Home | History | Annotate | Download | only in IPO
      1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the mechanics required to implement inlining without
     11 // missing any calls and updating the call graph.  The decisions of which calls
     12 // are profitable to inline are implemented elsewhere.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/ADT/SmallPtrSet.h"
     17 #include "llvm/ADT/Statistic.h"
     18 #include "llvm/Analysis/AliasAnalysis.h"
     19 #include "llvm/Analysis/AssumptionCache.h"
     20 #include "llvm/Analysis/BasicAliasAnalysis.h"
     21 #include "llvm/Analysis/CallGraph.h"
     22 #include "llvm/Analysis/InlineCost.h"
     23 #include "llvm/Analysis/ProfileSummaryInfo.h"
     24 #include "llvm/Analysis/TargetLibraryInfo.h"
     25 #include "llvm/IR/CallSite.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/DiagnosticInfo.h"
     28 #include "llvm/IR/Instructions.h"
     29 #include "llvm/IR/IntrinsicInst.h"
     30 #include "llvm/IR/Module.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 #include "llvm/Transforms/IPO/InlinerPass.h"
     34 #include "llvm/Transforms/Utils/Cloning.h"
     35 #include "llvm/Transforms/Utils/Local.h"
     36 using namespace llvm;
     37 
     38 #define DEBUG_TYPE "inline"
     39 
     40 STATISTIC(NumInlined, "Number of functions inlined");
     41 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
     42 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
     43 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
     44 
     45 // This weirdly named statistic tracks the number of times that, when attempting
     46 // to inline a function A into B, we analyze the callers of B in order to see
     47 // if those would be more profitable and blocked inline steps.
     48 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
     49 
     50 Inliner::Inliner(char &ID) : CallGraphSCCPass(ID), InsertLifetime(true) {}
     51 
     52 Inliner::Inliner(char &ID, bool InsertLifetime)
     53     : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
     54 
     55 /// For this class, we declare that we require and preserve the call graph.
     56 /// If the derived class implements this method, it should
     57 /// always explicitly call the implementation here.
     58 void Inliner::getAnalysisUsage(AnalysisUsage &AU) const {
     59   AU.addRequired<AssumptionCacheTracker>();
     60   AU.addRequired<ProfileSummaryInfoWrapperPass>();
     61   AU.addRequired<TargetLibraryInfoWrapperPass>();
     62   getAAResultsAnalysisUsage(AU);
     63   CallGraphSCCPass::getAnalysisUsage(AU);
     64 }
     65 
     66 
     67 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> >
     68 InlinedArrayAllocasTy;
     69 
     70 /// If it is possible to inline the specified call site,
     71 /// do so and update the CallGraph for this operation.
     72 ///
     73 /// This function also does some basic book-keeping to update the IR.  The
     74 /// InlinedArrayAllocas map keeps track of any allocas that are already
     75 /// available from other functions inlined into the caller.  If we are able to
     76 /// inline this call site we attempt to reuse already available allocas or add
     77 /// any new allocas to the set if not possible.
     78 static bool InlineCallIfPossible(Pass &P, CallSite CS, InlineFunctionInfo &IFI,
     79                                  InlinedArrayAllocasTy &InlinedArrayAllocas,
     80                                  int InlineHistory, bool InsertLifetime) {
     81   Function *Callee = CS.getCalledFunction();
     82   Function *Caller = CS.getCaller();
     83 
     84   // We need to manually construct BasicAA directly in order to disable
     85   // its use of other function analyses.
     86   BasicAAResult BAR(createLegacyPMBasicAAResult(P, *Callee));
     87 
     88   // Construct our own AA results for this function. We do this manually to
     89   // work around the limitations of the legacy pass manager.
     90   AAResults AAR(createLegacyPMAAResults(P, *Callee, BAR));
     91 
     92   // Try to inline the function.  Get the list of static allocas that were
     93   // inlined.
