HomeSort by relevance Sort by last modified time
    Searched refs:subdiag (Results 1 - 4 of 4) sorted by null

  /external/eigen/doc/snippets/
Tridiagonalization_decomposeInPlace.cpp 6 VectorXd subdiag(4);
7 internal::tridiagonalization_inplace(A, diag, subdiag, true);
10 cout << "The subdiagonal of the tridiagonal matrix T is:" << endl << subdiag << endl;
Tridiagonalization_diagonal.cpp 12 VectorXd subdiag = triOfA.subDiagonal(); variable
13 cout << "The subdiagonal is:" << endl << subdiag << endl;
  /external/eigen/Eigen/src/Eigenvalues/
Tridiagonalization.h 394 * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in
403 * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If
407 * The vectors \p diag and \p subdiag are not resized. The function
410 * length of the vector \p subdiag should be one left.
427 void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
429 eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1);
430 tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ);
442 static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
447 subdiag = mat.template diagonal<-1>().real();
466 static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ
    [all...]
SelfAdjointEigenSolver.h 24 ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec);
230 * \param[in] subdiag The subdiagonal of the matrix.
238 SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options=ComputeEigenvectors);
376 * pair of two vectors \a diag and \a subdiag.
379 * \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix
393 static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
451 ::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options)
457 m_subdiag = subdiag;
475 * \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition)
482 ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec
    [all...]

Completed in 418 milliseconds