceofCache();
    864 
    865   inline uint32_t HashSeed();
    866 
    867   inline int NextScriptId();
    868 
    869   inline void SetArgumentsAdaptorDeoptPCOffset(int pc_offset);
    870   inline void SetConstructStubDeoptPCOffset(int pc_offset);
    871   inline void SetGetterStubDeoptPCOffset(int pc_offset);
    872   inline void SetSetterStubDeoptPCOffset(int pc_offset);
    873   inline void SetInterpreterEntryReturnPCOffset(int pc_offset);
    874   inline int GetNextTemplateSerialNumber();
    875 
    876   inline void SetSerializedTemplates(FixedArray* templates);
    877 
    878   // For post mortem debugging.
    879   void RememberUnmappedPage(Address page, bool compacted);
    880 
    881   // Global inline caching age: it is incremented on some GCs after context
    882   // disposal. We use it to flush inline caches.
    883   int global_ic_age() { return global_ic_age_; }
    884 
    885   void AgeInlineCaches() {
    886     global_ic_age_ = (global_ic_age_ + 1) & SharedFunctionInfo::ICAgeBits::kMax;
    887   }
    888 
    889   int64_t external_memory_hard_limit() { return MaxOldGenerationSize() / 2; }
    890 
    891   int64_t external_memory() { return external_memory_; }
    892   void update_external_memory(int64_t delta) { external_memory_ += delta; }
    893 
    894   void update_external_memory_concurrently_freed(intptr_t freed) {
    895     external_memory_concurrently_freed_.Increment(freed);
    896   }
    897 
    898   void account_external_memory_concurrently_freed() {
    899     external_memory_ -= external_memory_concurrently_freed_.Value();
    900     external_memory_concurrently_freed_.SetValue(0);
    901   }
    902 
    903   void DeoptMarkedAllocationSites();
    904 
    905   inline bool DeoptMaybeTenuredAllocationSites();
    906 
    907   void AddWeakNewSpaceObjectToCodeDependency(Handle<HeapObject> obj,
    908                                              Handle<WeakCell> code);
    909 
    910   void AddWeakObjectToCodeDependency(Handle<HeapObject> obj,
    911                                      Handle<DependentCode> dep);
    912 
    913   DependentCode* LookupWeakObjectToCodeDependency(Handle<HeapObject> obj);
    914 
    915   void CompactWeakFixedArrays();
    916 
    917   void AddRetainedMap(Handle<Map> map);
    918 
    919   // This event is triggered after successful allocation of a new object made
    920   // by runtime. Allocations of target space for object evacuation do not
    921   // trigger the event. In order to track ALL allocations one must turn off
    922   // FLAG_inline_new and FLAG_use_allocation_folding.
    923   inline void OnAllocationEvent(HeapObject* object, int size_in_bytes);
    924 
    925   // This event is triggered after object is moved to a new place.
    926   inline void OnMoveEvent(HeapObject* target, HeapObject* source,
    927                           int size_in_bytes);
    928 
    929   bool deserialization_complete() const { return deserialization_complete_; }
    930 
    931   bool HasLowAllocationRate();
    932   bool HasHighFragmentation();
    933   bool HasHighFragmentation(size_t used, size_t committed);
    934 
    935   void ActivateMemoryReducerIfNeeded();
    936 
    937   bool ShouldOptimizeForMemoryUsage();
    938 
    939   bool IsLowMemoryDevice() {
    940     return max_old_generation_size_ <= kMaxOldSpaceSizeLowMemoryDevice;
    941   }
    942 
    943   bool IsMemoryConstrainedDevice() {
    944     return max_old_generation_size_ <= kMaxOldSpaceSizeMediumMemoryDevice;
    945   }
    946 
    947   bool HighMemoryPressure() {
    948     return memory_pressure_level_.Value() != MemoryPressureLevel::kNone;
    949   }
    950 
    951   // ===========================================================================
    952   // Initialization. ===========================================================
    953   // ===========================================================================
    954 
    955   // Configure heap size in MB before setup. Return false if the heap has been
    956   // set up already.
    957   bool ConfigureHeap(size_t max_semi_space_size, size_t max_old_space_size,
    958                      size_t max_executable_size, size_t code_range_size);
    959   bool ConfigureHeapDefault();
    960 
    961   // Prepares the heap, setting up memory areas that are needed in the isolate
    962   // without actually creating any objects.
    963   bool SetUp();
    964 
    965   // Bootstraps the object heap with the core set of objects required to run.
    966   // Returns whether it succeeded.
    967   bool CreateHeapObjects();
    968 
    969   // Create ObjectStats if live_object_stats_ or dead_object_stats_ are nullptr.
    970   V8_INLINE void CreateObjectStats();
    971 
    972   // Destroys all memory allocated by the heap.
    973   void TearDown();
    974 
    975   // Returns whether SetUp has been called.
    976   bool HasBeenSetUp();
    977 
    978   // ===========================================================================
    979   // Getters for spaces. =======================================================
    980   // ===========================================================================
    981 
    982   inline Address NewSpaceTop();
    983 
    984   NewSpace* new_space() { return new_space_; }
    985   OldSpace* old_space() { return old_space_; }
    986   OldSpace* code_space() { return code_space_; }
    987   MapSpace* map_space() { return map_space_; }
    988   LargeObjectSpace* lo_space() { return lo_space_; }
    989 
    990   inline PagedSpace* paged_space(int idx);
    991   inline Space* space(int idx);
    992 
    993   // Returns name of the space.
    994   const char* GetSpaceName(int idx);
    995 
    996   // ===========================================================================
    997   // Getters to other components. ==============================================
    998   // ===========================================================================
    999 
   1000   GCTracer* tracer() { return tracer_; }
   1001 
   1002   MemoryAllocator* memory_allocator() { return memory_allocator_; }
   1003 
   1004   PromotionQueue* promotion_queue() { return &promotion_queue_; }
   1005 
   1006   inline Isolate* isolate();
   1007 
   1008   MarkCompactCollector* mark_compact_collector() {
   1009     return mark_compact_collector_;
   1010   }
   1011 
   1012   // ===========================================================================
   1013   // Root set access. ==========================================================
   1014   // ===========================================================================
   1015 
   1016   // Heap root getters.
   1017 #define ROOT_ACCESSOR(type, name, camel_name) inline type* name();
   1018   ROOT_LIST(ROOT_ACCESSOR)
   1019 #undef ROOT_ACCESSOR
   1020 
   1021   // Utility type maps.
   1022 #define STRUCT_MAP_ACCESSOR(NAME, Name, name) inline Map* name##_map();
   1023   STRUCT_LIST(STRUCT_MAP_ACCESSOR)
   1024 #undef STRUCT_MAP_ACCESSOR
   1025 
   1026 #define STRING_ACCESSOR(name, str) inline String* name();
   1027   INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
   1028 #undef STRING_ACCESSOR
   1029 
   1030 #define SYMBOL_ACCESSOR(name) inline Symbol* name();
   1031   PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
   1032 #undef SYMBOL_ACCESSOR
   1033 
   1034 #define SYMBOL_ACCESSOR(name, description) inline Symbol* name();
   1035   PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR)
   1036   WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR)
   1037 #undef SYMBOL_ACCESSOR
   1038 
   1039   Object* root(RootListIndex index) { return roots_[index]; }
   1040   Handle<Object> root_handle(RootListIndex index) {
   1041     return Handle<Object>(&roots_[index]);
   1042   }
   1043   template <typename T>
   1044   bool IsRootHandle(Handle<T> handle, RootListIndex* index) const {
   1045     Object** const handle_location = bit_cast<Object**>(handle.address());
   1046     if (handle_location >= &roots_[kRootListLength]) return false;
   1047     if (handle_location < &roots_[0]) return false;
   1048     *index = static_cast<RootListIndex>(handle_location - &roots_[0]);
   1049     return true;
   1050   }
   1051 
   1052   // Generated code can embed this address to get access to the roots.
   1053   Object** roots_array_start() { return roots_; }
   1054 
   1055   // Sets the stub_cache_ (only used when expanding the dictionary).
   1056   void SetRootCodeStubs(UnseededNumberDictionary* value) {
   1057     roots_[kCodeStubsRootIndex] = value;
   1058   }
   1059 
   1060   void SetRootMaterializedObjects(FixedArray* objects) {
   1061     roots_[kMaterializedObjectsRootIndex] = objects;
   1062   }
   1063 
   1064   void SetRootScriptList(Object* value) {
   1065     roots_[kScriptListRootIndex] = value;
   1066   }
   1067 
   1068   void SetRootStringTable(StringTable* value) {
   1069     roots_[kStringTableRootIndex] = value;
   1070   }
   1071 
   1072   void SetRootNoScriptSharedFunctionInfos(Object* value) {
   1073     roots_[kNoScriptSharedFunctionInfosRootIndex] = value;
   1074   }
   1075 
   1076   void SetMessageListeners(TemplateList* value) {
   1077     roots_[kMessageListenersRootIndex] = value;
   1078   }
   1079 
   1080   // Set the stack limit in the roots_ array.  Some architectures generate
   1081   // code that looks here, because it is faster than loading from the static
   1082   // jslimit_/real_jslimit_ variable in the StackGuard.
   1083   void SetStackLimits();
   1084 
   1085   // The stack limit is thread-dependent. To be able to reproduce the same
   1086   // snapshot blob, we need to reset it before serializing.
   1087   void ClearStackLimits();
   1088 
   1089   // Generated code can treat direct references to this root as constant.