     94   if (!InlineFunction(CS, IFI, &AAR, InsertLifetime))
     95     return false;
     96 
     97   AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
     98 
     99   // Look at all of the allocas that we inlined through this call site.  If we
    100   // have already inlined other allocas through other calls into this function,
    101   // then we know that they have disjoint lifetimes and that we can merge them.
    102   //
    103   // There are many heuristics possible for merging these allocas, and the
    104   // different options have different tradeoffs.  One thing that we *really*
    105   // don't want to hurt is SRoA: once inlining happens, often allocas are no
    106   // longer address taken and so they can be promoted.
    107   //
    108   // Our "solution" for that is to only merge allocas whose outermost type is an
    109   // array type.  These are usually not promoted because someone is using a
    110   // variable index into them.  These are also often the most important ones to
    111   // merge.
    112   //
    113   // A better solution would be to have real memory lifetime markers in the IR
    114   // and not have the inliner do any merging of allocas at all.  This would
    115   // allow the backend to do proper stack slot coloring of all allocas that
    116   // *actually make it to the backend*, which is really what we want.
    117   //
    118   // Because we don't have this information, we do this simple and useful hack.
    119   //
    120   SmallPtrSet<AllocaInst*, 16> UsedAllocas;
    121 
    122   // When processing our SCC, check to see if CS was inlined from some other
    123   // call site.  For example, if we're processing "A" in this code:
    124   //   A() { B() }
    125   //   B() { x = alloca ... C() }
    126   //   C() { y = alloca ... }
    127   // Assume that C was not inlined into B initially, and so we're processing A
    128   // and decide to inline B into A.  Doing this makes an alloca available for
    129   // reuse and makes a callsite (C) available for inlining.  When we process
    130   // the C call site we don't want to do any alloca merging between X and Y
    131   // because their scopes are not disjoint.  We could make this smarter by
    132   // keeping track of the inline history for each alloca in the
    133   // InlinedArrayAllocas but this isn't likely to be a significant win.
    134   if (InlineHistory != -1)  // Only do merging for top-level call sites in SCC.
    135     return true;
    136 
    137   // Loop over all the allocas we have so far and see if they can be merged with
    138   // a previously inlined alloca.  If not, remember that we had it.
    139   for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size();
    140        AllocaNo != e; ++AllocaNo) {
    141     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
    142 
    143     // Don't bother trying to merge array allocations (they will usually be
    144     // canonicalized to be an allocation *of* an array), or allocations whose
    145     // type is not itself an array (because we're afraid of pessimizing SRoA).
    146     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
    147     if (!ATy || AI->isArrayAllocation())
    148       continue;
    149 
    150     // Get the list of all available allocas for this array type.
    151     std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy];
    152 
    153     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
    154     // that we have to be careful not to reuse the same "available" alloca for
    155     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
    156     // set to keep track of which "available" allocas are being used by this
    157     // function.  Also, AllocasForType can be empty of course!
    158     bool MergedAwayAlloca = false;
    159     for (AllocaInst *AvailableAlloca : AllocasForType) {
    160 
    161       unsigned Align1 = AI->getAlignment(),
    162                Align2 = AvailableAlloca->getAlignment();
    163 
    164       // The available alloca has to be in the right function, not in some other
    165       // function in this SCC.
    166       if (AvailableAlloca->getParent() != AI->getParent())
    167         continue;
    168 
    169       // If the inlined function already uses this alloca then we can't reuse
    170       // it.
    171       if (!UsedAllocas.insert(AvailableAlloca).second)
    172         continue;
    173 
    174       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
    175       // success!
    176       DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: "
    177                    << *AvailableAlloca << '\n');
    178 
    179       // Move affected dbg.declare calls immediately after the new alloca to
    180       // avoid the situation when a dbg.declare preceeds its alloca.
