Home | History | Annotate | Download | only in mirror
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_MIRROR_ARRAY_INL_H_
     18 #define ART_RUNTIME_MIRROR_ARRAY_INL_H_
     19 
     20 #include "array.h"
     21 
     22 #include "android-base/stringprintf.h"
     23 
     24 #include "base/bit_utils.h"
     25 #include "base/casts.h"
     26 #include "base/logging.h"
     27 #include "class.h"
     28 #include "gc/heap-inl.h"
     29 #include "object-inl.h"
     30 #include "obj_ptr-inl.h"
     31 #include "thread.h"
     32 
     33 namespace art {
     34 namespace mirror {
     35 
     36 inline uint32_t Array::ClassSize(PointerSize pointer_size) {
     37   uint32_t vtable_entries = Object::kVTableLength;
     38   return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size);
     39 }
     40 
     41 template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
     42 inline size_t Array::SizeOf() {
     43   // This is safe from overflow because the array was already allocated, so we know it's sane.
     44   size_t component_size_shift = GetClass<kVerifyFlags, kReadBarrierOption>()->
     45       template GetComponentSizeShift<kReadBarrierOption>();
     46   // Don't need to check this since we already check this in GetClass.
     47   int32_t component_count =
     48       GetLength<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>();
     49   size_t header_size = DataOffset(1U << component_size_shift).SizeValue();
     50   size_t data_size = component_count << component_size_shift;
     51   return header_size + data_size;
     52 }
     53 
     54 inline MemberOffset Array::DataOffset(size_t component_size) {
     55   DCHECK(IsPowerOfTwo(component_size)) << component_size;
     56   size_t data_offset = RoundUp(OFFSETOF_MEMBER(Array, first_element_), component_size);
     57   DCHECK_EQ(RoundUp(data_offset, component_size), data_offset)
     58       << "Array data offset isn't aligned with component size";
     59   return MemberOffset(data_offset);
     60 }
     61 
     62 template<VerifyObjectFlags kVerifyFlags>
     63 inline bool Array::CheckIsValidIndex(int32_t index) {
     64   if (UNLIKELY(static_cast<uint32_t>(index) >=
     65                static_cast<uint32_t>(GetLength<kVerifyFlags>()))) {
     66     ThrowArrayIndexOutOfBoundsException(index);
     67     return false;
     68   }
     69   return true;
     70 }
     71 
     72 static inline size_t ComputeArraySize(int32_t component_count, size_t component_size_shift) {
     73   DCHECK_GE(component_count, 0);
     74 
     75   size_t component_size = 1U << component_size_shift;
     76   size_t header_size = Array::DataOffset(component_size).SizeValue();
     77   size_t data_size = static_cast<size_t>(component_count) << component_size_shift;
     78   size_t size = header_size + data_size;
     79 
     80   // Check for size_t overflow if this was an unreasonable request
     81   // but let the caller throw OutOfMemoryError.
     82 #ifdef __LP64__
     83   // 64-bit. No overflow as component_count is 32-bit and the maximum
     84   // component size is 8.
     85   DCHECK_LE((1U << component_size_shift), 8U);
     86 #else
     87   // 32-bit.
     88   DCHECK_NE(header_size, 0U);
     89   DCHECK_EQ(RoundUp(header_size, component_size), header_size);
     90   // The array length limit (exclusive).
     91   const size_t length_limit = (0U - header_size) >> component_size_shift;
     92   if (UNLIKELY(length_limit <= static_cast<size_t>(component_count))) {
     93     return 0;  // failure
     94   }
     95 #endif
     96   return size;
     97 }
     98 
     99 // Used for setting the array length in the allocation code path to ensure it is guarded by a
    100 // StoreStore fence.
    101 class SetLengthVisitor {
    102  public:
    103   explicit SetLengthVisitor(int32_t length) : length_(length) {
    104   }
    105 
    106   void operator()(ObjPtr<Object> obj, size_t usable_size ATTRIBUTE_UNUSED) const
    107       REQUIRES_SHARED(Locks::mutator_lock_) {
    108     // Avoid AsArray as object is not yet in live bitmap or allocation stack.