   1090   bool RootCanBeTreatedAsConstant(RootListIndex root_index);
   1091 
   1092   Map* MapForFixedTypedArray(ExternalArrayType array_type);
   1093   RootListIndex RootIndexForFixedTypedArray(ExternalArrayType array_type);
   1094 
   1095   RootListIndex RootIndexForEmptyFixedTypedArray(ElementsKind kind);
   1096   FixedTypedArrayBase* EmptyFixedTypedArrayForMap(Map* map);
   1097 
   1098   void RegisterStrongRoots(Object** start, Object** end);
   1099   void UnregisterStrongRoots(Object** start);
   1100 
   1101   // ===========================================================================
   1102   // Inline allocation. ========================================================
   1103   // ===========================================================================
   1104 
   1105   // Indicates whether inline bump-pointer allocation has been disabled.
   1106   bool inline_allocation_disabled() { return inline_allocation_disabled_; }
   1107 
   1108   // Switch whether inline bump-pointer allocation should be used.
   1109   void EnableInlineAllocation();
   1110   void DisableInlineAllocation();
   1111 
   1112   // ===========================================================================
   1113   // Methods triggering GCs. ===================================================
   1114   // ===========================================================================
   1115 
   1116   // Performs garbage collection operation.
   1117   // Returns whether there is a chance that another major GC could
   1118   // collect more garbage.
   1119   inline bool CollectGarbage(
   1120       AllocationSpace space, GarbageCollectionReason gc_reason,
   1121       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
   1122 
   1123   // Performs a full garbage collection.  If (flags & kMakeHeapIterableMask) is
   1124   // non-zero, then the slower precise sweeper is used, which leaves the heap
   1125   // in a state where we can iterate over the heap visiting all objects.
   1126   void CollectAllGarbage(
   1127       int flags, GarbageCollectionReason gc_reason,
   1128       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
   1129 
   1130   // Last hope GC, should try to squeeze as much as possible.
   1131   void CollectAllAvailableGarbage(GarbageCollectionReason gc_reason);
   1132 
   1133   // Reports and external memory pressure event, either performs a major GC or
   1134   // completes incremental marking in order to free external resources.
   1135   void ReportExternalMemoryPressure();
   1136 
   1137   // Invoked when GC was requested via the stack guard.
   1138   void HandleGCRequest();
   1139 
   1140   // ===========================================================================
   1141   // Iterators. ================================================================
   1142   // ===========================================================================
   1143 
   1144   // Iterates over all roots in the heap.
   1145   void IterateRoots(ObjectVisitor* v, VisitMode mode);
   1146   // Iterates over all strong roots in the heap.
   1147   void IterateStrongRoots(ObjectVisitor* v, VisitMode mode);
   1148   // Iterates over entries in the smi roots list.  Only interesting to the
   1149   // serializer/deserializer, since GC does not care about smis.
   1150   void IterateSmiRoots(ObjectVisitor* v);
   1151   // Iterates over all the other roots in the heap.
   1152   void IterateWeakRoots(ObjectVisitor* v, VisitMode mode);
   1153 
   1154   // Iterate pointers of promoted objects.
   1155   void IterateAndScavengePromotedObject(HeapObject* target, int size,
   1156                                         bool was_marked_black);
   1157 
   1158   // ===========================================================================
   1159   // Store buffer API. =========================================================
   1160   // ===========================================================================
   1161 
   1162   // Write barrier support for object[offset] = o;
   1163   inline void RecordWrite(Object* object, int offset, Object* o);
   1164   inline void RecordWriteIntoCode(Code* host, RelocInfo* rinfo, Object* target);
   1165   void RecordWriteIntoCodeSlow(Code* host, RelocInfo* rinfo, Object* target);
   1166   void RecordWritesIntoCode(Code* code);
   1167   inline void RecordFixedArrayElements(FixedArray* array, int offset,
   1168                                        int length);
   1169 
   1170   inline Address* store_buffer_top_address();
   1171 
   1172   void ClearRecordedSlot(HeapObject* object, Object** slot);
   1173   void ClearRecordedSlotRange(Address start, Address end);
   1174 
   1175   // ===========================================================================
   1176   // Incremental marking API. ==================================================
   1177   // ===========================================================================
   1178 
   1179   // Start incremental marking and ensure that idle time handler can perform
   1180   // incremental steps.
   1181   void StartIdleIncrementalMarking(GarbageCollectionReason gc_reason);
   1182 
   1183   // Starts incremental marking assuming incremental marking is currently
   1184   // stopped.
   1185   void StartIncrementalMarking(
   1186       int gc_flags, GarbageCollectionReason gc_reason,
   1187       GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags);
   1188 
   1189   void StartIncrementalMarkingIfAllocationLimitIsReached(
   1190       int gc_flags,
   1191       GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags);
   1192 
   1193   void FinalizeIncrementalMarkingIfComplete(GarbageCollectionReason gc_reason);
   1194 
   1195   bool TryFinalizeIdleIncrementalMarking(double idle_time_in_ms,
   1196                                          GarbageCollectionReason gc_reason);
   1197 
   1198   void RegisterReservationsForBlackAllocation(Reservation* reservations);
   1199 
   1200   IncrementalMarking* incremental_marking() { return incremental_marking_; }
   1201 
   1202   // ===========================================================================
   1203   // Embedder heap tracer support. =============================================
   1204   // ===========================================================================
   1205 
   1206   void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer);
   1207 
   1208   bool UsingEmbedderHeapTracer() { return embedder_heap_tracer() != nullptr; }
   1209 
   1210   void TracePossibleWrapper(JSObject* js_object);
   1211 
   1212   void RegisterExternallyReferencedObject(Object** object);
   1213 
   1214   void RegisterWrappersWithEmbedderHeapTracer();
   1215 
   1216   // In order to avoid running out of memory we force tracing wrappers if there
   1217   // are too many of them.
   1218   bool RequiresImmediateWrapperProcessing();
   1219 
   1220   EmbedderHeapTracer* embedder_heap_tracer() { return embedder_heap_tracer_; }
   1221 
   1222   size_t wrappers_to_trace() { return wrappers_to_trace_.size(); }
   1223 
   1224   // ===========================================================================
   1225   // External string table API. ================================================
   1226   // ===========================================================================
   1227 
   1228   // Registers an external string.
   1229   inline void RegisterExternalString(String* string);
   1230 
   1231   // Finalizes an external string by deleting the associated external
   1232   // data and clearing the resource pointer.
   1233   inline void FinalizeExternalString(String* string);
   1234 
   1235   // ===========================================================================
   1236   // Methods checking/returning the space of a given object/address. ===========
   1237   // ===========================================================================
   1238 
   1239   // Returns whether the object resides in new space.
   1240   inline bool InNewSpace(Object* object);
   1241   inline bool InFromSpace(Object* object);
   1242   inline bool InToSpace(Object* object);
   1243 
   1244   // Returns whether the object resides in old space.
   1245   inline bool InOldSpace(Object* object);
   1246 
   1247   // Checks whether an address/object in the heap (including auxiliary
   1248   // area and unused area).
   1249   bool Contains(HeapObject* value);
   1250 
   1251   // Checks whether an address/object in a space.
   1252   // Currently used by tests, serialization and heap verification only.
   1253   bool InSpace(HeapObject* value, AllocationSpace space);
   1254 
   1255   // Slow methods that can be used for verification as they can also be used
   1256   // with off-heap Addresses.
   1257   bool ContainsSlow(Address addr);
   1258   bool InSpaceSlow(Address addr, AllocationSpace space);
   1259   inline bool InNewSpaceSlow(Address address);
   1260   inline bool InOldSpaceSlow(Address address);
   1261 
   1262   // ===========================================================================
   1263   // Object statistics tracking. ===============================================
   1264   // ===========================================================================
   1265 
   1266   // Returns the number of buckets used by object statistics tracking during a
   1267   // major GC. Note that the following methods fail gracefully when the bounds
   1268   // are exceeded though.
   1269   size_t NumberOfTrackedHeapObjectTypes();
   1270 
   1271   // Returns object statistics about count and size at the last major GC.
   1272   // Objects are being grouped into buckets that roughly resemble existing
   1273   // instance types.
   1274   size_t ObjectCountAtLastGC(size_t index);
   1275   size_t ObjectSizeAtLastGC(size_t index);
   1276 
   1277   // Retrieves names of buckets used by object statistics tracking.
   1278   bool GetObjectTypeName(size_t index, const char** object_type,
   1279                          const char** object_sub_type);
   1280 
   1281   // ===========================================================================
   1282   // Code statistics. ==========================================================
   1283   // ===========================================================================
   1284 
   1285   // Collect code (Code and BytecodeArray objects) statistics.
   1286   void CollectCodeStatistics();
   1287 
   1288   // ===========================================================================
   1289   // GC statistics. ============================================================
   1290   // ===========================================================================
   1291 
   1292   // Returns the maximum amount of memory reserved for the heap.
   1293   size_t MaxReserved() {
   1294     return 2 * max_semi_space_size_ + max_old_generation_size_;
   1295   }
   1296   size_t MaxSemiSpaceSize() { return max_semi_space_size_; }
   1297   size_t InitialSemiSpaceSize() { return initial_semispace_size_; }
   1298   size_t MaxOldGenerationSize() { return max_old_generation_size_; }
   1299   size_t MaxExecutableSize() { return max_executable_size_; }
   1300 
   1301   // Returns the capacity of the heap in bytes w/o growing. Heap grows when
   1302   // more spaces are needed until it reaches the limit.
   1303   size_t Capacity();
   1304 
   1305   // Returns the capacity of the old generation.
   1306   size_t OldGenerationCapacity();
   1307 
   1308   // Returns the amount of memory currently committed for the heap.
   1309   size_t CommittedMemory();
   1310 
   1311   // Returns the amount of memory currently committed for the old space.
   1312   size_t CommittedOldGenerationMemory();
   1313 
   1314   // Returns the amount of executable memory currently committed for the heap.
