Home | History | Annotate | Download | only in Eigenvalues

Lines Matching refs:Matrix

22    * \tparam _MatrixType the type of the matrix of which we are computing the
24 * Matrix class template.
28 * real orthogonal matrixes, T is upper-triangular matrix, and S is upper
29 * quasi-triangular matrix. An orthogonal matrix is a matrix whose
31 * matrix is a block-triangular matrix whose diagonal consists of 1-by-1
50 * \note The implementation is based on the algorithm in "Matrix Computations"
72 typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
73 typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
77 * \param [in] size Positive integer, size of the matrix whose QZ decomposition will be computed.
98 * \param[in] A Matrix A.
99 * \param[in] B Matrix B.
115 /** \brief Returns matrix Q in the QZ decomposition.
117 * \returns A const reference to the matrix Q.
125 /** \brief Returns matrix Z in the QZ decomposition.
127 * \returns A const reference to the matrix Z.
135 /** \brief Returns matrix S in the QZ decomposition.
137 * \returns A const reference to the matrix S.
144 /** \brief Returns matrix S in the QZ decomposition.
146 * \returns A const reference to the matrix S.
153 /** \brief Computes QZ decomposition of given matrix.
155 * \param[in] A Matrix A.
156 * \param[in] B Matrix B.
192 Matrix<Scalar,Dynamic,1> m_workspace;
200 typedef Matrix<Scalar,3,1> Vector3s;
201 typedef Matrix<Scalar,2,1> Vector2s;
202 typedef Matrix<Scalar,2,2> Matrix2s;
447 // where l1 and l2 are the eigenvalues of the 2x2 matrix C = U V^-1 where
499 Map<Matrix<Scalar,Dynamic,1> > tmp(m_workspace.data(),lr);
514 Map<Matrix<Scalar,1,Dynamic> > tmp(m_workspace.data(),dim);