    109     ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj);
    110     // DCHECK(array->IsArrayInstance());
    111     array->SetLength(length_);
    112   }
    113 
    114  private:
    115   const int32_t length_;
    116 
    117   DISALLOW_COPY_AND_ASSIGN(SetLengthVisitor);
    118 };
    119 
    120 // Similar to SetLengthVisitor, used for setting the array length to fill the usable size of an
    121 // array.
    122 class SetLengthToUsableSizeVisitor {
    123  public:
    124   SetLengthToUsableSizeVisitor(int32_t min_length, size_t header_size,
    125                                size_t component_size_shift) :
    126       minimum_length_(min_length), header_size_(header_size),
    127       component_size_shift_(component_size_shift) {
    128   }
    129 
    130   void operator()(ObjPtr<Object> obj, size_t usable_size) const
    131       REQUIRES_SHARED(Locks::mutator_lock_) {
    132     // Avoid AsArray as object is not yet in live bitmap or allocation stack.
    133     ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj);
    134     // DCHECK(array->IsArrayInstance());
    135     int32_t length = (usable_size - header_size_) >> component_size_shift_;
    136     DCHECK_GE(length, minimum_length_);
    137     uint8_t* old_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
    138                                                                     minimum_length_));
    139     uint8_t* new_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
    140                                                                     length));
    141     // Ensure space beyond original allocation is zeroed.
    142     memset(old_end, 0, new_end - old_end);
    143     array->SetLength(length);
    144   }
    145 
    146  private:
    147   const int32_t minimum_length_;
    148   const size_t header_size_;
    149   const size_t component_size_shift_;
    150 
    151   DISALLOW_COPY_AND_ASSIGN(SetLengthToUsableSizeVisitor);
    152 };
    153 
    154 template <bool kIsInstrumented, bool kFillUsable>
    155 inline Array* Array::Alloc(Thread* self,
    156                            ObjPtr<Class> array_class,
    157                            int32_t component_count,
    158                            size_t component_size_shift,
    159                            gc::AllocatorType allocator_type) {
    160   DCHECK(allocator_type != gc::kAllocatorTypeLOS);
    161   DCHECK(array_class != nullptr);
    162   DCHECK(array_class->IsArrayClass());
    163   DCHECK_EQ(array_class->GetComponentSizeShift(), component_size_shift);
    164   DCHECK_EQ(array_class->GetComponentSize(), (1U << component_size_shift));
    165   size_t size = ComputeArraySize(component_count, component_size_shift);
    166 #ifdef __LP64__
    167   // 64-bit. No size_t overflow.
    168   DCHECK_NE(size, 0U);
    169 #else
    170   // 32-bit.
    171   if (UNLIKELY(size == 0)) {
    172     self->ThrowOutOfMemoryError(android::base::StringPrintf("%s of length %d would overflow",
    173                                                             array_class->PrettyDescriptor().c_str(),
    174                                                             component_count).c_str());
    175     return nullptr;
    176   }
    177 #endif
    178   gc::Heap* heap = Runtime::Current()->GetHeap();
    179   Array* result;
    180   if (!kFillUsable) {
    181     SetLengthVisitor visitor(component_count);
    182     result = down_cast<Array*>(
    183         heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
    184                                                               allocator_type, visitor));
    185   } else {
    186     SetLengthToUsableSizeVisitor visitor(component_count,
    187                                          DataOffset(1U << component_size_shift).SizeValue(),
    188                                          component_size_shift);
    189     result = down_cast<Array*>(
    190         heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
    191                                                               allocator_type, visitor));
    192   }
    193   if (kIsDebugBuild && result != nullptr && Runtime::Current()->IsStarted()) {
    194     array_class = result->GetClass();  // In case the array class moved.
