Lines Matching full:diagonal
46 * main diagonal and the first diagonal below and above it. The Hessenberg
89 typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type,
90 const Diagonal<const MatrixType>
94 typename internal::add_const_on_value_type<typename Diagonal<const MatrixType, -1>::RealReturnType>::type,
95 const Diagonal<const MatrixType, -1>
199 * - the diagonal and lower sub-diagonal represent the real tridiagonal
259 * returned by diagonal() and subDiagonal() instead of creating a new
263 * matrixQ(), packedMatrix(), diagonal(), subDiagonal()
271 /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition.
273 * \returns expression representing the diagonal of T
284 DiagonalReturnType diagonal() const;
294 * \sa diagonal() for an example, matrixT()
307 Tridiagonalization<MatrixType>::diagonal() const
310 return m_matrix.diagonal().real();
318 return m_matrix.template diagonal<-1>().real();
331 * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal
332 * and lower sub-diagonal of the matrix \a matA.
392 * \param[out] diag The diagonal of the tridiagonal matrix T in the
446 diag = mat.diagonal().real();
447 subdiag = mat.template diagonal<-1>().real();
540 result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate();
541 result.diagonal() = m_matrix.diagonal();
542 result.template diagonal<-1>() = m_matrix.template diagonal<-1>();