   1315   size_t CommittedMemoryExecutable();
   1316 
   1317   // Returns the amount of phyical memory currently committed for the heap.
   1318   size_t CommittedPhysicalMemory();
   1319 
   1320   // Returns the maximum amount of memory ever committed for the heap.
   1321   size_t MaximumCommittedMemory() { return maximum_committed_; }
   1322 
   1323   // Updates the maximum committed memory for the heap. Should be called
   1324   // whenever a space grows.
   1325   void UpdateMaximumCommitted();
   1326 
   1327   // Returns the available bytes in space w/o growing.
   1328   // Heap doesn't guarantee that it can allocate an object that requires
   1329   // all available bytes. Check MaxHeapObjectSize() instead.
   1330   size_t Available();
   1331 
   1332   // Returns of size of all objects residing in the heap.
   1333   size_t SizeOfObjects();
   1334 
   1335   void UpdateSurvivalStatistics(int start_new_space_size);
   1336 
   1337   inline void IncrementPromotedObjectsSize(size_t object_size) {
   1338     promoted_objects_size_ += object_size;
   1339   }
   1340   inline size_t promoted_objects_size() { return promoted_objects_size_; }
   1341 
   1342   inline void IncrementSemiSpaceCopiedObjectSize(size_t object_size) {
   1343     semi_space_copied_object_size_ += object_size;
   1344   }
   1345   inline size_t semi_space_copied_object_size() {
   1346     return semi_space_copied_object_size_;
   1347   }
   1348 
   1349   inline size_t SurvivedNewSpaceObjectSize() {
   1350     return promoted_objects_size_ + semi_space_copied_object_size_;
   1351   }
   1352 
   1353   inline void IncrementNodesDiedInNewSpace() { nodes_died_in_new_space_++; }
   1354 
   1355   inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; }
   1356 
   1357   inline void IncrementNodesPromoted() { nodes_promoted_++; }
   1358 
   1359   inline void IncrementYoungSurvivorsCounter(size_t survived) {
   1360     survived_last_scavenge_ = survived;
   1361     survived_since_last_expansion_ += survived;
   1362   }
   1363 
   1364   inline uint64_t PromotedTotalSize() {
   1365     return PromotedSpaceSizeOfObjects() + PromotedExternalMemorySize();
   1366   }
   1367 
   1368   inline void UpdateNewSpaceAllocationCounter();
   1369 
   1370   inline size_t NewSpaceAllocationCounter();
   1371 
   1372   // This should be used only for testing.
   1373   void set_new_space_allocation_counter(size_t new_value) {
   1374     new_space_allocation_counter_ = new_value;
   1375   }
   1376 
   1377   void UpdateOldGenerationAllocationCounter() {
   1378     old_generation_allocation_counter_at_last_gc_ =
   1379         OldGenerationAllocationCounter();
   1380   }
   1381 
   1382   size_t OldGenerationAllocationCounter() {
   1383     return old_generation_allocation_counter_at_last_gc_ +
   1384            PromotedSinceLastGC();
   1385   }
   1386 
   1387   // This should be used only for testing.
   1388   void set_old_generation_allocation_counter_at_last_gc(size_t new_value) {
   1389     old_generation_allocation_counter_at_last_gc_ = new_value;
   1390   }
   1391 
   1392   size_t PromotedSinceLastGC() {
   1393     return PromotedSpaceSizeOfObjects() - old_generation_size_at_last_gc_;
   1394   }
   1395 
   1396   int gc_count() const { return gc_count_; }
   1397 
   1398   // Returns the size of objects residing in non new spaces.
   1399   size_t PromotedSpaceSizeOfObjects();
   1400 
   1401   double total_regexp_code_generated() { return total_regexp_code_generated_; }
   1402   void IncreaseTotalRegexpCodeGenerated(int size) {
   1403     total_regexp_code_generated_ += size;
   1404   }
   1405 
   1406   void IncrementCodeGeneratedBytes(bool is_crankshafted, int size) {
   1407     if (is_crankshafted) {
   1408       crankshaft_codegen_bytes_generated_ += size;
   1409     } else {
   1410       full_codegen_bytes_generated_ += size;
   1411     }
   1412   }
   1413 
   1414   // ===========================================================================
   1415   // Prologue/epilogue callback methods.========================================
   1416   // ===========================================================================
   1417 
   1418   void AddGCPrologueCallback(v8::Isolate::GCCallback callback,
   1419                              GCType gc_type_filter, bool pass_isolate = true);
   1420   void RemoveGCPrologueCallback(v8::Isolate::GCCallback callback);
   1421 
   1422   void AddGCEpilogueCallback(v8::Isolate::GCCallback callback,
   1423                              GCType gc_type_filter, bool pass_isolate = true);
   1424   void RemoveGCEpilogueCallback(v8::Isolate::GCCallback callback);
   1425 
   1426   void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags);
   1427   void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags);
   1428 
   1429   // ===========================================================================
   1430   // Allocation methods. =======================================================
   1431   // ===========================================================================
   1432 
   1433   // Creates a filler object and returns a heap object immediately after it.
   1434   MUST_USE_RESULT HeapObject* PrecedeWithFiller(HeapObject* object,
   1435                                                 int filler_size);
   1436 
   1437   // Creates a filler object if needed for alignment and returns a heap object
   1438   // immediately after it. If any space is left after the returned object,
   1439   // another filler object is created so the over allocated memory is iterable.
   1440   MUST_USE_RESULT HeapObject* AlignWithFiller(HeapObject* object,
   1441                                               int object_size,
   1442                                               int allocation_size,
   1443                                               AllocationAlignment alignment);
   1444 
   1445   // ===========================================================================
   1446   // ArrayBuffer tracking. =====================================================
   1447   // ===========================================================================
   1448 
   1449   // TODO(gc): API usability: encapsulate mutation of JSArrayBuffer::is_external
   1450   // in the registration/unregistration APIs. Consider dropping the "New" from
   1451   // "RegisterNewArrayBuffer" because one can re-register a previously
   1452   // unregistered buffer, too, and the name is confusing.
   1453   void RegisterNewArrayBuffer(JSArrayBuffer* buffer);
   1454   void UnregisterArrayBuffer(JSArrayBuffer* buffer);
   1455 
   1456   // ===========================================================================
   1457   // Allocation site tracking. =================================================
   1458   // ===========================================================================
   1459 
   1460   // Updates the AllocationSite of a given {object}. If the global prenuring
   1461   // storage is passed as {pretenuring_feedback} the memento found count on
   1462   // the corresponding allocation site is immediately updated and an entry
   1463   // in the hash map is created. Otherwise the entry (including a the count
   1464   // value) is cached on the local pretenuring feedback.
   1465   template <UpdateAllocationSiteMode mode>
   1466   inline void UpdateAllocationSite(HeapObject* object,
   1467                                    base::HashMap* pretenuring_feedback);
   1468 
   1469   // Removes an entry from the global pretenuring storage.
   1470   inline void RemoveAllocationSitePretenuringFeedback(AllocationSite* site);
   1471 
   1472   // Merges local pretenuring feedback into the global one. Note that this
   1473   // method needs to be called after evacuation, as allocation sites may be
   1474   // evacuated and this method resolves forward pointers accordingly.
   1475   void MergeAllocationSitePretenuringFeedback(
   1476       const base::HashMap& local_pretenuring_feedback);
   1477 
   1478 // =============================================================================
   1479 
   1480 #ifdef VERIFY_HEAP
   1481   // Verify the heap is in its normal state before or after a GC.
   1482   void Verify();
   1483 #endif
   1484 
   1485 #ifdef DEBUG
   1486   void set_allocation_timeout(int timeout) { allocation_timeout_ = timeout; }
   1487 
   1488   void TracePathToObjectFrom(Object* target, Object* root);
   1489   void TracePathToObject(Object* target);
   1490   void TracePathToGlobal();
   1491 
   1492   void Print();
   1493   void PrintHandles();
   1494 
   1495   // Report heap statistics.
   1496   void ReportHeapStatistics(const char* title);
   1497   void ReportCodeStatistics(const char* title);
   1498 #endif
   1499 
   1500   static const char* GarbageCollectionReasonToString(
   1501       GarbageCollectionReason gc_reason);
   1502 
   1503  private:
   1504   class PretenuringScope;
   1505 
   1506   // External strings table is a place where all external strings are
   1507   // registered.  We need to keep track of such strings to properly
   1508   // finalize them.
   1509   class ExternalStringTable {
   1510    public:
   1511     // Registers an external string.
   1512     inline void AddString(String* string);
   1513 
   1514     inline void Iterate(ObjectVisitor* v);
   1515 
   1516     // Restores internal invariant and gets rid of collected strings.
   1517     // Must be called after each Iterate() that modified the strings.
   1518     void CleanUp();
   1519 
   1520     // Destroys all allocated memory.
   1521     void TearDown();
   1522 
   1523    private:
   1524     explicit ExternalStringTable(Heap* heap) : heap_(heap) {}
   1525 
   1526     inline void Verify();
   1527 
   1528     inline void AddOldString(String* string);
   1529 
   1530     // Notifies the table that only a prefix of the new list is valid.
   1531     inline void ShrinkNewStrings(int position);
   1532 
   1533     // To speed up scavenge collections new space string are kept
   1534     // separate from old space strings.