    181       if (auto *L = LocalAsMetadata::getIfExists(AI))
    182         if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
    183           for (User *U : MDV->users())
    184             if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
    185               DDI->moveBefore(AvailableAlloca->getNextNode());
    186 
    187       AI->replaceAllUsesWith(AvailableAlloca);
    188 
    189       if (Align1 != Align2) {
    190         if (!Align1 || !Align2) {
    191           const DataLayout &DL = Caller->getParent()->getDataLayout();
    192           unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType());
    193 
    194           Align1 = Align1 ? Align1 : TypeAlign;
    195           Align2 = Align2 ? Align2 : TypeAlign;
    196         }
    197 
    198         if (Align1 > Align2)
    199           AvailableAlloca->setAlignment(AI->getAlignment());
    200       }
    201 
    202       AI->eraseFromParent();
    203       MergedAwayAlloca = true;
    204       ++NumMergedAllocas;
    205       IFI.StaticAllocas[AllocaNo] = nullptr;
    206       break;
    207     }
    208 
    209     // If we already nuked the alloca, we're done with it.
    210     if (MergedAwayAlloca)
    211       continue;
    212 
    213     // If we were unable to merge away the alloca either because there are no
    214     // allocas of the right type available or because we reused them all
    215     // already, remember that this alloca came from an inlined function and mark
    216     // it used so we don't reuse it for other allocas from this inline
    217     // operation.
    218     AllocasForType.push_back(AI);
    219     UsedAllocas.insert(AI);
    220   }
    221 
    222   return true;
    223 }
    224 
    225 static void emitAnalysis(CallSite CS, const Twine &Msg) {
    226   Function *Caller = CS.getCaller();
    227   LLVMContext &Ctx = Caller->getContext();
    228   DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
    229   emitOptimizationRemarkAnalysis(Ctx, DEBUG_TYPE, *Caller, DLoc, Msg);
    230 }
    231 
    232 bool Inliner::shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC,
    233                                int &TotalSecondaryCost) {
    234 
    235   // For now we only handle local or inline functions.
    236   if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage())
    237     return false;
    238   // Try to detect the case where the current inlining candidate caller (call
    239   // it B) is a static or linkonce-ODR function and is an inlining candidate
    240   // elsewhere, and the current candidate callee (call it C) is large enough
    241   // that inlining it into B would make B too big to inline later. In these
    242   // circumstances it may be best not to inline C into B, but to inline B into
    243   // its callers.
    244   //
    245   // This only applies to static and linkonce-ODR functions because those are
    246   // expected to be available for inlining in the translation units where they
    247   // are used. Thus we will always have the opportunity to make local inlining
    248   // decisions. Importantly the linkonce-ODR linkage covers inline functions
    249   // and templates in C++.
    250   //
    251   // FIXME: All of this logic should be sunk into getInlineCost. It relies on
    252   // the internal implementation of the inline cost metrics rather than
    253   // treating them as truly abstract units etc.
    254   TotalSecondaryCost = 0;
    255   // The candidate cost to be imposed upon the current function.
    256   int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1);
    257   // This bool tracks what happens if we do NOT inline C into B.
    258   bool callerWillBeRemoved = Caller->hasLocalLinkage();
    259   // This bool tracks what happens if we DO inline C into B.
    260   bool inliningPreventsSomeOuterInline = false;
    261   for (User *U : Caller->users()) {
    262     CallSite CS2(U);
    263 
    264     // If this isn't a call to Caller (it could be some other sort
    265     // of reference) skip it.  Such references will prevent the caller
    266     // from being removed.
    267     if (!CS2 || CS2.getCalledFunction() != Caller) {
    268       callerWillBeRemoved = false;
    269       continue;
    270     }
    271 
    272     InlineCost IC2 = getInlineCost(CS2);
    273     ++NumCallerCallersAnalyzed;
    274     if (!IC2) {
    275       callerWillBeRemoved = false;
    276       continue;
    277     }
    278     if (IC2.isAlways())
    279       continue;
    280 
    281     // See if inlining or original callsite would erase the cost delta of
    282     // this callsite. We subtract off the penalty for the call instruction,
    283     // which we would be deleting.
