Home | History | Annotate | Download | only in dsp
      1 // Copyright 2015 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // SSE2 variant of methods for lossless encoder
     11 //
     12 // Author: Skal (pascal.massimino (at) gmail.com)
     13 
     14 #include "./dsp.h"
     15 
     16 #if defined(WEBP_USE_SSE2)
     17 #include <assert.h>
     18 #include <emmintrin.h>
     19 #include "./lossless.h"
     20 #include "./common_sse2.h"
     21 #include "./lossless_common.h"
     22 
     23 // For sign-extended multiplying constants, pre-shifted by 5:
     24 #define CST_5b(X)  (((int16_t)((uint16_t)X << 8)) >> 5)
     25 
     26 //------------------------------------------------------------------------------
     27 // Subtract-Green Transform
     28 
     29 static void SubtractGreenFromBlueAndRed(uint32_t* argb_data, int num_pixels) {
     30   int i;
     31   for (i = 0; i + 4 <= num_pixels; i += 4) {
     32     const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
     33     const __m128i A = _mm_srli_epi16(in, 8);     // 0 a 0 g
     34     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
     35     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // 0g0g
     36     const __m128i out = _mm_sub_epi8(in, C);
     37     _mm_storeu_si128((__m128i*)&argb_data[i], out);
     38   }
     39   // fallthrough and finish off with plain-C
     40   if (i != num_pixels) {
     41     VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i);
     42   }
     43 }
     44 
     45 //------------------------------------------------------------------------------
     46 // Color Transform
     47 
     48 static void TransformColor(const VP8LMultipliers* const m,
     49                            uint32_t* argb_data, int num_pixels) {
     50   const __m128i mults_rb = _mm_set_epi16(
     51       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
     52       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
     53       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
     54       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_));
     55   const __m128i mults_b2 = _mm_set_epi16(
     56       CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0,
     57       CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0);
     58   const __m128i mask_ag = _mm_set1_epi32(0xff00ff00);  // alpha-green masks
     59   const __m128i mask_rb = _mm_set1_epi32(0x00ff00ff);  // red-blue masks
     60   int i;
     61   for (i = 0; i + 4 <= num_pixels; i += 4) {
     62     const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
     63     const __m128i A = _mm_and_si128(in, mask_ag);     // a   0   g   0
     64     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
     65     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // g0g0
     66     const __m128i D = _mm_mulhi_epi16(C, mults_rb);    // x dr  x db1
     67     const __m128i E = _mm_slli_epi16(in, 8);           // r 0   b   0
     68     const __m128i F = _mm_mulhi_epi16(E, mults_b2);    // x db2 0   0
     69     const __m128i G = _mm_srli_epi32(F, 16);           // 0 0   x db2
     70     const __m128i H = _mm_add_epi8(G, D);              // x dr  x  db
     71     const __m128i I = _mm_and_si128(H, mask_rb);       // 0 dr  0  db
     72     const __m128i out = _mm_sub_epi8(in, I);
     73     _mm_storeu_si128((__m128i*)&argb_data[i], out);
     74   }
     75   // fallthrough and finish off with plain-C
     76   if (i != num_pixels) {
     77     VP8LTransformColor_C(m, argb_data + i, num_pixels - i);
     78   }
     79 }
     80 
     81 //------------------------------------------------------------------------------
     82 #define SPAN 8
     83 static void CollectColorBlueTransforms(const uint32_t* argb, int stride,
     84                                        int tile_width, int tile_height,
     85                                        int green_to_blue, int red_to_blue,
     86                                        int histo[]) {
     87   const __m128i mults_r = _mm_set_epi16(
     88       CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0,
     89       CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0);
     90   const __m128i mults_g = _mm_set_epi16(
     91       0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue),
     92       0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue));