   1535     List<Object*> new_space_strings_;
   1536     List<Object*> old_space_strings_;
   1537 
   1538     Heap* heap_;
   1539 
   1540     friend class Heap;
   1541 
   1542     DISALLOW_COPY_AND_ASSIGN(ExternalStringTable);
   1543   };
   1544 
   1545   struct StrongRootsList;
   1546 
   1547   struct StringTypeTable {
   1548     InstanceType type;
   1549     int size;
   1550     RootListIndex index;
   1551   };
   1552 
   1553   struct ConstantStringTable {
   1554     const char* contents;
   1555     RootListIndex index;
   1556   };
   1557 
   1558   struct StructTable {
   1559     InstanceType type;
   1560     int size;
   1561     RootListIndex index;
   1562   };
   1563 
   1564   struct GCCallbackPair {
   1565     GCCallbackPair(v8::Isolate::GCCallback callback, GCType gc_type,
   1566                    bool pass_isolate)
   1567         : callback(callback), gc_type(gc_type), pass_isolate(pass_isolate) {}
   1568 
   1569     bool operator==(const GCCallbackPair& other) const {
   1570       return other.callback == callback;
   1571     }
   1572 
   1573     v8::Isolate::GCCallback callback;
   1574     GCType gc_type;
   1575     bool pass_isolate;
   1576   };
   1577 
   1578   typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap,
   1579                                                         Object** pointer);
   1580 
   1581   static const int kInitialStringTableSize = 2048;
   1582   static const int kInitialEvalCacheSize = 64;
   1583   static const int kInitialNumberStringCacheSize = 256;
   1584 
   1585   static const int kRememberedUnmappedPages = 128;
   1586 
   1587   static const StringTypeTable string_type_table[];
   1588   static const ConstantStringTable constant_string_table[];
   1589   static const StructTable struct_table[];
   1590 
   1591   static const int kYoungSurvivalRateHighThreshold = 90;
   1592   static const int kYoungSurvivalRateAllowedDeviation = 15;
   1593   static const int kOldSurvivalRateLowThreshold = 10;
   1594 
   1595   static const int kMaxMarkCompactsInIdleRound = 7;
   1596   static const int kIdleScavengeThreshold = 5;
   1597 
   1598   static const int kInitialFeedbackCapacity = 256;
   1599 
   1600   Heap();
   1601 
   1602   static String* UpdateNewSpaceReferenceInExternalStringTableEntry(
   1603       Heap* heap, Object** pointer);
   1604 
   1605   // Selects the proper allocation space based on the pretenuring decision.
   1606   static AllocationSpace SelectSpace(PretenureFlag pretenure) {
   1607     return (pretenure == TENURED) ? OLD_SPACE : NEW_SPACE;
   1608   }
   1609 
   1610 #define ROOT_ACCESSOR(type, name, camel_name) \
   1611   inline void set_##name(type* value);
   1612   ROOT_LIST(ROOT_ACCESSOR)
   1613 #undef ROOT_ACCESSOR
   1614 
   1615   StoreBuffer* store_buffer() { return store_buffer_; }
   1616 
   1617   void set_current_gc_flags(int flags) {
   1618     current_gc_flags_ = flags;
   1619     DCHECK(!ShouldFinalizeIncrementalMarking() ||
   1620            !ShouldAbortIncrementalMarking());
   1621   }
   1622 
   1623   inline bool ShouldReduceMemory() const {
   1624     return current_gc_flags_ & kReduceMemoryFootprintMask;
   1625   }
   1626 
   1627   inline bool ShouldAbortIncrementalMarking() const {
   1628     return current_gc_flags_ & kAbortIncrementalMarkingMask;
   1629   }
   1630 
   1631   inline bool ShouldFinalizeIncrementalMarking() const {
   1632     return current_gc_flags_ & kFinalizeIncrementalMarkingMask;
   1633   }
   1634 
   1635   // Checks whether both, the internal marking deque, and the embedder provided
   1636   // one are empty. Avoid in fast path as it potentially calls through the API.
   1637   bool MarkingDequesAreEmpty();
   1638 
   1639   void PreprocessStackTraces();
   1640 
   1641   // Checks whether a global GC is necessary
   1642   GarbageCollector SelectGarbageCollector(AllocationSpace space,
   1643                                           const char** reason);
   1644 
   1645   // Make sure there is a filler value behind the top of the new space
   1646   // so that the GC does not confuse some unintialized/stale memory
   1647   // with the allocation memento of the object at the top
   1648   void EnsureFillerObjectAtTop();
   1649 
   1650   // Ensure that we have swept all spaces in such a way that we can iterate
   1651   // over all objects.  May cause a GC.
   1652   void MakeHeapIterable();
   1653 
   1654   // Performs garbage collection operation.
   1655   // Returns whether there is a chance that another major GC could
   1656   // collect more garbage.
   1657   bool CollectGarbage(
   1658       GarbageCollector collector, GarbageCollectionReason gc_reason,
   1659       const char* collector_reason,
   1660       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
   1661 
   1662   // Performs garbage collection
   1663   // Returns whether there is a chance another major GC could
   1664   // collect more garbage.
   1665   bool PerformGarbageCollection(
   1666       GarbageCollector collector,
   1667       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
   1668 
   1669   inline void UpdateOldSpaceLimits();
   1670 
   1671   // Initializes a JSObject based on its map.
   1672   void InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties,
   1673                                  Map* map);
   1674 
   1675   // Initializes JSObject body starting at given offset.
   1676   void InitializeJSObjectBody(JSObject* obj, Map* map, int start_offset);
   1677 
   1678   void InitializeAllocationMemento(AllocationMemento* memento,
   1679                                    AllocationSite* allocation_site);
   1680 
   1681   bool CreateInitialMaps();
   1682   void CreateInitialObjects();
   1683 
   1684   // These five Create*EntryStub functions are here and forced to not be inlined
   1685   // because of a gcc-4.4 bug that assigns wrong vtable entries.
   1686   NO_INLINE(void CreateJSEntryStub());
   1687   NO_INLINE(void CreateJSConstructEntryStub());
   1688 
   1689   void CreateFixedStubs();
   1690 
   1691   HeapObject* DoubleAlignForDeserialization(HeapObject* object, int size);
   1692 
   1693   // Commits from space if it is uncommitted.
   1694   void EnsureFromSpaceIsCommitted();
   1695 
   1696   // Uncommit unused semi space.
   1697   bool UncommitFromSpace();
   1698 
   1699   // Fill in bogus values in from space
   1700   void ZapFromSpace();
   1701 
   1702   // Deopts all code that contains allocation instruction which are tenured or
   1703   // not tenured. Moreover it clears the pretenuring allocation site statistics.
   1704   void ResetAllAllocationSitesDependentCode(PretenureFlag flag);
   1705 
   1706   // Evaluates local pretenuring for the old space and calls
   1707   // ResetAllTenuredAllocationSitesDependentCode if too many objects died in
   1708   // the old space.
   1709   void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc);
   1710 
   1711   // Record statistics before and after garbage collection.
   1712   void ReportStatisticsBeforeGC();
   1713   void ReportStatisticsAfterGC();
   1714 
   1715   // Creates and installs the full-sized number string cache.
   1716   int FullSizeNumberStringCacheLength();
   1717   // Flush the number to string cache.
   1718   void FlushNumberStringCache();
   1719 
   1720   void ConfigureInitialOldGenerationSize();
   1721 
   1722   bool HasLowYoungGenerationAllocationRate();
   1723   bool HasLowOldGenerationAllocationRate();
   1724   double YoungGenerationMutatorUtilization();
   1725   double OldGenerationMutatorUtilization();
   1726 
   1727   void ReduceNewSpaceSize();
   1728 
   1729   GCIdleTimeHeapState ComputeHeapState();
   1730 
   1731   bool PerformIdleTimeAction(GCIdleTimeAction action,
   1732                              GCIdleTimeHeapState heap_state,
   1733                              double deadline_in_ms);
   1734 
   1735   void IdleNotificationEpilogue(GCIdleTimeAction action,
   1736                                 GCIdleTimeHeapState heap_state, double start_ms,
   1737                                 double deadline_in_ms);
   1738 
   1739   inline void UpdateAllocationsHash(HeapObject* object);
   1740   inline void UpdateAllocationsHash(uint32_t value);
   1741   void PrintAlloctionsHash();
   1742 
   1743   void AddToRingBuffer(const char* string);
   1744   void GetFromRingBuffer(char* buffer);
   1745 
   1746   void CompactRetainedMaps(ArrayList* retained_maps);
   1747 
   1748   void CollectGarbageOnMemoryPressure();
   1749 
   1750   // Attempt to over-approximate the weak closure by marking object groups and
   1751   // implicit references from global handles, but don't atomically complete
   1752   // marking. If we continue to mark incrementally, we might have marked
   1753   // objects that die later.
   1754   void FinalizeIncrementalMarking(GarbageCollectionReason gc_reason);
   1755 
   1756   // Returns the timer used for a given GC type.
   1757   // - GCScavenger: young generation GC
   1758   // - GCCompactor: full GC
   1759   // - GCFinalzeMC: finalization of incremental full GC
   1760   // - GCFinalizeMCReduceMemory: finalization of incremental full GC with
   1761   // memory reduction
   1762   HistogramTimer* GCTypeTimer(GarbageCollector collector);
   1763 
   1764   // ===========================================================================
   1765   // Pretenuring. ==============================================================
   1766   // ===========================================================================
   1767 
   1768   // Pretenuring decisions are made based on feedback collected during new space
   1769   // evacuation. Note that between feedback collection and calling this method
   1770   // object in old space must not move.
   1771   void ProcessPretenuringFeedback();
   1772 
   1773   // ===========================================================================
   1774   // Actual GC. ================================================================
   1775   // ===========================================================================
   1776 
   1777   // Code that should be run before and after each GC.  Includes some
   1778   // reporting/verification activities when compiled with DEBUG set.
   1779   void GarbageCollectionPrologue();
   1780   void GarbageCollectionEpilogue();
   1781 
   1782   // Performs a major collection in the whole heap.
   1783   void MarkCompact();
   1784   // Performs a minor collection of just the young generation.
