Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "TreeTransform.h"
     16 #include "clang/AST/ASTConsumer.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/ASTLambda.h"
     19 #include "clang/AST/ASTMutationListener.h"
     20 #include "clang/AST/CXXInheritance.h"
     21 #include "clang/AST/DeclObjC.h"
     22 #include "clang/AST/DeclTemplate.h"
     23 #include "clang/AST/EvaluatedExprVisitor.h"
     24 #include "clang/AST/Expr.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/AST/ExprObjC.h"
     27 #include "clang/AST/ExprOpenMP.h"
     28 #include "clang/AST/RecursiveASTVisitor.h"
     29 #include "clang/AST/TypeLoc.h"
     30 #include "clang/Basic/PartialDiagnostic.h"
     31 #include "clang/Basic/SourceManager.h"
     32 #include "clang/Basic/TargetInfo.h"
     33 #include "clang/Lex/LiteralSupport.h"
     34 #include "clang/Lex/Preprocessor.h"
     35 #include "clang/Sema/AnalysisBasedWarnings.h"
     36 #include "clang/Sema/DeclSpec.h"
     37 #include "clang/Sema/DelayedDiagnostic.h"
     38 #include "clang/Sema/Designator.h"
     39 #include "clang/Sema/Initialization.h"
     40 #include "clang/Sema/Lookup.h"
     41 #include "clang/Sema/ParsedTemplate.h"
     42 #include "clang/Sema/Scope.h"
     43 #include "clang/Sema/ScopeInfo.h"
     44 #include "clang/Sema/SemaFixItUtils.h"
     45 #include "clang/Sema/Template.h"
     46 #include "llvm/Support/ConvertUTF.h"
     47 using namespace clang;
     48 using namespace sema;
     49 
     50 /// \brief Determine whether the use of this declaration is valid, without
     51 /// emitting diagnostics.
     52 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
     53   // See if this is an auto-typed variable whose initializer we are parsing.
     54   if (ParsingInitForAutoVars.count(D))
     55     return false;
     56 
     57   // See if this is a deleted function.
     58   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
     59     if (FD->isDeleted())
     60       return false;
     61 
     62     // If the function has a deduced return type, and we can't deduce it,
     63     // then we can't use it either.
     64     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
     65         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
     66       return false;
     67   }
     68 
     69   // See if this function is unavailable.
     70   if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
     71       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
     72     return false;
     73 
     74   return true;
     75 }
     76 
     77 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
     78   // Warn if this is used but marked unused.
     79   if (const auto *A = D->getAttr<UnusedAttr>()) {
     80     // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
     81     // should diagnose them.
     82     if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused) {
     83       const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
     84       if (DC && !DC->hasAttr<UnusedAttr>())
     85         S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
     86     }
     87   }
     88 }
     89 
     90 static bool HasRedeclarationWithoutAvailabilityInCategory(const Decl *D) {
     91   const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
     92   if (!OMD)
     93     return false;
     94   const ObjCInterfaceDecl *OID = OMD->getClassInterface();
     95   if (!OID)
     96     return false;
     97 
     98   for (const ObjCCategoryDecl *Cat : OID->visible_categories())
     99     if (ObjCMethodDecl *CatMeth =
    100             Cat->getMethod(OMD->getSelector(), OMD->isInstanceMethod()))
    101       if (!CatMeth->hasAttr<AvailabilityAttr>())
    102         return true;
    103   return false;
    104 }
    105 
    106 static AvailabilityResult
    107 DiagnoseAvailabilityOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc,
    108                            const ObjCInterfaceDecl *UnknownObjCClass,
    109                            bool ObjCPropertyAccess) {
    110   // See if this declaration is unavailable or deprecated.
    111   std::string Message;
    112   AvailabilityResult Result = D->getAvailability(&Message);
    113 
    114   // For typedefs, if the typedef declaration appears available look
    115   // to the underlying type to see if it is more restrictive.
    116   while (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
    117     if (Result == AR_Available) {
    118       if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
    119         D = TT->getDecl();
    120         Result = D->getAvailability(&Message);
    121         continue;
    122       }
    123     }
    124     break;
    125   }
    126 
    127   // Forward class declarations get their attributes from their definition.
    128   if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
    129     if (IDecl->getDefinition()) {
    130       D = IDecl->getDefinition();
    131       Result = D->getAvailability(&Message);
    132     }
    133   }
    134 
    135   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
    136     if (Result == AR_Available) {
    137       const DeclContext *DC = ECD->getDeclContext();
    138       if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
    139         Result = TheEnumDecl->getAvailability(&Message);
    140     }
    141 
    142   const ObjCPropertyDecl *ObjCPDecl = nullptr;
    143   if (Result == AR_Deprecated || Result == AR_Unavailable ||
    144       Result == AR_NotYetIntroduced) {
    145     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    146       if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
    147         AvailabilityResult PDeclResult = PD->getAvailability(nullptr);
    148         if (PDeclResult == Result)
    149           ObjCPDecl = PD;
    150       }
    151     }
    152   }
    153 
    154   switch (Result) {
    155     case AR_Available:
    156       break;
    157 
    158     case AR_Deprecated:
    159       if (S.getCurContextAvailability() != AR_Deprecated)
    160         S.EmitAvailabilityWarning(Sema::AD_Deprecation,
    161                                   D, Message, Loc, UnknownObjCClass, ObjCPDecl,
    162                                   ObjCPropertyAccess);
    163       break;
    164 
    165     case AR_NotYetIntroduced: {
    166       // Don't do this for enums, they can't be redeclared.
    167       if (isa<EnumConstantDecl>(D) || isa<EnumDecl>(D))
    168         break;
    169 
    170       bool Warn = !D->getAttr<AvailabilityAttr>()->isInherited();
    171       // Objective-C method declarations in categories are not modelled as
    172       // redeclarations, so manually look for a redeclaration in a category
    173       // if necessary.
    174       if (Warn && HasRedeclarationWithoutAvailabilityInCategory(D))
    175         Warn = false;
    176       // In general, D will point to the most recent redeclaration. However,
    177       // for `@class A;` decls, this isn't true -- manually go through the
    178       // redecl chain in that case.
    179       if (Warn && isa<ObjCInterfaceDecl>(D))
    180         for (Decl *Redecl = D->getMostRecentDecl(); Redecl && Warn;
    181              Redecl = Redecl->getPreviousDecl())
    182           if (!Redecl->hasAttr<AvailabilityAttr>() ||
    183               Redecl->getAttr<AvailabilityAttr>()->isInherited())
    184             Warn = false;
    185 
    186       if (Warn)
    187         S.EmitAvailabilityWarning(Sema::AD_Partial, D, Message, Loc,
    188                                   UnknownObjCClass, ObjCPDecl,
    189                                   ObjCPropertyAccess);
    190       break;
    191     }
    192 
    193     case AR_Unavailable:
    194       if (S.getCurContextAvailability() != AR_Unavailable)
    195         S.EmitAvailabilityWarning(Sema::AD_Unavailable,
    196                                   D, Message, Loc, UnknownObjCClass, ObjCPDecl,
    197                                   ObjCPropertyAccess);
    198       break;
    199 
    200     }
    201     return Result;
    202 }
    203 
    204 /// \brief Emit a note explaining that this function is deleted.
    205 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
    206   assert(Decl->isDeleted());
    207 
    208   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
    209 
    210   if (Method && Method->isDeleted() && Method->isDefaulted()) {
    211     // If the method was explicitly defaulted, point at that declaration.
    212     if (!Method->isImplicit())
    213       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
    214 
    215     // Try to diagnose why this special member function was implicitly
    216     // deleted. This might fail, if that reason no longer applies.
    217     CXXSpecialMember CSM = getSpecialMember(Method);
    218     if (CSM != CXXInvalid)
    219       ShouldDeleteSpecialMember(Method, CSM, nullptr, /*Diagnose=*/true);
    220 
    221     return;
    222   }
    223 
    224   auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
    225   if (Ctor && Ctor->isInheritingConstructor())
    226     return NoteDeletedInheritingConstructor(Ctor);
    227 
    228   Diag(Decl->getLocation(), diag::note_availability_specified_here)
    229     << Decl << true;
    230 }
    231 
    232 /// \brief Determine whether a FunctionDecl was ever declared with an
    233 /// explicit storage class.
    234 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
    235   for (auto I : D->redecls()) {
    236     if (I->getStorageClass() != SC_None)
    237       return true;
    238   }
    239   return false;
    240 }
    241 
    242 /// \brief Check whether we're in an extern inline function and referring to a
    243 /// variable or function with internal linkage (C11 6.7.4p3).
    244 ///
    245 /// This is only a warning because we used to silently accept this code, but
    246 /// in many cases it will not behave correctly. This is not enabled in C++ mode
    247 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
    248 /// and so while there may still be user mistakes, most of the time we can't
    249 /// prove that there are errors.
    250 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
    251                                                       const NamedDecl *D,
    252                                                       SourceLocation Loc) {
    253   // This is disabled under C++; there are too many ways for this to fire in
    254   // contexts where the warning is a false positive, or where it is technically
    255   // correct but benign.
    256   if (S.getLangOpts().CPlusPlus)
    257     return;
    258 
    259   // Check if this is an inlined function or method.
    260   FunctionDecl *Current = S.getCurFunctionDecl();
    261   if (!Current)
    262     return;
    263   if (!Current->isInlined())
    264     return;
    265   if (!Current->isExternallyVisible())
    266     return;
    267 
    268   // Check if the decl has internal linkage.
    269   if (D->getFormalLinkage() != InternalLinkage)
    270     return;
    271 
    272   // Downgrade from ExtWarn to Extension if
    273   //  (1) the supposedly external inline function is in the main file,
    274   //      and probably won't be included anywhere else.
    275   //  (2) the thing we're referencing is a pure function.
    276   //  (3) the thing we're referencing is another inline function.
    277   // This last can give us false negatives, but it's better than warning on
    278   // wrappers for simple C library functions.
    279   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
    280   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
    281   if (!DowngradeWarning && UsedFn)
    282     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
    283 
    284   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
    285                                : diag::ext_internal_in_extern_inline)
    286     << /*IsVar=*/!UsedFn << D;
    287 
    288   S.MaybeSuggestAddingStaticToDecl(Current);
    289 
    290   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
    291       << D;
    292 }
    293 
    294 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
    295   const FunctionDecl *First = Cur->getFirstDecl();
    296 
    297   // Suggest "static" on the function, if possible.
    298   if (!hasAnyExplicitStorageClass(First)) {
    299     SourceLocation DeclBegin = First->getSourceRange().getBegin();
    300     Diag(DeclBegin, diag::note_convert_inline_to_static)
    301       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
    302   }
    303 }
    304 
    305 /// \brief Determine whether the use of this declaration is valid, and
    306 /// emit any corresponding diagnostics.
    307 ///
    308 /// This routine diagnoses various problems with referencing
    309 /// declarations that can occur when using a declaration. For example,
    310 /// it might warn if a deprecated or unavailable declaration is being
    311 /// used, or produce an error (and return true) if a C++0x deleted
    312 /// function is being used.
    313 ///
    314 /// \returns true if there was an error (this declaration cannot be
    315 /// referenced), false otherwise.
    316 ///
    317 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
    318                              const ObjCInterfaceDecl *UnknownObjCClass,
    319                              bool ObjCPropertyAccess) {
    320   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
    321     // If there were any diagnostics suppressed by template argument deduction,
    322     // emit them now.
    323     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
    324     if (Pos != SuppressedDiagnostics.end()) {
    325       for (const PartialDiagnosticAt &Suppressed : Pos->second)
    326         Diag(Suppressed.first, Suppressed.second);
    327 
    328       // Clear out the list of suppressed diagnostics, so that we don't emit
    329       // them again for this specialization. However, we don't obsolete this
    330       // entry from the table, because we want to avoid ever emitting these
    331       // diagnostics again.
    332       Pos->second.clear();
    333     }
    334 
    335     // C++ [basic.start.main]p3:
    336     //   The function 'main' shall not be used within a program.
    337     if (cast<FunctionDecl>(D)->isMain())
    338       Diag(Loc, diag::ext_main_used);
    339   }
    340 
    341   // See if this is an auto-typed variable whose initializer we are parsing.
    342   if (ParsingInitForAutoVars.count(D)) {
    343     const AutoType *AT = cast<VarDecl>(D)->getType()->getContainedAutoType();
    344 
    345     Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
    346       << D->getDeclName() << (unsigned)AT->getKeyword();
    347     return true;
    348   }
    349 
    350   // See if this is a deleted function.
    351   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    352     if (FD->isDeleted()) {
    353       auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
    354       if (Ctor && Ctor->isInheritingConstructor())
    355         Diag(Loc, diag::err_deleted_inherited_ctor_use)
    356             << Ctor->getParent()
    357             << Ctor->getInheritedConstructor().getConstructor()->getParent();
    358       else
    359         Diag(Loc, diag::err_deleted_function_use);
    360       NoteDeletedFunction(FD);
    361       return true;
    362     }
    363 
    364     // If the function has a deduced return type, and we can't deduce it,
    365     // then we can't use it either.
    366     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
    367         DeduceReturnType(FD, Loc))
    368       return true;
    369   }
    370 
    371   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
    372   // Only the variables omp_in and omp_out are allowed in the combiner.
    373   // Only the variables omp_priv and omp_orig are allowed in the
    374   // initializer-clause.
    375   auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
    376   if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
    377       isa<VarDecl>(D)) {
    378     Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
    379         << getCurFunction()->HasOMPDeclareReductionCombiner;
    380     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
    381     return true;
    382   }
    383   DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass,
    384                              ObjCPropertyAccess);
    385 
    386   DiagnoseUnusedOfDecl(*this, D, Loc);
    387 
    388   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
    389 
    390   return false;
    391 }
    392 
    393 /// \brief Retrieve the message suffix that should be added to a
    394 /// diagnostic complaining about the given function being deleted or
    395 /// unavailable.
    396 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
    397   std::string Message;
    398   if (FD->getAvailability(&Message))
    399     return ": " + Message;
    400 
    401   return std::string();
    402 }
    403 
    404 /// DiagnoseSentinelCalls - This routine checks whether a call or
    405 /// message-send is to a declaration with the sentinel attribute, and
    406 /// if so, it checks that the requirements of the sentinel are
    407 /// satisfied.
    408 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
    409                                  ArrayRef<Expr *> Args) {
    410   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
    411   if (!attr)
    412     return;
    413 
    414   // The number of formal parameters of the declaration.
    415   unsigned numFormalParams;
    416 
    417   // The kind of declaration.  This is also an index into a %select in
    418   // the diagnostic.
    419   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
    420 
    421   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    422     numFormalParams = MD->param_size();
    423     calleeType = CT_Method;
    424   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    425     numFormalParams = FD->param_size();
    426     calleeType = CT_Function;
    427   } else if (isa<VarDecl>(D)) {
    428     QualType type = cast<ValueDecl>(D)->getType();
    429     const FunctionType *fn = nullptr;
    430     if (const PointerType *ptr = type->getAs<PointerType>()) {
    431       fn = ptr->getPointeeType()->getAs<FunctionType>();
    432       if (!fn) return;
    433       calleeType = CT_Function;
    434     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
    435       fn = ptr->getPointeeType()->castAs<FunctionType>();
    436       calleeType = CT_Block;
    437     } else {
    438       return;
    439     }
    440 
    441     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
    442       numFormalParams = proto->getNumParams();
    443     } else {
    444       numFormalParams = 0;
    445     }
    446   } else {
    447     return;
    448   }
    449 
    450   // "nullPos" is the number of formal parameters at the end which
    451   // effectively count as part of the variadic arguments.  This is
    452   // useful if you would prefer to not have *any* formal parameters,
    453   // but the language forces you to have at least one.
    454   unsigned nullPos = attr->getNullPos();
    455   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
    456   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
    457 
    458   // The number of arguments which should follow the sentinel.
    459   unsigned numArgsAfterSentinel = attr->getSentinel();
    460 
    461   // If there aren't enough arguments for all the formal parameters,
    462   // the sentinel, and the args after the sentinel, complain.
    463   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
    464     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
    465     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
    466     return;
    467   }
    468 
    469   // Otherwise, find the sentinel expression.
    470   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
    471   if (!sentinelExpr) return;
    472   if (sentinelExpr->isValueDependent()) return;
    473   if (Context.isSentinelNullExpr(sentinelExpr)) return;
    474 
    475   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
    476   // or 'NULL' if those are actually defined in the context.  Only use
    477   // 'nil' for ObjC methods, where it's much more likely that the
    478   // variadic arguments form a list of object pointers.
    479   SourceLocation MissingNilLoc
    480     = getLocForEndOfToken(sentinelExpr->getLocEnd());
    481   std::string NullValue;
    482   if (calleeType == CT_Method && PP.isMacroDefined("nil"))
    483     NullValue = "nil";
    484   else if (getLangOpts().CPlusPlus11)
    485     NullValue = "nullptr";
    486   else if (PP.isMacroDefined("NULL"))
    487     NullValue = "NULL";
    488   else
    489     NullValue = "(void*) 0";
    490 
    491   if (MissingNilLoc.isInvalid())
    492     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
    493   else
    494     Diag(MissingNilLoc, diag::warn_missing_sentinel)
    495       << int(calleeType)
    496       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
    497   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
    498 }
    499 
    500 SourceRange Sema::getExprRange(Expr *E) const {
    501   return E ? E->getSourceRange() : SourceRange();
    502 }
    503 
    504 //===----------------------------------------------------------------------===//
    505 //  Standard Promotions and Conversions
    506 //===----------------------------------------------------------------------===//
    507 
    508 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
    509 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
    510   // Handle any placeholder expressions which made it here.