     93   const __m128i mask_g = _mm_set1_epi32(0x00ff00);  // green mask
     94   const __m128i mask_b = _mm_set1_epi32(0x0000ff);  // blue mask
     95   int y;
     96   for (y = 0; y < tile_height; ++y) {
     97     const uint32_t* const src = argb + y * stride;
     98     int i, x;
     99     for (x = 0; x + SPAN <= tile_width; x += SPAN) {
    100       uint16_t values[SPAN];
    101       const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x +        0]);
    102       const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
    103       const __m128i A0 = _mm_slli_epi16(in0, 8);        // r 0  | b 0
    104       const __m128i A1 = _mm_slli_epi16(in1, 8);
    105       const __m128i B0 = _mm_and_si128(in0, mask_g);    // 0 0  | g 0
    106       const __m128i B1 = _mm_and_si128(in1, mask_g);
    107       const __m128i C0 = _mm_mulhi_epi16(A0, mults_r);  // x db | 0 0
    108       const __m128i C1 = _mm_mulhi_epi16(A1, mults_r);
    109       const __m128i D0 = _mm_mulhi_epi16(B0, mults_g);  // 0 0  | x db
    110       const __m128i D1 = _mm_mulhi_epi16(B1, mults_g);
    111       const __m128i E0 = _mm_sub_epi8(in0, D0);         // x x  | x b'
    112       const __m128i E1 = _mm_sub_epi8(in1, D1);
    113       const __m128i F0 = _mm_srli_epi32(C0, 16);        // 0 0  | x db
    114       const __m128i F1 = _mm_srli_epi32(C1, 16);
    115       const __m128i G0 = _mm_sub_epi8(E0, F0);          // 0 0  | x b'
    116       const __m128i G1 = _mm_sub_epi8(E1, F1);
    117       const __m128i H0 = _mm_and_si128(G0, mask_b);     // 0 0  | 0 b
    118       const __m128i H1 = _mm_and_si128(G1, mask_b);
    119       const __m128i I = _mm_packs_epi32(H0, H1);        // 0 b' | 0 b'
    120       _mm_storeu_si128((__m128i*)values, I);
    121       for (i = 0; i < SPAN; ++i) ++histo[values[i]];
    122     }
    123   }
    124   {
    125     const int left_over = tile_width & (SPAN - 1);
    126     if (left_over > 0) {
    127       VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride,
    128                                        left_over, tile_height,
    129                                        green_to_blue, red_to_blue, histo);
    130     }
    131   }
    132 }
    133 
    134 static void CollectColorRedTransforms(const uint32_t* argb, int stride,
    135                                       int tile_width, int tile_height,
    136                                       int green_to_red, int histo[]) {
    137   const __m128i mults_g = _mm_set_epi16(
    138       0, CST_5b(green_to_red), 0, CST_5b(green_to_red),
    139       0, CST_5b(green_to_red), 0, CST_5b(green_to_red));
    140   const __m128i mask_g = _mm_set1_epi32(0x00ff00);  // green mask
    141   const __m128i mask = _mm_set1_epi32(0xff);
    142 
    143   int y;
    144   for (y = 0; y < tile_height; ++y) {
    145     const uint32_t* const src = argb + y * stride;
    146     int i, x;
    147     for (x = 0; x + SPAN <= tile_width; x += SPAN) {
    148       uint16_t values[SPAN];
    149       const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x +        0]);
    150       const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
    151       const __m128i A0 = _mm_and_si128(in0, mask_g);    // 0 0  | g 0
    152       const __m128i A1 = _mm_and_si128(in1, mask_g);
    153       const __m128i B0 = _mm_srli_epi32(in0, 16);       // 0 0  | x r
    154       const __m128i B1 = _mm_srli_epi32(in1, 16);
    155       const __m128i C0 = _mm_mulhi_epi16(A0, mults_g);  // 0 0  | x dr
    156       const __m128i C1 = _mm_mulhi_epi16(A1, mults_g);
    157       const __m128i E0 = _mm_sub_epi8(B0, C0);          // x x  | x r'
    158       const __m128i E1 = _mm_sub_epi8(B1, C1);
    159       const __m128i F0 = _mm_and_si128(E0, mask);       // 0 0  | 0 r'
    160       const __m128i F1 = _mm_and_si128(E1, mask);
    161       const __m128i I = _mm_packs_epi32(F0, F1);
    162       _mm_storeu_si128((__m128i*)values, I);
    163       for (i = 0; i < SPAN; ++i) ++histo[values[i]];
    164     }
    165   }
    166   {
    167     const int left_over = tile_width & (SPAN - 1);
    168     if (left_over > 0) {
    169       VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride,
    170                                       left_over, tile_height,
    171                                       green_to_red, histo);
    172     }
    173   }
    174 }
    175 #undef SPAN
    176 