   1785   void MinorMarkCompact();
   1786 
   1787   // Code to be run before and after mark-compact.
   1788   void MarkCompactPrologue();
   1789   void MarkCompactEpilogue();
   1790 
   1791   // Performs a minor collection in new generation.
   1792   void Scavenge();
   1793 
   1794   Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front);
   1795 
   1796   void UpdateNewSpaceReferencesInExternalStringTable(
   1797       ExternalStringTableUpdaterCallback updater_func);
   1798 
   1799   void UpdateReferencesInExternalStringTable(
   1800       ExternalStringTableUpdaterCallback updater_func);
   1801 
   1802   void ProcessAllWeakReferences(WeakObjectRetainer* retainer);
   1803   void ProcessYoungWeakReferences(WeakObjectRetainer* retainer);
   1804   void ProcessNativeContexts(WeakObjectRetainer* retainer);
   1805   void ProcessAllocationSites(WeakObjectRetainer* retainer);
   1806   void ProcessWeakListRoots(WeakObjectRetainer* retainer);
   1807 
   1808   // ===========================================================================
   1809   // GC statistics. ============================================================
   1810   // ===========================================================================
   1811 
   1812   inline size_t OldGenerationSpaceAvailable() {
   1813     if (old_generation_allocation_limit_ <= PromotedTotalSize()) return 0;
   1814     return old_generation_allocation_limit_ -
   1815            static_cast<size_t>(PromotedTotalSize());
   1816   }
   1817 
   1818   // We allow incremental marking to overshoot the allocation limit for
   1819   // performace reasons. If the overshoot is too large then we are more
   1820   // eager to finalize incremental marking.
   1821   inline bool AllocationLimitOvershotByLargeMargin() {
   1822     // This guards against too eager finalization in small heaps.
   1823     // The number is chosen based on v8.browsing_mobile on Nexus 7v2.
   1824     size_t kMarginForSmallHeaps = 32u * MB;
   1825     if (old_generation_allocation_limit_ >= PromotedTotalSize()) return false;
   1826     uint64_t overshoot = PromotedTotalSize() - old_generation_allocation_limit_;
   1827     // Overshoot margin is 50% of allocation limit or half-way to the max heap
   1828     // with special handling of small heaps.
   1829     uint64_t margin =
   1830         Min(Max(old_generation_allocation_limit_ / 2, kMarginForSmallHeaps),
   1831             (max_old_generation_size_ - old_generation_allocation_limit_) / 2);
   1832     return overshoot >= margin;
   1833   }
   1834 
   1835   void UpdateTotalGCTime(double duration);
   1836 
   1837   bool MaximumSizeScavenge() { return maximum_size_scavenges_ > 0; }
   1838 
   1839   // ===========================================================================
   1840   // Growing strategy. =========================================================
   1841   // ===========================================================================
   1842 
   1843   // Decrease the allocation limit if the new limit based on the given
   1844   // parameters is lower than the current limit.
   1845   void DampenOldGenerationAllocationLimit(size_t old_gen_size, double gc_speed,
   1846                                           double mutator_speed);
   1847 
   1848   // Calculates the allocation limit based on a given growing factor and a
   1849   // given old generation size.
   1850   size_t CalculateOldGenerationAllocationLimit(double factor,
   1851                                                size_t old_gen_size);
   1852 
   1853   // Sets the allocation limit to trigger the next full garbage collection.
   1854   void SetOldGenerationAllocationLimit(size_t old_gen_size, double gc_speed,
   1855                                        double mutator_speed);
   1856 
   1857   size_t MinimumAllocationLimitGrowingStep();
   1858 
   1859   size_t old_generation_allocation_limit() const {
   1860     return old_generation_allocation_limit_;
   1861   }
   1862 
   1863   bool always_allocate() { return always_allocate_scope_count_.Value() != 0; }
   1864 
   1865   bool CanExpandOldGeneration(int size) {
   1866     if (force_oom_) return false;
   1867     return (OldGenerationCapacity() + size) < MaxOldGenerationSize();
   1868   }
   1869 
   1870   bool IsCloseToOutOfMemory(size_t slack) {
   1871     return OldGenerationCapacity() + slack >= MaxOldGenerationSize();
   1872   }
   1873 
   1874   bool ShouldExpandOldGenerationOnSlowAllocation();
   1875 
   1876   enum class IncrementalMarkingLimit { kNoLimit, kSoftLimit, kHardLimit };
   1877   IncrementalMarkingLimit IncrementalMarkingLimitReached();
   1878 
   1879   // ===========================================================================
   1880   // Idle notification. ========================================================
   1881   // ===========================================================================
   1882 
   1883   bool RecentIdleNotificationHappened();
   1884   void ScheduleIdleScavengeIfNeeded(int bytes_allocated);
   1885 
   1886   // ===========================================================================
   1887   // HeapIterator helpers. =====================================================
   1888   // ===========================================================================
   1889 
   1890   void heap_iterator_start() { heap_iterator_depth_++; }
   1891 
   1892   void heap_iterator_end() { heap_iterator_depth_--; }
   1893 
   1894   bool in_heap_iterator() { return heap_iterator_depth_ > 0; }
   1895 
   1896   // ===========================================================================
   1897   // Allocation methods. =======================================================
   1898   // ===========================================================================
   1899 
   1900   // Returns a deep copy of the JavaScript object.
   1901   // Properties and elements are copied too.
   1902   // Optionally takes an AllocationSite to be appended in an AllocationMemento.
   1903   MUST_USE_RESULT AllocationResult CopyJSObject(JSObject* source,
   1904                                                 AllocationSite* site = NULL);
   1905 
   1906   // Allocates a JS Map in the heap.
   1907   MUST_USE_RESULT AllocationResult
   1908   AllocateMap(InstanceType instance_type, int instance_size,
   1909               ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
   1910 
   1911   // Allocates and initializes a new JavaScript object based on a
   1912   // constructor.
   1913   // If allocation_site is non-null, then a memento is emitted after the object
   1914   // that points to the site.
   1915   MUST_USE_RESULT AllocationResult AllocateJSObject(
   1916       JSFunction* constructor, PretenureFlag pretenure = NOT_TENURED,
   1917       AllocationSite* allocation_site = NULL);
   1918 
   1919   // Allocates and initializes a new JavaScript object based on a map.
   1920   // Passing an allocation site means that a memento will be created that
   1921   // points to the site.
   1922   MUST_USE_RESULT AllocationResult
   1923   AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure = NOT_TENURED,
   1924                           AllocationSite* allocation_site = NULL);
   1925 
   1926   // Allocates a HeapNumber from value.
   1927   MUST_USE_RESULT AllocationResult
   1928   AllocateHeapNumber(double value, MutableMode mode = IMMUTABLE,
   1929                      PretenureFlag pretenure = NOT_TENURED);
   1930 
   1931 // Allocates SIMD values from the given lane values.
   1932 #define SIMD_ALLOCATE_DECLARATION(TYPE, Type, type, lane_count, lane_type) \
   1933   AllocationResult Allocate##Type(lane_type lanes[lane_count],             \
   1934                                   PretenureFlag pretenure = NOT_TENURED);
   1935   SIMD128_TYPES(SIMD_ALLOCATE_DECLARATION)
   1936 #undef SIMD_ALLOCATE_DECLARATION
   1937 
   1938   // Allocates a byte array of the specified length
   1939   MUST_USE_RESULT AllocationResult
   1940   AllocateByteArray(int length, PretenureFlag pretenure = NOT_TENURED);
   1941 
   1942   // Allocates a bytecode array with given contents.
   1943   MUST_USE_RESULT AllocationResult
   1944   AllocateBytecodeArray(int length, const byte* raw_bytecodes, int frame_size,
   1945                         int parameter_count, FixedArray* constant_pool);
   1946 
   1947   MUST_USE_RESULT AllocationResult CopyCode(Code* code);
   1948 
   1949   MUST_USE_RESULT AllocationResult
   1950   CopyBytecodeArray(BytecodeArray* bytecode_array);
   1951 
   1952   // Allocates a fixed array initialized with undefined values
   1953   MUST_USE_RESULT AllocationResult
   1954   AllocateFixedArray(int length, PretenureFlag pretenure = NOT_TENURED);
   1955 
   1956   // Allocate an uninitialized object.  The memory is non-executable if the
   1957   // hardware and OS allow.  This is the single choke-point for allocations
   1958   // performed by the runtime and should not be bypassed (to extend this to
   1959   // inlined allocations, use the Heap::DisableInlineAllocation() support).
   1960   MUST_USE_RESULT inline AllocationResult AllocateRaw(
   1961       int size_in_bytes, AllocationSpace space,
   1962       AllocationAlignment aligment = kWordAligned);
   1963 
   1964   // Allocates a heap object based on the map.
   1965   MUST_USE_RESULT AllocationResult
   1966       Allocate(Map* map, AllocationSpace space,
   1967                AllocationSite* allocation_site = NULL);
   1968 
   1969   // Allocates a partial map for bootstrapping.
   1970   MUST_USE_RESULT AllocationResult
   1971       AllocatePartialMap(InstanceType instance_type, int instance_size);
   1972 
   1973   // Allocate a block of memory in the given space (filled with a filler).
   1974   // Used as a fall-back for generated code when the space is full.
   1975   MUST_USE_RESULT AllocationResult
   1976       AllocateFillerObject(int size, bool double_align, AllocationSpace space);
   1977 
   1978   // Allocate an uninitialized fixed array.
   1979   MUST_USE_RESULT AllocationResult
   1980       AllocateRawFixedArray(int length, PretenureFlag pretenure);
   1981 
   1982   // Allocate an uninitialized fixed double array.
   1983   MUST_USE_RESULT AllocationResult
   1984       AllocateRawFixedDoubleArray(int length, PretenureFlag pretenure);
   1985 
   1986   // Allocate an initialized fixed array with the given filler value.