    511   if (E->getType()->isPlaceholderType()) {
    512     ExprResult result = CheckPlaceholderExpr(E);
    513     if (result.isInvalid()) return ExprError();
    514     E = result.get();
    515   }
    516 
    517   QualType Ty = E->getType();
    518   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
    519 
    520   if (Ty->isFunctionType()) {
    521     // If we are here, we are not calling a function but taking
    522     // its address (which is not allowed in OpenCL v1.0 s6.8.a.3).
    523     if (getLangOpts().OpenCL) {
    524       if (Diagnose)
    525         Diag(E->getExprLoc(), diag::err_opencl_taking_function_address);
    526       return ExprError();
    527     }
    528 
    529     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
    530       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
    531         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
    532           return ExprError();
    533 
    534     E = ImpCastExprToType(E, Context.getPointerType(Ty),
    535                           CK_FunctionToPointerDecay).get();
    536   } else if (Ty->isArrayType()) {
    537     // In C90 mode, arrays only promote to pointers if the array expression is
    538     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
    539     // type 'array of type' is converted to an expression that has type 'pointer
    540     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
    541     // that has type 'array of type' ...".  The relevant change is "an lvalue"
    542     // (C90) to "an expression" (C99).
    543     //
    544     // C++ 4.2p1:
    545     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
    546     // T" can be converted to an rvalue of type "pointer to T".
    547     //
    548     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
    549       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
    550                             CK_ArrayToPointerDecay).get();
    551   }
    552   return E;
    553 }
    554 
    555 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
    556   // Check to see if we are dereferencing a null pointer.  If so,
    557   // and if not volatile-qualified, this is undefined behavior that the
    558   // optimizer will delete, so warn about it.  People sometimes try to use this
    559   // to get a deterministic trap and are surprised by clang's behavior.  This
    560   // only handles the pattern "*null", which is a very syntactic check.
    561   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
    562     if (UO->getOpcode() == UO_Deref &&
    563         UO->getSubExpr()->IgnoreParenCasts()->
    564           isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
    565         !UO->getType().isVolatileQualified()) {
    566     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    567                           S.PDiag(diag::warn_indirection_through_null)
    568                             << UO->getSubExpr()->getSourceRange());
    569     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    570                         S.PDiag(diag::note_indirection_through_null));
    571   }
    572 }
    573 
    574 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
    575                                     SourceLocation AssignLoc,
    576                                     const Expr* RHS) {
    577   const ObjCIvarDecl *IV = OIRE->getDecl();
    578   if (!IV)
    579     return;
    580 
    581   DeclarationName MemberName = IV->getDeclName();
    582   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
    583   if (!Member || !Member->isStr("isa"))
    584     return;
    585 
    586   const Expr *Base = OIRE->getBase();
    587   QualType BaseType = Base->getType();
    588   if (OIRE->isArrow())
    589     BaseType = BaseType->getPointeeType();
    590   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
    591     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
    592       ObjCInterfaceDecl *ClassDeclared = nullptr;
    593       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
    594       if (!ClassDeclared->getSuperClass()
    595           && (*ClassDeclared->ivar_begin()) == IV) {
    596         if (RHS) {
    597           NamedDecl *ObjectSetClass =
    598             S.LookupSingleName(S.TUScope,
    599                                &S.Context.Idents.get("object_setClass"),
    600                                SourceLocation(), S.LookupOrdinaryName);
    601           if (ObjectSetClass) {
    602             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getLocEnd());
    603             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) <<
    604             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") <<
    605             FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(),
    606                                                      AssignLoc), ",") <<
    607             FixItHint::CreateInsertion(RHSLocEnd, ")");
    608           }
    609           else
    610             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
    611         } else {
    612           NamedDecl *ObjectGetClass =
    613             S.LookupSingleName(S.TUScope,
    614                                &S.Context.Idents.get("object_getClass"),
    615                                SourceLocation(), S.LookupOrdinaryName);
    616           if (ObjectGetClass)
    617             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) <<
    618             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") <<
    619             FixItHint::CreateReplacement(
    620                                          SourceRange(OIRE->getOpLoc(),
    621                                                      OIRE->getLocEnd()), ")");
    622           else
    623             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
    624         }
    625         S.Diag(IV->getLocation(), diag::note_ivar_decl);
    626       }
    627     }
    628 }
    629 
    630 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
    631   // Handle any placeholder expressions which made it here.
    632   if (E->getType()->isPlaceholderType()) {
    633     ExprResult result = CheckPlaceholderExpr(E);
    634     if (result.isInvalid()) return ExprError();
    635     E = result.get();
    636   }
    637 
    638   // C++ [conv.lval]p1:
    639   //   A glvalue of a non-function, non-array type T can be
    640   //   converted to a prvalue.
    641   if (!E->isGLValue()) return E;
    642 
    643   QualType T = E->getType();
    644   assert(!T.isNull() && "r-value conversion on typeless expression?");
    645 
    646   // We don't want to throw lvalue-to-rvalue casts on top of
    647   // expressions of certain types in C++.
    648   if (getLangOpts().CPlusPlus &&
    649       (E->getType() == Context.OverloadTy ||
    650        T->isDependentType() ||
    651        T->isRecordType()))
    652     return E;
    653 
    654   // The C standard is actually really unclear on this point, and
    655   // DR106 tells us what the result should be but not why.  It's
    656   // generally best to say that void types just doesn't undergo
    657   // lvalue-to-rvalue at all.  Note that expressions of unqualified
    658   // 'void' type are never l-values, but qualified void can be.
    659   if (T->isVoidType())
    660     return E;
    661 
    662   // OpenCL usually rejects direct accesses to values of 'half' type.
    663   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
    664       T->isHalfType()) {
    665     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
    666       << 0 << T;
    667     return ExprError();
    668   }
    669 
    670   CheckForNullPointerDereference(*this, E);
    671   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
    672     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
    673                                      &Context.Idents.get("object_getClass"),
    674                                      SourceLocation(), LookupOrdinaryName);
    675     if (ObjectGetClass)
    676       Diag(E->getExprLoc(), diag::warn_objc_isa_use) <<
    677         FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") <<
    678         FixItHint::CreateReplacement(
    679                     SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
    680     else
    681       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
    682   }
    683   else if (const ObjCIvarRefExpr *OIRE =
    684             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
    685     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
    686 
    687   // C++ [conv.lval]p1:
    688   //   [...] If T is a non-class type, the type of the prvalue is the
    689   //   cv-unqualified version of T. Otherwise, the type of the
    690   //   rvalue is T.
    691   //
    692   // C99 6.3.2.1p2:
    693   //   If the lvalue has qualified type, the value has the unqualified
    694   //   version of the type of the lvalue; otherwise, the value has the
    695   //   type of the lvalue.
    696   if (T.hasQualifiers())
    697     T = T.getUnqualifiedType();
    698 
    699   // Under the MS ABI, lock down the inheritance model now.
    700   if (T->isMemberPointerType() &&
    701       Context.getTargetInfo().getCXXABI().isMicrosoft())
    702     (void)isCompleteType(E->getExprLoc(), T);
    703 
    704   UpdateMarkingForLValueToRValue(E);
    705 
    706   // Loading a __weak object implicitly retains the value, so we need a cleanup to
    707   // balance that.
    708   if (getLangOpts().ObjCAutoRefCount &&
    709       E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
    710     Cleanup.setExprNeedsCleanups(true);
    711 
    712   ExprResult Res = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, E,
    713                                             nullptr, VK_RValue);
    714 
    715   // C11 6.3.2.1p2:
    716   //   ... if the lvalue has atomic type, the value has the non-atomic version
    717   //   of the type of the lvalue ...
    718   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
    719     T = Atomic->getValueType().getUnqualifiedType();
    720     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
    721                                    nullptr, VK_RValue);
    722   }
    723 
    724   return Res;
    725 }
    726 
    727 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
    728   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
    729   if (Res.isInvalid())
    730     return ExprError();
    731   Res = DefaultLvalueConversion(Res.get());
    732   if (Res.isInvalid())
    733     return ExprError();
    734   return Res;
    735 }
    736 
    737 /// CallExprUnaryConversions - a special case of an unary conversion
    738 /// performed on a function designator of a call expression.
    739 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
    740   QualType Ty = E->getType();
    741   ExprResult Res = E;
    742   // Only do implicit cast for a function type, but not for a pointer
    743   // to function type.
    744   if (Ty->isFunctionType()) {
    745     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
    746                             CK_FunctionToPointerDecay).get();
    747     if (Res.isInvalid())
    748       return ExprError();
    749   }
    750   Res = DefaultLvalueConversion(Res.get());
    751   if (Res.isInvalid())
    752     return ExprError();
    753   return Res.get();
    754 }
    755 
    756 /// UsualUnaryConversions - Performs various conversions that are common to most
    757 /// operators (C99 6.3). The conversions of array and function types are
    758 /// sometimes suppressed. For example, the array->pointer conversion doesn't
    759 /// apply if the array is an argument to the sizeof or address (&) operators.
    760 /// In these instances, this routine should *not* be called.
    761 ExprResult Sema::UsualUnaryConversions(Expr *E) {
    762   // First, convert to an r-value.
    763   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
    764   if (Res.isInvalid())
    765     return ExprError();
    766   E = Res.get();
    767 
    768   QualType Ty = E->getType();
    769   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
    770 
    771   // Half FP have to be promoted to float unless it is natively supported
    772   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
    773     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
    774 
    775   // Try to perform integral promotions if the object has a theoretically
    776   // promotable type.
    777   if (Ty->isIntegralOrUnscopedEnumerationType()) {
    778     // C99 6.3.1.1p2:
    779     //
    780     //   The following may be used in an expression wherever an int or
    781     //   unsigned int may be used:
    782     //     - an object or expression with an integer type whose integer
    783     //       conversion rank is less than or equal to the rank of int
    784     //       and unsigned int.
    785     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
    786     //
    787     //   If an int can represent all values of the original type, the
    788     //   value is converted to an int; otherwise, it is converted to an
    789     //   unsigned int. These are called the integer promotions. All
    790     //   other types are unchanged by the integer promotions.
    791 
    792     QualType PTy = Context.isPromotableBitField(E);
    793     if (!PTy.isNull()) {
    794       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
    795       return E;
    796     }
    797     if (Ty->isPromotableIntegerType()) {
    798       QualType PT = Context.getPromotedIntegerType(Ty);
    799       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
    800       return E;
    801     }
    802   }
    803   return E;
    804 }
    805 
    806 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
    807 /// do not have a prototype. Arguments that have type float or __fp16
    808 /// are promoted to double. All other argument types are converted by
    809 /// UsualUnaryConversions().
    810 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
    811   QualType Ty = E->getType();
    812   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
    813 
    814   ExprResult Res = UsualUnaryConversions(E);
    815   if (Res.isInvalid())
    816     return ExprError();
    817   E = Res.get();
    818 
    819   // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
    820   // double.
    821   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
    822   if (BTy && (BTy->getKind() == BuiltinType::Half ||
    823               BTy->getKind() == BuiltinType::Float))
    824     E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
    825 
    826   // C++ performs lvalue-to-rvalue conversion as a default argument
    827   // promotion, even on class types, but note:
    828   //   C++11 [conv.lval]p2:
    829   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
    830   //     operand or a subexpression thereof the value contained in the
    831   //     referenced object is not accessed. Otherwise, if the glvalue
    832   //     has a class type, the conversion copy-initializes a temporary
    833   //     of type T from the glvalue and the result of the conversion
    834   //     is a prvalue for the temporary.
    835   // FIXME: add some way to gate this entire thing for correctness in
    836   // potentially potentially evaluated contexts.
    837   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
    838     ExprResult Temp = PerformCopyInitialization(
    839                        InitializedEntity::InitializeTemporary(E->getType()),
    840                                                 E->getExprLoc(), E);
    841     if (Temp.isInvalid())
    842       return ExprError();
    843     E = Temp.get();
    844   }
    845 
    846   return E;
    847 }
    848 
    849 /// Determine the degree of POD-ness for an expression.
    850 /// Incomplete types are considered POD, since this check can be performed
    851 /// when we're in an unevaluated context.
    852 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
    853   if (Ty->isIncompleteType()) {
    854     // C++11 [expr.call]p7:
    855     //   After these conversions, if the argument does not have arithmetic,
    856     //   enumeration, pointer, pointer to member, or class type, the program
    857     //   is ill-formed.
    858     //
    859     // Since we've already performed array-to-pointer and function-to-pointer
    860     // decay, the only such type in C++ is cv void. This also handles
    861     // initializer lists as variadic arguments.
    862     if (Ty->isVoidType())
    863       return VAK_Invalid;
    864 
    865     if (Ty->isObjCObjectType())
    866       return VAK_Invalid;
    867     return VAK_Valid;
    868   }
    869 
    870   if (Ty.isCXX98PODType(Context))
    871     return VAK_Valid;
    872 
    873   // C++11 [expr.call]p7:
    874   //   Passing a potentially-evaluated argument of class type (Clause 9)
    875   //   having a non-trivial copy constructor, a non-trivial move constructor,
    876   //   or a non-trivial destructor, with no corresponding parameter,
    877   //   is conditionally-supported with implementation-defined semantics.
    878   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
    879     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
    880       if (!Record->hasNonTrivialCopyConstructor() &&
    881           !Record->hasNonTrivialMoveConstructor() &&
    882           !Record->hasNonTrivialDestructor())
    883         return VAK_ValidInCXX11;
    884 
    885   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
    886     return VAK_Valid;
    887 
    888   if (Ty->isObjCObjectType())
    889     return VAK_Invalid;
    890 
    891   if (getLangOpts().MSVCCompat)
    892     return VAK_MSVCUndefined;
    893 
    894   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
    895   // permitted to reject them. We should consider doing so.
    896   return VAK_Undefined;
    897 }
    898 
    899 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
    900   // Don't allow one to pass an Objective-C interface to a vararg.
    901   const QualType &Ty = E->getType();
    902   VarArgKind VAK = isValidVarArgType(Ty);
    903 
    904   // Complain about passing non-POD types through varargs.
    905   switch (VAK) {
    906   case VAK_ValidInCXX11:
    907     DiagRuntimeBehavior(
    908         E->getLocStart(), nullptr,
    909         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
    910           << Ty << CT);
    911     // Fall through.
    912   case VAK_Valid:
    913     if (Ty->isRecordType()) {
    914       // This is unlikely to be what the user intended. If the class has a
    915       // 'c_str' member function, the user probably meant to call that.
    916       DiagRuntimeBehavior(E->getLocStart(), nullptr,
    917                           PDiag(diag::warn_pass_class_arg_to_vararg)
    918                             << Ty << CT << hasCStrMethod(E) << ".c_str()");
    919     }
    920     break;
    921 
    922   case VAK_Undefined:
    923   case VAK_MSVCUndefined:
    924     DiagRuntimeBehavior(
    925         E->getLocStart(), nullptr,
    926         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
    927           << getLangOpts().CPlusPlus11 << Ty << CT);
    928     break;
    929 
    930   case VAK_Invalid:
    931     if (Ty->isObjCObjectType())
    932       DiagRuntimeBehavior(
    933           E->getLocStart(), nullptr,
    934           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
    935             << Ty << CT);
    936     else
    937       Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg)
    938         << isa<InitListExpr>(E) << Ty << CT;
    939     break;
    940   }
    941 }
    942 
    943 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
    944 /// will create a trap if the resulting type is not a POD type.
    945 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
    946                                                   FunctionDecl *FDecl) {
    947   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
    948     // Strip the unbridged-cast placeholder expression off, if applicable.
    949     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
    950         (CT == VariadicMethod ||
    951          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
    952       E = stripARCUnbridgedCast(E);
    953 
    954     // Otherwise, do normal placeholder checking.
    955     } else {
    956       ExprResult ExprRes = CheckPlaceholderExpr(E);
    957       if (ExprRes.isInvalid())
    958         return ExprError();
    959       E = ExprRes.get();
    960     }
    961   }
    962 
    963   ExprResult ExprRes = DefaultArgumentPromotion(E);
    964   if (ExprRes.isInvalid())
    965     return ExprError();
    966   E = ExprRes.get();
    967 
    968   // Diagnostics regarding non-POD argument types are
    969   // emitted along with format string checking in Sema::CheckFunctionCall().
    970   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
    971     // Turn this into a trap.