    177 //------------------------------------------------------------------------------
    178 
    179 #define LINE_SIZE 16    // 8 or 16
    180 static void AddVector(const uint32_t* a, const uint32_t* b, uint32_t* out,
    181                       int size) {
    182   int i;
    183   assert(size % LINE_SIZE == 0);
    184   for (i = 0; i < size; i += LINE_SIZE) {
    185     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i +  0]);
    186     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i +  4]);
    187 #if (LINE_SIZE == 16)
    188     const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i +  8]);
    189     const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
    190 #endif
    191     const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i +  0]);
    192     const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i +  4]);
    193 #if (LINE_SIZE == 16)
    194     const __m128i b2 = _mm_loadu_si128((const __m128i*)&b[i +  8]);
    195     const __m128i b3 = _mm_loadu_si128((const __m128i*)&b[i + 12]);
    196 #endif
    197     _mm_storeu_si128((__m128i*)&out[i +  0], _mm_add_epi32(a0, b0));
    198     _mm_storeu_si128((__m128i*)&out[i +  4], _mm_add_epi32(a1, b1));
    199 #if (LINE_SIZE == 16)
    200     _mm_storeu_si128((__m128i*)&out[i +  8], _mm_add_epi32(a2, b2));
    201     _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
    202 #endif
    203   }
    204 }
    205 
    206 static void AddVectorEq(const uint32_t* a, uint32_t* out, int size) {
    207   int i;
    208   assert(size % LINE_SIZE == 0);
    209   for (i = 0; i < size; i += LINE_SIZE) {
    210     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i +  0]);
    211     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i +  4]);
    212 #if (LINE_SIZE == 16)
    213     const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i +  8]);
    214     const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
    215 #endif
    216     const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i +  0]);
    217     const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i +  4]);
    218 #if (LINE_SIZE == 16)
    219     const __m128i b2 = _mm_loadu_si128((const __m128i*)&out[i +  8]);
    220     const __m128i b3 = _mm_loadu_si128((const __m128i*)&out[i + 12]);
    221 #endif
    222     _mm_storeu_si128((__m128i*)&out[i +  0], _mm_add_epi32(a0, b0));
    223     _mm_storeu_si128((__m128i*)&out[i +  4], _mm_add_epi32(a1, b1));
    224 #if (LINE_SIZE == 16)
    225     _mm_storeu_si128((__m128i*)&out[i +  8], _mm_add_epi32(a2, b2));
    226     _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
    227 #endif
    228   }
    229 }
    230 #undef LINE_SIZE
    231 
    232 // Note we are adding uint32_t's as *signed* int32's (using _mm_add_epi32). But
    233 // that's ok since the histogram values are less than 1<<28 (max picture size).
    234 static void HistogramAdd(const VP8LHistogram* const a,
    235                          const VP8LHistogram* const b,
    236                          VP8LHistogram* const out) {
    237   int i;
    238   const int literal_size = VP8LHistogramNumCodes(a->palette_code_bits_);
    239   assert(a->palette_code_bits_ == b->palette_code_bits_);
    240   if (b != out) {
    241     AddVector(a->literal_, b->literal_, out->literal_, NUM_LITERAL_CODES);
    242     AddVector(a->red_, b->red_, out->red_, NUM_LITERAL_CODES);
    243     AddVector(a->blue_, b->blue_, out->blue_, NUM_LITERAL_CODES);
    244     AddVector(a->alpha_, b->alpha_, out->alpha_, NUM_LITERAL_CODES);
    245   } else {
    246     AddVectorEq(a->literal_, out->literal_, NUM_LITERAL_CODES);
    247     AddVectorEq(a->red_, out->red_, NUM_LITERAL_CODES);
    248     AddVectorEq(a->blue_, out->blue_, NUM_LITERAL_CODES);
    249     AddVectorEq(a->alpha_, out->alpha_, NUM_LITERAL_CODES);
    250   }
    251   for (i = NUM_LITERAL_CODES; i < literal_size; ++i) {
    252     out->literal_[i] = a->literal_[i] + b->literal_[i];
    253   }
    254   for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
    255     out->distance_[i] = a->distance_[i] + b->distance_[i];
    256   }
    257 }
    258 
    259 //------------------------------------------------------------------------------
    260 // Entropy
    261 
    262 // Checks whether the X or Y contribution is worth computing and adding.
    263 // Used in loop unrolling.