    195     CHECK_EQ(array_class->GetComponentSize(), 1U << component_size_shift);
    196     if (!kFillUsable) {
    197       CHECK_EQ(result->SizeOf(), size);
    198     } else {
    199       CHECK_GE(result->SizeOf(), size);
    200     }
    201   }
    202   return result;
    203 }
    204 
    205 template<class T>
    206 inline void PrimitiveArray<T>::VisitRoots(RootVisitor* visitor) {
    207   array_class_.VisitRootIfNonNull(visitor, RootInfo(kRootStickyClass));
    208 }
    209 
    210 template<typename T>
    211 inline PrimitiveArray<T>* PrimitiveArray<T>::AllocateAndFill(Thread* self,
    212                                                              const T* data,
    213                                                              size_t length) {
    214   StackHandleScope<1> hs(self);
    215   Handle<PrimitiveArray<T>> arr(hs.NewHandle(PrimitiveArray<T>::Alloc(self, length)));
    216   if (!arr.IsNull()) {
    217     // Copy it in. Just skip if it's null
    218     memcpy(arr->GetData(), data, sizeof(T) * length);
    219   }
    220   return arr.Get();
    221 }
    222 
    223 template<typename T>
    224 inline PrimitiveArray<T>* PrimitiveArray<T>::Alloc(Thread* self, size_t length) {
    225   Array* raw_array = Array::Alloc<true>(self,
    226                                         GetArrayClass(),
    227                                         length,
    228                                         ComponentSizeShiftWidth(sizeof(T)),
    229                                         Runtime::Current()->GetHeap()->GetCurrentAllocator());
    230   return down_cast<PrimitiveArray<T>*>(raw_array);
    231 }
    232 
    233 template<typename T>
    234 inline T PrimitiveArray<T>::Get(int32_t i) {
    235   if (!CheckIsValidIndex(i)) {
    236     DCHECK(Thread::Current()->IsExceptionPending());
    237     return T(0);
    238   }
    239   return GetWithoutChecks(i);
    240 }
    241 
    242 template<typename T>
    243 inline void PrimitiveArray<T>::Set(int32_t i, T value) {
    244   if (Runtime::Current()->IsActiveTransaction()) {
    245     Set<true>(i, value);
    246   } else {
    247     Set<false>(i, value);
    248   }
    249 }
    250 
    251 template<typename T>
    252 template<bool kTransactionActive, bool kCheckTransaction>
    253 inline void PrimitiveArray<T>::Set(int32_t i, T value) {
    254   if (CheckIsValidIndex(i)) {
    255     SetWithoutChecks<kTransactionActive, kCheckTransaction>(i, value);
    256   } else {
    257     DCHECK(Thread::Current()->IsExceptionPending());
    258   }
    259 }
    260 
    261 template<typename T>
    262 template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
    263 inline void PrimitiveArray<T>::SetWithoutChecks(int32_t i, T value) {
    264   if (kCheckTransaction) {
    265     DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
    266   }
    267   if (kTransactionActive) {
    268     Runtime::Current()->RecordWriteArray(this, i, GetWithoutChecks(i));
    269   }
    270   DCHECK(CheckIsValidIndex<kVerifyFlags>(i));
    271   GetData()[i] = value;
    272 }
    273 // Backward copy where elements are of aligned appropriately for T. Count is in T sized units.
    274 // Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
    275 template<typename T>
    276 static inline void ArrayBackwardCopy(T* d, const T* s, int32_t count) {
    277   d += count;
    278   s += count;
    279   for (int32_t i = 0; i < count; ++i) {
    280     d--;
    281     s--;
    282     *d = *s;
    283   }
    284 }
    285 
    286 // Forward copy where elements are of aligned appropriately for T. Count is in T sized units.
