Home | History | Annotate | Download | only in pydoc_data

Lines Matching refs:among

27  'customization': u'\nBasic customization\n*******************\n\nobject.__new__(cls[, ...])\n\n   Called to create a new instance of class *cls*.  "__new__()" is a\n   static method (special-cased so you need not declare it as such)\n   that takes the class of which an instance was requested as its\n   first argument.  The remaining arguments are those passed to the\n   object constructor expression (the call to the class).  The return\n   value of "__new__()" should be the new object instance (usually an\n   instance of *cls*).\n\n   Typical implementations create a new instance of the class by\n   invoking the superclass\'s "__new__()" method using\n   "super(currentclass, cls).__new__(cls[, ...])" with appropriate\n   arguments and then modifying the newly-created instance as\n   necessary before returning it.\n\n   If "__new__()" returns an instance of *cls*, then the new\n   instance\'s "__init__()" method will be invoked like\n   "__init__(self[, ...])", where *self* is the new instance and the\n   remaining arguments are the same as were passed to "__new__()".\n\n   If "__new__()" does not return an instance of *cls*, then the new\n   instance\'s "__init__()" method will not be invoked.\n\n   "__new__()" is intended mainly to allow subclasses of immutable\n   types (like int, str, or tuple) to customize instance creation.  It\n   is also commonly overridden in custom metaclasses in order to\n   customize class creation.\n\nobject.__init__(self[, ...])\n\n   Called after the instance has been created (by "__new__()"), but\n   before it is returned to the caller.  The arguments are those\n   passed to the class constructor expression.  If a base class has an\n   "__init__()" method, the derived class\'s "__init__()" method, if\n   any, must explicitly call it to ensure proper initialization of the\n   base class part of the instance; for example:\n   "BaseClass.__init__(self, [args...])".\n\n   Because "__new__()" and "__init__()" work together in constructing\n   objects ("__new__()" to create it, and "__init__()" to customise\n   it), no non-"None" value may be returned by "__init__()"; doing so\n   will cause a "TypeError" to be raised at runtime.\n\nobject.__del__(self)\n\n   Called when the instance is about to be destroyed.  This is also\n   called a destructor.  If a base class has a "__del__()" method, the\n   derived class\'s "__del__()" method, if any, must explicitly call it\n   to ensure proper deletion of the base class part of the instance.\n   Note that it is possible (though not recommended!) for the\n   "__del__()" method to postpone destruction of the instance by\n   creating a new reference to it.  It may then be called at a later\n   time when this new reference is deleted.  It is not guaranteed that\n   "__del__()" methods are called for objects that still exist when\n   the interpreter exits.\n\n   Note: "del x" doesn\'t directly call "x.__del__()" --- the former\n     decrements the reference count for "x" by one, and the latter is\n     only called when "x"\'s reference count reaches zero.  Some common\n     situations that may prevent the reference count of an object from\n     going to zero include: circular references between objects (e.g.,\n     a doubly-linked list or a tree data structure with parent and\n     child pointers); a reference to the object on the stack frame of\n     a function that caught an exception (the traceback stored in\n     "sys.exc_traceback" keeps the stack frame alive); or a reference\n     to the object on the stack frame that raised an unhandled\n     exception in interactive mode (the traceback stored in\n     "sys.last_traceback" keeps the stack frame alive).  The first\n     situation can only be remedied by explicitly breaking the cycles;\n     the latter two situations can be resolved by storing "None" in\n     "sys.exc_traceback" or "sys.last_traceback".  Circular references\n     which are garbage are detected when the option cycle detector is\n     enabled (it\'s on by default), but can only be cleaned up if there\n     are no Python-level "__del__()" methods involved. Refer to the\n     documentation for the "gc" module for more information about how\n     "__del__()" methods are handled by the cycle detector,\n     particularly the description of the "garbage" value.\n\n   Warning: Due to the precarious circumstances under which\n     "__del__()" methods are invoked, exceptions that occur during\n     their execution are ignored, and a warning is printed to\n     "sys.stderr" instead. Also, when "__del__()" is invoked in\n     response to a module being deleted (e.g., when execution of the\n     program is done), other globals referenced by the "__del__()"\n     method may already have been deleted or in the process of being\n     torn down (e.g. the import machinery shutting down).  