   1987   MUST_USE_RESULT AllocationResult
   1988       AllocateFixedArrayWithFiller(int length, PretenureFlag pretenure,
   1989                                    Object* filler);
   1990 
   1991   // Allocate and partially initializes a String.  There are two String
   1992   // encodings: one-byte and two-byte.  These functions allocate a string of
   1993   // the given length and set its map and length fields.  The characters of
   1994   // the string are uninitialized.
   1995   MUST_USE_RESULT AllocationResult
   1996       AllocateRawOneByteString(int length, PretenureFlag pretenure);
   1997   MUST_USE_RESULT AllocationResult
   1998       AllocateRawTwoByteString(int length, PretenureFlag pretenure);
   1999 
   2000   // Allocates an internalized string in old space based on the character
   2001   // stream.
   2002   MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringFromUtf8(
   2003       Vector<const char> str, int chars, uint32_t hash_field);
   2004 
   2005   MUST_USE_RESULT inline AllocationResult AllocateOneByteInternalizedString(
   2006       Vector<const uint8_t> str, uint32_t hash_field);
   2007 
   2008   MUST_USE_RESULT inline AllocationResult AllocateTwoByteInternalizedString(
   2009       Vector<const uc16> str, uint32_t hash_field);
   2010 
   2011   template <bool is_one_byte, typename T>
   2012   MUST_USE_RESULT AllocationResult
   2013       AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field);
   2014 
   2015   template <typename T>
   2016   MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringImpl(
   2017       T t, int chars, uint32_t hash_field);
   2018 
   2019   // Allocates an uninitialized fixed array. It must be filled by the caller.
   2020   MUST_USE_RESULT AllocationResult AllocateUninitializedFixedArray(int length);
   2021 
   2022   // Make a copy of src and return it.
   2023   MUST_USE_RESULT inline AllocationResult CopyFixedArray(FixedArray* src);
   2024 
   2025   // Make a copy of src, also grow the copy, and return the copy.
   2026   MUST_USE_RESULT AllocationResult
   2027   CopyFixedArrayAndGrow(FixedArray* src, int grow_by, PretenureFlag pretenure);
   2028 
   2029   // Make a copy of src, also grow the copy, and return the copy.
   2030   MUST_USE_RESULT AllocationResult CopyFixedArrayUpTo(FixedArray* src,
   2031                                                       int new_len,
   2032                                                       PretenureFlag pretenure);
   2033 
   2034   // Make a copy of src, set the map, and return the copy.
   2035   MUST_USE_RESULT AllocationResult
   2036       CopyFixedArrayWithMap(FixedArray* src, Map* map);
   2037 
   2038   // Make a copy of src and return it.
   2039   MUST_USE_RESULT inline AllocationResult CopyFixedDoubleArray(
   2040       FixedDoubleArray* src);
   2041 
   2042   // Computes a single character string where the character has code.
   2043   // A cache is used for one-byte (Latin1) codes.
   2044   MUST_USE_RESULT AllocationResult
   2045       LookupSingleCharacterStringFromCode(uint16_t code);
   2046 
   2047   // Allocate a symbol in old space.
   2048   MUST_USE_RESULT AllocationResult AllocateSymbol();
   2049 
   2050   // Allocates an external array of the specified length and type.
   2051   MUST_USE_RESULT AllocationResult AllocateFixedTypedArrayWithExternalPointer(
   2052       int length, ExternalArrayType array_type, void* external_pointer,
   2053       PretenureFlag pretenure);
   2054 
   2055   // Allocates a fixed typed array of the specified length and type.
   2056   MUST_USE_RESULT AllocationResult
   2057   AllocateFixedTypedArray(int length, ExternalArrayType array_type,
   2058                           bool initialize, PretenureFlag pretenure);
   2059 
   2060   // Make a copy of src and return it.
   2061   MUST_USE_RESULT AllocationResult CopyAndTenureFixedCOWArray(FixedArray* src);
   2062 
   2063   // Make a copy of src, set the map, and return the copy.
   2064   MUST_USE_RESULT AllocationResult
   2065       CopyFixedDoubleArrayWithMap(FixedDoubleArray* src, Map* map);
   2066 
   2067   // Allocates a fixed double array with uninitialized values. Returns
   2068   MUST_USE_RESULT AllocationResult AllocateUninitializedFixedDoubleArray(
   2069       int length, PretenureFlag pretenure = NOT_TENURED);
   2070 
   2071   // Allocate empty fixed array.
   2072   MUST_USE_RESULT AllocationResult AllocateEmptyFixedArray();
   2073 
   2074   // Allocate empty scope info.
   2075   MUST_USE_RESULT AllocationResult AllocateEmptyScopeInfo();
   2076 
   2077   // Allocate empty fixed typed array of given type.
   2078   MUST_USE_RESULT AllocationResult
   2079       AllocateEmptyFixedTypedArray(ExternalArrayType array_type);
   2080 
   2081   // Allocate a tenured simple cell.
   2082   MUST_USE_RESULT AllocationResult AllocateCell(Object* value);
   2083 
   2084   // Allocate a tenured JS global property cell initialized with the hole.
   2085   MUST_USE_RESULT AllocationResult AllocatePropertyCell();
   2086 
   2087   MUST_USE_RESULT AllocationResult AllocateWeakCell(HeapObject* value);
   2088 
   2089   MUST_USE_RESULT AllocationResult AllocateTransitionArray(int capacity);
   2090 
   2091   // Allocates a new utility object in the old generation.
   2092   MUST_USE_RESULT AllocationResult AllocateStruct(InstanceType type);
   2093 
   2094   // Allocates a new foreign object.
   2095   MUST_USE_RESULT AllocationResult
   2096       AllocateForeign(Address address, PretenureFlag pretenure = NOT_TENURED);
   2097 
   2098   MUST_USE_RESULT AllocationResult
   2099       AllocateCode(int object_size, bool immovable);
   2100 
   2101   MUST_USE_RESULT AllocationResult InternalizeStringWithKey(HashTableKey* key);
   2102 
   2103   MUST_USE_RESULT AllocationResult InternalizeString(String* str);
   2104 
   2105   // ===========================================================================
   2106 
   2107   void set_force_oom(bool value) { force_oom_ = value; }
   2108 
   2109   // The amount of external memory registered through the API.
   2110   int64_t external_memory_;
   2111 
   2112   // The limit when to trigger memory pressure from the API.
   2113   int64_t external_memory_limit_;
   2114 
   2115   // Caches the amount of external memory registered at the last MC.
   2116   int64_t external_memory_at_last_mark_compact_;
   2117 
   2118   // The amount of memory that has been freed concurrently.
   2119   base::AtomicNumber<intptr_t> external_memory_concurrently_freed_;
   2120 
   2121   // This can be calculated directly from a pointer to the heap; however, it is
   2122   // more expedient to get at the isolate directly from within Heap methods.
   2123   Isolate* isolate_;
   2124 
   2125   Object* roots_[kRootListLength];
   2126 
   2127   size_t code_range_size_;
   2128   size_t max_semi_space_size_;
   2129   size_t initial_semispace_size_;
   2130   size_t max_old_generation_size_;
   2131   size_t initial_old_generation_size_;
   2132   bool old_generation_size_configured_;
   2133   size_t max_executable_size_;
   2134   size_t maximum_committed_;
   2135 
   2136   // For keeping track of how much data has survived
   2137   // scavenge since last new space expansion.
   2138   size_t survived_since_last_expansion_;
   2139 
   2140   // ... and since the last scavenge.
   2141   size_t survived_last_scavenge_;
   2142 
   2143   // This is not the depth of nested AlwaysAllocateScope's but rather a single
   2144   // count, as scopes can be acquired from multiple tasks (read: threads).
   2145   base::AtomicNumber<size_t> always_allocate_scope_count_;
   2146 
   2147   // Stores the memory pressure level that set by MemoryPressureNotification
   2148   // and reset by a mark-compact garbage collection.
   2149   base::AtomicValue<MemoryPressureLevel> memory_pressure_level_;
   2150 
   2151   // For keeping track of context disposals.
   2152   int contexts_disposed_;
   2153 
   2154   // The length of the retained_maps array at the time of context disposal.
   2155   // This separates maps in the retained_maps array that were created before
   2156   // and after context disposal.
   2157   int number_of_disposed_maps_;
   2158 
   2159   int global_ic_age_;
   2160 
   2161   NewSpace* new_space_;
   2162   OldSpace* old_space_;
   2163   OldSpace* code_space_;
   2164   MapSpace* map_space_;
   2165   LargeObjectSpace* lo_space_;
   2166   // Map from the space id to the space.
   2167   Space* space_[LAST_SPACE + 1];
   2168   HeapState gc_state_;
   2169   int gc_post_processing_depth_;
   2170   Address new_space_top_after_last_gc_;
   2171 
   2172   // Returns the amount of external memory registered since last global gc.
   2173   uint64_t PromotedExternalMemorySize();
   2174 
   2175   // How many "runtime allocations" happened.
   2176   uint32_t allocations_count_;
   2177 
   2178   // Running hash over allocations performed.
   2179   uint32_t raw_allocations_hash_;
   2180 
   2181   // How many mark-sweep collections happened.
   2182   unsigned int ms_count_;
   2183 
   2184   // How many gc happened.
   2185   unsigned int gc_count_;
   2186 
   2187   // For post mortem debugging.
   2188   int remembered_unmapped_pages_index_;
   2189   Address remembered_unmapped_pages_[kRememberedUnmappedPages];
   2190 
   2191 #ifdef DEBUG
   2192   // If the --gc-interval flag is set to a positive value, this
   2193   // variable holds the value indicating the number of allocations
   2194   // remain until the next failure and garbage collection.