    284     if (IC2.getCostDelta() <= CandidateCost) {
    285       inliningPreventsSomeOuterInline = true;
    286       TotalSecondaryCost += IC2.getCost();
    287     }
    288   }
    289   // If all outer calls to Caller would get inlined, the cost for the last
    290   // one is set very low by getInlineCost, in anticipation that Caller will
    291   // be removed entirely.  We did not account for this above unless there
    292   // is only one caller of Caller.
    293   if (callerWillBeRemoved && !Caller->use_empty())
    294     TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
    295 
    296   if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost())
    297     return true;
    298 
    299   return false;
    300 }
    301 
    302 /// Return true if the inliner should attempt to inline at the given CallSite.
    303 bool Inliner::shouldInline(CallSite CS) {
    304   InlineCost IC = getInlineCost(CS);
    305 
    306   if (IC.isAlways()) {
    307     DEBUG(dbgs() << "    Inlining: cost=always"
    308           << ", Call: " << *CS.getInstruction() << "\n");
    309     emitAnalysis(CS, Twine(CS.getCalledFunction()->getName()) +
    310                          " should always be inlined (cost=always)");
    311     return true;
    312   }
    313 
    314   if (IC.isNever()) {
    315     DEBUG(dbgs() << "    NOT Inlining: cost=never"
    316           << ", Call: " << *CS.getInstruction() << "\n");
    317     emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() +
    318                            " should never be inlined (cost=never)"));
    319     return false;
    320   }
    321 
    322   Function *Caller = CS.getCaller();
    323   if (!IC) {
    324     DEBUG(dbgs() << "    NOT Inlining: cost=" << IC.getCost()
    325           << ", thres=" << (IC.getCostDelta() + IC.getCost())
    326           << ", Call: " << *CS.getInstruction() << "\n");
    327     emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() +
    328                            " too costly to inline (cost=") +
    329                          Twine(IC.getCost()) + ", threshold=" +
    330                          Twine(IC.getCostDelta() + IC.getCost()) + ")");
    331     return false;
    332   }
    333 
    334   int TotalSecondaryCost = 0;
    335   if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost)) {
    336     DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction()
    337           << " Cost = " << IC.getCost()
    338           << ", outer Cost = " << TotalSecondaryCost << '\n');
    339     emitAnalysis(CS, Twine("Not inlining. Cost of inlining " +
    340                            CS.getCalledFunction()->getName() +
    341                            " increases the cost of inlining " +
    342                            CS.getCaller()->getName() + " in other contexts"));
    343     return false;
    344   }
    345 
    346   DEBUG(dbgs() << "    Inlining: cost=" << IC.getCost()
    347         << ", thres=" << (IC.getCostDelta() + IC.getCost())
    348         << ", Call: " << *CS.getInstruction() << '\n');
    349   emitAnalysis(
    350       CS, CS.getCalledFunction()->getName() + Twine(" can be inlined into ") +
    351               CS.getCaller()->getName() + " with cost=" + Twine(IC.getCost()) +
    352               " (threshold=" + Twine(IC.getCostDelta() + IC.getCost()) + ")");
    353   return true;
    354 }
    355 
    356 /// Return true if the specified inline history ID
    357 /// indicates an inline history that includes the specified function.
    358 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID,
    359             const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) {
    360   while (InlineHistoryID != -1) {
    361     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
    362            "Invalid inline history ID");
    363     if (InlineHistory[InlineHistoryID].first == F)
    364       return true;
    365     InlineHistoryID = InlineHistory[InlineHistoryID].second;
    366   }
    367   return false;
    368 }
    369 
    370 bool Inliner::runOnSCC(CallGraphSCC &SCC) {
    371   if (skipSCC(SCC))
    372     return false;
    373   return inlineCalls(SCC);
    374 }
    375 
    376 bool Inliner::inlineCalls(CallGraphSCC &SCC) {
    377   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
    378   ACT = &getAnalysis<AssumptionCacheTracker>();
    379   PSI = getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(CG.getModule());
    380   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
    381 
    382   SmallPtrSet<Function*, 8> SCCFunctions;
    383   DEBUG(dbgs() << "Inliner visiting SCC:");
    384   for (CallGraphNode *Node : SCC) {
    385     Function *F = Node->getFunction();
    386     if (F) SCCFunctions.insert(F);
    387     DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
    388   }
    389 
    390   // Scan through and identify all call sites ahead of time so that we only
    391   // inline call sites in the original functions, not call sites that result
    392   // from inlining other functions.
