Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  *
      7  * The following code is based on the description in RFC 1321.
      8  * http://www.ietf.org/rfc/rfc1321.txt
      9  */
     10 
     11 //The following macros can be defined to affect the MD5 code generated.
     12 //SK_MD5_CLEAR_DATA causes all intermediate state to be overwritten with 0's.
     13 //SK_CPU_LENDIAN allows 32 bit <=> 8 bit conversions without copies (if alligned).
     14 //SK_CPU_FAST_UNALIGNED_ACCESS allows 32 bit <=> 8 bit conversions without copies if SK_CPU_LENDIAN.
     15 
     16 #include "SkMD5.h"
     17 #include <string.h>
     18 
     19 /** MD5 basic transformation. Transforms state based on block. */
     20 static void transform(uint32_t state[4], const uint8_t block[64]);
     21 
     22 /** Encodes input into output (4 little endian 32 bit values). */
     23 static void encode(uint8_t output[16], const uint32_t input[4]);
     24 
     25 /** Encodes input into output (little endian 64 bit value). */
     26 static void encode(uint8_t output[8], const uint64_t input);
     27 
     28 /** Decodes input (4 little endian 32 bit values) into storage, if required. */
     29 static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]);
     30 
     31 SkMD5::SkMD5() : byteCount(0) {
     32     // These are magic numbers from the specification.
     33     this->state[0] = 0x67452301;
     34     this->state[1] = 0xefcdab89;
     35     this->state[2] = 0x98badcfe;
     36     this->state[3] = 0x10325476;
     37 }
     38 
     39 bool SkMD5::write(const void* buf, size_t inputLength) {
     40     const uint8_t* input = reinterpret_cast<const uint8_t*>(buf);
     41     unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
     42     unsigned int bufferAvailable = 64 - bufferIndex;
     43 
     44     unsigned int inputIndex;
     45     if (inputLength >= bufferAvailable) {
     46         if (bufferIndex) {
     47             memcpy(&this->buffer[bufferIndex], input, bufferAvailable);
     48             transform(this->state, this->buffer);
     49             inputIndex = bufferAvailable;
     50         } else {
     51             inputIndex = 0;
     52         }
     53 
     54         for (; inputIndex + 63 < inputLength; inputIndex += 64) {
     55             transform(this->state, &input[inputIndex]);
     56         }
     57 
     58         bufferIndex = 0;
     59     } else {
     60         inputIndex = 0;
     61     }
     62 
     63     memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex);
     64 
     65     this->byteCount += inputLength;
     66     return true;
     67 }
     68 
     69 void SkMD5::finish(Digest& digest) {
     70     // Get the number of bits before padding.
     71     uint8_t bits[8];
     72     encode(bits, this->byteCount << 3);
     73 
     74     // Pad out to 56 mod 64.
     75     unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
     76     unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex);
     77     static uint8_t PADDING[64] = {
     78         0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     79            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     80            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     81            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     82     };
     83     (void)this->write(PADDING, paddingLength);
     84 
     85     // Append length (length before padding, will cause final update).
     86     (void)this->write(bits, 8);
     87 
     88     // Write out digest.
     89     encode(digest.data, this->state);
     90 
     91 #if defined(SK_MD5_CLEAR_DATA)
     92     // Clear state.