    287 // Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
    288 template<typename T>
    289 static inline void ArrayForwardCopy(T* d, const T* s, int32_t count) {
    290   for (int32_t i = 0; i < count; ++i) {
    291     *d = *s;
    292     d++;
    293     s++;
    294   }
    295 }
    296 
    297 template<class T>
    298 inline void PrimitiveArray<T>::Memmove(int32_t dst_pos,
    299                                        ObjPtr<PrimitiveArray<T>> src,
    300                                        int32_t src_pos,
    301                                        int32_t count) {
    302   if (UNLIKELY(count == 0)) {
    303     return;
    304   }
    305   DCHECK_GE(dst_pos, 0);
    306   DCHECK_GE(src_pos, 0);
    307   DCHECK_GT(count, 0);
    308   DCHECK(src != nullptr);
    309   DCHECK_LT(dst_pos, GetLength());
    310   DCHECK_LE(dst_pos, GetLength() - count);
    311   DCHECK_LT(src_pos, src->GetLength());
    312   DCHECK_LE(src_pos, src->GetLength() - count);
    313 
    314   // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
    315   // in our implementation, because they may copy byte-by-byte.
    316   if (LIKELY(src != this)) {
    317     // Memcpy ok for guaranteed non-overlapping distinct arrays.
    318     Memcpy(dst_pos, src, src_pos, count);
    319   } else {
    320     // Handle copies within the same array using the appropriate direction copy.
    321     void* dst_raw = GetRawData(sizeof(T), dst_pos);
    322     const void* src_raw = src->GetRawData(sizeof(T), src_pos);
    323     if (sizeof(T) == sizeof(uint8_t)) {
    324       uint8_t* d = reinterpret_cast<uint8_t*>(dst_raw);
    325       const uint8_t* s = reinterpret_cast<const uint8_t*>(src_raw);
    326       memmove(d, s, count);
    327     } else {
    328       const bool copy_forward = (dst_pos < src_pos) || (dst_pos - src_pos >= count);
    329       if (sizeof(T) == sizeof(uint16_t)) {
    330         uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
    331         const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
    332         if (copy_forward) {
    333           ArrayForwardCopy<uint16_t>(d, s, count);
    334         } else {
    335           ArrayBackwardCopy<uint16_t>(d, s, count);
    336         }
    337       } else if (sizeof(T) == sizeof(uint32_t)) {
    338         uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
    339         const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
    340         if (copy_forward) {
    341           ArrayForwardCopy<uint32_t>(d, s, count);
    342         } else {
    343           ArrayBackwardCopy<uint32_t>(d, s, count);
    344         }
    345       } else {
    346         DCHECK_EQ(sizeof(T), sizeof(uint64_t));
    347         uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
    348         const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
    349         if (copy_forward) {
    350           ArrayForwardCopy<uint64_t>(d, s, count);
    351         } else {
    352           ArrayBackwardCopy<uint64_t>(d, s, count);
    353         }
    354       }
    355     }
    356   }
    357 }
    358 
    359 template<class T>
    360 inline void PrimitiveArray<T>::Memcpy(int32_t dst_pos,
    361                                       ObjPtr<PrimitiveArray<T>> src,
    362                                       int32_t src_pos,
    363                                       int32_t count) {
    364   if (UNLIKELY(count == 0)) {
    365     return;
    366   }
    367   DCHECK_GE(dst_pos, 0);
    368   DCHECK_GE(src_pos, 0);
    369   DCHECK_GT(count, 0);
    370   DCHECK(src != nullptr);
    371   DCHECK_LT(dst_pos, GetLength());
    372   DCHECK_LE(dst_pos, GetLength() - count);
    373   DCHECK_LT(src_pos, src->GetLength());
    374   DCHECK_LE(src_pos, src->GetLength() - count);
    375 
    376   // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
    377   // in our implementation, because they may copy byte-by-byte.
    378   void* dst_raw = GetRawData(sizeof(T), dst_pos);
    379   const void* src_raw = src->GetRawData(sizeof(T), src_pos);
    380   if (sizeof(T) == sizeof(uint8_t)) {
    381     memcpy(dst_raw, src_raw, count);
    382   } else if (sizeof(T) == sizeof(uint16_t)) {
    383     uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
    384     const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
    385     ArrayForwardCopy<uint16_t>(d, s, count);
    386   } else if (sizeof(T) == sizeof(uint32_t)) {
    387     uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
    388     const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
    389     ArrayForwardCopy<uint32_t>(d, s, count);
    390   } else {
    391     DCHECK_EQ(sizeof(T), sizeof(uint64_t));
    392     uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
    393     const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
    394     ArrayForwardCopy<uint64_t>(d, s, count);
    395   }
    396 }
    397 
    398 template<typename T, VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
    399 inline T PointerArray::GetElementPtrSize(uint32_t idx, PointerSize ptr_size) {
    400   // C style casts here since we sometimes have T be a pointer, or sometimes an integer
    401   // (for stack traces).
