Home | History | Annotate | Download | only in math
      1 /*
      2  * Copyright (C) 2016 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 /////////////////////////////////////////////////////////////////////////
     18 /*
     19  * This module contains vector math utilities for the following datatypes:
     20  * -) Vec3 structures for 3-dimensional vectors
     21  * -) Vec4 structures for 4-dimensional vectors
     22  * -) floating point arrays for N-dimensional vectors.
     23  *
     24  * Note that the Vec3 and Vec4 utilties were ported from the Android
     25  * repository and maintain dependenices in that separate codebase. As a
     26  * result, the function signatures were left untouched for compatibility with
     27  * this legacy code, despite certain style violations. In particular, for this
     28  * module the function argument ordering is outputs before inputs. This style
     29  * violation will be addressed once the full set of dependencies in Android
     30  * have been brought into this repository.
     31  */
     32 #ifndef LOCATION_LBS_CONTEXTHUB_NANOAPPS_COMMON_MATH_VEC_H_
     33 #define LOCATION_LBS_CONTEXTHUB_NANOAPPS_COMMON_MATH_VEC_H_
     34 
     35 #ifdef NANOHUB_NON_CHRE_API
     36 #include <nanohub_math.h>
     37 #else
     38 #include <math.h>
     39 #endif  // NANOHUB_NON_CHRE_API
     40 
     41 #include <stddef.h>
     42 #include "util/nano_assert.h"
     43 
     44 #ifdef __cplusplus
     45 extern "C" {
     46 #endif
     47 
     48 struct Vec3 {
     49   float x, y, z;
     50 };
     51 
     52 struct Vec4 {
     53   float x, y, z, w;
     54 };
     55 
     56 #define NANO_PI (3.14159265359f)
     57 
     58 #define NANO_ABS(x) ((x) > 0 ? (x) : -(x))
     59 
     60 #define NANO_MAX(a, b) ((a) > (b)) ? (a) : (b)
     61 
     62 #define NANO_MIN(a, b) ((a) < (b)) ? (a) : (b)
     63 
     64 // 3-DIMENSIONAL VECTOR MATH ///////////////////////////////////////////
     65 static inline void initVec3(struct Vec3 *v, float x, float y, float z) {
     66   ASSERT_NOT_NULL(v);
     67   v->x = x;
     68   v->y = y;
     69   v->z = z;
     70 }
     71 
     72 // Updates v as the sum of v and w.
     73 static inline void vec3Add(struct Vec3 *v, const struct Vec3 *w) {
     74   ASSERT_NOT_NULL(v);
     75   ASSERT_NOT_NULL(w);
     76   v->x += w->x;
     77   v->y += w->y;
     78   v->z += w->z;
     79 }
     80 
     81 // Updates v as the subtraction of w from v.
     82 static inline void vec3Sub(struct Vec3 *v, const struct Vec3 *w) {
     83   ASSERT_NOT_NULL(v);
     84   ASSERT_NOT_NULL(w);
     85   v->x -= w->x;
     86   v->y -= w->y;
     87   v->z -= w->z;
     88 }
     89 
     90 // Scales v by the scalar c, i.e. v = c * v.
     91 static inline void vec3ScalarMul(struct Vec3 *v, float c) {
     92   ASSERT_NOT_NULL(v);
     93   v->x *= c;
     94   v->y *= c;
     95   v->z *= c;
     96 }
     97 
     98 // Returns the dot product of v and w.
     99 static inline float vec3Dot(const struct Vec3 *v, const struct Vec3 *w) {
    100   ASSERT_NOT_NULL(v);
    101   ASSERT_NOT_NULL(w);
    102   return v->x * w->x + v->y * w->y + v->z * w->z;
    103 }
    104 
    105 // Returns the square of the L2-norm of the given vector.
    106 static inline float vec3NormSquared(const struct Vec3 *v) {
    107   ASSERT_NOT_NULL(v);
    108   return vec3Dot(v, v);
    109 }
    110 
    111 // Returns the L2-norm of the given vector.