    972     CXXScopeSpec SS;
    973     SourceLocation TemplateKWLoc;
    974     UnqualifiedId Name;
    975     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
    976                        E->getLocStart());
    977     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
    978                                           Name, true, false);
    979     if (TrapFn.isInvalid())
    980       return ExprError();
    981 
    982     ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
    983                                     E->getLocStart(), None,
    984                                     E->getLocEnd());
    985     if (Call.isInvalid())
    986       return ExprError();
    987 
    988     ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
    989                                   Call.get(), E);
    990     if (Comma.isInvalid())
    991       return ExprError();
    992     return Comma.get();
    993   }
    994 
    995   if (!getLangOpts().CPlusPlus &&
    996       RequireCompleteType(E->getExprLoc(), E->getType(),
    997                           diag::err_call_incomplete_argument))
    998     return ExprError();
    999 
   1000   return E;
   1001 }
   1002 
   1003 /// \brief Converts an integer to complex float type.  Helper function of
   1004 /// UsualArithmeticConversions()
   1005 ///
   1006 /// \return false if the integer expression is an integer type and is
   1007 /// successfully converted to the complex type.
   1008 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
   1009                                                   ExprResult &ComplexExpr,
   1010                                                   QualType IntTy,
   1011                                                   QualType ComplexTy,
   1012                                                   bool SkipCast) {
   1013   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
   1014   if (SkipCast) return false;
   1015   if (IntTy->isIntegerType()) {
   1016     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
   1017     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
   1018     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
   1019                                   CK_FloatingRealToComplex);
   1020   } else {
   1021     assert(IntTy->isComplexIntegerType());
   1022     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
   1023                                   CK_IntegralComplexToFloatingComplex);
   1024   }
   1025   return false;
   1026 }
   1027 
   1028 /// \brief Handle arithmetic conversion with complex types.  Helper function of
   1029 /// UsualArithmeticConversions()
   1030 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
   1031                                              ExprResult &RHS, QualType LHSType,
   1032                                              QualType RHSType,
   1033                                              bool IsCompAssign) {
   1034   // if we have an integer operand, the result is the complex type.
   1035   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
   1036                                              /*skipCast*/false))
   1037     return LHSType;
   1038   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
   1039                                              /*skipCast*/IsCompAssign))
   1040     return RHSType;
   1041 
   1042   // This handles complex/complex, complex/float, or float/complex.
   1043   // When both operands are complex, the shorter operand is converted to the
   1044   // type of the longer, and that is the type of the result. This corresponds
   1045   // to what is done when combining two real floating-point operands.
   1046   // The fun begins when size promotion occur across type domains.
   1047   // From H&S 6.3.4: When one operand is complex and the other is a real
   1048   // floating-point type, the less precise type is converted, within it's
   1049   // real or complex domain, to the precision of the other type. For example,
   1050   // when combining a "long double" with a "double _Complex", the
   1051   // "double _Complex" is promoted to "long double _Complex".
   1052 
   1053   // Compute the rank of the two types, regardless of whether they are complex.
   1054   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
   1055 
   1056   auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
   1057   auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
   1058   QualType LHSElementType =
   1059       LHSComplexType ? LHSComplexType->getElementType() : LHSType;
   1060   QualType RHSElementType =
   1061       RHSComplexType ? RHSComplexType->getElementType() : RHSType;
   1062 
   1063   QualType ResultType = S.Context.getComplexType(LHSElementType);
   1064   if (Order < 0) {
   1065     // Promote the precision of the LHS if not an assignment.
   1066     ResultType = S.Context.getComplexType(RHSElementType);
   1067     if (!IsCompAssign) {
   1068       if (LHSComplexType)
   1069         LHS =
   1070             S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
   1071       else
   1072         LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
   1073     }
   1074   } else if (Order > 0) {
   1075     // Promote the precision of the RHS.
   1076     if (RHSComplexType)
   1077       RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
   1078     else
   1079       RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
   1080   }
   1081   return ResultType;
   1082 }
   1083 
   1084 /// \brief Hande arithmetic conversion from integer to float.  Helper function
   1085 /// of UsualArithmeticConversions()
   1086 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
   1087                                            ExprResult &IntExpr,
   1088                                            QualType FloatTy, QualType IntTy,
   1089                                            bool ConvertFloat, bool ConvertInt) {
   1090   if (IntTy->isIntegerType()) {
   1091     if (ConvertInt)
   1092       // Convert intExpr to the lhs floating point type.
   1093       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
   1094                                     CK_IntegralToFloating);
   1095     return FloatTy;
   1096   }
   1097 
   1098   // Convert both sides to the appropriate complex float.
   1099   assert(IntTy->isComplexIntegerType());
   1100   QualType result = S.Context.getComplexType(FloatTy);
   1101 
   1102   // _Complex int -> _Complex float
   1103   if (ConvertInt)
   1104     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
   1105                                   CK_IntegralComplexToFloatingComplex);
   1106 
   1107   // float -> _Complex float
   1108   if (ConvertFloat)
   1109     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
   1110                                     CK_FloatingRealToComplex);
   1111 
   1112   return result;
   1113 }
   1114 
   1115 /// \brief Handle arithmethic conversion with floating point types.  Helper
   1116 /// function of UsualArithmeticConversions()
   1117 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
   1118                                       ExprResult &RHS, QualType LHSType,
   1119                                       QualType RHSType, bool IsCompAssign) {
   1120   bool LHSFloat = LHSType->isRealFloatingType();
   1121   bool RHSFloat = RHSType->isRealFloatingType();
   1122 
   1123   // If we have two real floating types, convert the smaller operand
   1124   // to the bigger result.
   1125   if (LHSFloat && RHSFloat) {
   1126     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
   1127     if (order > 0) {
   1128       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
   1129       return LHSType;
   1130     }
   1131 
   1132     assert(order < 0 && "illegal float comparison");
   1133     if (!IsCompAssign)
   1134       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
   1135     return RHSType;
   1136   }
   1137 
   1138   if (LHSFloat) {
   1139     // Half FP has to be promoted to float unless it is natively supported
   1140     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
   1141       LHSType = S.Context.FloatTy;
   1142 
   1143     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
   1144                                       /*convertFloat=*/!IsCompAssign,
   1145                                       /*convertInt=*/ true);
   1146   }
   1147   assert(RHSFloat);
   1148   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
   1149                                     /*convertInt=*/ true,
   1150                                     /*convertFloat=*/!IsCompAssign);
   1151 }
   1152 
   1153 /// \brief Diagnose attempts to convert between __float128 and long double if
   1154 /// there is no support for such conversion. Helper function of
   1155 /// UsualArithmeticConversions().
   1156 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
   1157                                       QualType RHSType) {
   1158   /*  No issue converting if at least one of the types is not a floating point
   1159       type or the two types have the same rank.
   1160   */
   1161   if (!LHSType->isFloatingType() || !RHSType->isFloatingType() ||
   1162       S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0)
   1163     return false;
   1164 
   1165   assert(LHSType->isFloatingType() && RHSType->isFloatingType() &&
   1166          "The remaining types must be floating point types.");
   1167 
   1168   auto *LHSComplex = LHSType->getAs<ComplexType>();
   1169   auto *RHSComplex = RHSType->getAs<ComplexType>();
   1170 
   1171   QualType LHSElemType = LHSComplex ?
   1172     LHSComplex->getElementType() : LHSType;
   1173   QualType RHSElemType = RHSComplex ?
   1174     RHSComplex->getElementType() : RHSType;
   1175 
   1176   // No issue if the two types have the same representation
   1177   if (&S.Context.getFloatTypeSemantics(LHSElemType) ==
   1178       &S.Context.getFloatTypeSemantics(RHSElemType))
   1179     return false;
   1180 
   1181   bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty &&
   1182                                 RHSElemType == S.Context.LongDoubleTy);
   1183   Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy &&
   1184                             RHSElemType == S.Context.Float128Ty);
   1185 
   1186   /* We've handled the situation where __float128 and long double have the same
   1187      representation. The only other allowable conversion is if long double is
   1188      really just double.
   1189   */
   1190   return Float128AndLongDouble &&
   1191     (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) !=
   1192      &llvm::APFloat::IEEEdouble);
   1193 }
   1194 
   1195 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
   1196 
   1197 namespace {
   1198 /// These helper callbacks are placed in an anonymous namespace to
   1199 /// permit their use as function template parameters.
   1200 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
   1201   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
   1202 }
   1203 
   1204 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
   1205   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
   1206                              CK_IntegralComplexCast);
   1207 }
   1208 }
   1209 
   1210 /// \brief Handle integer arithmetic conversions.  Helper function of
   1211 /// UsualArithmeticConversions()
   1212 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
   1213 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
   1214                                         ExprResult &RHS, QualType LHSType,
   1215                                         QualType RHSType, bool IsCompAssign) {
   1216   // The rules for this case are in C99 6.3.1.8
   1217   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
   1218   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
   1219   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
   1220   if (LHSSigned == RHSSigned) {
   1221     // Same signedness; use the higher-ranked type
   1222     if (order >= 0) {
   1223       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1224       return LHSType;
   1225     } else if (!IsCompAssign)
   1226       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1227     return RHSType;
   1228   } else if (order != (LHSSigned ? 1 : -1)) {
   1229     // The unsigned type has greater than or equal rank to the
   1230     // signed type, so use the unsigned type
   1231     if (RHSSigned) {
   1232       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1233       return LHSType;
   1234     } else if (!IsCompAssign)
   1235       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1236     return RHSType;
   1237   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
   1238     // The two types are different widths; if we are here, that
   1239     // means the signed type is larger than the unsigned type, so
   1240     // use the signed type.
   1241     if (LHSSigned) {
   1242       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1243       return LHSType;
   1244     } else if (!IsCompAssign)
   1245       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1246     return RHSType;
   1247   } else {
   1248     // The signed type is higher-ranked than the unsigned type,
   1249     // but isn't actually any bigger (like unsigned int and long
   1250     // on most 32-bit systems).  Use the unsigned type corresponding
   1251     // to the signed type.
   1252     QualType result =
   1253       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
   1254     RHS = (*doRHSCast)(S, RHS.get(), result);
   1255     if (!IsCompAssign)
   1256       LHS = (*doLHSCast)(S, LHS.get(), result);
   1257     return result;
   1258   }
   1259 }
   1260 
   1261 /// \brief Handle conversions with GCC complex int extension.  Helper function
   1262 /// of UsualArithmeticConversions()
   1263 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
   1264                                            ExprResult &RHS, QualType LHSType,
   1265                                            QualType RHSType,
   1266                                            bool IsCompAssign) {
   1267   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
   1268   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
   1269 
   1270   if (LHSComplexInt && RHSComplexInt) {
   1271     QualType LHSEltType = LHSComplexInt->getElementType();
   1272     QualType RHSEltType = RHSComplexInt->getElementType();
   1273     QualType ScalarType =
   1274       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
   1275         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
   1276 
   1277     return S.Context.getComplexType(ScalarType);
   1278   }
   1279 
   1280   if (LHSComplexInt) {
   1281     QualType LHSEltType = LHSComplexInt->getElementType();
   1282     QualType ScalarType =
   1283       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
   1284         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
   1285     QualType ComplexType = S.Context.getComplexType(ScalarType);
   1286     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
   1287                               CK_IntegralRealToComplex);
   1288 
   1289     return ComplexType;
   1290   }
   1291 
   1292   assert(RHSComplexInt);
   1293 
   1294   QualType RHSEltType = RHSComplexInt->getElementType();
   1295   QualType ScalarType =
   1296     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
   1297       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
   1298   QualType ComplexType = S.Context.getComplexType(ScalarType);
   1299 
   1300   if (!IsCompAssign)
   1301     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
   1302                               CK_IntegralRealToComplex);
   1303   return ComplexType;
   1304 }
   1305 
   1306 /// UsualArithmeticConversions - Performs various conversions that are common to
   1307 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
   1308 /// routine returns the first non-arithmetic type found. The client is
   1309 /// responsible for emitting appropriate error diagnostics.
   1310 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
   1311                                           bool IsCompAssign) {
   1312   if (!IsCompAssign) {
   1313     LHS = UsualUnaryConversions(LHS.get());
   1314     if (LHS.isInvalid())
   1315       return QualType();
   1316   }
   1317 
   1318   RHS = UsualUnaryConversions(RHS.get());
   1319   if (RHS.isInvalid())
   1320     return QualType();
   1321 
   1322   // For conversion purposes, we ignore any qualifiers.
   1323   // For example, "const float" and "float" are equivalent.
   1324   QualType LHSType =
   1325     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
   1326   QualType RHSType =
   1327     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
   1328 
   1329   // For conversion purposes, we ignore any atomic qualifier on the LHS.
   1330   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
   1331     LHSType = AtomicLHS->getValueType();
   1332 
   1333   // If both types are identical, no conversion is needed.
   1334   if (LHSType == RHSType)
   1335     return LHSType;
   1336 
   1337   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
   1338   // The caller can deal with this (e.g. pointer + int).
   1339   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
   1340     return QualType();
   1341 
   1342   // Apply unary and bitfield promotions to the LHS's type.
   1343   QualType LHSUnpromotedType = LHSType;
   1344   if (LHSType->isPromotableIntegerType())
   1345     LHSType = Context.getPromotedIntegerType(LHSType);
   1346   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
   1347   if (!LHSBitfieldPromoteTy.isNull())
   1348     LHSType = LHSBitfieldPromoteTy;
   1349   if (LHSType != LHSUnpromotedType && !IsCompAssign)
   1350     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
   1351 
   1352   // If both types are identical, no conversion is needed.
   1353   if (LHSType == RHSType)
   1354     return LHSType;
   1355 
   1356   // At this point, we have two different arithmetic types.
   1357 
   1358   // Diagnose attempts to convert between __float128 and long double where
   1359   // such conversions currently can't be handled.
   1360   if (unsupportedTypeConversion(*this, LHSType, RHSType))
   1361     return QualType();
   1362 
   1363   // Handle complex types first (C99 6.3.1.8p1).
   1364   if (LHSType->isComplexType() || RHSType->isComplexType())
   1365     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
   1366                                         IsCompAssign);
   1367 
   1368   // Now handle "real" floating types (i.e. float, double, long double).
   1369   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
   1370     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
   1371                                  IsCompAssign);
   1372 
   1373   // Handle GCC complex int extension.
   1374   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
   1375     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
   1376                                       IsCompAssign);
   1377 
   1378   // Finally, we have two differing integer types.
   1379   return handleIntegerConversion<doIntegralCast, doIntegralCast>
   1380            (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
   1381 }
   1382 
   1383 
   1384 //===----------------------------------------------------------------------===//
   1385 //  Semantic Analysis for various Expression Types
   1386 //===----------------------------------------------------------------------===//
   1387 
   1388 
   1389 ExprResult
   1390 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
   1391                                 SourceLocation DefaultLoc,
   1392                                 SourceLocation RParenLoc,
   1393                                 Expr *ControllingExpr,
   1394                                 ArrayRef<ParsedType> ArgTypes,
   1395                                 ArrayRef<Expr *> ArgExprs) {
   1396   unsigned NumAssocs = ArgTypes.size();
   1397   assert(NumAssocs == ArgExprs.size());
   1398 
   1399   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
   1400   for (unsigned i = 0; i < NumAssocs; ++i) {
   1401     if (ArgTypes[i])
   1402       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
   1403     else
   1404       Types[i] = nullptr;
   1405   }
   1406 
   1407   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
   1408                                              ControllingExpr,
   1409                                              llvm::makeArrayRef(Types, NumAssocs),
   1410                                              ArgExprs);
   1411   delete [] Types;
   1412   return ER;
   1413 }
   1414 
   1415 ExprResult
   1416 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
   1417                                  SourceLocation DefaultLoc,
   1418                                  SourceLocation RParenLoc,
   1419                                  Expr *ControllingExpr,
   1420                                  ArrayRef<TypeSourceInfo *> Types,
   1421                                  ArrayRef<Expr *> Exprs) {
   1422   unsigned NumAssocs = Types.size();
   1423   assert(NumAssocs == Exprs.size());
   1424 
   1425   // Decay and strip qualifiers for the controlling expression type, and handle
   1426   // placeholder type replacement. See committee discussion from WG14 DR423.
   1427   {
   1428     EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   1429     ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
   1430     if (R.isInvalid())
   1431       return ExprError();
   1432     ControllingExpr = R.get();
   1433   }
   1434 
   1435   // The controlling expression is an unevaluated operand, so side effects are
   1436   // likely unintended.
   1437   if (ActiveTemplateInstantiations.empty() &&
   1438       ControllingExpr->HasSideEffects(Context, false))
   1439     Diag(ControllingExpr->getExprLoc(),
   1440          diag::warn_side_effects_unevaluated_context);
   1441 
   1442   bool TypeErrorFound = false,
   1443        IsResultDependent = ControllingExpr->isTypeDependent(),
   1444        ContainsUnexpandedParameterPack
   1445          = ControllingExpr->containsUnexpandedParameterPack();
   1446 
   1447   for (unsigned i = 0; i < NumAssocs; ++i) {
   1448     if (Exprs[i]->containsUnexpandedParameterPack())
   1449       ContainsUnexpandedParameterPack = true;
   1450 
   1451     if (Types[i]) {
   1452       if (Types[i]->getType()->containsUnexpandedParameterPack())
   1453         ContainsUnexpandedParameterPack = true;
   1454 
   1455       if (Types[i]->getType()->isDependentType()) {
   1456         IsResultDependent = true;
   1457       } else {
   1458         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
   1459         // complete object type other than a variably modified type."