     93     memset(this, 0, sizeof(*this));
     94 #endif
     95 }
     96 
     97 struct F { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
     98     //return (x & y) | ((~x) & z);
     99     return ((y ^ z) & x) ^ z; //equivelent but faster
    100 }};
    101 
    102 struct G { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
    103     return (x & z) | (y & (~z));
    104     //return ((x ^ y) & z) ^ y; //equivelent but slower
    105 }};
    106 
    107 struct H { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
    108     return x ^ y ^ z;
    109 }};
    110 
    111 struct I { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
    112     return y ^ (x | (~z));
    113 }};
    114 
    115 /** Rotates x left n bits. */
    116 static inline uint32_t rotate_left(uint32_t x, uint8_t n) {
    117     return (x << n) | (x >> (32 - n));
    118 }
    119 
    120 template <typename T>
    121 static inline void operation(T operation, uint32_t& a, uint32_t b, uint32_t c, uint32_t d,
    122                              uint32_t x, uint8_t s, uint32_t t) {
    123     a = b + rotate_left(a + operation(b, c, d) + x + t, s);
    124 }
    125 
    126 static void transform(uint32_t state[4], const uint8_t block[64]) {
    127     uint32_t a = state[0], b = state[1], c = state[2], d = state[3];
    128 
    129     uint32_t storage[16];
    130     const uint32_t* X = decode(storage, block);
    131 
    132     // Round 1
    133     operation(F(), a, b, c, d, X[ 0],  7, 0xd76aa478); // 1
    134     operation(F(), d, a, b, c, X[ 1], 12, 0xe8c7b756); // 2
    135     operation(F(), c, d, a, b, X[ 2], 17, 0x242070db); // 3
    136     operation(F(), b, c, d, a, X[ 3], 22, 0xc1bdceee); // 4
    137     operation(F(), a, b, c, d, X[ 4],  7, 0xf57c0faf); // 5
    138     operation(F(), d, a, b, c, X[ 5], 12, 0x4787c62a); // 6
    139     operation(F(), c, d, a, b, X[ 6], 17, 0xa8304613); // 7
    140     operation(F(), b, c, d, a, X[ 7], 22, 0xfd469501); // 8
    141     operation(F(), a, b, c, d, X[ 8],  7, 0x698098d8); // 9
    142     operation(F(), d, a, b, c, X[ 9], 12, 0x8b44f7af); // 10
    143     operation(F(), c, d, a, b, X[10], 17, 0xffff5bb1); // 11
    144     operation(F(), b, c, d, a, X[11], 22, 0x895cd7be); // 12
    145     operation(F(), a, b, c, d, X[12],  7, 0x6b901122); // 13
    146     operation(F(), d, a, b, c, X[13], 12, 0xfd987193); // 14
    147     operation(F(), c, d, a, b, X[14], 17, 0xa679438e); // 15
    148     operation(F(), b, c, d, a, X[15], 22, 0x49b40821); // 16
    149 
    150     // Round 2
    151     operation(G(), a, b, c, d, X[ 1],  5, 0xf61e2562); // 17
    152     operation(G(), d, a, b, c, X[ 6],  9, 0xc040b340); // 18
    153     operation(G(), c, d, a, b, X[11], 14, 0x265e5a51); // 19
    154     operation(G(), b, c, d, a, X[ 0], 20, 0xe9b6c7aa); // 20
    155     operation(G(), a, b, c, d, X[ 5],  5, 0xd62f105d); // 21
    156     operation(G(), d, a, b, c, X[10],  9,  0x2441453); // 22
    157     operation(G(), c, d, a, b, X[15], 14, 0xd8a1e681); // 23
    158     operation(G(), b, c, d, a, X[ 4], 20, 0xe7d3fbc8); // 24
    159     operation(G(), a, b, c, d, X[ 9],  5, 0x21e1cde6); // 25
    160     operation(G(), d, a, b, c, X[14],  9, 0xc33707d6); // 26
    161     operation(G(), c, d, a, b, X[ 3], 14, 0xf4d50d87); // 27
    162     operation(G(), b, c, d, a, X[ 8], 20, 0x455a14ed); // 28
    163     operation(G(), a, b, c, d, X[13],  5, 0xa9e3e905); // 29
    164     operation(G(), d, a, b, c, X[ 2],  9, 0xfcefa3f8); // 30
    165     operation(G(), c, d, a, b, X[ 7], 14, 0x676f02d9); // 31
    166     operation(G(), b, c, d, a, X[12], 20, 0x8d2a4c8a); // 32
    167 
    168     // Round 3
    169     operation(H(), a, b, c, d, X[ 5],  4, 0xfffa3942); // 33
    170     operation(H(), d, a, b, c, X[ 8], 11, 0x8771f681); // 34
    171     operation(H(), c, d, a, b, X[11], 16, 0x6d9d6122); // 35
    172     operation(H(), b, c, d, a, X[14], 23, 0xfde5380c); // 36
    173     operation(H(), a, b, c, d, X[ 1],  4, 0xa4beea44); // 37
    174     operation(H(), d, a, b, c, X[ 4], 11, 0x4bdecfa9); // 38