    264 #define ANALYZE_X_OR_Y(x_or_y, j)                                   \
    265   do {                                                              \
    266     if (x_or_y[i + j] != 0) retval -= VP8LFastSLog2(x_or_y[i + j]); \
    267   } while (0)
    268 
    269 // Checks whether the X + Y contribution is worth computing and adding.
    270 // Used in loop unrolling.
    271 #define ANALYZE_XY(j)                  \
    272   do {                                 \
    273     if (tmp[j] != 0) {                 \
    274       retval -= VP8LFastSLog2(tmp[j]); \
    275       ANALYZE_X_OR_Y(X, j);            \
    276     }                                  \
    277   } while (0)
    278 
    279 static float CombinedShannonEntropy(const int X[256], const int Y[256]) {
    280   int i;
    281   double retval = 0.;
    282   int sumX, sumXY;
    283   int32_t tmp[4];
    284   __m128i zero = _mm_setzero_si128();
    285   // Sums up X + Y, 4 ints at a time (and will merge it at the end for sumXY).
    286   __m128i sumXY_128 = zero;
    287   __m128i sumX_128 = zero;
    288 
    289   for (i = 0; i < 256; i += 4) {
    290     const __m128i x = _mm_loadu_si128((const __m128i*)(X + i));
    291     const __m128i y = _mm_loadu_si128((const __m128i*)(Y + i));
    292 
    293     // Check if any X is non-zero: this actually provides a speedup as X is
    294     // usually sparse.
    295     if (_mm_movemask_epi8(_mm_cmpeq_epi32(x, zero)) != 0xFFFF) {
    296       const __m128i xy_128 = _mm_add_epi32(x, y);
    297       sumXY_128 = _mm_add_epi32(sumXY_128, xy_128);
    298 
    299       sumX_128 = _mm_add_epi32(sumX_128, x);
    300 
    301       // Analyze the different X + Y.
    302       _mm_storeu_si128((__m128i*)tmp, xy_128);
    303 
    304       ANALYZE_XY(0);
    305       ANALYZE_XY(1);
    306       ANALYZE_XY(2);
    307       ANALYZE_XY(3);
    308     } else {
    309       // X is fully 0, so only deal with Y.
    310       sumXY_128 = _mm_add_epi32(sumXY_128, y);
    311 
    312       ANALYZE_X_OR_Y(Y, 0);
    313       ANALYZE_X_OR_Y(Y, 1);
    314       ANALYZE_X_OR_Y(Y, 2);
    315       ANALYZE_X_OR_Y(Y, 3);
    316     }
    317   }
    318 
    319   // Sum up sumX_128 to get sumX.
    320   _mm_storeu_si128((__m128i*)tmp, sumX_128);
    321   sumX = tmp[3] + tmp[2] + tmp[1] + tmp[0];
    322 
    323   // Sum up sumXY_128 to get sumXY.
    324   _mm_storeu_si128((__m128i*)tmp, sumXY_128);
    325   sumXY = tmp[3] + tmp[2] + tmp[1] + tmp[0];
    326 
    327   retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY);
    328   return (float)retval;
    329 }
    330 #undef ANALYZE_X_OR_Y
    331 #undef ANALYZE_XY
    332 
    333 //------------------------------------------------------------------------------
    334 
    335 static int VectorMismatch(const uint32_t* const array1,
    336                           const uint32_t* const array2, int length) {
    337   int match_len;
    338 
    339   if (length >= 12) {
    340     __m128i A0 = _mm_loadu_si128((const __m128i*)&array1[0]);
    341     __m128i A1 = _mm_loadu_si128((const __m128i*)&array2[0]);
    342     match_len = 0;
    343     do {
    344       // Loop unrolling and early load both provide a speedup of 10% for the
    345       // current function. Also, max_limit can be MAX_LENGTH=4096 at most.
    346       const __m128i cmpA = _mm_cmpeq_epi32(A0, A1);
    347       const __m128i B0 =
    348           _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
    349       const __m128i B1 =
    350           _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
    351       if (_mm_movemask_epi8(cmpA) != 0xffff) break;
    352       match_len += 4;
    353 
    354       {
    355         const __m128i cmpB = _mm_cmpeq_epi32(B0, B1);
    356         A0 = _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
    357         A1 = _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
    358         if (_mm_movemask_epi8(cmpB) != 0xffff) break;
    359         match_len += 4;
    360       }
    361     } while (match_len + 12 < length);
    362   } else {
    363     match_len = 0;
    364     // Unroll the potential first two loops.