    112 static inline float vec3Norm(const struct Vec3 *v) {
    113   ASSERT_NOT_NULL(v);
    114   return sqrtf(vec3NormSquared(v));
    115 }
    116 
    117 // Normalizes the provided vector to unit norm. If the provided vector has a
    118 // norm of zero, the vector will be unchanged.
    119 static inline void vec3Normalize(struct Vec3 *v) {
    120   ASSERT_NOT_NULL(v);
    121   float norm = vec3Norm(v);
    122   ASSERT(norm > 0);
    123   // Only normalize if norm is non-zero.
    124   if (norm > 0) {
    125     float invNorm = 1.0f / norm;
    126     v->x *= invNorm;
    127     v->y *= invNorm;
    128     v->z *= invNorm;
    129   }
    130 }
    131 
    132 // Updates u as the cross product of v and w.
    133 static inline void vec3Cross(struct Vec3 *u, const struct Vec3 *v,
    134                              const struct Vec3 *w) {
    135   ASSERT_NOT_NULL(u);
    136   ASSERT_NOT_NULL(v);
    137   ASSERT_NOT_NULL(w);
    138   u->x = v->y * w->z - v->z * w->y;
    139   u->y = v->z * w->x - v->x * w->z;
    140   u->z = v->x * w->y - v->y * w->x;
    141 }
    142 
    143 // Finds a vector orthogonal to the vector [inX, inY, inZ] and returns
    144 // this in the components [outX, outY, outZ].  The vector is chosen such
    145 // that the smallest component of [inX, inY, inZ] is set to zero in the
    146 // output vector. For example, for the in vector [0.01, 4.0, 5.0], this
    147 // function will return [0, 5.0, -4.0].
    148 void findOrthogonalVector(float inX, float inY, float inZ, float *outX,
    149                           float *outY, float *outZ);
    150 
    151 
    152 // 4-DIMENSIONAL VECTOR MATH ///////////////////////////////////////////
    153 // Initialize the Vec4 structure with the provided component values.
    154 static inline void initVec4(struct Vec4 *v, float x, float y, float z,
    155                             float w) {
    156   ASSERT_NOT_NULL(v);
    157   v->x = x;
    158   v->y = y;
    159   v->z = z;
    160   v->w = w;
    161 }
    162 
    163 // N-DIMENSIONAL VECTOR MATH ///////////////////////////////////////////
    164 // Dimension specified by the last argument in all functions below.
    165 
    166 // Adds two vectors and returns the sum in the provided vector, i.e.
    167 // u = v + w.
    168 void vecAdd(float *u, const float *v, const float *w, int dim);
    169 
    170 // Adds two vectors and returns the sum in the first vector, i.e.
    171 // v = v + w.
    172 void vecAddInPlace(float *v, const float *w, int dim);
    173 
    174 // Subtracts two vectors and returns in the provided vector, i.e.
    175 // u = v - w.
    176 void vecSub(float *u, const float *v, const float *w, int dim);
    177 
    178 // Scales vector by a scalar and returns in the provided vector, i.e.
    179 // u = c * v.
    180 void vecScalarMul(float *u, const float *v, float c, int dim);
    181 
    182 // Scales vector by a scalar and returns in the same vector, i.e.
    183 // v = c * v.
    184 void vecScalarMulInPlace(float *v, float c, int dim);
    185 
    186 // Returns the L2-norm of the given vector.
    187 float vecNorm(const float *v, int dim);
    188 
    189 // Returns the square of the L2-norm of the given vector.
    190 float vecNormSquared(const float *v, int dim);
    191 
    192 // Returns the dot product of v and w.
    193 float vecDot(const float *v, const float *w, int dim);
    194 
    195 // Returns the maximum absolute value in vector.
    196 float vecMaxAbsoluteValue(const float *v, int dim);
    197 
    198 #ifdef __cplusplus
    199 }
    200 #endif
    201 
    202 #endif  // LOCATION_LBS_CONTEXTHUB_NANOAPPS_COMMON_MATH_VEC_H_
    203