   1460         unsigned D = 0;
   1461         if (Types[i]->getType()->isIncompleteType())
   1462           D = diag::err_assoc_type_incomplete;
   1463         else if (!Types[i]->getType()->isObjectType())
   1464           D = diag::err_assoc_type_nonobject;
   1465         else if (Types[i]->getType()->isVariablyModifiedType())
   1466           D = diag::err_assoc_type_variably_modified;
   1467 
   1468         if (D != 0) {
   1469           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
   1470             << Types[i]->getTypeLoc().getSourceRange()
   1471             << Types[i]->getType();
   1472           TypeErrorFound = true;
   1473         }
   1474 
   1475         // C11 6.5.1.1p2 "No two generic associations in the same generic
   1476         // selection shall specify compatible types."
   1477         for (unsigned j = i+1; j < NumAssocs; ++j)
   1478           if (Types[j] && !Types[j]->getType()->isDependentType() &&
   1479               Context.typesAreCompatible(Types[i]->getType(),
   1480                                          Types[j]->getType())) {
   1481             Diag(Types[j]->getTypeLoc().getBeginLoc(),
   1482                  diag::err_assoc_compatible_types)
   1483               << Types[j]->getTypeLoc().getSourceRange()
   1484               << Types[j]->getType()
   1485               << Types[i]->getType();
   1486             Diag(Types[i]->getTypeLoc().getBeginLoc(),
   1487                  diag::note_compat_assoc)
   1488               << Types[i]->getTypeLoc().getSourceRange()
   1489               << Types[i]->getType();
   1490             TypeErrorFound = true;
   1491           }
   1492       }
   1493     }
   1494   }
   1495   if (TypeErrorFound)
   1496     return ExprError();
   1497 
   1498   // If we determined that the generic selection is result-dependent, don't
   1499   // try to compute the result expression.
   1500   if (IsResultDependent)
   1501     return new (Context) GenericSelectionExpr(
   1502         Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
   1503         ContainsUnexpandedParameterPack);
   1504 
   1505   SmallVector<unsigned, 1> CompatIndices;
   1506   unsigned DefaultIndex = -1U;
   1507   for (unsigned i = 0; i < NumAssocs; ++i) {
   1508     if (!Types[i])
   1509       DefaultIndex = i;
   1510     else if (Context.typesAreCompatible(ControllingExpr->getType(),
   1511                                         Types[i]->getType()))
   1512       CompatIndices.push_back(i);
   1513   }
   1514 
   1515   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
   1516   // type compatible with at most one of the types named in its generic
   1517   // association list."
   1518   if (CompatIndices.size() > 1) {
   1519     // We strip parens here because the controlling expression is typically
   1520     // parenthesized in macro definitions.
   1521     ControllingExpr = ControllingExpr->IgnoreParens();
   1522     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
   1523       << ControllingExpr->getSourceRange() << ControllingExpr->getType()
   1524       << (unsigned) CompatIndices.size();
   1525     for (unsigned I : CompatIndices) {
   1526       Diag(Types[I]->getTypeLoc().getBeginLoc(),
   1527            diag::note_compat_assoc)
   1528         << Types[I]->getTypeLoc().getSourceRange()
   1529         << Types[I]->getType();
   1530     }
   1531     return ExprError();
   1532   }
   1533 
   1534   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
   1535   // its controlling expression shall have type compatible with exactly one of
   1536   // the types named in its generic association list."
   1537   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
   1538     // We strip parens here because the controlling expression is typically
   1539     // parenthesized in macro definitions.
   1540     ControllingExpr = ControllingExpr->IgnoreParens();
   1541     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
   1542       << ControllingExpr->getSourceRange() << ControllingExpr->getType();
   1543     return ExprError();
   1544   }
   1545 
   1546   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
   1547   // type name that is compatible with the type of the controlling expression,
   1548   // then the result expression of the generic selection is the expression
   1549   // in that generic association. Otherwise, the result expression of the
   1550   // generic selection is the expression in the default generic association."
   1551   unsigned ResultIndex =
   1552     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
   1553 
   1554   return new (Context) GenericSelectionExpr(
   1555       Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
   1556       ContainsUnexpandedParameterPack, ResultIndex);
   1557 }
   1558 
   1559 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
   1560 /// location of the token and the offset of the ud-suffix within it.
   1561 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
   1562                                      unsigned Offset) {
   1563   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
   1564                                         S.getLangOpts());
   1565 }
   1566 
   1567 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
   1568 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
   1569 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
   1570                                                  IdentifierInfo *UDSuffix,
   1571                                                  SourceLocation UDSuffixLoc,
   1572                                                  ArrayRef<Expr*> Args,
   1573                                                  SourceLocation LitEndLoc) {
   1574   assert(Args.size() <= 2 && "too many arguments for literal operator");
   1575 
   1576   QualType ArgTy[2];
   1577   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
   1578     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
   1579     if (ArgTy[ArgIdx]->isArrayType())
   1580       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
   1581   }
   1582 
   1583   DeclarationName OpName =
   1584     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   1585   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   1586   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   1587 
   1588   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
   1589   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
   1590                               /*AllowRaw*/false, /*AllowTemplate*/false,
   1591                               /*AllowStringTemplate*/false) == Sema::LOLR_Error)
   1592     return ExprError();
   1593 
   1594   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
   1595 }
   1596 
   1597 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
   1598 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
   1599 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
   1600 /// multiple tokens.  However, the common case is that StringToks points to one
   1601 /// string.
   1602 ///
   1603 ExprResult
   1604 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
   1605   assert(!StringToks.empty() && "Must have at least one string!");
   1606 
   1607   StringLiteralParser Literal(StringToks, PP);
   1608   if (Literal.hadError)
   1609     return ExprError();
   1610 
   1611   SmallVector<SourceLocation, 4> StringTokLocs;
   1612   for (const Token &Tok : StringToks)
   1613     StringTokLocs.push_back(Tok.getLocation());
   1614 
   1615   QualType CharTy = Context.CharTy;
   1616   StringLiteral::StringKind Kind = StringLiteral::Ascii;
   1617   if (Literal.isWide()) {
   1618     CharTy = Context.getWideCharType();
   1619     Kind = StringLiteral::Wide;
   1620   } else if (Literal.isUTF8()) {
   1621     Kind = StringLiteral::UTF8;
   1622   } else if (Literal.isUTF16()) {
   1623     CharTy = Context.Char16Ty;
   1624     Kind = StringLiteral::UTF16;
   1625   } else if (Literal.isUTF32()) {
   1626     CharTy = Context.Char32Ty;
   1627     Kind = StringLiteral::UTF32;
   1628   } else if (Literal.isPascal()) {
   1629     CharTy = Context.UnsignedCharTy;
   1630   }
   1631 
   1632   QualType CharTyConst = CharTy;
   1633   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
   1634   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
   1635     CharTyConst.addConst();
   1636 
   1637   // Get an array type for the string, according to C99 6.4.5.  This includes
   1638   // the nul terminator character as well as the string length for pascal
   1639   // strings.
   1640   QualType StrTy = Context.getConstantArrayType(CharTyConst,
   1641                                  llvm::APInt(32, Literal.GetNumStringChars()+1),
   1642                                  ArrayType::Normal, 0);
   1643 
   1644   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
   1645   if (getLangOpts().OpenCL) {
   1646     StrTy = Context.getAddrSpaceQualType(StrTy, LangAS::opencl_constant);
   1647   }
   1648 
   1649   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
   1650   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
   1651                                              Kind, Literal.Pascal, StrTy,
   1652                                              &StringTokLocs[0],
   1653                                              StringTokLocs.size());
   1654   if (Literal.getUDSuffix().empty())
   1655     return Lit;
   1656 
   1657   // We're building a user-defined literal.
   1658   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   1659   SourceLocation UDSuffixLoc =
   1660     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
   1661                    Literal.getUDSuffixOffset());
   1662 
   1663   // Make sure we're allowed user-defined literals here.
   1664   if (!UDLScope)
   1665     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
   1666 
   1667   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
   1668   //   operator "" X (str, len)
   1669   QualType SizeType = Context.getSizeType();
   1670 
   1671   DeclarationName OpName =
   1672     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   1673   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   1674   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   1675 
   1676   QualType ArgTy[] = {
   1677     Context.getArrayDecayedType(StrTy), SizeType
   1678   };
   1679 
   1680   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
   1681   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
   1682                                 /*AllowRaw*/false, /*AllowTemplate*/false,
   1683                                 /*AllowStringTemplate*/true)) {
   1684 
   1685   case LOLR_Cooked: {
   1686     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
   1687     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
   1688                                                     StringTokLocs[0]);
   1689     Expr *Args[] = { Lit, LenArg };
   1690 
   1691     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
   1692   }
   1693 
   1694   case LOLR_StringTemplate: {
   1695     TemplateArgumentListInfo ExplicitArgs;
   1696 
   1697     unsigned CharBits = Context.getIntWidth(CharTy);
   1698     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
   1699     llvm::APSInt Value(CharBits, CharIsUnsigned);
   1700 
   1701     TemplateArgument TypeArg(CharTy);
   1702     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
   1703     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
   1704 
   1705     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
   1706       Value = Lit->getCodeUnit(I);
   1707       TemplateArgument Arg(Context, Value, CharTy);
   1708       TemplateArgumentLocInfo ArgInfo;
   1709       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
   1710     }
   1711     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
   1712                                     &ExplicitArgs);
   1713   }
   1714   case LOLR_Raw:
   1715   case LOLR_Template:
   1716     llvm_unreachable("unexpected literal operator lookup result");
   1717   case LOLR_Error:
   1718     return ExprError();
   1719   }
   1720   llvm_unreachable("unexpected literal operator lookup result");
   1721 }
   1722 
   1723 ExprResult
   1724 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1725                        SourceLocation Loc,
   1726                        const CXXScopeSpec *SS) {
   1727   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
   1728   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
   1729 }
   1730 
   1731 /// BuildDeclRefExpr - Build an expression that references a
   1732 /// declaration that does not require a closure capture.
   1733 ExprResult
   1734 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1735                        const DeclarationNameInfo &NameInfo,
   1736                        const CXXScopeSpec *SS, NamedDecl *FoundD,
   1737                        const TemplateArgumentListInfo *TemplateArgs) {
   1738   if (getLangOpts().CUDA)
   1739     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
   1740       if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
   1741         if (CheckCUDATarget(Caller, Callee)) {
   1742           Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
   1743             << IdentifyCUDATarget(Callee) << D->getIdentifier()
   1744             << IdentifyCUDATarget(Caller);
   1745           Diag(D->getLocation(), diag::note_previous_decl)
   1746             << D->getIdentifier();
   1747           return ExprError();
   1748         }
   1749       }
   1750 
   1751   bool RefersToCapturedVariable =
   1752       isa<VarDecl>(D) &&
   1753       NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
   1754 
   1755   DeclRefExpr *E;
   1756   if (isa<VarTemplateSpecializationDecl>(D)) {
   1757     VarTemplateSpecializationDecl *VarSpec =
   1758         cast<VarTemplateSpecializationDecl>(D);
   1759 
   1760     E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
   1761                                         : NestedNameSpecifierLoc(),
   1762                             VarSpec->getTemplateKeywordLoc(), D,
   1763                             RefersToCapturedVariable, NameInfo.getLoc(), Ty, VK,
   1764                             FoundD, TemplateArgs);
   1765   } else {
   1766     assert(!TemplateArgs && "No template arguments for non-variable"
   1767                             " template specialization references");
   1768     E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
   1769                                         : NestedNameSpecifierLoc(),
   1770                             SourceLocation(), D, RefersToCapturedVariable,
   1771                             NameInfo, Ty, VK, FoundD);
   1772   }
   1773 
   1774   MarkDeclRefReferenced(E);
   1775 
   1776   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
   1777       Ty.getObjCLifetime() == Qualifiers::OCL_Weak &&
   1778       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getLocStart()))
   1779       recordUseOfEvaluatedWeak(E);
   1780 
   1781   if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
   1782     UnusedPrivateFields.remove(FD);
   1783     // Just in case we're building an illegal pointer-to-member.
   1784     if (FD->isBitField())
   1785       E->setObjectKind(OK_BitField);
   1786   }
   1787 
   1788   return E;
   1789 }
   1790 
   1791 /// Decomposes the given name into a DeclarationNameInfo, its location, and
   1792 /// possibly a list of template arguments.
   1793 ///
   1794 /// If this produces template arguments, it is permitted to call
   1795 /// DecomposeTemplateName.
   1796 ///
   1797 /// This actually loses a lot of source location information for
   1798 /// non-standard name kinds; we should consider preserving that in
   1799 /// some way.
   1800 void
   1801 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
   1802                              TemplateArgumentListInfo &Buffer,
   1803                              DeclarationNameInfo &NameInfo,
   1804                              const TemplateArgumentListInfo *&TemplateArgs) {
   1805   if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
   1806     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
   1807     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
   1808 
   1809     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
   1810                                        Id.TemplateId->NumArgs);
   1811     translateTemplateArguments(TemplateArgsPtr, Buffer);
   1812 
   1813     TemplateName TName = Id.TemplateId->Template.get();
   1814     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
   1815     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
   1816     TemplateArgs = &Buffer;
   1817   } else {
   1818     NameInfo = GetNameFromUnqualifiedId(Id);
   1819     TemplateArgs = nullptr;
   1820   }
   1821 }
   1822 
   1823 static void emitEmptyLookupTypoDiagnostic(
   1824     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
   1825     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
   1826     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
   1827   DeclContext *Ctx =
   1828       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
   1829   if (!TC) {
   1830     // Emit a special diagnostic for failed member lookups.
   1831     // FIXME: computing the declaration context might fail here (?)
   1832     if (Ctx)
   1833       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
   1834                                                  << SS.getRange();
   1835     else
   1836       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
   1837     return;
   1838   }
   1839 
   1840   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
   1841   bool DroppedSpecifier =
   1842       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
   1843   unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
   1844                         ? diag::note_implicit_param_decl
   1845                         : diag::note_previous_decl;
   1846   if (!Ctx)
   1847     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
   1848                          SemaRef.PDiag(NoteID));
   1849   else
   1850     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
   1851                                  << Typo << Ctx << DroppedSpecifier
   1852                                  << SS.getRange(),
   1853                          SemaRef.PDiag(NoteID));
   1854 }
   1855 
   1856 /// Diagnose an empty lookup.
   1857 ///
   1858 /// \return false if new lookup candidates were found
   1859 bool
   1860 Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
   1861                           std::unique_ptr<CorrectionCandidateCallback> CCC,
   1862                           TemplateArgumentListInfo *ExplicitTemplateArgs,
   1863                           ArrayRef<Expr *> Args, TypoExpr **Out) {
   1864   DeclarationName Name = R.getLookupName();
   1865 
   1866   unsigned diagnostic = diag::err_undeclared_var_use;
   1867   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
   1868   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
   1869       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
   1870       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
   1871     diagnostic = diag::err_undeclared_use;
   1872     diagnostic_suggest = diag::err_undeclared_use_suggest;
   1873   }
   1874 
   1875   // If the original lookup was an unqualified lookup, fake an
   1876   // unqualified lookup.  This is useful when (for example) the
   1877   // original lookup would not have found something because it was a
   1878   // dependent name.
   1879   DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
   1880   while (DC) {
   1881     if (isa<CXXRecordDecl>(DC)) {
   1882       LookupQualifiedName(R, DC);
   1883 
   1884       if (!R.empty()) {
   1885         // Don't give errors about ambiguities in this lookup.
   1886         R.suppressDiagnostics();
   1887 
   1888         // During a default argument instantiation the CurContext points
   1889         // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
   1890         // function parameter list, hence add an explicit check.
   1891         bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
   1892                               ActiveTemplateInstantiations.back().Kind ==
   1893             ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
   1894         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
   1895         bool isInstance = CurMethod &&
   1896                           CurMethod->isInstance() &&
   1897                           DC == CurMethod->getParent() && !isDefaultArgument;
   1898 
   1899         // Give a code modification hint to insert 'this->'.
   1900         // TODO: fixit for inserting 'Base<T>::' in the other cases.
   1901         // Actually quite difficult!
   1902         if (getLangOpts().MSVCCompat)
   1903           diagnostic = diag::ext_found_via_dependent_bases_lookup;
   1904         if (isInstance) {
   1905           Diag(R.getNameLoc(), diagnostic) << Name
   1906             << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
   1907           CheckCXXThisCapture(R.getNameLoc());
   1908         } else {
   1909           Diag(R.getNameLoc(), diagnostic) << Name;
   1910         }
   1911 
   1912         // Do we really want to note all of these?
   1913         for (NamedDecl *D : R)
   1914           Diag(D->getLocation(), diag::note_dependent_var_use);
   1915 
   1916         // Return true if we are inside a default argument instantiation
   1917         // and the found name refers to an instance member function, otherwise
   1918         // the function calling DiagnoseEmptyLookup will try to create an
   1919         // implicit member call and this is wrong for default argument.
   1920         if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
   1921           Diag(R.getNameLoc(), diag::err_member_call_without_object);
   1922           return true;
   1923         }
   1924 
   1925         // Tell the callee to try to recover.
   1926         return false;
   1927       }
   1928 
   1929       R.clear();
   1930     }
   1931 
   1932     // In Microsoft mode, if we are performing lookup from within a friend
   1933     // function definition declared at class scope then we must set
   1934     // DC to the lexical parent to be able to search into the parent
   1935     // class.
