HomeSort by relevance Sort by last modified time
    Searched refs:hfsq (Results 1 - 25 of 27) sorted by null

1 2

  /bionic/libm/upstream-freebsd/lib/msun/src/
k_logf.h 29 float hfsq,s,z,R,w,t1,t2; local
37 hfsq=(float)0.5*f*f;
38 return s*(hfsq+R);
e_log10f.c 36 float f,hfsq,hi,lo,r,y; local
59 hfsq = (float)0.5*f*f;
64 return (r - hfsq + f) * ((float_t)ivln10lo + ivln10hi) +
66 hi = f - hfsq;
69 lo = (f - hi) - hfsq + r;
e_log2f.c 34 float f,hfsq,hi,lo,r,y; local
57 hfsq = (float)0.5*f*f;
75 return (r - hfsq + f) * ((float_t)ivln2lo + ivln2hi) + y;
77 hi = f - hfsq;
80 lo = (f - hi) - hfsq + r;
k_log.h 46 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
50 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
53 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
90 double hfsq,s,z,R,w,t1,t2; local
98 hfsq=0.5*f*f;
99 return s*(hfsq+R)
    [all...]
e_log2.c 44 double f,hfsq,hi,lo,r,val_hi,val_lo,w,y; local
68 hfsq = 0.5*f*f;
72 * f-hfsq must (for args near 1) be evaluated in extra precision
74 * This is fairly efficient since f-hfsq only depends on f, so can
75 * be evaluated in parallel with R. Not combining hfsq with R also
80 * theorem for spitting f-hfsq as hi+lo, unless double_t was used
101 hi = f - hfsq;
103 lo = (f - hi) - hfsq + r;
s_log1p.c 45 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
48 * log1p(f) = f - (hfsq - s*(hfsq+R)).
51 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
104 double hfsq,f,c,s,z,R,u; local
157 hfsq=0.5*f*f;
167 R = hfsq*(1.0-0.66666666666666666*f)
    [all...]
s_log1pf.c 42 float hfsq,f,c,s,z,R,u; local
96 hfsq=(float)0.5*f*f;
106 R = hfsq*((float)1.0-(float)0.66666666666666666*f);
113 if(k==0) return f-(hfsq-s*(hfsq+R)); else
114 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
e_log.c 40 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
44 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
47 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
91 double hfsq,f,s,z,R,w,t1,t2,dk; local
136 hfsq=0.5*f*f;
137 if(k==0) return f-(hfsq-s*(hfsq+R)); els
    [all...]
e_logf.c 38 float hfsq,f,s,z,R,w,t1,t2,dk; local
82 hfsq=(float)0.5*f*f;
83 if(k==0) return f-(hfsq-s*(hfsq+R)); else
84 return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
e_log10.c 44 double f,hfsq,hi,lo,r,val_hi,val_lo,w,y,y2; local
68 hfsq = 0.5*f*f;
72 hi = f - hfsq;
74 lo = (f - hi) - hfsq + r;
  /prebuilts/ndk/r11/sources/android/support/src/msun/
k_logf.h 29 float hfsq,s,z,R,w,t1,t2; local
37 hfsq=(float)0.5*f*f;
38 return s*(hfsq+R);
e_log2f.c 34 float f,hfsq,hi,lo,r,y; local
57 hfsq = (float)0.5*f*f;
75 return (r - hfsq + f) * ((float_t)ivln2lo + ivln2hi) + y;
77 hi = f - hfsq;
80 lo = (f - hi) - hfsq + r;
k_log.h 46 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
50 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
53 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
90 double hfsq,s,z,R,w,t1,t2; local
98 hfsq=0.5*f*f;
99 return s*(hfsq+R)
    [all...]
e_log2.c 44 double f,hfsq,hi,lo,r,val_hi,val_lo,w,y; local
68 hfsq = 0.5*f*f;
72 * f-hfsq must (for args near 1) be evaluated in extra precision
74 * This is fairly efficient since f-hfsq only depends on f, so can
75 * be evaluated in parallel with R. Not combining hfsq with R also
80 * theorem for spitting f-hfsq as hi+lo, unless double_t was used
101 hi = f - hfsq;
103 lo = (f - hi) - hfsq + r;
  /prebuilts/ndk/r13/sources/android/support/src/msun/
k_logf.h 29 float hfsq,s,z,R,w,t1,t2; local
37 hfsq=(float)0.5*f*f;
38 return s*(hfsq+R);
e_log2f.c 34 float f,hfsq,hi,lo,r,y; local
57 hfsq = (float)0.5*f*f;
75 return (r - hfsq + f) * ((float_t)ivln2lo + ivln2hi) + y;
77 hi = f - hfsq;
80 lo = (f - hi) - hfsq + r;
k_log.h 46 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
50 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
53 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
90 double hfsq,s,z,R,w,t1,t2; local
98 hfsq=0.5*f*f;
99 return s*(hfsq+R)
    [all...]
e_log2.c 44 double f,hfsq,hi,lo,r,val_hi,val_lo,w,y; local
68 hfsq = 0.5*f*f;
72 * f-hfsq must (for args near 1) be evaluated in extra precision
74 * This is fairly efficient since f-hfsq only depends on f, so can
75 * be evaluated in parallel with R. Not combining hfsq with R also
80 * theorem for spitting f-hfsq as hi+lo, unless double_t was used
101 hi = f - hfsq;
103 lo = (f - hi) - hfsq + r;
  /external/fdlibm/
s_log1p.c 43 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
46 * log1p(f) = f - (hfsq - s*(hfsq+R)).
49 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
106 double hfsq,f,c,s,z,R,u; local
152 hfsq=0.5*f*f;
156 R = hfsq*(1.0-0.66666666666666666*f)
    [all...]
e_log.c 37 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
41 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
44 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
92 double hfsq,f,s,z,R,w,t1,t2,dk; local
132 hfsq=0.5*f*f;
133 if(k==0) return f-(hfsq-s*(hfsq+R)); els
    [all...]
  /device/linaro/bootloader/edk2/StdLib/LibC/Math/
e_log.c 56 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
60 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
63 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
105 double hfsq,f,s,z,R,w,t1,t2,dk; local
148 hfsq=0.5*f*f;
149 if(k==0) return f-(hfsq-s*(hfsq+R)); else
    [all...]
e_log2.c 43 double hfsq,f,s,z,R,w,t1,t2,dk; local
81 hfsq=0.5*f*f;
82 return (dk-(hfsq-s*(hfsq+R)-f)/ln2);
  /prebuilts/go/darwin-x86/src/math/
log.go 47 // Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
50 // log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
53 // = k*Ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*Ln2_lo)))
121 hfsq := 0.5 * f * f
122 return k*Ln2Hi - ((hfsq - (s*(hfsq+R) + k*Ln2Lo)) - f
    [all...]
log1p.go 51 // Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
54 // log1p(f) = f - (hfsq - s*(hfsq+R)).
57 // = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
176 hfsq := 0.5 * f * f
186 R = hfsq * (1.0 - 0.66666666666666666*f) // avoid division
196 return f - (hfsq - s*(hfsq+R)
    [all...]
  /prebuilts/go/linux-x86/src/math/
log.go 47 // Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
50 // log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
53 // = k*Ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*Ln2_lo)))
121 hfsq := 0.5 * f * f
122 return k*Ln2Hi - ((hfsq - (s*(hfsq+R) + k*Ln2Lo)) - f
    [all...]

Completed in 2075 milliseconds

1 2