/external/deqp/external/vulkancts/modules/vulkan/compute/ |
vktComputeIndirectComputeDispatchTests.cpp | 22 * \brief Indirect Compute Dispatch tests 58 namespace compute namespace in namespace:vkt 244 // Create verify compute shader 253 // Create compute pipeline 280 // Bind compute pipeline 304 // Dispatch indirect compute command 463 // Create compute shader that generates data for indirect buffer 472 // Create compute pipeline 493 // Bind compute pipeline 499 // Dispatch compute comman [all...] |
vktComputeShaderBuiltinVarTests.cpp | 22 * \brief Compute Shader Built-in variable tests. 56 namespace compute namespace in namespace:vkt 463 // Dispatch indirect compute command 564 } // compute
|
/external/eigen/Eigen/src/Cholesky/ |
LDLT.h | 31 * \tparam _MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition 75 * perform decompositions via LDLT::compute(const MatrixType&). 112 compute(matrix.derived()); 129 compute(matrix.derived()); 212 LDLT& compute(const EigenBase<InputType>& matrix); 273 * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. 486 /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix 490 LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a) function in class:Eigen::LDLT 499 // Compute matrix L1 norm = max abs column sum. 523 /** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T [all...] |
LLT.h | 78 * perform decompositions via LLT::compute(const MatrixType&). 96 compute(matrix.derived()); 111 compute(matrix.derived()); 152 LLT& compute(const EigenBase<InputType>& matrix); 215 * Used to compute and store L 421 LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a) function in class:Eigen::LLT 430 // Compute matrix L1 norm = max abs column sum.
|
/external/eigen/Eigen/src/CholmodSupport/ |
CholmodSupport.h | 207 compute(matrix); 232 Derived& compute(const MatrixType& matrix) function in class:Eigen::CholmodBase 287 eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); 311 eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); 359 eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); 448 this->compute(matrix); 499 this->compute(matrix); 548 this->compute(matrix); 599 this->compute(matrix);
|
/external/eigen/Eigen/src/LU/ |
FullPivLU.h | 82 * perform decompositions via LU::compute(const MatrixType&). 96 * \param matrix the matrix of which to compute the LU decomposition. 113 * \param matrix the matrix of which to compute the LU decomposition. 119 FullPivLU& compute(const EigenBase<InputType>& matrix) { function in class:Eigen::FullPivLU 472 compute(matrix.derived()); 650 /* Thus, all we need to do is to compute Ker U, and then apply Q. 751 * Step 1: compute c = P * rhs. 801 * Step 1: compute c = Q^T rhs. [all...] |
PartialPivLU.h | 96 * perform decompositions via PartialPivLU::compute(const MatrixType&). 110 * \param matrix the matrix of which to compute the LU decomposition. 120 * \param matrix the matrix of which to compute the LU decomposition. 129 PartialPivLU& compute(const EigenBase<InputType>& matrix) { function in class:Eigen::PartialPivLU 131 compute(); 229 * Step 1: compute c = Pb. 251 * Step 1: compute c = Pb. 281 void compute(); 323 compute(matrix.derived()); 336 compute(); 515 void PartialPivLU<MatrixType>::compute() function in class:Eigen::PartialPivLU [all...] |
/external/eigen/Eigen/src/QR/ |
ColPivHouseholderQR.h | 81 * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&). 114 * the method compute(). It is a short cut for: 118 * qr.compute(matrix); 121 * \sa compute() 135 compute(matrix.derived()); 211 ColPivHouseholderQR& compute(const EigenBase<InputType>& matrix); 472 ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix) function in class:Eigen::ColPivHouseholderQR 563 // The updated norm has become too inaccurate so re-compute the column
|
FullPivHouseholderQR.h | 85 * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&). 116 * the method compute(). It is a short cut for: 120 * qr.compute(matrix); 123 * \sa compute() 136 compute(matrix.derived()); 195 FullPivHouseholderQR& compute(const EigenBase<InputType>& matrix); 449 FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix) function in class:Eigen::FullPivHouseholderQR 624 // compute the product H'_0 H'_1 ... H'_n-1,