   1936     if (getLangOpts().MSVCCompat && isa<FunctionDecl>(DC) &&
   1937         cast<FunctionDecl>(DC)->getFriendObjectKind() &&
   1938         DC->getLexicalParent()->isRecord())
   1939       DC = DC->getLexicalParent();
   1940     else
   1941       DC = DC->getParent();
   1942   }
   1943 
   1944   // We didn't find anything, so try to correct for a typo.
   1945   TypoCorrection Corrected;
   1946   if (S && Out) {
   1947     SourceLocation TypoLoc = R.getNameLoc();
   1948     assert(!ExplicitTemplateArgs &&
   1949            "Diagnosing an empty lookup with explicit template args!");
   1950     *Out = CorrectTypoDelayed(
   1951         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, std::move(CCC),
   1952         [=](const TypoCorrection &TC) {
   1953           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
   1954                                         diagnostic, diagnostic_suggest);
   1955         },
   1956         nullptr, CTK_ErrorRecovery);
   1957     if (*Out)
   1958       return true;
   1959   } else if (S && (Corrected =
   1960                        CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
   1961                                    &SS, std::move(CCC), CTK_ErrorRecovery))) {
   1962     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
   1963     bool DroppedSpecifier =
   1964         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
   1965     R.setLookupName(Corrected.getCorrection());
   1966 
   1967     bool AcceptableWithRecovery = false;
   1968     bool AcceptableWithoutRecovery = false;
   1969     NamedDecl *ND = Corrected.getFoundDecl();
   1970     if (ND) {
   1971       if (Corrected.isOverloaded()) {
   1972         OverloadCandidateSet OCS(R.getNameLoc(),
   1973                                  OverloadCandidateSet::CSK_Normal);
   1974         OverloadCandidateSet::iterator Best;
   1975         for (NamedDecl *CD : Corrected) {
   1976           if (FunctionTemplateDecl *FTD =
   1977                    dyn_cast<FunctionTemplateDecl>(CD))
   1978             AddTemplateOverloadCandidate(
   1979                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
   1980                 Args, OCS);
   1981           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
   1982             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
   1983               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
   1984                                    Args, OCS);
   1985         }
   1986         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
   1987         case OR_Success:
   1988           ND = Best->FoundDecl;
   1989           Corrected.setCorrectionDecl(ND);
   1990           break;
   1991         default:
   1992           // FIXME: Arbitrarily pick the first declaration for the note.
   1993           Corrected.setCorrectionDecl(ND);
   1994           break;
   1995         }
   1996       }
   1997       R.addDecl(ND);
   1998       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
   1999         CXXRecordDecl *Record = nullptr;
   2000         if (Corrected.getCorrectionSpecifier()) {
   2001           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
   2002           Record = Ty->getAsCXXRecordDecl();
   2003         }
   2004         if (!Record)
   2005           Record = cast<CXXRecordDecl>(
   2006               ND->getDeclContext()->getRedeclContext());
   2007         R.setNamingClass(Record);
   2008       }
   2009 
   2010       auto *UnderlyingND = ND->getUnderlyingDecl();
   2011       AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
   2012                                isa<FunctionTemplateDecl>(UnderlyingND);
   2013       // FIXME: If we ended up with a typo for a type name or
   2014       // Objective-C class name, we're in trouble because the parser
   2015       // is in the wrong place to recover. Suggest the typo
   2016       // correction, but don't make it a fix-it since we're not going
   2017       // to recover well anyway.
   2018       AcceptableWithoutRecovery =
   2019           isa<TypeDecl>(UnderlyingND) || isa<ObjCInterfaceDecl>(UnderlyingND);
   2020     } else {
   2021       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
   2022       // because we aren't able to recover.
   2023       AcceptableWithoutRecovery = true;
   2024     }
   2025 
   2026     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
   2027       unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
   2028                             ? diag::note_implicit_param_decl
   2029                             : diag::note_previous_decl;
   2030       if (SS.isEmpty())
   2031         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
   2032                      PDiag(NoteID), AcceptableWithRecovery);
   2033       else
   2034         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
   2035                                   << Name << computeDeclContext(SS, false)
   2036                                   << DroppedSpecifier << SS.getRange(),
   2037                      PDiag(NoteID), AcceptableWithRecovery);
   2038 
   2039       // Tell the callee whether to try to recover.
   2040       return !AcceptableWithRecovery;
   2041     }
   2042   }
   2043   R.clear();
   2044 
   2045   // Emit a special diagnostic for failed member lookups.
   2046   // FIXME: computing the declaration context might fail here (?)
   2047   if (!SS.isEmpty()) {
   2048     Diag(R.getNameLoc(), diag::err_no_member)
   2049       << Name << computeDeclContext(SS, false)
   2050       << SS.getRange();
   2051     return true;
   2052   }
   2053 
   2054   // Give up, we can't recover.
   2055   Diag(R.getNameLoc(), diagnostic) << Name;
   2056   return true;
   2057 }
   2058 
   2059 /// In Microsoft mode, if we are inside a template class whose parent class has
   2060 /// dependent base classes, and we can't resolve an unqualified identifier, then
   2061 /// assume the identifier is a member of a dependent base class.  We can only
   2062 /// recover successfully in static methods, instance methods, and other contexts
   2063 /// where 'this' is available.  This doesn't precisely match MSVC's
   2064 /// instantiation model, but it's close enough.
   2065 static Expr *
   2066 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
   2067                                DeclarationNameInfo &NameInfo,
   2068                                SourceLocation TemplateKWLoc,
   2069                                const TemplateArgumentListInfo *TemplateArgs) {
   2070   // Only try to recover from lookup into dependent bases in static methods or
   2071   // contexts where 'this' is available.
   2072   QualType ThisType = S.getCurrentThisType();
   2073   const CXXRecordDecl *RD = nullptr;
   2074   if (!ThisType.isNull())
   2075     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
   2076   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
   2077     RD = MD->getParent();
   2078   if (!RD || !RD->hasAnyDependentBases())
   2079     return nullptr;
   2080 
   2081   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
   2082   // is available, suggest inserting 'this->' as a fixit.
   2083   SourceLocation Loc = NameInfo.getLoc();
   2084   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
   2085   DB << NameInfo.getName() << RD;
   2086 
   2087   if (!ThisType.isNull()) {
   2088     DB << FixItHint::CreateInsertion(Loc, "this->");
   2089     return CXXDependentScopeMemberExpr::Create(
   2090         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
   2091         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
   2092         /*FirstQualifierInScope=*/nullptr, NameInfo, TemplateArgs);
   2093   }
   2094 
   2095   // Synthesize a fake NNS that points to the derived class.  This will
   2096   // perform name lookup during template instantiation.
   2097   CXXScopeSpec SS;
   2098   auto *NNS =
   2099       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
   2100   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
   2101   return DependentScopeDeclRefExpr::Create(
   2102       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
   2103       TemplateArgs);
   2104 }
   2105 
   2106 ExprResult
   2107 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
   2108                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
   2109                         bool HasTrailingLParen, bool IsAddressOfOperand,
   2110                         std::unique_ptr<CorrectionCandidateCallback> CCC,
   2111                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
   2112   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
   2113          "cannot be direct & operand and have a trailing lparen");
   2114   if (SS.isInvalid())
   2115     return ExprError();
   2116 
   2117   TemplateArgumentListInfo TemplateArgsBuffer;
   2118 
   2119   // Decompose the UnqualifiedId into the following data.
   2120   DeclarationNameInfo NameInfo;
   2121   const TemplateArgumentListInfo *TemplateArgs;
   2122   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
   2123 
   2124   DeclarationName Name = NameInfo.getName();
   2125   IdentifierInfo *II = Name.getAsIdentifierInfo();
   2126   SourceLocation NameLoc = NameInfo.getLoc();
   2127 
   2128   // C++ [temp.dep.expr]p3:
   2129   //   An id-expression is type-dependent if it contains:
   2130   //     -- an identifier that was declared with a dependent type,
   2131   //        (note: handled after lookup)
   2132   //     -- a template-id that is dependent,
   2133   //        (note: handled in BuildTemplateIdExpr)
   2134   //     -- a conversion-function-id that specifies a dependent type,
   2135   //     -- a nested-name-specifier that contains a class-name that
   2136   //        names a dependent type.
   2137   // Determine whether this is a member of an unknown specialization;
   2138   // we need to handle these differently.
   2139   bool DependentID = false;
   2140   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
   2141       Name.getCXXNameType()->isDependentType()) {
   2142     DependentID = true;
   2143   } else if (SS.isSet()) {
   2144     if (DeclContext *DC = computeDeclContext(SS, false)) {
   2145       if (RequireCompleteDeclContext(SS, DC))
   2146         return ExprError();
   2147     } else {
   2148       DependentID = true;
   2149     }
   2150   }
   2151 
   2152   if (DependentID)
   2153     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2154                                       IsAddressOfOperand, TemplateArgs);
   2155 
   2156   // Perform the required lookup.
   2157   LookupResult R(*this, NameInfo,
   2158                  (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
   2159                   ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
   2160   if (TemplateArgs) {
   2161     // Lookup the template name again to correctly establish the context in
   2162     // which it was found. This is really unfortunate as we already did the
   2163     // lookup to determine that it was a template name in the first place. If
   2164     // this becomes a performance hit, we can work harder to preserve those
   2165     // results until we get here but it's likely not worth it.
   2166     bool MemberOfUnknownSpecialization;
   2167     LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
   2168                        MemberOfUnknownSpecialization);
   2169 
   2170     if (MemberOfUnknownSpecialization ||
   2171         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
   2172       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2173                                         IsAddressOfOperand, TemplateArgs);
   2174   } else {
   2175     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
   2176     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
   2177 
   2178     // If the result might be in a dependent base class, this is a dependent
   2179     // id-expression.
   2180     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
   2181       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2182                                         IsAddressOfOperand, TemplateArgs);
   2183 
   2184     // If this reference is in an Objective-C method, then we need to do
   2185     // some special Objective-C lookup, too.
   2186     if (IvarLookupFollowUp) {
   2187       ExprResult E(LookupInObjCMethod(R, S, II, true));
   2188       if (E.isInvalid())
   2189         return ExprError();
   2190 
   2191       if (Expr *Ex = E.getAs<Expr>())
   2192         return Ex;
   2193     }
   2194   }
   2195 
   2196   if (R.isAmbiguous())
   2197     return ExprError();
   2198 
   2199   // This could be an implicitly declared function reference (legal in C90,
   2200   // extension in C99, forbidden in C++).
   2201   if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
   2202     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
   2203     if (D) R.addDecl(D);
   2204   }
   2205 
   2206   // Determine whether this name might be a candidate for
   2207   // argument-dependent lookup.
   2208   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
   2209 
   2210   if (R.empty() && !ADL) {
   2211     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
   2212       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
   2213                                                    TemplateKWLoc, TemplateArgs))
   2214         return E;
   2215     }
   2216 
   2217     // Don't diagnose an empty lookup for inline assembly.
   2218     if (IsInlineAsmIdentifier)
   2219       return ExprError();
   2220 
   2221     // If this name wasn't predeclared and if this is not a function
   2222     // call, diagnose the problem.
   2223     TypoExpr *TE = nullptr;
   2224     auto DefaultValidator = llvm::make_unique<CorrectionCandidateCallback>(
   2225         II, SS.isValid() ? SS.getScopeRep() : nullptr);
   2226     DefaultValidator->IsAddressOfOperand = IsAddressOfOperand;
   2227     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
   2228            "Typo correction callback misconfigured");
   2229     if (CCC) {
   2230       // Make sure the callback knows what the typo being diagnosed is.
   2231       CCC->setTypoName(II);
   2232       if (SS.isValid())
   2233         CCC->setTypoNNS(SS.getScopeRep());
   2234     }
   2235     if (DiagnoseEmptyLookup(S, SS, R,
   2236                             CCC ? std::move(CCC) : std::move(DefaultValidator),
   2237                             nullptr, None, &TE)) {
   2238       if (TE && KeywordReplacement) {
   2239         auto &State = getTypoExprState(TE);
   2240         auto BestTC = State.Consumer->getNextCorrection();
   2241         if (BestTC.isKeyword()) {
   2242           auto *II = BestTC.getCorrectionAsIdentifierInfo();
   2243           if (State.DiagHandler)
   2244             State.DiagHandler(BestTC);
   2245           KeywordReplacement->startToken();
   2246           KeywordReplacement->setKind(II->getTokenID());
   2247           KeywordReplacement->setIdentifierInfo(II);
   2248           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
   2249           // Clean up the state associated with the TypoExpr, since it has
   2250           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
   2251           clearDelayedTypo(TE);
   2252           // Signal that a correction to a keyword was performed by returning a
   2253           // valid-but-null ExprResult.
   2254           return (Expr*)nullptr;
   2255         }
   2256         State.Consumer->resetCorrectionStream();
   2257       }
   2258       return TE ? TE : ExprError();
   2259     }
   2260 
   2261     assert(!R.empty() &&
   2262            "DiagnoseEmptyLookup returned false but added no results");
   2263 
   2264     // If we found an Objective-C instance variable, let
   2265     // LookupInObjCMethod build the appropriate expression to
   2266     // reference the ivar.
   2267     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
   2268       R.clear();
   2269       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
   2270       // In a hopelessly buggy code, Objective-C instance variable
   2271       // lookup fails and no expression will be built to reference it.
   2272       if (!E.isInvalid() && !E.get())
   2273         return ExprError();
   2274       return E;
   2275     }
   2276   }
   2277 
   2278   // This is guaranteed from this point on.
   2279   assert(!R.empty() || ADL);
   2280 
   2281   // Check whether this might be a C++ implicit instance member access.
   2282   // C++ [class.mfct.non-static]p3:
   2283   //   When an id-expression that is not part of a class member access
   2284   //   syntax and not used to form a pointer to member is used in the
   2285   //   body of a non-static member function of class X, if name lookup
   2286   //   resolves the name in the id-expression to a non-static non-type
   2287   //   member of some class C, the id-expression is transformed into a
   2288   //   class member access expression using (*this) as the
   2289   //   postfix-expression to the left of the . operator.
   2290   //
   2291   // But we don't actually need to do this for '&' operands if R
   2292   // resolved to a function or overloaded function set, because the
   2293   // expression is ill-formed if it actually works out to be a
   2294   // non-static member function:
   2295   //
   2296   // C++ [expr.ref]p4:
   2297   //   Otherwise, if E1.E2 refers to a non-static member function. . .
   2298   //   [t]he expression can be used only as the left-hand operand of a
   2299   //   member function call.
   2300   //
   2301   // There are other safeguards against such uses, but it's important
   2302   // to get this right here so that we don't end up making a
   2303   // spuriously dependent expression if we're inside a dependent
   2304   // instance method.
   2305   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
   2306     bool MightBeImplicitMember;
   2307     if (!IsAddressOfOperand)
   2308       MightBeImplicitMember = true;
   2309     else if (!SS.isEmpty())
   2310       MightBeImplicitMember = false;
   2311     else if (R.isOverloadedResult())
   2312       MightBeImplicitMember = false;
   2313     else if (R.isUnresolvableResult())
   2314       MightBeImplicitMember = true;
   2315     else
   2316       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
   2317                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
   2318                               isa<MSPropertyDecl>(R.getFoundDecl());
   2319 
   2320     if (MightBeImplicitMember)
   2321       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
   2322                                              R, TemplateArgs, S);
   2323   }
   2324 
   2325   if (TemplateArgs || TemplateKWLoc.isValid()) {
   2326 
   2327     // In C++1y, if this is a variable template id, then check it
   2328     // in BuildTemplateIdExpr().
   2329     // The single lookup result must be a variable template declaration.
   2330     if (Id.getKind() == UnqualifiedId::IK_TemplateId && Id.TemplateId &&
   2331         Id.TemplateId->Kind == TNK_Var_template) {
   2332       assert(R.getAsSingle<VarTemplateDecl>() &&
   2333              "There should only be one declaration found.");
   2334     }
   2335 
   2336     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
   2337   }
   2338 
   2339   return BuildDeclarationNameExpr(SS, R, ADL);
   2340 }
   2341 
   2342 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
   2343 /// declaration name, generally during template instantiation.
   2344 /// There's a large number of things which don't need to be done along
   2345 /// this path.
   2346 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
   2347     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
   2348     bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
   2349   DeclContext *DC = computeDeclContext(SS, false);
   2350   if (!DC)
   2351     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
   2352                                      NameInfo, /*TemplateArgs=*/nullptr);
   2353 
   2354   if (RequireCompleteDeclContext(SS, DC))
   2355     return ExprError();
   2356 
   2357   LookupResult R(*this, NameInfo, LookupOrdinaryName);
   2358   LookupQualifiedName(R, DC);
   2359 
   2360   if (R.isAmbiguous())
   2361     return ExprError();
   2362 
   2363   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
   2364     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
   2365                                      NameInfo, /*TemplateArgs=*/nullptr);
   2366 
   2367   if (R.empty()) {
   2368     Diag(NameInfo.getLoc(), diag::err_no_member)
   2369       << NameInfo.getName() << DC << SS.getRange();
   2370     return ExprError();
   2371   }
   2372 
   2373   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
   2374     // Diagnose a missing typename if this resolved unambiguously to a type in
   2375     // a dependent context.  If we can recover with a type, downgrade this to
   2376     // a warning in Microsoft compatibility mode.