   2195   int allocation_timeout_;
   2196 #endif  // DEBUG
   2197 
   2198   // Limit that triggers a global GC on the next (normally caused) GC.  This
   2199   // is checked when we have already decided to do a GC to help determine
   2200   // which collector to invoke, before expanding a paged space in the old
   2201   // generation and on every allocation in large object space.
   2202   size_t old_generation_allocation_limit_;
   2203 
   2204   // Indicates that inline bump-pointer allocation has been globally disabled
   2205   // for all spaces. This is used to disable allocations in generated code.
   2206   bool inline_allocation_disabled_;
   2207 
   2208   // Weak list heads, threaded through the objects.
   2209   // List heads are initialized lazily and contain the undefined_value at start.
   2210   Object* native_contexts_list_;
   2211   Object* allocation_sites_list_;
   2212 
   2213   // List of encountered weak collections (JSWeakMap and JSWeakSet) during
   2214   // marking. It is initialized during marking, destroyed after marking and
   2215   // contains Smi(0) while marking is not active.
   2216   Object* encountered_weak_collections_;
   2217 
   2218   Object* encountered_weak_cells_;
   2219 
   2220   Object* encountered_transition_arrays_;
   2221 
   2222   List<GCCallbackPair> gc_epilogue_callbacks_;
   2223   List<GCCallbackPair> gc_prologue_callbacks_;
   2224 
   2225   // Total RegExp code ever generated
   2226   double total_regexp_code_generated_;
   2227 
   2228   int deferred_counters_[v8::Isolate::kUseCounterFeatureCount];
   2229 
   2230   GCTracer* tracer_;
   2231 
   2232   size_t promoted_objects_size_;
   2233   double promotion_ratio_;
   2234   double promotion_rate_;
   2235   size_t semi_space_copied_object_size_;
   2236   size_t previous_semi_space_copied_object_size_;
   2237   double semi_space_copied_rate_;
   2238   int nodes_died_in_new_space_;
   2239   int nodes_copied_in_new_space_;
   2240   int nodes_promoted_;
   2241 
   2242   // This is the pretenuring trigger for allocation sites that are in maybe
   2243   // tenure state. When we switched to the maximum new space size we deoptimize
   2244   // the code that belongs to the allocation site and derive the lifetime
   2245   // of the allocation site.
   2246   unsigned int maximum_size_scavenges_;
   2247 
   2248   // Total time spent in GC.
   2249   double total_gc_time_ms_;
   2250 
   2251   // Last time an idle notification happened.
   2252   double last_idle_notification_time_;
   2253 
   2254   // Last time a garbage collection happened.
   2255   double last_gc_time_;
   2256 
   2257   Scavenger* scavenge_collector_;
   2258 
   2259   MarkCompactCollector* mark_compact_collector_;
   2260 
   2261   MemoryAllocator* memory_allocator_;
   2262 
   2263   StoreBuffer* store_buffer_;
   2264 
   2265   IncrementalMarking* incremental_marking_;
   2266 
   2267   GCIdleTimeHandler* gc_idle_time_handler_;
   2268 
   2269   MemoryReducer* memory_reducer_;
   2270 
   2271   ObjectStats* live_object_stats_;
   2272   ObjectStats* dead_object_stats_;
   2273 
   2274   ScavengeJob* scavenge_job_;
   2275 
   2276   AllocationObserver* idle_scavenge_observer_;
   2277 
   2278   // These two counters are monotomically increasing and never reset.
   2279   size_t full_codegen_bytes_generated_;
   2280   size_t crankshaft_codegen_bytes_generated_;
   2281 
   2282   // This counter is increased before each GC and never reset.
   2283   // To account for the bytes allocated since the last GC, use the
   2284   // NewSpaceAllocationCounter() function.
   2285   size_t new_space_allocation_counter_;
   2286 
   2287   // This counter is increased before each GC and never reset. To
   2288   // account for the bytes allocated since the last GC, use the
   2289   // OldGenerationAllocationCounter() function.
   2290   size_t old_generation_allocation_counter_at_last_gc_;
   2291 
   2292   // The size of objects in old generation after the last MarkCompact GC.
   2293   size_t old_generation_size_at_last_gc_;
   2294 
   2295   // If the --deopt_every_n_garbage_collections flag is set to a positive value,
   2296   // this variable holds the number of garbage collections since the last
   2297   // deoptimization triggered by garbage collection.
   2298   int gcs_since_last_deopt_;
   2299 
   2300   // The feedback storage is used to store allocation sites (keys) and how often
   2301   // they have been visited (values) by finding a memento behind an object. The
   2302   // storage is only alive temporary during a GC. The invariant is that all
   2303   // pointers in this map are already fixed, i.e., they do not point to
   2304   // forwarding pointers.
   2305   base::HashMap* global_pretenuring_feedback_;
   2306 
   2307   char trace_ring_buffer_[kTraceRingBufferSize];
   2308   // If it's not full then the data is from 0 to ring_buffer_end_.  If it's
   2309   // full then the data is from ring_buffer_end_ to the end of the buffer and
   2310   // from 0 to ring_buffer_end_.
   2311   bool ring_buffer_full_;
   2312   size_t ring_buffer_end_;
   2313 
   2314   // Shared state read by the scavenge collector and set by ScavengeObject.
   2315   PromotionQueue promotion_queue_;
   2316 
   2317   // Flag is set when the heap has been configured.  The heap can be repeatedly
   2318   // configured through the API until it is set up.
   2319   bool configured_;
   2320 
   2321   // Currently set GC flags that are respected by all GC components.
   2322   int current_gc_flags_;
   2323 
   2324   // Currently set GC callback flags that are used to pass information between
   2325   // the embedder and V8's GC.
   2326   GCCallbackFlags current_gc_callback_flags_;
   2327 
   2328   ExternalStringTable external_string_table_;
   2329 
   2330   base::Mutex relocation_mutex_;
   2331 
   2332   int gc_callbacks_depth_;
   2333 
   2334   bool deserialization_complete_;
   2335 
   2336   StrongRootsList* strong_roots_list_;
   2337 
   2338   // The depth of HeapIterator nestings.
   2339   int heap_iterator_depth_;
   2340 
   2341   EmbedderHeapTracer* embedder_heap_tracer_;
   2342   std::vector<std::pair<void*, void*>> wrappers_to_trace_;
   2343 
   2344   // Used for testing purposes.
   2345   bool force_oom_;
   2346   bool delay_sweeper_tasks_for_testing_;
   2347 
   2348   // Classes in "heap" can be friends.
   2349   friend class AlwaysAllocateScope;
   2350   friend class GCCallbacksScope;
   2351   friend class GCTracer;
   2352   friend class HeapIterator;
   2353   friend class IdleScavengeObserver;
   2354   friend class IncrementalMarking;
   2355   friend class IncrementalMarkingJob;
   2356   friend class LargeObjectSpace;
   2357   friend class MarkCompactCollector;
   2358   friend class MarkCompactMarkingVisitor;
   2359   friend class NewSpace;
   2360   friend class ObjectStatsCollector;
   2361   friend class Page;
   2362   friend class PagedSpace;
   2363   friend class Scavenger;
   2364   friend class StoreBuffer;
   2365   friend class TestMemoryAllocatorScope;
   2366 
   2367   // The allocator interface.
   2368   friend class Factory;
   2369 
   2370   // The Isolate constructs us.
   2371   friend class Isolate;
   2372 
   2373   // Used in cctest.
   2374   friend class HeapTester;
   2375 
   2376   DISALLOW_COPY_AND_ASSIGN(Heap);
   2377 };
   2378 
   2379 
   2380 class HeapStats {
   2381  public:
   2382   static const int kStartMarker = 0xDECADE00;
   2383   static const int kEndMarker = 0xDECADE01;
   2384 
   2385   intptr_t* start_marker;                  //  0
   2386   size_t* new_space_size;                  //  1
   2387   size_t* new_space_capacity;              //  2
   2388   size_t* old_space_size;                  //  3
   2389   size_t* old_space_capacity;              //  4
   2390   size_t* code_space_size;                 //  5
   2391   size_t* code_space_capacity;             //  6
   2392   size_t* map_space_size;                  //  7
   2393   size_t* map_space_capacity;              //  8
   2394   size_t* lo_space_size;                   //  9
   2395   size_t* global_handle_count;             // 10
   2396   size_t* weak_global_handle_count;        // 11
   2397   size_t* pending_global_handle_count;     // 12
   2398   size_t* near_death_global_handle_count;  // 13
   2399   size_t* free_global_handle_count;        // 14
   2400   size_t* memory_allocator_size;           // 15
   2401   size_t* memory_allocator_capacity;       // 16
   2402   size_t* malloced_memory;                 // 17
   2403   size_t* malloced_peak_memory;            // 18
   2404   size_t* objects_per_type;                // 19
   2405   size_t* size_per_type;                   // 20
   2406   int* os_error;                           // 21
   2407   char* last_few_messages;                 // 22
   2408   char* js_stacktrace;                     // 23
   2409   intptr_t* end_marker;                    // 24
   2410 };
   2411 
   2412 
   2413 class AlwaysAllocateScope {
   2414  public:
   2415   explicit inline AlwaysAllocateScope(Isolate* isolate);
   2416   inline ~AlwaysAllocateScope();
   2417 
   2418  private:
   2419   Heap* heap_;
   2420 };
   2421 
   2422 
   2423 // Visitor class to verify interior pointers in spaces that do not contain
   2424 // or care about intergenerational references. All heap object pointers have to
   2425 // point into the heap to a location that has a map pointer at its first word.
   2426 // Caveat: Heap::Contains is an approximation because it can return true for
   2427 // objects in a heap space but above the allocation pointer.