|
/external/eigen/Eigen/src/SPQRSupport/ |
SuiteSparseQRSupport.h | 86 compute(matrix); 103 void compute(const _MatrixType& matrix) function in class:Eigen::SPQR 109 /* Compute the default threshold as in MatLab, see: 152 eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); 155 //Compute Q^T * b 181 eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
|
/external/eigen/Eigen/src/SVD/ |
BDCSVD.h | 105 * perform decompositions via BDCSVD::compute(const MatrixType&). 136 compute(matrix, computationOptions); 153 BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions); 159 * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). 161 BDCSVD& compute(const MatrixType& matrix) function in class:Eigen::BDCSVD 163 return compute(matrix, this->m_computationOptions); 237 BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions) function in class:Eigen::BDCSVD 306 }// end compute 530 // Third part: compute SVD of combined matrix 561 // Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros i [all...] |
/external/eigen/Eigen/src/SparseCholesky/ |
SimplicialCholesky.h | 89 derived().compute(matrix); 158 eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); 194 void compute(const MatrixType& matrix) function in class:Eigen::SimplicialCholeskyBase 364 SimplicialLLT& compute(const MatrixType& matrix) function in class:Eigen::SimplicialLLT 366 Base::template compute<false>(matrix); 461 SimplicialLDLT& compute(const MatrixType& matrix) function in class:Eigen::SimplicialLDLT 463 Base::template compute<true>(matrix); 523 compute(matrix); 553 SimplicialCholesky& compute(const MatrixType& matrix) function in class:Eigen::SimplicialCholesky 556 Base::template compute<true>(matrix) [all...] |
/external/eigen/Eigen/src/UmfPackSupport/ |
UmfPackSupport.h | 15 /* TODO extract L, extract U, compute det, etc... */ 171 compute(matrix); 223 void compute(const InputMatrixType& matrix) function in class:Eigen::UmfPackLU 236 * \sa factorize(), compute() 252 * \sa factorize(), compute() 286 * \sa analyzePattern(), compute()
|
/external/guava/guava/src/com/google/common/collect/ |
MapMaker.java | 573 * @param computingFunction the function used to compute new values 851 private V compute(K key) { method in class:MapMaker.NullComputingConcurrentMap [all...] |
/external/libvorbis/doc/ |
01-introduction.tex | 301 \item compute dot product of floor and residue, producing audio spectrum vector 447 \paragraph{compute floor/residue dot product}
|
/libcore/luni/src/test/java/libcore/java/util/ |
MapDefaultMethodTester.java | 375 assertEquals(5.0, m.compute(1, (k, v) -> 5.0)); 380 assertEquals(11.0, m.compute(1, (k, v) -> k + v)); 384 assertNull(m.compute(1, (k, v) -> null)); 389 m.compute(1, null); 394 assertEquals(10.0, m.compute(null, (k, v) -> 10.0)); 398 m.compute(null, (k, v) -> 5.0);
|
/prebuilts/tools/common/m2/repository/com/google/dagger/dagger-producers/2.0-beta/ |
dagger-producers-2.0-beta.jar | |
/external/clang/utils/TableGen/ |
ClangDiagnosticsEmitter.cpp | 313 /// Compute the set of diagnostics and groups that are immediately 315 void compute(VecOrSet DiagsInPedantic, 367 // Lazily compute the threshold value for the group count. 394 void InferPedantic::compute(VecOrSet DiagsInPedantic, function in class:InferPedantic 412 // Compute the set of diagnostics that are directly in -Wpedantic. We 438 // Compute the set of groups that are directly in -Wpedantic. We 508 // Compute the set of diagnostics that are in -Wpedantic. 511 inferPedantic.compute(&DiagsInPedantic, (RecordVec*)nullptr); 825 // Compute a mapping from a DiagGroup to all of its parents. 842 inferPedantic.compute(&DiagsInPedantic, &GroupsInPedantic) [all...] |
/external/eigen/Eigen/src/Eigenvalues/ |
RealQZ.h | 38 * Call the function compute() to compute the real QZ decomposition of a 80 * perform decompositions via compute(). The \p size parameter is only 84 * \sa compute() for an example. 102 * This constructor calls compute() to compute the QZ decomposition. 112 compute(A, B, computeQZ); 160 RealQZ& compute(const MatrixType& A, const MatrixType& B, bool computeQZ = true); 446 // Compute the shifts: (x,y,z,0...) = (AB^-1 - l1 I) (AB^-1 - l2 I) e1 556 RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ function in class:Eigen::RealQZ [all...] |