   2377     unsigned DiagID = diag::err_typename_missing;
   2378     if (RecoveryTSI && getLangOpts().MSVCCompat)
   2379       DiagID = diag::ext_typename_missing;
   2380     SourceLocation Loc = SS.getBeginLoc();
   2381     auto D = Diag(Loc, DiagID);
   2382     D << SS.getScopeRep() << NameInfo.getName().getAsString()
   2383       << SourceRange(Loc, NameInfo.getEndLoc());
   2384 
   2385     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
   2386     // context.
   2387     if (!RecoveryTSI)
   2388       return ExprError();
   2389 
   2390     // Only issue the fixit if we're prepared to recover.
   2391     D << FixItHint::CreateInsertion(Loc, "typename ");
   2392 
   2393     // Recover by pretending this was an elaborated type.
   2394     QualType Ty = Context.getTypeDeclType(TD);
   2395     TypeLocBuilder TLB;
   2396     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
   2397 
   2398     QualType ET = getElaboratedType(ETK_None, SS, Ty);
   2399     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
   2400     QTL.setElaboratedKeywordLoc(SourceLocation());
   2401     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2402 
   2403     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
   2404 
   2405     return ExprEmpty();
   2406   }
   2407 
   2408   // Defend against this resolving to an implicit member access. We usually
   2409   // won't get here if this might be a legitimate a class member (we end up in
   2410   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
   2411   // a pointer-to-member or in an unevaluated context in C++11.
   2412   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
   2413     return BuildPossibleImplicitMemberExpr(SS,
   2414                                            /*TemplateKWLoc=*/SourceLocation(),
   2415                                            R, /*TemplateArgs=*/nullptr, S);
   2416 
   2417   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
   2418 }
   2419 
   2420 /// LookupInObjCMethod - The parser has read a name in, and Sema has
   2421 /// detected that we're currently inside an ObjC method.  Perform some
   2422 /// additional lookup.
   2423 ///
   2424 /// Ideally, most of this would be done by lookup, but there's
   2425 /// actually quite a lot of extra work involved.
   2426 ///
   2427 /// Returns a null sentinel to indicate trivial success.
   2428 ExprResult
   2429 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
   2430                          IdentifierInfo *II, bool AllowBuiltinCreation) {
   2431   SourceLocation Loc = Lookup.getNameLoc();
   2432   ObjCMethodDecl *CurMethod = getCurMethodDecl();
   2433 
   2434   // Check for error condition which is already reported.
   2435   if (!CurMethod)
   2436     return ExprError();
   2437 
   2438   // There are two cases to handle here.  1) scoped lookup could have failed,
   2439   // in which case we should look for an ivar.  2) scoped lookup could have
   2440   // found a decl, but that decl is outside the current instance method (i.e.
   2441   // a global variable).  In these two cases, we do a lookup for an ivar with
   2442   // this name, if the lookup sucedes, we replace it our current decl.
   2443 
   2444   // If we're in a class method, we don't normally want to look for
   2445   // ivars.  But if we don't find anything else, and there's an
   2446   // ivar, that's an error.
   2447   bool IsClassMethod = CurMethod->isClassMethod();
   2448 
   2449   bool LookForIvars;
   2450   if (Lookup.empty())
   2451     LookForIvars = true;
   2452   else if (IsClassMethod)
   2453     LookForIvars = false;
   2454   else
   2455     LookForIvars = (Lookup.isSingleResult() &&
   2456                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
   2457   ObjCInterfaceDecl *IFace = nullptr;
   2458   if (LookForIvars) {
   2459     IFace = CurMethod->getClassInterface();
   2460     ObjCInterfaceDecl *ClassDeclared;
   2461     ObjCIvarDecl *IV = nullptr;
   2462     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
   2463       // Diagnose using an ivar in a class method.
   2464       if (IsClassMethod)
   2465         return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
   2466                          << IV->getDeclName());
   2467 
   2468       // If we're referencing an invalid decl, just return this as a silent
   2469       // error node.  The error diagnostic was already emitted on the decl.
   2470       if (IV->isInvalidDecl())
   2471         return ExprError();
   2472 
   2473       // Check if referencing a field with __attribute__((deprecated)).
   2474       if (DiagnoseUseOfDecl(IV, Loc))
   2475         return ExprError();
   2476 
   2477       // Diagnose the use of an ivar outside of the declaring class.
   2478       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
   2479           !declaresSameEntity(ClassDeclared, IFace) &&
   2480           !getLangOpts().DebuggerSupport)
   2481         Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
   2482 
   2483       // FIXME: This should use a new expr for a direct reference, don't
   2484       // turn this into Self->ivar, just return a BareIVarExpr or something.
   2485       IdentifierInfo &II = Context.Idents.get("self");
   2486       UnqualifiedId SelfName;
   2487       SelfName.setIdentifier(&II, SourceLocation());
   2488       SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
   2489       CXXScopeSpec SelfScopeSpec;
   2490       SourceLocation TemplateKWLoc;
   2491       ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
   2492                                               SelfName, false, false);
   2493       if (SelfExpr.isInvalid())
   2494         return ExprError();
   2495 
   2496       SelfExpr = DefaultLvalueConversion(SelfExpr.get());
   2497       if (SelfExpr.isInvalid())
   2498         return ExprError();
   2499 
   2500       MarkAnyDeclReferenced(Loc, IV, true);
   2501 
   2502       ObjCMethodFamily MF = CurMethod->getMethodFamily();
   2503       if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
   2504           !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
   2505         Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
   2506 
   2507       ObjCIvarRefExpr *Result = new (Context)
   2508           ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
   2509                           IV->getLocation(), SelfExpr.get(), true, true);
   2510 
   2511       if (getLangOpts().ObjCAutoRefCount) {
   2512         if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
   2513           if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
   2514             recordUseOfEvaluatedWeak(Result);
   2515         }
   2516         if (CurContext->isClosure())
   2517           Diag(Loc, diag::warn_implicitly_retains_self)
   2518             << FixItHint::CreateInsertion(Loc, "self->");
   2519       }
   2520 
   2521       return Result;
   2522     }
   2523   } else if (CurMethod->isInstanceMethod()) {
   2524     // We should warn if a local variable hides an ivar.
   2525     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
   2526       ObjCInterfaceDecl *ClassDeclared;
   2527       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
   2528         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
   2529             declaresSameEntity(IFace, ClassDeclared))
   2530           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
   2531       }
   2532     }
   2533   } else if (Lookup.isSingleResult() &&
   2534              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
   2535     // If accessing a stand-alone ivar in a class method, this is an error.
   2536     if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
   2537       return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
   2538                        << IV->getDeclName());
   2539   }
   2540 
   2541   if (Lookup.empty() && II && AllowBuiltinCreation) {
   2542     // FIXME. Consolidate this with similar code in LookupName.
   2543     if (unsigned BuiltinID = II->getBuiltinID()) {
   2544       if (!(getLangOpts().CPlusPlus &&
   2545             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
   2546         NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
   2547                                            S, Lookup.isForRedeclaration(),
   2548                                            Lookup.getNameLoc());
   2549         if (D) Lookup.addDecl(D);
   2550       }
   2551     }
   2552   }
   2553   // Sentinel value saying that we didn't do anything special.
   2554   return ExprResult((Expr *)nullptr);
   2555 }
   2556 
   2557 /// \brief Cast a base object to a member's actual type.
   2558 ///
   2559 /// Logically this happens in three phases:
   2560 ///
   2561 /// * First we cast from the base type to the naming class.
   2562 ///   The naming class is the class into which we were looking
   2563 ///   when we found the member;  it's the qualifier type if a
   2564 ///   qualifier was provided, and otherwise it's the base type.
   2565 ///
   2566 /// * Next we cast from the naming class to the declaring class.
   2567 ///   If the member we found was brought into a class's scope by
   2568 ///   a using declaration, this is that class;  otherwise it's
   2569 ///   the class declaring the member.
   2570 ///
   2571 /// * Finally we cast from the declaring class to the "true"
   2572 ///   declaring class of the member.  This conversion does not
   2573 ///   obey access control.
   2574 ExprResult
   2575 Sema::PerformObjectMemberConversion(Expr *From,
   2576                                     NestedNameSpecifier *Qualifier,
   2577                                     NamedDecl *FoundDecl,
   2578                                     NamedDecl *Member) {
   2579   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
   2580   if (!RD)
   2581     return From;
   2582 
   2583   QualType DestRecordType;
   2584   QualType DestType;
   2585   QualType FromRecordType;
   2586   QualType FromType = From->getType();
   2587   bool PointerConversions = false;
   2588   if (isa<FieldDecl>(Member)) {
   2589     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
   2590 
   2591     if (FromType->getAs<PointerType>()) {
   2592       DestType = Context.getPointerType(DestRecordType);
   2593       FromRecordType = FromType->getPointeeType();
   2594       PointerConversions = true;
   2595     } else {
   2596       DestType = DestRecordType;
   2597       FromRecordType = FromType;
   2598     }
   2599   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
   2600     if (Method->isStatic())
   2601       return From;
   2602 
   2603     DestType = Method->getThisType(Context);
   2604     DestRecordType = DestType->getPointeeType();
   2605 
   2606     if (FromType->getAs<PointerType>()) {
   2607       FromRecordType = FromType->getPointeeType();
   2608       PointerConversions = true;
   2609     } else {
   2610       FromRecordType = FromType;
   2611       DestType = DestRecordType;
   2612     }
   2613   } else {
   2614     // No conversion necessary.
   2615     return From;
   2616   }
   2617 
   2618   if (DestType->isDependentType() || FromType->isDependentType())
   2619     return From;
   2620 
   2621   // If the unqualified types are the same, no conversion is necessary.
   2622   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   2623     return From;
   2624 
   2625   SourceRange FromRange = From->getSourceRange();
   2626   SourceLocation FromLoc = FromRange.getBegin();
   2627 
   2628   ExprValueKind VK = From->getValueKind();
   2629 
   2630   // C++ [class.member.lookup]p8:
   2631   //   [...] Ambiguities can often be resolved by qualifying a name with its
   2632   //   class name.
   2633   //
   2634   // If the member was a qualified name and the qualified referred to a
   2635   // specific base subobject type, we'll cast to that intermediate type
   2636   // first and then to the object in which the member is declared. That allows
   2637   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
   2638   //
   2639   //   class Base { public: int x; };
   2640   //   class Derived1 : public Base { };
   2641   //   class Derived2 : public Base { };
   2642   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
   2643   //
   2644   //   void VeryDerived::f() {
   2645   //     x = 17; // error: ambiguous base subobjects
   2646   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
   2647   //   }
   2648   if (Qualifier && Qualifier->getAsType()) {
   2649     QualType QType = QualType(Qualifier->getAsType(), 0);
   2650     assert(QType->isRecordType() && "lookup done with non-record type");
   2651 
   2652     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
   2653 
   2654     // In C++98, the qualifier type doesn't actually have to be a base
   2655     // type of the object type, in which case we just ignore it.
   2656     // Otherwise build the appropriate casts.
   2657     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
   2658       CXXCastPath BasePath;
   2659       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
   2660                                        FromLoc, FromRange, &BasePath))
   2661         return ExprError();
   2662 
   2663       if (PointerConversions)
   2664         QType = Context.getPointerType(QType);
   2665       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
   2666                                VK, &BasePath).get();
   2667 
   2668       FromType = QType;
   2669       FromRecordType = QRecordType;
   2670 
   2671       // If the qualifier type was the same as the destination type,
   2672       // we're done.
   2673       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   2674         return From;
   2675     }
   2676   }
   2677 
   2678   bool IgnoreAccess = false;
   2679 
   2680   // If we actually found the member through a using declaration, cast
   2681   // down to the using declaration's type.
   2682   //
   2683   // Pointer equality is fine here because only one declaration of a
   2684   // class ever has member declarations.
   2685   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
   2686     assert(isa<UsingShadowDecl>(FoundDecl));
   2687     QualType URecordType = Context.getTypeDeclType(
   2688                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
   2689 
   2690     // We only need to do this if the naming-class to declaring-class
   2691     // conversion is non-trivial.
   2692     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
   2693       assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType));
   2694       CXXCastPath BasePath;
   2695       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
   2696                                        FromLoc, FromRange, &BasePath))
   2697         return ExprError();
   2698 
   2699       QualType UType = URecordType;
   2700       if (PointerConversions)
   2701         UType = Context.getPointerType(UType);
   2702       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
   2703                                VK, &BasePath).get();
   2704       FromType = UType;
   2705       FromRecordType = URecordType;
   2706     }
   2707 
   2708     // We don't do access control for the conversion from the
   2709     // declaring class to the true declaring class.
   2710     IgnoreAccess = true;
   2711   }
   2712 
   2713   CXXCastPath BasePath;
   2714   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
   2715                                    FromLoc, FromRange, &BasePath,
   2716                                    IgnoreAccess))
   2717     return ExprError();
   2718 
   2719   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
   2720                            VK, &BasePath);
   2721 }
   2722 
   2723 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
   2724                                       const LookupResult &R,
   2725                                       bool HasTrailingLParen) {
   2726   // Only when used directly as the postfix-expression of a call.
   2727   if (!HasTrailingLParen)
   2728     return false;
   2729 
   2730   // Never if a scope specifier was provided.
   2731   if (SS.isSet())
   2732     return false;
   2733 
   2734   // Only in C++ or ObjC++.
   2735   if (!getLangOpts().CPlusPlus)
   2736     return false;
   2737 
   2738   // Turn off ADL when we find certain kinds of declarations during
   2739   // normal lookup:
   2740   for (NamedDecl *D : R) {
   2741     // C++0x [basic.lookup.argdep]p3:
   2742     //     -- a declaration of a class member
   2743     // Since using decls preserve this property, we check this on the
   2744     // original decl.
   2745     if (D->isCXXClassMember())
   2746       return false;
   2747 
   2748     // C++0x [basic.lookup.argdep]p3:
   2749     //     -- a block-scope function declaration that is not a
   2750     //        using-declaration
   2751     // NOTE: we also trigger this for function templates (in fact, we
   2752     // don't check the decl type at all, since all other decl types
   2753     // turn off ADL anyway).
   2754     if (isa<UsingShadowDecl>(D))
   2755       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   2756     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
   2757       return false;
   2758 
   2759     // C++0x [basic.lookup.argdep]p3:
   2760     //     -- a declaration that is neither a function or a function
   2761     //        template
   2762     // And also for builtin functions.
   2763     if (isa<FunctionDecl>(D)) {
   2764       FunctionDecl *FDecl = cast<FunctionDecl>(D);
   2765 
   2766       // But also builtin functions.
   2767       if (FDecl->getBuiltinID() && FDecl->isImplicit())
   2768         return false;
   2769     } else if (!isa<FunctionTemplateDecl>(D))
   2770       return false;
   2771   }
   2772 
   2773   return true;
   2774 }
   2775 
   2776 
   2777 /// Diagnoses obvious problems with the use of the given declaration
   2778 /// as an expression.  This is only actually called for lookups that
   2779 /// were not overloaded, and it doesn't promise that the declaration
   2780 /// will in fact be used.
   2781 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
   2782   if (isa<TypedefNameDecl>(D)) {
   2783     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
   2784     return true;
   2785   }
   2786 
   2787   if (isa<ObjCInterfaceDecl>(D)) {
   2788     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
   2789     return true;
   2790   }
   2791 
   2792   if (isa<NamespaceDecl>(D)) {
   2793     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
   2794     return true;
   2795   }
   2796 
   2797   return false;
   2798 }
   2799 
   2800 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
   2801                                           LookupResult &R, bool NeedsADL,
   2802                                           bool AcceptInvalidDecl) {
   2803   // If this is a single, fully-resolved result and we don't need ADL,
   2804   // just build an ordinary singleton decl ref.
   2805   if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
   2806     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
   2807                                     R.getRepresentativeDecl(), nullptr,
   2808                                     AcceptInvalidDecl);
   2809 
   2810   // We only need to check the declaration if there's exactly one
   2811   // result, because in the overloaded case the results can only be
   2812   // functions and function templates.
   2813   if (R.isSingleResult() &&
   2814       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
   2815     return ExprError();
   2816 
   2817   // Otherwise, just build an unresolved lookup expression.  Suppress
   2818   // any lookup-related diagnostics; we'll hash these out later, when
   2819   // we've picked a target.
   2820   R.suppressDiagnostics();
   2821 
   2822   UnresolvedLookupExpr *ULE
   2823     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
   2824                                    SS.getWithLocInContext(Context),
   2825                                    R.getLookupNameInfo(),
   2826                                    NeedsADL, R.isOverloadedResult(),
   2827                                    R.begin(), R.end());
   2828 
   2829   return ULE;
   2830 }
   2831 
   2832 /// \brief Complete semantic analysis for a reference to the given declaration.