    365     if (length >= 4 &&
    366         _mm_movemask_epi8(_mm_cmpeq_epi32(
    367             _mm_loadu_si128((const __m128i*)&array1[0]),
    368             _mm_loadu_si128((const __m128i*)&array2[0]))) == 0xffff) {
    369       match_len = 4;
    370       if (length >= 8 &&
    371           _mm_movemask_epi8(_mm_cmpeq_epi32(
    372               _mm_loadu_si128((const __m128i*)&array1[4]),
    373               _mm_loadu_si128((const __m128i*)&array2[4]))) == 0xffff) {
    374         match_len = 8;
    375       }
    376     }
    377   }
    378 
    379   while (match_len < length && array1[match_len] == array2[match_len]) {
    380     ++match_len;
    381   }
    382   return match_len;
    383 }
    384 
    385 // Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
    386 static void BundleColorMap_SSE2(const uint8_t* const row, int width, int xbits,
    387                                 uint32_t* dst) {
    388   int x;
    389   assert(xbits >= 0);
    390   assert(xbits <= 3);
    391   switch (xbits) {
    392     case 0: {
    393       const __m128i ff = _mm_set1_epi16(0xff00);
    394       const __m128i zero = _mm_setzero_si128();
    395       // Store 0xff000000 | (row[x] << 8).
    396       for (x = 0; x + 16 <= width; x += 16, dst += 16) {
    397         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
    398         const __m128i in_lo = _mm_unpacklo_epi8(zero, in);
    399         const __m128i dst0 = _mm_unpacklo_epi16(in_lo, ff);
    400         const __m128i dst1 = _mm_unpackhi_epi16(in_lo, ff);
    401         const __m128i in_hi = _mm_unpackhi_epi8(zero, in);
    402         const __m128i dst2 = _mm_unpacklo_epi16(in_hi, ff);
    403         const __m128i dst3 = _mm_unpackhi_epi16(in_hi, ff);
    404         _mm_storeu_si128((__m128i*)&dst[0], dst0);
    405         _mm_storeu_si128((__m128i*)&dst[4], dst1);
    406         _mm_storeu_si128((__m128i*)&dst[8], dst2);
    407         _mm_storeu_si128((__m128i*)&dst[12], dst3);
    408       }
    409       break;
    410     }
    411     case 1: {
    412       const __m128i ff = _mm_set1_epi16(0xff00);
    413       const __m128i mul = _mm_set1_epi16(0x110);
    414       for (x = 0; x + 16 <= width; x += 16, dst += 8) {
    415         // 0a0b | (where a/b are 4 bits).
    416         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
    417         const __m128i tmp = _mm_mullo_epi16(in, mul);  // aba0
    418         const __m128i pack = _mm_and_si128(tmp, ff);   // ab00
    419         const __m128i dst0 = _mm_unpacklo_epi16(pack, ff);
    420         const __m128i dst1 = _mm_unpackhi_epi16(pack, ff);
    421         _mm_storeu_si128((__m128i*)&dst[0], dst0);
    422         _mm_storeu_si128((__m128i*)&dst[4], dst1);
    423       }
    424       break;
    425     }
    426     case 2: {
    427       const __m128i mask_or = _mm_set1_epi32(0xff000000);
    428       const __m128i mul_cst = _mm_set1_epi16(0x0104);
    429       const __m128i mask_mul = _mm_set1_epi16(0x0f00);
    430       for (x = 0; x + 16 <= width; x += 16, dst += 4) {
    431         // 000a000b000c000d | (where a/b/c/d are 2 bits).
    432         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
    433         const __m128i mul = _mm_mullo_epi16(in, mul_cst);  // 00ab00b000cd00d0
    434         const __m128i tmp = _mm_and_si128(mul, mask_mul);  // 00ab000000cd0000
    435         const __m128i shift = _mm_srli_epi32(tmp, 12);     // 00000000ab000000
    436         const __m128i pack = _mm_or_si128(shift, tmp);     // 00000000abcd0000
    437         // Convert to 0xff00**00.