   2428 class VerifyPointersVisitor : public ObjectVisitor {
   2429  public:
   2430   inline void VisitPointers(Object** start, Object** end) override;
   2431 };
   2432 
   2433 
   2434 // Verify that all objects are Smis.
   2435 class VerifySmisVisitor : public ObjectVisitor {
   2436  public:
   2437   inline void VisitPointers(Object** start, Object** end) override;
   2438 };
   2439 
   2440 
   2441 // Space iterator for iterating over all spaces of the heap.  Returns each space
   2442 // in turn, and null when it is done.
   2443 class AllSpaces BASE_EMBEDDED {
   2444  public:
   2445   explicit AllSpaces(Heap* heap) : heap_(heap), counter_(FIRST_SPACE) {}
   2446   Space* next();
   2447 
   2448  private:
   2449   Heap* heap_;
   2450   int counter_;
   2451 };
   2452 
   2453 
   2454 // Space iterator for iterating over all old spaces of the heap: Old space
   2455 // and code space.  Returns each space in turn, and null when it is done.
   2456 class V8_EXPORT_PRIVATE OldSpaces BASE_EMBEDDED {
   2457  public:
   2458   explicit OldSpaces(Heap* heap) : heap_(heap), counter_(OLD_SPACE) {}
   2459   OldSpace* next();
   2460 
   2461  private:
   2462   Heap* heap_;
   2463   int counter_;
   2464 };
   2465 
   2466 
   2467 // Space iterator for iterating over all the paged spaces of the heap: Map
   2468 // space, old space, code space and cell space.  Returns
   2469 // each space in turn, and null when it is done.
   2470 class PagedSpaces BASE_EMBEDDED {
   2471  public:
   2472   explicit PagedSpaces(Heap* heap) : heap_(heap), counter_(OLD_SPACE) {}
   2473   PagedSpace* next();
   2474 
   2475  private:
   2476   Heap* heap_;
   2477   int counter_;
   2478 };
   2479 
   2480 
   2481 class SpaceIterator : public Malloced {
   2482  public:
   2483   explicit SpaceIterator(Heap* heap);
   2484   virtual ~SpaceIterator();
   2485 
   2486   bool has_next();
   2487   Space* next();
   2488 
   2489  private:
   2490   Heap* heap_;
   2491   int current_space_;         // from enum AllocationSpace.
   2492 };
   2493 
   2494 
   2495 // A HeapIterator provides iteration over the whole heap. It
   2496 // aggregates the specific iterators for the different spaces as
   2497 // these can only iterate over one space only.
   2498 //
   2499 // HeapIterator ensures there is no allocation during its lifetime
   2500 // (using an embedded DisallowHeapAllocation instance).
   2501 //
   2502 // HeapIterator can skip free list nodes (that is, de-allocated heap
   2503 // objects that still remain in the heap). As implementation of free
   2504 // nodes filtering uses GC marks, it can't be used during MS/MC GC
   2505 // phases. Also, it is forbidden to interrupt iteration in this mode,
   2506 // as this will leave heap objects marked (and thus, unusable).
   2507 class HeapIterator BASE_EMBEDDED {
   2508  public:
   2509   enum HeapObjectsFiltering { kNoFiltering, kFilterUnreachable };
   2510 
   2511   explicit HeapIterator(Heap* heap,
   2512                         HeapObjectsFiltering filtering = kNoFiltering);
   2513   ~HeapIterator();
   2514 
   2515   HeapObject* next();
   2516 
   2517  private:
   2518   struct MakeHeapIterableHelper {
   2519     explicit MakeHeapIterableHelper(Heap* heap) { heap->MakeHeapIterable(); }
   2520   };
   2521 
   2522   HeapObject* NextObject();
   2523 
   2524   // The following two fields need to be declared in this order. Initialization
   2525   // order guarantees that we first make the heap iterable (which may involve
   2526   // allocations) and only then lock it down by not allowing further
   2527   // allocations.
   2528   MakeHeapIterableHelper make_heap_iterable_helper_;
   2529   DisallowHeapAllocation no_heap_allocation_;
   2530 
   2531   Heap* heap_;
   2532   HeapObjectsFiltering filtering_;
   2533   HeapObjectsFilter* filter_;
   2534   // Space iterator for iterating all the spaces.
   2535   SpaceIterator* space_iterator_;
   2536   // Object iterator for the space currently being iterated.
   2537   std::unique_ptr<ObjectIterator> object_iterator_;
   2538 };
   2539 
   2540 // Abstract base class for checking whether a weak object should be retained.
   2541 class WeakObjectRetainer {
   2542  public:
   2543   virtual ~WeakObjectRetainer() {}
   2544 
   2545   // Return whether this object should be retained. If NULL is returned the
   2546   // object has no references. Otherwise the address of the retained object
   2547   // should be returned as in some GC situations the object has been moved.
   2548   virtual Object* RetainAs(Object* object) = 0;
   2549 };
   2550 
   2551 
   2552 #ifdef DEBUG
   2553 // Helper class for tracing paths to a search target Object from all roots.
   2554 // The TracePathFrom() method can be used to trace paths from a specific
   2555 // object to the search target object.
   2556 class PathTracer : public ObjectVisitor {
   2557  public:
   2558   enum WhatToFind {
   2559     FIND_ALL,   // Will find all matches.
   2560     FIND_FIRST  // Will stop the search after first match.
   2561   };
   2562 
   2563   // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
   2564   static const int kMarkTag = 2;
   2565 
   2566   // For the WhatToFind arg, if FIND_FIRST is specified, tracing will stop
   2567   // after the first match.  If FIND_ALL is specified, then tracing will be
   2568   // done for all matches.
   2569   PathTracer(Object* search_target, WhatToFind what_to_find,
   2570              VisitMode visit_mode)
   2571       : search_target_(search_target),
   2572         found_target_(false),
   2573         found_target_in_trace_(false),
   2574         what_to_find_(what_to_find),
   2575         visit_mode_(visit_mode),
   2576         object_stack_(20),
   2577         no_allocation() {}
   2578 
   2579   void VisitPointers(Object** start, Object** end) override;
   2580 
   2581   void Reset();
   2582   void TracePathFrom(Object** root);
   2583 
   2584   bool found() const { return found_target_; }
   2585 
   2586   static Object* const kAnyGlobalObject;
   2587 
   2588  protected:
   2589   class MarkVisitor;
   2590   class UnmarkVisitor;
   2591 
   2592   void MarkRecursively(Object** p, MarkVisitor* mark_visitor);
   2593   void UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor);
   2594   virtual void ProcessResults();
   2595 
   2596   Object* search_target_;
   2597   bool found_target_;
   2598   bool found_target_in_trace_;
   2599   WhatToFind what_to_find_;
   2600   VisitMode visit_mode_;
   2601   List<Object*> object_stack_;
   2602 
   2603   DisallowHeapAllocation no_allocation;  // i.e. no gc allowed.
   2604 
   2605  private:
   2606   DISALLOW_IMPLICIT_CONSTRUCTORS(PathTracer);
   2607 };
   2608 #endif  // DEBUG
   2609 
   2610 // -----------------------------------------------------------------------------
   2611 // Allows observation of allocations.
   2612 class AllocationObserver {
   2613  public:
   2614   explicit AllocationObserver(intptr_t step_size)
   2615       : step_size_(step_size), bytes_to_next_step_(step_size) {
   2616     DCHECK(step_size >= kPointerSize);
   2617   }
   2618   virtual ~AllocationObserver() {}
   2619 
   2620   // Called each time the observed space does an allocation step. This may be
   2621   // more frequently than the step_size we are monitoring (e.g. when there are
   2622   // multiple observers, or when page or space boundary is encountered.)
   2623   void AllocationStep(int bytes_allocated, Address soon_object, size_t size) {
   2624     bytes_to_next_step_ -= bytes_allocated;
   2625     if (bytes_to_next_step_ <= 0) {
   2626       Step(static_cast<int>(step_size_ - bytes_to_next_step_), soon_object,
   2627            size);
   2628       step_size_ = GetNextStepSize();
   2629       bytes_to_next_step_ = step_size_;
   2630     }
   2631   }
   2632 
   2633  protected:
   2634   intptr_t step_size() const { return step_size_; }
   2635   intptr_t bytes_to_next_step() const { return bytes_to_next_step_; }
   2636 
   2637   // Pure virtual method provided by the subclasses that gets called when at
   2638   // least step_size bytes have been allocated. soon_object is the address just
   2639   // allocated (but not yet initialized.) size is the size of the object as
   2640   // requested (i.e. w/o the alignment fillers). Some complexities to be aware
   2641   // of:
   2642   // 1) soon_object will be nullptr in cases where we end up observing an
   2643   //    allocation that happens to be a filler space (e.g. page boundaries.)
   2644   // 2) size is the requested size at the time of allocation. Right-trimming
   2645   //    may change the object size dynamically.
   2646   // 3) soon_object may actually be the first object in an allocation-folding
   2647   //    group. In such a case size is the size of the group rather than the
   2648   //    first object.
   2649   virtual void Step(int bytes_allocated, Address soon_object, size_t size) = 0;
   2650 
   2651   // Subclasses can override this method to make step size dynamic.
   2652   virtual intptr_t GetNextStepSize() { return step_size_; }
   2653 
   2654   intptr_t step_size_;
   2655   intptr_t bytes_to_next_step_;
   2656 
   2657  private:
   2658   friend class LargeObjectSpace;
   2659   friend class NewSpace;
   2660   friend class PagedSpace;
   2661   DISALLOW_COPY_AND_ASSIGN(AllocationObserver);
   2662 };
   2663 
   2664 }  // namespace internal
   2665 }  // namespace v8
   2666 
   2667 #endif  // V8_HEAP_HEAP_H_
   2668