For this\n     reason, "__del__()" methods should do the absolute minimum needed\n     to maintain external invariants.  Starting with version 1.5,\n     Python guarantees that globals whose name begins with a single\n     underscore are deleted from their module before other globals are\n     deleted; if no other references to such globals exist, this may\n     help in assuring that imported modules are still available at the\n     time when the "__del__()" method is called.\n\n   See also the "-R" command-line option.\n\nobject.__repr__(self)\n\n   Called by the "repr()" built-in function and by string conversions\n   (reverse quotes) to compute the "official" string representation of\n   an object.  If at all possible, this should look like a valid\n   Python expression that could be used to recreate an object with the\n   same value (given an appropriate environment).  If this is not\n   possible, a string of the form "<...some useful description...>"\n   should be returned.  The return value must be a string object. If a\n   class defines "__repr__()" but not "__str__()", then "__repr__()"\n   is also used when an "informal" string representation of instances\n   of that class is required.\n\n   This is typically used for debugging, so it is important that the\n   representation is information-rich and unambiguous.\n\nobject.__str__(self)\n\n   Called by the "str()" built-in function and by the "print"\n   statement to compute the "informal" string representation of an\n   object.  This differs from "__repr__()" in that it does not have to\n   be a valid Python expression: a more convenient or concise\n   representation may be used instead. The return value must be a\n   string object.\n\nobject.__lt__(self, other)\nobject.__le__(self, other)\nobject.__eq__(self, other)\nobject.__ne__(self, other)\nobject.__gt__(self, other)\nobject.__ge__(self, other)\n\n   New in version 2.1.\n\n   These are the so-called "rich comparison" methods, and are called\n   for comparison operators in preference to "__cmp__()" below. The\n   correspondence between operator symbols and method names is as\n   follows: "x<y" calls "x.__lt__(y)", "x<=y" calls "x.__le__(y)",\n   "x==y" calls "x.__eq__(y)", "x!=y" and "x<>y" call "x.__ne__(y)",\n   "x>y" calls "x.__gt__(y)", and "x>=y" calls "x.__ge__(y)".\n\n   A rich comparison method may return the singleton "NotImplemented"\n   if it does not implement the operation for a given pair of\n   arguments. By convention, "False" and "True" are returned for a\n   successful comparison. However, these methods can return any value,\n   so if the comparison operator is used in a Boolean context (e.g.,\n   in the condition of an "if" statement), Python will call "bool()"\n   on the value to determine if the result is true or false.\n\n   There are no implied relationships among the comparison operators.\n   The truth of "x==y" does not imply that "x!=y" is false.\n   Accordingly, when defining "__eq__()", one should also define\n   "__ne__()" so that the operators will behave as expected.  See the\n   paragraph on "__hash__()" for some important notes on creating\n   *hashable* objects which support custom comparison operations and\n   are usable as dictionary keys.\n\n   There are no swapped-argument versions of these methods (to be used\n   when the left argument does not support the operation but the right\n   argument does); rather, "__lt__()" and "__gt__()" are each other\'s\n   reflection, "__le__()" and "__ge__()" are each other\'s reflection,\n   and "__eq__()" and "__ne__()" are their own reflection.\n\n   Arguments to rich comparison methods are never coerced.\n\n   To automatically generate ordering operations from a single root\n   operation, see "functools.total_ordering()".\n\nobject.__cmp__(self, other)\n\n   Called by comparison operations if rich comparison (see above) is\n   not defined.  Should return a negative integer if "self < other",\n   zero if "self == other", a positive integer if "self > other".  If\n   no "__cmp__()", "__eq__()" or "__ne__()" operation is defined,\n   class instances are compared by object identity ("address").  See\n   also the description of "__hash__()" for some important notes on\n   creating *hashable* objects which support custom comparison\n   operations and are usable as dictionary keys. (Note: the\n   restriction that exceptions are not propagated by "__cmp__()" has\n   been removed since Python 1.5.)\n\nobject.__rcmp__(self, other)\n\n   Changed in version 2.1: No longer supported.\n\nobject.__hash__(self)\n\n   Called by built-in function "hash()" and for operations on members\n   of hashed collections including "set", "frozenset", and "dict".\n   "__hash__()" should return an integer.  