    438         const __m128i res = _mm_or_si128(pack, mask_or);
    439         _mm_storeu_si128((__m128i*)dst, res);
    440       }
    441       break;
    442     }
    443     default: {
    444       assert(xbits == 3);
    445       for (x = 0; x + 16 <= width; x += 16, dst += 2) {
    446         // 0000000a00000000b... | (where a/b are 1 bit).
    447         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
    448         const __m128i shift = _mm_slli_epi64(in, 7);
    449         const uint32_t move = _mm_movemask_epi8(shift);
    450         dst[0] = 0xff000000 | ((move & 0xff) << 8);
    451         dst[1] = 0xff000000 | (move & 0xff00);
    452       }
    453       break;
    454     }
    455   }
    456   if (x != width) {
    457     VP8LBundleColorMap_C(row + x, width - x, xbits, dst);
    458   }
    459 }
    460 
    461 //------------------------------------------------------------------------------
    462 // Batch version of Predictor Transform subtraction
    463 
    464 static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
    465                                        const __m128i* const a1,
    466                                        __m128i* const avg) {
    467   // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
    468   const __m128i ones = _mm_set1_epi8(1);
    469   const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
    470   const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
    471   *avg = _mm_sub_epi8(avg1, one);
    472 }
    473 
    474 // Predictor0: ARGB_BLACK.
    475 static void PredictorSub0_SSE2(const uint32_t* in, const uint32_t* upper,
    476                                int num_pixels, uint32_t* out) {
    477   int i;
    478   const __m128i black = _mm_set1_epi32(ARGB_BLACK);
    479   for (i = 0; i + 4 <= num_pixels; i += 4) {
    480     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
    481     const __m128i res = _mm_sub_epi8(src, black);
    482     _mm_storeu_si128((__m128i*)&out[i], res);
    483   }
    484   if (i != num_pixels) {
    485     VP8LPredictorsSub_C[0](in + i, upper + i, num_pixels - i, out + i);
    486   }
    487 }
    488 
    489 #define GENERATE_PREDICTOR_1(X, IN)                                           \
    490 static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
    491                                    int num_pixels, uint32_t* out) {           \
    492   int i;                                                                      \
    493   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
    494     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
    495     const __m128i pred = _mm_loadu_si128((const __m128i*)&(IN));              \
    496     const __m128i res = _mm_sub_epi8(src, pred);                              \
    497     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
    498   }                                                                           \
    499   if (i != num_pixels) {                                                      \
    500     VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
    501   }                                                                           \
    502 }
    503 
    504 GENERATE_PREDICTOR_1(1, in[i - 1])       // Predictor1: L
    505 GENERATE_PREDICTOR_1(2, upper[i])        // Predictor2: T
    506 GENERATE_PREDICTOR_1(3, upper[i + 1])    // Predictor3: TR
    507 GENERATE_PREDICTOR_1(4, upper[i - 1])    // Predictor4: TL
    508 #undef GENERATE_PREDICTOR_1
    509 
    510 // Predictor5: avg2(avg2(L, TR), T)
    511 static void PredictorSub5_SSE2(const uint32_t* in, const uint32_t* upper,
    512                                int num_pixels, uint32_t* out) {
    513   int i;
    514   for (i = 0; i + 4 <= num_pixels; i += 4) {
    515     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
    516     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
    517     const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
    518     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
    519     __m128i avg, pred, res;
    520     Average2_m128i(&L, &TR, &avg);
    521     Average2_m128i(&avg, &T, &pred);
    522     res = _mm_sub_epi8(src, pred);
    523     _mm_storeu_si128((__m128i*)&out[i], res);
    524   }
    525   if (i != num_pixels) {
    526     VP8LPredictorsSub_C[5](in + i, upper + i, num_pixels - i, out + i);
    527   }
    528 }
    529 
    530 #define GENERATE_PREDICTOR_2(X, A, B)                                         \
    531 static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
    532                                    int num_pixels, uint32_t* out) {           \
    533   int i;                                                                      \
    534   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
    535     const __m128i tA = _mm_loadu_si128((const __m128i*)&(A));                 \
    536     const __m128i tB = _mm_loadu_si128((const __m128i*)&(B));                 \
    537     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
    538     __m128i pred, res;                                                        \
    539     Average2_m128i(&tA, &tB, &pred);                                          \
    540     res = _mm_sub_epi8(src, pred);                                            \
    541     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
    542   }                                                                           \
    543   if (i != num_pixels) {                                                      \
    544     VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
    545   }                                                                           \
    546 }
    547 
    548 GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1])   // Predictor6: avg(L, TL)
    549 GENERATE_PREDICTOR_2(7, in[i - 1], upper[i])       // Predictor7: avg(L, T)
    550 GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i])    // Predictor8: avg(TL, T)
    551 GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1])    // Predictor9: average(T, TR)
    552 #undef GENERATE_PREDICTOR_2
    553 
    554 // Predictor10: avg(avg(L,TL), avg(T, TR)).