    393   SmallVector<std::pair<CallSite, int>, 16> CallSites;
    394 
    395   // When inlining a callee produces new call sites, we want to keep track of
    396   // the fact that they were inlined from the callee.  This allows us to avoid
    397   // infinite inlining in some obscure cases.  To represent this, we use an
    398   // index into the InlineHistory vector.
    399   SmallVector<std::pair<Function*, int>, 8> InlineHistory;
    400 
    401   for (CallGraphNode *Node : SCC) {
    402     Function *F = Node->getFunction();
    403     if (!F) continue;
    404 
    405     for (BasicBlock &BB : *F)
    406       for (Instruction &I : BB) {
    407         CallSite CS(cast<Value>(&I));
    408         // If this isn't a call, or it is a call to an intrinsic, it can
    409         // never be inlined.
    410         if (!CS || isa<IntrinsicInst>(I))
    411           continue;
    412 
    413         // If this is a direct call to an external function, we can never inline
    414         // it.  If it is an indirect call, inlining may resolve it to be a
    415         // direct call, so we keep it.
    416         if (Function *Callee = CS.getCalledFunction())
    417           if (Callee->isDeclaration())
    418             continue;
    419 
    420         CallSites.push_back(std::make_pair(CS, -1));
    421       }
    422   }
    423 
    424   DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
    425 
    426   // If there are no calls in this function, exit early.
    427   if (CallSites.empty())
    428     return false;
    429 
    430   // Now that we have all of the call sites, move the ones to functions in the
    431   // current SCC to the end of the list.
    432   unsigned FirstCallInSCC = CallSites.size();
    433   for (unsigned i = 0; i < FirstCallInSCC; ++i)
    434     if (Function *F = CallSites[i].first.getCalledFunction())
    435       if (SCCFunctions.count(F))
    436         std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
    437 
    438 
    439   InlinedArrayAllocasTy InlinedArrayAllocas;
    440   InlineFunctionInfo InlineInfo(&CG, ACT);
    441 
    442   // Now that we have all of the call sites, loop over them and inline them if
    443   // it looks profitable to do so.
    444   bool Changed = false;
    445   bool LocalChange;
    446   do {
    447     LocalChange = false;
    448     // Iterate over the outer loop because inlining functions can cause indirect
    449     // calls to become direct calls.
    450     // CallSites may be modified inside so ranged for loop can not be used.
    451     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
    452       CallSite CS = CallSites[CSi].first;
    453 
    454       Function *Caller = CS.getCaller();
    455       Function *Callee = CS.getCalledFunction();
    456 
    457       // If this call site is dead and it is to a readonly function, we should
    458       // just delete the call instead of trying to inline it, regardless of
    459       // size.  This happens because IPSCCP propagates the result out of the
    460       // call and then we're left with the dead call.
    461       if (isInstructionTriviallyDead(CS.getInstruction(), &TLI)) {
    462         DEBUG(dbgs() << "    -> Deleting dead call: "
    463                      << *CS.getInstruction() << "\n");
    464         // Update the call graph by deleting the edge from Callee to Caller.
    465         CG[Caller]->removeCallEdgeFor(CS);
    466         CS.getInstruction()->eraseFromParent();
    467         ++NumCallsDeleted;
    468       } else {
    469         // We can only inline direct calls to non-declarations.
    470         if (!Callee || Callee->isDeclaration()) continue;
    471 
    472         // If this call site was obtained by inlining another function, verify
    473         // that the include path for the function did not include the callee
    474         // itself.  If so, we'd be recursively inlining the same function,
    475         // which would provide the same callsites, which would cause us to
    476         // infinitely inline.