    402   if (ptr_size == PointerSize::k64) {
    403     return (T)static_cast<uintptr_t>(
    404         AsLongArray<kVerifyFlags, kReadBarrierOption>()->GetWithoutChecks(idx));
    405   }
    406   return (T)static_cast<uintptr_t>(static_cast<uint32_t>(
    407       AsIntArray<kVerifyFlags, kReadBarrierOption>()->GetWithoutChecks(idx)));
    408 }
    409 
    410 template<bool kTransactionActive, bool kUnchecked>
    411 inline void PointerArray::SetElementPtrSize(uint32_t idx, uint64_t element, PointerSize ptr_size) {
    412   if (ptr_size == PointerSize::k64) {
    413     (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(this)) : AsLongArray())->
    414         SetWithoutChecks<kTransactionActive>(idx, element);
    415   } else {
    416     DCHECK_LE(element, static_cast<uint64_t>(0xFFFFFFFFu));
    417     (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(this)) : AsIntArray())
    418         ->SetWithoutChecks<kTransactionActive>(idx, static_cast<uint32_t>(element));
    419   }
    420 }
    421 
    422 template<bool kTransactionActive, bool kUnchecked, typename T>
    423 inline void PointerArray::SetElementPtrSize(uint32_t idx, T* element, PointerSize ptr_size) {
    424   SetElementPtrSize<kTransactionActive, kUnchecked>(idx,
    425                                                     reinterpret_cast<uintptr_t>(element),
    426                                                     ptr_size);
    427 }
    428 
    429 template <VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption, typename Visitor>
    430 inline void PointerArray::Fixup(mirror::PointerArray* dest,
    431                                 PointerSize pointer_size,
    432                                 const Visitor& visitor) {
    433   for (size_t i = 0, count = GetLength(); i < count; ++i) {
    434     void* ptr = GetElementPtrSize<void*, kVerifyFlags, kReadBarrierOption>(i, pointer_size);
    435     void* new_ptr = visitor(ptr);
    436     if (ptr != new_ptr) {
    437       dest->SetElementPtrSize<false, true>(i, new_ptr, pointer_size);
    438     }
    439   }
    440 }
    441 
    442 template<bool kUnchecked>
    443 void PointerArray::Memcpy(int32_t dst_pos,
    444                           ObjPtr<PointerArray> src,
    445                           int32_t src_pos,
    446                           int32_t count,
    447                           PointerSize ptr_size) {
    448   DCHECK(!Runtime::Current()->IsActiveTransaction());
    449   DCHECK(!src.IsNull());
    450   if (ptr_size == PointerSize::k64) {
    451     LongArray* l_this = (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(this))
    452                                     : AsLongArray());
    453     LongArray* l_src = (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(src.Ptr()))
    454                                    : src->AsLongArray());
    455     l_this->Memcpy(dst_pos, l_src, src_pos, count);
    456   } else {
    457     IntArray* i_this = (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(this))
    458                                    : AsIntArray());
    459     IntArray* i_src = (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(src.Ptr()))
    460                                   : src->AsIntArray());
    461     i_this->Memcpy(dst_pos, i_src, src_pos, count);
    462   }
    463 }
    464 
    465 template<typename T>
    466 inline void PrimitiveArray<T>::SetArrayClass(ObjPtr<Class> array_class) {
    467   CHECK(array_class_.IsNull());
    468   CHECK(array_class != nullptr);
    469   array_class_ = GcRoot<Class>(array_class);
    470 }
    471 
    472 }  // namespace mirror
    473 }  // namespace art
    474 
    475 #endif  // ART_RUNTIME_MIRROR_ARRAY_INL_H_
    476