   2833 ExprResult Sema::BuildDeclarationNameExpr(
   2834     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
   2835     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
   2836     bool AcceptInvalidDecl) {
   2837   assert(D && "Cannot refer to a NULL declaration");
   2838   assert(!isa<FunctionTemplateDecl>(D) &&
   2839          "Cannot refer unambiguously to a function template");
   2840 
   2841   SourceLocation Loc = NameInfo.getLoc();
   2842   if (CheckDeclInExpr(*this, Loc, D))
   2843     return ExprError();
   2844 
   2845   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
   2846     // Specifically diagnose references to class templates that are missing
   2847     // a template argument list.
   2848     Diag(Loc, diag::err_template_decl_ref) << (isa<VarTemplateDecl>(D) ? 1 : 0)
   2849                                            << Template << SS.getRange();
   2850     Diag(Template->getLocation(), diag::note_template_decl_here);
   2851     return ExprError();
   2852   }
   2853 
   2854   // Make sure that we're referring to a value.
   2855   ValueDecl *VD = dyn_cast<ValueDecl>(D);
   2856   if (!VD) {
   2857     Diag(Loc, diag::err_ref_non_value)
   2858       << D << SS.getRange();
   2859     Diag(D->getLocation(), diag::note_declared_at);
   2860     return ExprError();
   2861   }
   2862 
   2863   // Check whether this declaration can be used. Note that we suppress
   2864   // this check when we're going to perform argument-dependent lookup
   2865   // on this function name, because this might not be the function
   2866   // that overload resolution actually selects.
   2867   if (DiagnoseUseOfDecl(VD, Loc))
   2868     return ExprError();
   2869 
   2870   // Only create DeclRefExpr's for valid Decl's.
   2871   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
   2872     return ExprError();
   2873 
   2874   // Handle members of anonymous structs and unions.  If we got here,
   2875   // and the reference is to a class member indirect field, then this
   2876   // must be the subject of a pointer-to-member expression.
   2877   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
   2878     if (!indirectField->isCXXClassMember())
   2879       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
   2880                                                       indirectField);
   2881 
   2882   {
   2883     QualType type = VD->getType();
   2884     ExprValueKind valueKind = VK_RValue;
   2885 
   2886     switch (D->getKind()) {
   2887     // Ignore all the non-ValueDecl kinds.
   2888 #define ABSTRACT_DECL(kind)
   2889 #define VALUE(type, base)
   2890 #define DECL(type, base) \
   2891     case Decl::type:
   2892 #include "clang/AST/DeclNodes.inc"
   2893       llvm_unreachable("invalid value decl kind");
   2894 
   2895     // These shouldn't make it here.
   2896     case Decl::ObjCAtDefsField:
   2897     case Decl::ObjCIvar:
   2898       llvm_unreachable("forming non-member reference to ivar?");
   2899 
   2900     // Enum constants are always r-values and never references.
   2901     // Unresolved using declarations are dependent.
   2902     case Decl::EnumConstant:
   2903     case Decl::UnresolvedUsingValue:
   2904     case Decl::OMPDeclareReduction:
   2905       valueKind = VK_RValue;
   2906       break;
   2907 
   2908     // Fields and indirect fields that got here must be for
   2909     // pointer-to-member expressions; we just call them l-values for
   2910     // internal consistency, because this subexpression doesn't really
   2911     // exist in the high-level semantics.
   2912     case Decl::Field:
   2913     case Decl::IndirectField:
   2914       assert(getLangOpts().CPlusPlus &&
   2915              "building reference to field in C?");
   2916 
   2917       // These can't have reference type in well-formed programs, but
   2918       // for internal consistency we do this anyway.
   2919       type = type.getNonReferenceType();
   2920       valueKind = VK_LValue;
   2921       break;
   2922 
   2923     // Non-type template parameters are either l-values or r-values
   2924     // depending on the type.
   2925     case Decl::NonTypeTemplateParm: {
   2926       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
   2927         type = reftype->getPointeeType();
   2928         valueKind = VK_LValue; // even if the parameter is an r-value reference
   2929         break;
   2930       }
   2931 
   2932       // For non-references, we need to strip qualifiers just in case
   2933       // the template parameter was declared as 'const int' or whatever.
   2934       valueKind = VK_RValue;
   2935       type = type.getUnqualifiedType();
   2936       break;
   2937     }
   2938 
   2939     case Decl::Var:
   2940     case Decl::VarTemplateSpecialization:
   2941     case Decl::VarTemplatePartialSpecialization:
   2942     case Decl::OMPCapturedExpr:
   2943       // In C, "extern void blah;" is valid and is an r-value.
   2944       if (!getLangOpts().CPlusPlus &&
   2945           !type.hasQualifiers() &&
   2946           type->isVoidType()) {
   2947         valueKind = VK_RValue;
   2948         break;
   2949       }
   2950       // fallthrough
   2951 
   2952     case Decl::ImplicitParam:
   2953     case Decl::ParmVar: {
   2954       // These are always l-values.
   2955       valueKind = VK_LValue;
   2956       type = type.getNonReferenceType();
   2957 
   2958       // FIXME: Does the addition of const really only apply in
   2959       // potentially-evaluated contexts? Since the variable isn't actually
   2960       // captured in an unevaluated context, it seems that the answer is no.
   2961       if (!isUnevaluatedContext()) {
   2962         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
   2963         if (!CapturedType.isNull())
   2964           type = CapturedType;
   2965       }
   2966 
   2967       break;
   2968     }
   2969 
   2970     case Decl::Function: {
   2971       if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
   2972         if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
   2973           type = Context.BuiltinFnTy;
   2974           valueKind = VK_RValue;
   2975           break;
   2976         }
   2977       }
   2978 
   2979       const FunctionType *fty = type->castAs<FunctionType>();
   2980 
   2981       // If we're referring to a function with an __unknown_anytype
   2982       // result type, make the entire expression __unknown_anytype.
   2983       if (fty->getReturnType() == Context.UnknownAnyTy) {
   2984         type = Context.UnknownAnyTy;
   2985         valueKind = VK_RValue;
   2986         break;
   2987       }
   2988 
   2989       // Functions are l-values in C++.
   2990       if (getLangOpts().CPlusPlus) {
   2991         valueKind = VK_LValue;
   2992         break;
   2993       }
   2994 
   2995       // C99 DR 316 says that, if a function type comes from a
   2996       // function definition (without a prototype), that type is only
   2997       // used for checking compatibility. Therefore, when referencing
   2998       // the function, we pretend that we don't have the full function
   2999       // type.
   3000       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
   3001           isa<FunctionProtoType>(fty))
   3002         type = Context.getFunctionNoProtoType(fty->getReturnType(),
   3003                                               fty->getExtInfo());
   3004 
   3005       // Functions are r-values in C.
   3006       valueKind = VK_RValue;
   3007       break;
   3008     }
   3009 
   3010     case Decl::MSProperty:
   3011       valueKind = VK_LValue;
   3012       break;
   3013 
   3014     case Decl::CXXMethod:
   3015       // If we're referring to a method with an __unknown_anytype
   3016       // result type, make the entire expression __unknown_anytype.
   3017       // This should only be possible with a type written directly.
   3018       if (const FunctionProtoType *proto
   3019             = dyn_cast<FunctionProtoType>(VD->getType()))
   3020         if (proto->getReturnType() == Context.UnknownAnyTy) {
   3021           type = Context.UnknownAnyTy;
   3022           valueKind = VK_RValue;
   3023           break;
   3024         }
   3025 
   3026       // C++ methods are l-values if static, r-values if non-static.
   3027       if (cast<CXXMethodDecl>(VD)->isStatic()) {
   3028         valueKind = VK_LValue;
   3029         break;
   3030       }
   3031       // fallthrough
   3032 
   3033     case Decl::CXXConversion:
   3034     case Decl::CXXDestructor:
   3035     case Decl::CXXConstructor:
   3036       valueKind = VK_RValue;
   3037       break;
   3038     }
   3039 
   3040     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
   3041                             TemplateArgs);
   3042   }
   3043 }
   3044 
   3045 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
   3046                                     SmallString<32> &Target) {
   3047   Target.resize(CharByteWidth * (Source.size() + 1));
   3048   char *ResultPtr = &Target[0];
   3049   const UTF8 *ErrorPtr;
   3050   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
   3051   (void)success;
   3052   assert(success);
   3053   Target.resize(ResultPtr - &Target[0]);
   3054 }
   3055 
   3056 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
   3057                                      PredefinedExpr::IdentType IT) {
   3058   // Pick the current block, lambda, captured statement or function.
   3059   Decl *currentDecl = nullptr;
   3060   if (const BlockScopeInfo *BSI = getCurBlock())
   3061     currentDecl = BSI->TheDecl;
   3062   else if (const LambdaScopeInfo *LSI = getCurLambda())
   3063     currentDecl = LSI->CallOperator;
   3064   else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
   3065     currentDecl = CSI->TheCapturedDecl;
   3066   else
   3067     currentDecl = getCurFunctionOrMethodDecl();
   3068 
   3069   if (!currentDecl) {
   3070     Diag(Loc, diag::ext_predef_outside_function);
   3071     currentDecl = Context.getTranslationUnitDecl();
   3072   }
   3073 
   3074   QualType ResTy;
   3075   StringLiteral *SL = nullptr;
   3076   if (cast<DeclContext>(currentDecl)->isDependentContext())
   3077     ResTy = Context.DependentTy;
   3078   else {
   3079     // Pre-defined identifiers are of type char[x], where x is the length of
   3080     // the string.
   3081     auto Str = PredefinedExpr::ComputeName(IT, currentDecl);
   3082     unsigned Length = Str.length();
   3083 
   3084     llvm::APInt LengthI(32, Length + 1);
   3085     if (IT == PredefinedExpr::LFunction) {
   3086       ResTy = Context.WideCharTy.withConst();
   3087       SmallString<32> RawChars;
   3088       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
   3089                               Str, RawChars);
   3090       ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
   3091                                            /*IndexTypeQuals*/ 0);
   3092       SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
   3093                                  /*Pascal*/ false, ResTy, Loc);
   3094     } else {
   3095       ResTy = Context.CharTy.withConst();
   3096       ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
   3097                                            /*IndexTypeQuals*/ 0);
   3098       SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
   3099                                  /*Pascal*/ false, ResTy, Loc);
   3100     }
   3101   }
   3102 
   3103   return new (Context) PredefinedExpr(Loc, ResTy, IT, SL);
   3104 }
   3105 
   3106 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
   3107   PredefinedExpr::IdentType IT;
   3108 
   3109   switch (Kind) {
   3110   default: llvm_unreachable("Unknown simple primary expr!");
   3111   case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
   3112   case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
   3113   case tok::kw___FUNCDNAME__: IT = PredefinedExpr::FuncDName; break; // [MS]
   3114   case tok::kw___FUNCSIG__: IT = PredefinedExpr::FuncSig; break; // [MS]
   3115   case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
   3116   case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
   3117   }
   3118 
   3119   return BuildPredefinedExpr(Loc, IT);
   3120 }
   3121 
   3122 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
   3123   SmallString<16> CharBuffer;
   3124   bool Invalid = false;
   3125   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
   3126   if (Invalid)
   3127     return ExprError();
   3128 
   3129   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
   3130                             PP, Tok.getKind());
   3131   if (Literal.hadError())
   3132     return ExprError();
   3133 
   3134   QualType Ty;
   3135   if (Literal.isWide())
   3136     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
   3137   else if (Literal.isUTF16())
   3138     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
   3139   else if (Literal.isUTF32())
   3140     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
   3141   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
   3142     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
   3143   else
   3144     Ty = Context.CharTy;  // 'x' -> char in C++
   3145 
   3146   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
   3147   if (Literal.isWide())
   3148     Kind = CharacterLiteral::Wide;
   3149   else if (Literal.isUTF16())
   3150     Kind = CharacterLiteral::UTF16;
   3151   else if (Literal.isUTF32())
   3152     Kind = CharacterLiteral::UTF32;
   3153   else if (Literal.isUTF8())
   3154     Kind = CharacterLiteral::UTF8;
   3155 
   3156   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
   3157                                              Tok.getLocation());
   3158 
   3159   if (Literal.getUDSuffix().empty())
   3160     return Lit;
   3161 
   3162   // We're building a user-defined literal.
   3163   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   3164   SourceLocation UDSuffixLoc =
   3165     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
   3166 
   3167   // Make sure we're allowed user-defined literals here.
   3168   if (!UDLScope)
   3169     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
   3170 
   3171   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
   3172   //   operator "" X (ch)
   3173   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
   3174                                         Lit, Tok.getLocation());
   3175 }
   3176 
   3177 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
   3178   unsigned IntSize = Context.getTargetInfo().getIntWidth();
   3179   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
   3180                                 Context.IntTy, Loc);
   3181 }
   3182 
   3183 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
   3184                                   QualType Ty, SourceLocation Loc) {
   3185   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
   3186 
   3187   using llvm::APFloat;
   3188   APFloat Val(Format);
   3189 
   3190   APFloat::opStatus result = Literal.GetFloatValue(Val);
   3191 
   3192   // Overflow is always an error, but underflow is only an error if
   3193   // we underflowed to zero (APFloat reports denormals as underflow).
   3194   if ((result & APFloat::opOverflow) ||
   3195       ((result & APFloat::opUnderflow) && Val.isZero())) {
   3196     unsigned diagnostic;
   3197     SmallString<20> buffer;
   3198     if (result & APFloat::opOverflow) {
   3199       diagnostic = diag::warn_float_overflow;
   3200       APFloat::getLargest(Format).toString(buffer);
   3201     } else {
   3202       diagnostic = diag::warn_float_underflow;
   3203       APFloat::getSmallest(Format).toString(buffer);
   3204     }
   3205 
   3206     S.Diag(Loc, diagnostic)
   3207       << Ty
   3208       << StringRef(buffer.data(), buffer.size());
   3209   }
   3210 
   3211   bool isExact = (result == APFloat::opOK);
   3212   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
   3213 }
   3214 
   3215 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
   3216   assert(E && "Invalid expression");
   3217 
   3218   if (E->isValueDependent())
   3219     return false;
   3220 
   3221   QualType QT = E->getType();
   3222   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
   3223     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
   3224     return true;
   3225   }
   3226 
   3227   llvm::APSInt ValueAPS;
   3228   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
   3229 
   3230   if (R.isInvalid())
   3231     return true;
   3232 
   3233   bool ValueIsPositive = ValueAPS.isStrictlyPositive();
   3234   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
   3235     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
   3236         << ValueAPS.toString(10) << ValueIsPositive;
   3237     return true;
   3238   }
   3239 
   3240   return false;
   3241 }
   3242 
   3243 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
   3244   // Fast path for a single digit (which is quite common).  A single digit
   3245   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
   3246   if (Tok.getLength() == 1) {
   3247     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
   3248     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
   3249   }
   3250 
   3251   SmallString<128> SpellingBuffer;
   3252   // NumericLiteralParser wants to overread by one character.  Add padding to
   3253   // the buffer in case the token is copied to the buffer.  If getSpelling()
   3254   // returns a StringRef to the memory buffer, it should have a null char at
   3255   // the EOF, so it is also safe.
   3256   SpellingBuffer.resize(Tok.getLength() + 1);
   3257 
   3258   // Get the spelling of the token, which eliminates trigraphs, etc.
   3259   bool Invalid = false;
   3260   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
   3261   if (Invalid)
   3262     return ExprError();
   3263 
   3264   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
   3265   if (Literal.hadError)
   3266     return ExprError();
   3267 
   3268   if (Literal.hasUDSuffix()) {
   3269     // We're building a user-defined literal.
   3270     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   3271     SourceLocation UDSuffixLoc =
   3272       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
   3273 
   3274     // Make sure we're allowed user-defined literals here.
   3275     if (!UDLScope)
   3276       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
   3277 
   3278     QualType CookedTy;
   3279     if (Literal.isFloatingLiteral()) {
   3280       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
   3281       // long double, the literal is treated as a call of the form
   3282       //   operator "" X (f L)
   3283       CookedTy = Context.LongDoubleTy;
   3284     } else {
   3285       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
   3286       // unsigned long long, the literal is treated as a call of the form
   3287       //   operator "" X (n ULL)
   3288       CookedTy = Context.UnsignedLongLongTy;
   3289     }
   3290 
   3291     DeclarationName OpName =
   3292       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   3293     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   3294     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   3295 
   3296     SourceLocation TokLoc = Tok.getLocation();
   3297 
   3298     // Perform literal operator lookup to determine if we're building a raw
   3299     // literal or a cooked one.
   3300     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
   3301     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
   3302                                   /*AllowRaw*/true, /*AllowTemplate*/true,
   3303                                   /*AllowStringTemplate*/false)) {
   3304     case LOLR_Error:
   3305       return ExprError();
   3306 
   3307     case LOLR_Cooked: {
   3308       Expr *Lit;
   3309       if (Literal.isFloatingLiteral()) {
   3310         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
   3311       } else {
   3312         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
   3313         if (Literal.GetIntegerValue(ResultVal))
   3314           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
   3315               << /* Unsigned */ 1;
   3316         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
   3317                                      Tok.getLocation());
   3318       }
   3319       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
   3320     }
   3321 
   3322     case LOLR_Raw: {
   3323       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
   3324       // literal is treated as a call of the form
   3325       //   operator "" X ("n")
   3326       unsigned Length = Literal.getUDSuffixOffset();
   3327       QualType StrTy = Context.getConstantArrayType(
   3328           Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
   3329           ArrayType::Normal, 0);
   3330       Expr *Lit = StringLiteral::Create(
   3331           Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
   3332           /*Pascal*/false, StrTy, &TokLoc, 1);
   3333       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
   3334     }
   3335 
   3336     case LOLR_Template: {
   3337       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
   3338       // template), L is treated as a call fo the form
   3339       //   operator "" X <'c1', 'c2', ... 'ck'>()
   3340       // where n is the source character sequence c1 c2 ... ck.