    477         int InlineHistoryID = CallSites[CSi].second;
    478         if (InlineHistoryID != -1 &&
    479             InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
    480           continue;
    481 
    482         LLVMContext &CallerCtx = Caller->getContext();
    483 
    484         // Get DebugLoc to report. CS will be invalid after Inliner.
    485         DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
    486 
    487         // If the policy determines that we should inline this function,
    488         // try to do so.
    489         if (!shouldInline(CS)) {
    490           emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc,
    491                                        Twine(Callee->getName() +
    492                                              " will not be inlined into " +
    493                                              Caller->getName()));
    494           continue;
    495         }
    496 
    497         // Attempt to inline the function.
    498         if (!InlineCallIfPossible(*this, CS, InlineInfo, InlinedArrayAllocas,
    499                                   InlineHistoryID, InsertLifetime)) {
    500           emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc,
    501                                        Twine(Callee->getName() +
    502                                              " will not be inlined into " +
    503                                              Caller->getName()));
    504           continue;
    505         }
    506         ++NumInlined;
    507 
    508         // Report the inline decision.
    509         emitOptimizationRemark(
    510             CallerCtx, DEBUG_TYPE, *Caller, DLoc,
    511             Twine(Callee->getName() + " inlined into " + Caller->getName()));
    512 
    513         // If inlining this function gave us any new call sites, throw them
    514         // onto our worklist to process.  They are useful inline candidates.
    515         if (!InlineInfo.InlinedCalls.empty()) {
    516           // Create a new inline history entry for this, so that we remember
    517           // that these new callsites came about due to inlining Callee.
    518           int NewHistoryID = InlineHistory.size();
    519           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
    520 
    521           for (Value *Ptr : InlineInfo.InlinedCalls)
    522             CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
    523         }
    524       }
    525 
    526       // If we inlined or deleted the last possible call site to the function,
    527       // delete the function body now.
    528       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
    529           // TODO: Can remove if in SCC now.
    530           !SCCFunctions.count(Callee) &&
    531 
    532           // The function may be apparently dead, but if there are indirect
    533           // callgraph references to the node, we cannot delete it yet, this
    534           // could invalidate the CGSCC iterator.
    535           CG[Callee]->getNumReferences() == 0) {
    536         DEBUG(dbgs() << "    -> Deleting dead function: "
    537               << Callee->getName() << "\n");
    538         CallGraphNode *CalleeNode = CG[Callee];
    539 
    540         // Remove any call graph edges from the callee to its callees.
    541         CalleeNode->removeAllCalledFunctions();
    542 
    543         // Removing the node for callee from the call graph and delete it.
    544         delete CG.removeFunctionFromModule(CalleeNode);
    545         ++NumDeleted;
    546       }
    547 
    548       // Remove this call site from the list.  If possible, use
    549       // swap/pop_back for efficiency, but do not use it if doing so would
    550       // move a call site to a function in this SCC before the
    551       // 'FirstCallInSCC' barrier.
    552       if (SCC.isSingular()) {
    553         CallSites[CSi] = CallSites.back();
    554         CallSites.pop_back();
    555       } else {
    556         CallSites.erase(CallSites.begin()+CSi);
    557       }
    558       --CSi;
    559 
    560       Changed = true;
    561       LocalChange = true;
    562     }
    563   } while (LocalChange);
    564 
    565   return Changed;
    566 }
    567 
    568 /// Remove now-dead linkonce functions at the end of
    569 /// processing to avoid breaking the SCC traversal.
    570 bool Inliner::doFinalization(CallGraph &CG) {
    571   return removeDeadFunctions(CG);
    572 }
    573 
    574 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
    575 bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) {
    576   SmallVector<CallGraphNode*, 16> FunctionsToRemove;
    577   SmallVector<CallGraphNode *, 16> DeadFunctionsInComdats;
    578   SmallDenseMap<const Comdat *, int, 16> ComdatEntriesAlive;
    579 
    580   auto RemoveCGN = [&](CallGraphNode *CGN) {
    581     // Remove any call graph edges from the function to its callees.