    175     operation(H(), c, d, a, b, X[ 7], 16, 0xf6bb4b60); // 39
    176     operation(H(), b, c, d, a, X[10], 23, 0xbebfbc70); // 40
    177     operation(H(), a, b, c, d, X[13],  4, 0x289b7ec6); // 41
    178     operation(H(), d, a, b, c, X[ 0], 11, 0xeaa127fa); // 42
    179     operation(H(), c, d, a, b, X[ 3], 16, 0xd4ef3085); // 43
    180     operation(H(), b, c, d, a, X[ 6], 23,  0x4881d05); // 44
    181     operation(H(), a, b, c, d, X[ 9],  4, 0xd9d4d039); // 45
    182     operation(H(), d, a, b, c, X[12], 11, 0xe6db99e5); // 46
    183     operation(H(), c, d, a, b, X[15], 16, 0x1fa27cf8); // 47
    184     operation(H(), b, c, d, a, X[ 2], 23, 0xc4ac5665); // 48
    185 
    186     // Round 4
    187     operation(I(), a, b, c, d, X[ 0],  6, 0xf4292244); // 49
    188     operation(I(), d, a, b, c, X[ 7], 10, 0x432aff97); // 50
    189     operation(I(), c, d, a, b, X[14], 15, 0xab9423a7); // 51
    190     operation(I(), b, c, d, a, X[ 5], 21, 0xfc93a039); // 52
    191     operation(I(), a, b, c, d, X[12],  6, 0x655b59c3); // 53
    192     operation(I(), d, a, b, c, X[ 3], 10, 0x8f0ccc92); // 54
    193     operation(I(), c, d, a, b, X[10], 15, 0xffeff47d); // 55
    194     operation(I(), b, c, d, a, X[ 1], 21, 0x85845dd1); // 56
    195     operation(I(), a, b, c, d, X[ 8],  6, 0x6fa87e4f); // 57
    196     operation(I(), d, a, b, c, X[15], 10, 0xfe2ce6e0); // 58
    197     operation(I(), c, d, a, b, X[ 6], 15, 0xa3014314); // 59
    198     operation(I(), b, c, d, a, X[13], 21, 0x4e0811a1); // 60
    199     operation(I(), a, b, c, d, X[ 4],  6, 0xf7537e82); // 61
    200     operation(I(), d, a, b, c, X[11], 10, 0xbd3af235); // 62
    201     operation(I(), c, d, a, b, X[ 2], 15, 0x2ad7d2bb); // 63
    202     operation(I(), b, c, d, a, X[ 9], 21, 0xeb86d391); // 64
    203 
    204     state[0] += a;
    205     state[1] += b;
    206     state[2] += c;
    207     state[3] += d;
    208 
    209 #if defined(SK_MD5_CLEAR_DATA)
    210     // Clear sensitive information.
    211     if (X == &storage) {
    212         memset(storage, 0, sizeof(storage));
    213     }
    214 #endif
    215 }
    216 
    217 static void encode(uint8_t output[16], const uint32_t input[4]) {
    218     for (size_t i = 0, j = 0; i < 4; i++, j += 4) {
    219         output[j  ] = (uint8_t) (input[i]        & 0xff);
    220         output[j+1] = (uint8_t)((input[i] >>  8) & 0xff);
    221         output[j+2] = (uint8_t)((input[i] >> 16) & 0xff);
    222         output[j+3] = (uint8_t)((input[i] >> 24) & 0xff);
    223     }
    224 }
    225 
    226 static void encode(uint8_t output[8], const uint64_t input) {
    227     output[0] = (uint8_t) (input        & 0xff);
    228     output[1] = (uint8_t)((input >>  8) & 0xff);
    229     output[2] = (uint8_t)((input >> 16) & 0xff);
    230     output[3] = (uint8_t)((input >> 24) & 0xff);
    231     output[4] = (uint8_t)((input >> 32) & 0xff);
    232     output[5] = (uint8_t)((input >> 40) & 0xff);
    233     output[6] = (uint8_t)((input >> 48) & 0xff);
    234     output[7] = (uint8_t)((input >> 56) & 0xff);
    235 }
    236 
    237 static inline bool is_aligned(const void *pointer, size_t byte_count) {
    238     return reinterpret_cast<uintptr_t>(pointer) % byte_count == 0;
    239 }
    240 
    241 static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]) {
    242 #if defined(SK_CPU_LENDIAN) && defined(SK_CPU_FAST_UNALIGNED_ACCESS)
    243    return reinterpret_cast<const uint32_t*>(input);
    244 #else
    245 #if defined(SK_CPU_LENDIAN)
    246     if (is_aligned(input, 4)) {
    247         return reinterpret_cast<const uint32_t*>(input);
    248     }
    249 #endif
    250     for (size_t i = 0, j = 0; j < 64; i++, j += 4) {
    251         storage[i] =  ((uint32_t)input[j  ])        |
    252                      (((uint32_t)input[j+1]) <<  8) |
    253                      (((uint32_t)input[j+2]) << 16) |
    254                      (((uint32_t)input[j+3]) << 24);
    255     }
    256     return storage;
    257 #endif
    258 }
    259