    555 static void PredictorSub10_SSE2(const uint32_t* in, const uint32_t* upper,
    556                                 int num_pixels, uint32_t* out) {
    557   int i;
    558   for (i = 0; i + 4 <= num_pixels; i += 4) {
    559     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
    560     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
    561     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
    562     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
    563     const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
    564     __m128i avgTTR, avgLTL, avg, res;
    565     Average2_m128i(&T, &TR, &avgTTR);
    566     Average2_m128i(&L, &TL, &avgLTL);
    567     Average2_m128i(&avgTTR, &avgLTL, &avg);
    568     res = _mm_sub_epi8(src, avg);
    569     _mm_storeu_si128((__m128i*)&out[i], res);
    570   }
    571   if (i != num_pixels) {
    572     VP8LPredictorsSub_C[10](in + i, upper + i, num_pixels - i, out + i);
    573   }
    574 }
    575 
    576 // Predictor11: select.
    577 static void GetSumAbsDiff32(const __m128i* const A, const __m128i* const B,
    578                             __m128i* const out) {
    579   // We can unpack with any value on the upper 32 bits, provided it's the same
    580   // on both operands (to that their sum of abs diff is zero). Here we use *A.
    581   const __m128i A_lo = _mm_unpacklo_epi32(*A, *A);
    582   const __m128i B_lo = _mm_unpacklo_epi32(*B, *A);
    583   const __m128i A_hi = _mm_unpackhi_epi32(*A, *A);
    584   const __m128i B_hi = _mm_unpackhi_epi32(*B, *A);
    585   const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo);
    586   const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi);
    587   *out = _mm_packs_epi32(s_lo, s_hi);
    588 }
    589 
    590 static void PredictorSub11_SSE2(const uint32_t* in, const uint32_t* upper,
    591                                 int num_pixels, uint32_t* out) {
    592   int i;
    593   for (i = 0; i + 4 <= num_pixels; i += 4) {
    594     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
    595     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
    596     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
    597     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
    598     __m128i pa, pb;
    599     GetSumAbsDiff32(&T, &TL, &pa);   // pa = sum |T-TL|
    600     GetSumAbsDiff32(&L, &TL, &pb);   // pb = sum |L-TL|
    601     {
    602       const __m128i mask = _mm_cmpgt_epi32(pb, pa);
    603       const __m128i A = _mm_and_si128(mask, L);
    604       const __m128i B = _mm_andnot_si128(mask, T);
    605       const __m128i pred = _mm_or_si128(A, B);    // pred = (L > T)? L : T
    606       const __m128i res = _mm_sub_epi8(src, pred);
    607       _mm_storeu_si128((__m128i*)&out[i], res);
    608     }
    609   }
    610   if (i != num_pixels) {
    611     VP8LPredictorsSub_C[11](in + i, upper + i, num_pixels - i, out + i);
    612   }
    613 }
    614 
    615 // Predictor12: ClampedSubSubtractFull.