    582     CGN->removeAllCalledFunctions();
    583 
    584     // Remove any edges from the external node to the function's call graph
    585     // node.  These edges might have been made irrelegant due to
    586     // optimization of the program.
    587     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
    588 
    589     // Removing the node for callee from the call graph and delete it.
    590     FunctionsToRemove.push_back(CGN);
    591   };
    592 
    593   // Scan for all of the functions, looking for ones that should now be removed
    594   // from the program.  Insert the dead ones in the FunctionsToRemove set.
    595   for (const auto &I : CG) {
    596     CallGraphNode *CGN = I.second.get();
    597     Function *F = CGN->getFunction();
    598     if (!F || F->isDeclaration())
    599       continue;
    600 
    601     // Handle the case when this function is called and we only want to care
    602     // about always-inline functions. This is a bit of a hack to share code
    603     // between here and the InlineAlways pass.
    604     if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
    605       continue;
    606 
    607     // If the only remaining users of the function are dead constants, remove
    608     // them.
    609     F->removeDeadConstantUsers();
    610 
    611     if (!F->isDefTriviallyDead())
    612       continue;
    613 
    614     // It is unsafe to drop a function with discardable linkage from a COMDAT
    615     // without also dropping the other members of the COMDAT.
    616     // The inliner doesn't visit non-function entities which are in COMDAT
    617     // groups so it is unsafe to do so *unless* the linkage is local.
    618     if (!F->hasLocalLinkage()) {
    619       if (const Comdat *C = F->getComdat()) {
    620         --ComdatEntriesAlive[C];
    621         DeadFunctionsInComdats.push_back(CGN);
    622         continue;
    623       }
    624     }
    625 
    626     RemoveCGN(CGN);
    627   }
    628   if (!DeadFunctionsInComdats.empty()) {
    629     // Count up all the entities in COMDAT groups
    630     auto ComdatGroupReferenced = [&](const Comdat *C) {
    631       auto I = ComdatEntriesAlive.find(C);
    632       if (I != ComdatEntriesAlive.end())
    633         ++(I->getSecond());
    634     };
    635     for (const Function &F : CG.getModule())
    636       if (const Comdat *C = F.getComdat())
    637         ComdatGroupReferenced(C);
    638     for (const GlobalVariable &GV : CG.getModule().globals())
    639       if (const Comdat *C = GV.getComdat())
    640         ComdatGroupReferenced(C);
    641     for (const GlobalAlias &GA : CG.getModule().aliases())
    642       if (const Comdat *C = GA.getComdat())
    643         ComdatGroupReferenced(C);
    644     for (CallGraphNode *CGN : DeadFunctionsInComdats) {
    645       Function *F = CGN->getFunction();
    646       const Comdat *C = F->getComdat();
    647       int NumAlive = ComdatEntriesAlive[C];
    648       // We can remove functions in a COMDAT group if the entire group is dead.
    649       assert(NumAlive >= 0);
    650       if (NumAlive > 0)
    651         continue;
    652 
    653       RemoveCGN(CGN);
    654     }
    655   }
    656 
    657   if (FunctionsToRemove.empty())
    658     return false;
    659 
    660   // Now that we know which functions to delete, do so.  We didn't want to do
    661   // this inline, because that would invalidate our CallGraph::iterator
    662   // objects. :(
    663   //
    664   // Note that it doesn't matter that we are iterating over a non-stable order
    665   // here to do this, it doesn't matter which order the functions are deleted
    666   // in.
    667   array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
    668   FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(),
    669                                       FunctionsToRemove.end()),
    670                           FunctionsToRemove.end());
    671   for (CallGraphNode *CGN : FunctionsToRemove) {
    672     delete CG.removeFunctionFromModule(CGN);
    673     ++NumDeleted;
    674   }
    675   return true;
    676 }
    677