The only required property\n   is that objects which compare equal have the same hash value; it is\n   advised to somehow mix together (e.g. using exclusive or) the hash\n   values for the components of the object that also play a part in\n   comparison of objects.\n\n   If a class does not define a "__cmp__()" or "__eq__()" method it\n   should not define a "__hash__()" operation either; if it defines\n   "__cmp__()" or "__eq__()" but not "__hash__()", its instances will\n   not be usable in hashed collections.  If a class defines mutable\n   objects and implements a "__cmp__()" or "__eq__()" method, it\n   should not implement "__hash__()", since hashable collection\n   implementations require that an object\'s hash value is immutable\n   (if the object\'s hash value changes, it will be in the wrong hash\n   bucket).\n\n   User-defined classes have "__cmp__()" and "__hash__()" methods by\n   default; with them, all objects compare unequal (except with\n   themselves) and "x.__hash__()" returns a result derived from\n   "id(x)".\n\n   Classes which inherit a "__hash__()" method from a parent class but\n   change the meaning of "__cmp__()" or "__eq__()" such that the hash\n   value returned is no longer appropriate (e.g. by switching to a\n   value-based concept of equality instead of the default identity\n   based equality) can explicitly flag themselves as being unhashable\n   by setting "__hash__ = None" in the class definition. Doing so\n   means that not only will instances of the class raise an\n   appropriate "TypeError" when a program attempts to retrieve their\n   hash value, but they will also be correctly identified as\n   unhashable when checking "isinstance(obj, collections.Hashable)"\n   (unlike classes which define their own "__hash__()" to explicitly\n   raise "TypeError").\n\n   Changed in version 2.5: "__hash__()" may now also return a long\n   integer object; the 32-bit integer is then derived from the hash of\n   that object.\n\n   Changed in version 2.6: "__hash__" may now be set to "None" to\n   explicitly flag instances of a class as unhashable.\n\nobject.__nonzero__(self)\n\n   Called to implement truth value testing and the built-in operation\n   "bool()"; should return "False" or "True", or their integer\n   equivalents "0" or "1".  When this method is not defined,\n   "__len__()" is called, if it is defined, and the object is\n   considered true if its result is nonzero. If a class defines\n   neither "__len__()" nor "__nonzero__()", all its instances are\n   considered true.\n\nobject.__unicode__(self)\n\n   Called to implement "unicode()" built-in; should return a Unicode\n   object. When this method is not defined, string conversion is\n   attempted, and the result of string conversion is converted to\n   Unicode using the system default encoding.\n',
65 among
81 'yield': u'\nThe "yield" statement\n*********************\n\n yield_stmt ::= yield_expression\n\nThe "yield" statement is only used when defining a generator function,\nand is only used in the body of the generator function. Using a\n"yield" statement in a function definition is sufficient to cause that\ndefinition to create a generator function instead of a normal\nfunction.\n\nWhen a generator function is called, it returns an iterator known as a\ngenerator iterator, or more commonly, a generator. The body of the\ngenerator function is executed by calling the generator\'s "next()"\nmethod repeatedly until it raises an exception.\n\nWhen a "yield" statement is executed, the state of the generator is\nfrozen and the value of "expression_list" is returned to "next()"\'s\ncaller. By "frozen" we mean that all local state is retained,\nincluding the current bindings of local variables, the instruction\npointer, and the internal evaluation stack: enough information is\nsaved so that the next time "next()" is invoked, the function can\nproceed exactly as if the "yield" statement were just another external\ncall.\n\nAs of Python version 2.5, the "yield" statement is now allowed in the\n"try" clause of a "try" ... "finally" construct. If the generator is\nnot resumed before it is finalized (by reaching a zero reference count\nor by being garbage collected), the generator-iterator\'s "close()"\nmethod will be called, allowing any pending "finally" clauses to\nexecute.\n\nFor full details of "yield" semantics, refer to the Yield expressions\nsection.\n\nNote: In Python 2.2, the "yield" statement was only allowed when the\n "generators" feature has been enabled. This "__future__" import\n statement was used to enable the feature:\n\n from __future__ import generators\n\nSee also:\n\n **PEP 255** - Simple Generators\n The proposal for adding generators and the "yield" statement to\n Python.\n\n **PEP 342** - Coroutines via Enhanced Generators\n The proposal that, among other generator enhancements, proposed\n allowing "yield" to appear inside a "try" ... "finally" block.\n'}