SelfAdjointEigenSolver.h | 55 * Call the function compute() to compute the eigenvalues and eigenvectors of 110 * perform decompositions via compute(). This constructor 131 * intends to perform decompositions via compute(). The \p size 135 * \sa compute() for an example 151 * This constructor calls compute(const MatrixType&, int) to compute the 158 * \sa compute(const MatrixType&, int) 168 compute(matrix.derived(), options); 203 SelfAdjointEigenSolver& compute(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors) 400 ::compute(const EigenBase<InputType>& a_matrix, int options) function in class:Eigen::SelfAdjointEigenSolver [all...] |
/external/eigen/Eigen/src/SparseLU/ |
SparseLU.h | 49 * // Compute the ordering permutation vector from the structural pattern of A 51 * // Compute the numerical factorization 108 compute(matrix); 121 * Compute the symbolic and numeric factorization of the input sparse matrix. 124 void compute (const MatrixType& matrix) function in class:Eigen::SparseLU 188 * \sa compute() 401 * Compute the column permutation to minimize the fill-in 405 * - Compute the column elimination tree on the permuted matrix 414 //TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat. 419 // Compute fill-in orderin [all...] |
/external/eigen/Eigen/src/SparseQR/ |
SparseQR.h | 101 * \sa compute() 105 compute(mat); 114 void compute(const MatrixType& mat) function in class:Eigen::SparseQR 151 eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); 194 eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); 199 // Compute Q^T * b; 230 * \sa compute() 235 eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); 242 eigen_assert(m_isInitialized && "The factorization should be called first, use compute()"); 312 // Compute the column fill reducing orderin [all...] |
/external/eigen/Eigen/src/SuperLUSupport/ |
SuperLUSupport.h | 365 void compute(const MatrixType& matrix) function in class:Eigen::SuperLUBase 511 Base::compute(matrix); 651 eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()"); 709 eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for extracting factors, you must first call either compute() or analyzePattern()/factorize()"); 795 eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for computing the determinant, you must first call either compute() or analyzePattern()/factorize()"); 858 Base::compute(matrix); [all...] |
/external/eigen/unsupported/Eigen/src/MatrixFunctions/ |
MatrixFunction.h | 38 * \param[in] f matrix function to compute. 42 /** \brief Compute matrix function of atomic matrix 46 MatrixType compute(const MatrixType& A); 64 MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A) function in class:Eigen::internal::MatrixFunctionAtomic 163 /** \brief Compute size of each cluster given a partitioning */ 176 /** \brief Compute start of each block using clusterSize */ 187 /** \brief Compute mapping of eigenvalue indices to cluster indices */ 204 /** \brief Compute permutation which groups ei'vals in same cluster together */ 240 /** \brief Compute block diagonal part of matrix function. 252 = atomic.compute(T.block(blockStart(i), blockStart(i), clusterSize(i), clusterSize(i))) [all...] |
/external/llvm/lib/Analysis/ |
MemoryBuiltins.cpp | 367 // Utility functions to compute size of objects. 375 /// \brief Compute the size of the object pointed by Ptr. Returns true and the 384 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 414 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { function in class:ObjectSizeOffsetVisitor 446 DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V 569 SizeOffsetType PtrData = compute(GEP.getPointerOperand()); 580 return compute(GA.getAliasee()); 607 SizeOffsetType TrueSide = compute(I.getTrueValue()); 608 SizeOffsetType FalseSide = compute(I.getFalseValue()); 648 // IntTy and Zero must be set for each compute() since the address space ma 652 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { function in class:ObjectSizeOffsetEvaluator [all...] |