    616 static void PredictorSub12_SSE2(const uint32_t* in, const uint32_t* upper,
    617                                 int num_pixels, uint32_t* out) {
    618   int i;
    619   const __m128i zero = _mm_setzero_si128();
    620   for (i = 0; i + 4 <= num_pixels; i += 4) {
    621     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
    622     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
    623     const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
    624     const __m128i L_hi = _mm_unpackhi_epi8(L, zero);
    625     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
    626     const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
    627     const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
    628     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
    629     const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
    630     const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
    631     const __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
    632     const __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
    633     const __m128i pred_lo = _mm_add_epi16(L_lo, diff_lo);
    634     const __m128i pred_hi = _mm_add_epi16(L_hi, diff_hi);
    635     const __m128i pred = _mm_packus_epi16(pred_lo, pred_hi);
    636     const __m128i res = _mm_sub_epi8(src, pred);
    637     _mm_storeu_si128((__m128i*)&out[i], res);
    638   }
    639   if (i != num_pixels) {
    640     VP8LPredictorsSub_C[12](in + i, upper + i, num_pixels - i, out + i);
    641   }
    642 }
    643 
    644 // Predictors13: ClampedAddSubtractHalf
    645 static void PredictorSub13_SSE2(const uint32_t* in, const uint32_t* upper,
    646                                 int num_pixels, uint32_t* out) {
    647   int i;
    648   const __m128i zero = _mm_setzero_si128();
    649   for (i = 0; i + 2 <= num_pixels; i += 2) {
    650     // we can only process two pixels at a time
    651     const __m128i L = _mm_loadl_epi64((const __m128i*)&in[i - 1]);
    652     const __m128i src = _mm_loadl_epi64((const __m128i*)&in[i]);
    653     const __m128i T = _mm_loadl_epi64((const __m128i*)&upper[i]);
    654     const __m128i TL = _mm_loadl_epi64((const __m128i*)&upper[i - 1]);
    655     const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
    656     const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
    657     const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
    658     const __m128i sum = _mm_add_epi16(T_lo, L_lo);
    659     const __m128i avg = _mm_srli_epi16(sum, 1);
    660     const __m128i A1 = _mm_sub_epi16(avg, TL_lo);
    661     const __m128i bit_fix = _mm_cmpgt_epi16(TL_lo, avg);
    662     const __m128i A2 = _mm_sub_epi16(A1, bit_fix);
    663     const __m128i A3 = _mm_srai_epi16(A2, 1);
    664     const __m128i A4 = _mm_add_epi16(avg, A3);
    665     const __m128i pred = _mm_packus_epi16(A4, A4);
    666     const __m128i res = _mm_sub_epi8(src, pred);
    667     _mm_storel_epi64((__m128i*)&out[i], res);
    668   }
    669   if (i != num_pixels) {
    670     VP8LPredictorsSub_C[13](in + i, upper + i, num_pixels - i, out + i);
    671   }
    672 }
    673 
    674 //------------------------------------------------------------------------------
    675 // Entry point
    676 
    677 extern void VP8LEncDspInitSSE2(void);
    678 
    679 WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) {
    680   VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed;
    681   VP8LTransformColor = TransformColor;
    682   VP8LCollectColorBlueTransforms = CollectColorBlueTransforms;
    683   VP8LCollectColorRedTransforms = CollectColorRedTransforms;
    684   VP8LHistogramAdd = HistogramAdd;
    685   VP8LCombinedShannonEntropy = CombinedShannonEntropy;
    686   VP8LVectorMismatch = VectorMismatch;
    687   VP8LBundleColorMap = BundleColorMap_SSE2;
    688 
    689   VP8LPredictorsSub[0] = PredictorSub0_SSE2;
    690   VP8LPredictorsSub[1] = PredictorSub1_SSE2;
    691   VP8LPredictorsSub[2] = PredictorSub2_SSE2;
    692   VP8LPredictorsSub[3] = PredictorSub3_SSE2;
    693   VP8LPredictorsSub[4] = PredictorSub4_SSE2;
    694   VP8LPredictorsSub[5] = PredictorSub5_SSE2;
    695   VP8LPredictorsSub[6] = PredictorSub6_SSE2;
    696   VP8LPredictorsSub[7] = PredictorSub7_SSE2;
    697   VP8LPredictorsSub[8] = PredictorSub8_SSE2;
    698   VP8LPredictorsSub[9] = PredictorSub9_SSE2;
    699   VP8LPredictorsSub[10] = PredictorSub10_SSE2;
    700   VP8LPredictorsSub[11] = PredictorSub11_SSE2;
    701   VP8LPredictorsSub[12] = PredictorSub12_SSE2;
    702   VP8LPredictorsSub[13] = PredictorSub13_SSE2;
    703   VP8LPredictorsSub[14] = PredictorSub0_SSE2;  // <- padding security sentinels
    704   VP8LPredictorsSub[15] = PredictorSub0_SSE2;
    705 }
    706 
    707 #else  // !WEBP_USE_SSE2
    708 
    709 WEBP_DSP_INIT_STUB(VP8LEncDspInitSSE2)
    710 
    711 #endif  // WEBP_USE_SSE2
    712