   3341       TemplateArgumentListInfo ExplicitArgs;
   3342       unsigned CharBits = Context.getIntWidth(Context.CharTy);
   3343       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
   3344       llvm::APSInt Value(CharBits, CharIsUnsigned);
   3345       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
   3346         Value = TokSpelling[I];
   3347         TemplateArgument Arg(Context, Value, Context.CharTy);
   3348         TemplateArgumentLocInfo ArgInfo;
   3349         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
   3350       }
   3351       return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
   3352                                       &ExplicitArgs);
   3353     }
   3354     case LOLR_StringTemplate:
   3355       llvm_unreachable("unexpected literal operator lookup result");
   3356     }
   3357   }
   3358 
   3359   Expr *Res;
   3360 
   3361   if (Literal.isFloatingLiteral()) {
   3362     QualType Ty;
   3363     if (Literal.isHalf){
   3364       if (getOpenCLOptions().cl_khr_fp16)
   3365         Ty = Context.HalfTy;
   3366       else {
   3367         Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
   3368         return ExprError();
   3369       }
   3370     } else if (Literal.isFloat)
   3371       Ty = Context.FloatTy;
   3372     else if (Literal.isLong)
   3373       Ty = Context.LongDoubleTy;
   3374     else if (Literal.isFloat128)
   3375       Ty = Context.Float128Ty;
   3376     else
   3377       Ty = Context.DoubleTy;
   3378 
   3379     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
   3380 
   3381     if (Ty == Context.DoubleTy) {
   3382       if (getLangOpts().SinglePrecisionConstants) {
   3383         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
   3384       } else if (getLangOpts().OpenCL &&
   3385                  !((getLangOpts().OpenCLVersion >= 120) ||
   3386                    getOpenCLOptions().cl_khr_fp64)) {
   3387         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
   3388         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
   3389       }
   3390     }
   3391   } else if (!Literal.isIntegerLiteral()) {
   3392     return ExprError();
   3393   } else {
   3394     QualType Ty;
   3395 
   3396     // 'long long' is a C99 or C++11 feature.
   3397     if (!getLangOpts().C99 && Literal.isLongLong) {
   3398       if (getLangOpts().CPlusPlus)
   3399         Diag(Tok.getLocation(),
   3400              getLangOpts().CPlusPlus11 ?
   3401              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
   3402       else
   3403         Diag(Tok.getLocation(), diag::ext_c99_longlong);
   3404     }
   3405 
   3406     // Get the value in the widest-possible width.
   3407     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
   3408     llvm::APInt ResultVal(MaxWidth, 0);
   3409 
   3410     if (Literal.GetIntegerValue(ResultVal)) {
   3411       // If this value didn't fit into uintmax_t, error and force to ull.
   3412       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
   3413           << /* Unsigned */ 1;
   3414       Ty = Context.UnsignedLongLongTy;
   3415       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
   3416              "long long is not intmax_t?");
   3417     } else {
   3418       // If this value fits into a ULL, try to figure out what else it fits into
   3419       // according to the rules of C99 6.4.4.1p5.
   3420 
   3421       // Octal, Hexadecimal, and integers with a U suffix are allowed to
   3422       // be an unsigned int.
   3423       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
   3424 
   3425       // Check from smallest to largest, picking the smallest type we can.
   3426       unsigned Width = 0;
   3427 
   3428       // Microsoft specific integer suffixes are explicitly sized.
   3429       if (Literal.MicrosoftInteger) {
   3430         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
   3431           Width = 8;
   3432           Ty = Context.CharTy;
   3433         } else {
   3434           Width = Literal.MicrosoftInteger;
   3435           Ty = Context.getIntTypeForBitwidth(Width,
   3436                                              /*Signed=*/!Literal.isUnsigned);
   3437         }
   3438       }
   3439 
   3440       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
   3441         // Are int/unsigned possibilities?
   3442         unsigned IntSize = Context.getTargetInfo().getIntWidth();
   3443 
   3444         // Does it fit in a unsigned int?
   3445         if (ResultVal.isIntN(IntSize)) {
   3446           // Does it fit in a signed int?
   3447           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
   3448             Ty = Context.IntTy;
   3449           else if (AllowUnsigned)
   3450             Ty = Context.UnsignedIntTy;
   3451           Width = IntSize;
   3452         }
   3453       }
   3454 
   3455       // Are long/unsigned long possibilities?
   3456       if (Ty.isNull() && !Literal.isLongLong) {
   3457         unsigned LongSize = Context.getTargetInfo().getLongWidth();
   3458 
   3459         // Does it fit in a unsigned long?
   3460         if (ResultVal.isIntN(LongSize)) {
   3461           // Does it fit in a signed long?
   3462           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
   3463             Ty = Context.LongTy;
   3464           else if (AllowUnsigned)
   3465             Ty = Context.UnsignedLongTy;
   3466           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
   3467           // is compatible.
   3468           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
   3469             const unsigned LongLongSize =
   3470                 Context.getTargetInfo().getLongLongWidth();
   3471             Diag(Tok.getLocation(),
   3472                  getLangOpts().CPlusPlus
   3473                      ? Literal.isLong
   3474                            ? diag::warn_old_implicitly_unsigned_long_cxx
   3475                            : /*C++98 UB*/ diag::
   3476                                  ext_old_implicitly_unsigned_long_cxx
   3477                      : diag::warn_old_implicitly_unsigned_long)
   3478                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
   3479                                             : /*will be ill-formed*/ 1);
   3480             Ty = Context.UnsignedLongTy;
   3481           }
   3482           Width = LongSize;
   3483         }
   3484       }
   3485 
   3486       // Check long long if needed.
   3487       if (Ty.isNull()) {
   3488         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
   3489 
   3490         // Does it fit in a unsigned long long?
   3491         if (ResultVal.isIntN(LongLongSize)) {
   3492           // Does it fit in a signed long long?
   3493           // To be compatible with MSVC, hex integer literals ending with the
   3494           // LL or i64 suffix are always signed in Microsoft mode.
   3495           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
   3496               (getLangOpts().MicrosoftExt && Literal.isLongLong)))
   3497             Ty = Context.LongLongTy;
   3498           else if (AllowUnsigned)
   3499             Ty = Context.UnsignedLongLongTy;
   3500           Width = LongLongSize;
   3501         }
   3502       }
   3503 
   3504       // If we still couldn't decide a type, we probably have something that
   3505       // does not fit in a signed long long, but has no U suffix.
   3506       if (Ty.isNull()) {
   3507         Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
   3508         Ty = Context.UnsignedLongLongTy;
   3509         Width = Context.getTargetInfo().getLongLongWidth();
   3510       }
   3511 
   3512       if (ResultVal.getBitWidth() != Width)
   3513         ResultVal = ResultVal.trunc(Width);
   3514     }
   3515     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
   3516   }
   3517 
   3518   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
   3519   if (Literal.isImaginary)
   3520     Res = new (Context) ImaginaryLiteral(Res,
   3521                                         Context.getComplexType(Res->getType()));
   3522 
   3523   return Res;
   3524 }
   3525 
   3526 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
   3527   assert(E && "ActOnParenExpr() missing expr");
   3528   return new (Context) ParenExpr(L, R, E);
   3529 }
   3530 
   3531 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
   3532                                          SourceLocation Loc,
   3533                                          SourceRange ArgRange) {
   3534   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
   3535   // scalar or vector data type argument..."
   3536   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
   3537   // type (C99 6.2.5p18) or void.
   3538   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
   3539     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
   3540       << T << ArgRange;
   3541     return true;
   3542   }
   3543 
   3544   assert((T->isVoidType() || !T->isIncompleteType()) &&
   3545          "Scalar types should always be complete");
   3546   return false;
   3547 }
   3548 
   3549 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
   3550                                            SourceLocation Loc,
   3551                                            SourceRange ArgRange,
   3552                                            UnaryExprOrTypeTrait TraitKind) {
   3553   // Invalid types must be hard errors for SFINAE in C++.
   3554   if (S.LangOpts.CPlusPlus)
   3555     return true;
   3556 
   3557   // C99 6.5.3.4p1:
   3558   if (T->isFunctionType() &&
   3559       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) {
   3560     // sizeof(function)/alignof(function) is allowed as an extension.
   3561     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
   3562       << TraitKind << ArgRange;
   3563     return false;
   3564   }
   3565 
   3566   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
   3567   // this is an error (OpenCL v1.1 s6.3.k)
   3568   if (T->isVoidType()) {
   3569     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
   3570                                         : diag::ext_sizeof_alignof_void_type;
   3571     S.Diag(Loc, DiagID) << TraitKind << ArgRange;
   3572     return false;
   3573   }
   3574 
   3575   return true;
   3576 }
   3577 
   3578 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
   3579                                              SourceLocation Loc,
   3580                                              SourceRange ArgRange,
   3581                                              UnaryExprOrTypeTrait TraitKind) {
   3582   // Reject sizeof(interface) and sizeof(interface<proto>) if the
   3583   // runtime doesn't allow it.
   3584   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
   3585     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
   3586       << T << (TraitKind == UETT_SizeOf)
   3587       << ArgRange;
   3588     return true;
   3589   }
   3590 
   3591   return false;
   3592 }
   3593 
   3594 /// \brief Check whether E is a pointer from a decayed array type (the decayed
   3595 /// pointer type is equal to T) and emit a warning if it is.
   3596 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
   3597                                      Expr *E) {
   3598   // Don't warn if the operation changed the type.
   3599   if (T != E->getType())
   3600     return;
   3601 
   3602   // Now look for array decays.
   3603   ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
   3604   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
   3605     return;
   3606 
   3607   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
   3608                                              << ICE->getType()
   3609                                              << ICE->getSubExpr()->getType();
   3610 }
   3611 
   3612 /// \brief Check the constraints on expression operands to unary type expression
   3613 /// and type traits.
   3614 ///
   3615 /// Completes any types necessary and validates the constraints on the operand
   3616 /// expression. The logic mostly mirrors the type-based overload, but may modify
   3617 /// the expression as it completes the type for that expression through template
   3618 /// instantiation, etc.
   3619 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
   3620                                             UnaryExprOrTypeTrait ExprKind) {
   3621   QualType ExprTy = E->getType();
   3622   assert(!ExprTy->isReferenceType());
   3623 
   3624   if (ExprKind == UETT_VecStep)
   3625     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
   3626                                         E->getSourceRange());
   3627 
   3628   // Whitelist some types as extensions
   3629   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
   3630                                       E->getSourceRange(), ExprKind))
   3631     return false;
   3632 
   3633   // 'alignof' applied to an expression only requires the base element type of
   3634   // the expression to be complete. 'sizeof' requires the expression's type to
   3635   // be complete (and will attempt to complete it if it's an array of unknown
   3636   // bound).
   3637   if (ExprKind == UETT_AlignOf) {
   3638     if (RequireCompleteType(E->getExprLoc(),
   3639                             Context.getBaseElementType(E->getType()),
   3640                             diag::err_sizeof_alignof_incomplete_type, ExprKind,
   3641                             E->getSourceRange()))
   3642       return true;
   3643   } else {
   3644     if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
   3645                                 ExprKind, E->getSourceRange()))
   3646       return true;
   3647   }
   3648 
   3649   // Completing the expression's type may have changed it.
   3650   ExprTy = E->getType();
   3651   assert(!ExprTy->isReferenceType());
   3652 
   3653   if (ExprTy->isFunctionType()) {
   3654     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
   3655       << ExprKind << E->getSourceRange();
   3656     return true;
   3657   }
   3658 
   3659   // The operand for sizeof and alignof is in an unevaluated expression context,
   3660   // so side effects could result in unintended consequences.
   3661   if ((ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf) &&
   3662       ActiveTemplateInstantiations.empty() && E->HasSideEffects(Context, false))
   3663     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
   3664 
   3665   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
   3666                                        E->getSourceRange(), ExprKind))
   3667     return true;
   3668 
   3669   if (ExprKind == UETT_SizeOf) {
   3670     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
   3671       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
   3672         QualType OType = PVD->getOriginalType();
   3673         QualType Type = PVD->getType();
   3674         if (Type->isPointerType() && OType->isArrayType()) {
   3675           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
   3676             << Type << OType;
   3677           Diag(PVD->getLocation(), diag::note_declared_at);
   3678         }
   3679       }
   3680     }
   3681 
   3682     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
   3683     // decays into a pointer and returns an unintended result. This is most
   3684     // likely a typo for "sizeof(array) op x".
   3685     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
   3686       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
   3687                                BO->getLHS());
   3688       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
   3689                                BO->getRHS());
   3690     }
   3691   }
   3692 
   3693   return false;
   3694 }
   3695 
   3696 /// \brief Check the constraints on operands to unary expression and type
   3697 /// traits.
   3698 ///
   3699 /// This will complete any types necessary, and validate the various constraints
   3700 /// on those operands.
   3701 ///
   3702 /// The UsualUnaryConversions() function is *not* called by this routine.
   3703 /// C99 6.3.2.1p[2-4] all state:
   3704 ///   Except when it is the operand of the sizeof operator ...
   3705 ///
   3706 /// C++ [expr.sizeof]p4
   3707 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
   3708 ///   standard conversions are not applied to the operand of sizeof.
   3709 ///
   3710 /// This policy is followed for all of the unary trait expressions.
   3711 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
   3712                                             SourceLocation OpLoc,
   3713                                             SourceRange ExprRange,
   3714                                             UnaryExprOrTypeTrait ExprKind) {
   3715   if (ExprType->isDependentType())
   3716     return false;
   3717 
   3718   // C++ [expr.sizeof]p2:
   3719   //     When applied to a reference or a reference type, the result
   3720   //     is the size of the referenced type.
   3721   // C++11 [expr.alignof]p3:
   3722   //     When alignof is applied to a reference type, the result
   3723   //     shall be the alignment of the referenced type.
   3724   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
   3725     ExprType = Ref->getPointeeType();
   3726 
   3727   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
   3728   //   When alignof or _Alignof is applied to an array type, the result
   3729   //   is the alignment of the element type.
   3730   if (ExprKind == UETT_AlignOf || ExprKind == UETT_OpenMPRequiredSimdAlign)
   3731     ExprType = Context.getBaseElementType(ExprType);
   3732 
   3733   if (ExprKind == UETT_VecStep)
   3734     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
   3735 
   3736   // Whitelist some types as extensions
   3737   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
   3738                                       ExprKind))
   3739     return false;
   3740 
   3741   if (RequireCompleteType(OpLoc, ExprType,
   3742                           diag::err_sizeof_alignof_incomplete_type,
   3743                           ExprKind, ExprRange))
   3744     return true;
   3745 
   3746   if (ExprType->isFunctionType()) {
   3747     Diag(OpLoc, diag::err_sizeof_alignof_function_type)
   3748       << ExprKind << ExprRange;
   3749     return true;
   3750   }
   3751 
   3752   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
   3753                                        ExprKind))
   3754     return true;
   3755 
   3756   return false;
   3757 }
   3758 
   3759 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
   3760   E = E->IgnoreParens();
   3761 
   3762   // Cannot know anything else if the expression is dependent.
   3763   if (E->isTypeDependent())
   3764     return false;
   3765 
   3766   if (E->getObjectKind() == OK_BitField) {
   3767     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
   3768        << 1 << E->getSourceRange();
   3769     return true;
   3770   }
   3771 
   3772   ValueDecl *D = nullptr;
   3773   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   3774     D = DRE->getDecl();
   3775   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   3776     D = ME->getMemberDecl();
   3777   }
   3778 
   3779   // If it's a field, require the containing struct to have a
   3780   // complete definition so that we can compute the layout.
   3781   //
   3782   // This can happen in C++11 onwards, either by naming the member
   3783   // in a way that is not transformed into a member access expression
   3784   // (in an unevaluated operand, for instance), or by naming the member
   3785   // in a trailing-return-type.
   3786   //
   3787   // For the record, since __alignof__ on expressions is a GCC
   3788   // extension, GCC seems to permit this but always gives the
   3789   // nonsensical answer 0.
   3790   //
   3791   // We don't really need the layout here --- we could instead just
   3792   // directly check for all the appropriate alignment-lowing
   3793   // attributes --- but that would require duplicating a lot of
   3794   // logic that just isn't worth duplicating for such a marginal
   3795   // use-case.
   3796   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
   3797     // Fast path this check, since we at least know the record has a
   3798     // definition if we can find a member of it.
   3799     if (!FD->getParent()->isCompleteDefinition()) {
   3800       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
   3801         << E->getSourceRange();
   3802       return true;
   3803     }
   3804 
   3805     // Otherwise, if it's a field, and the field doesn't have
   3806     // reference type, then it must have a complete type (or be a
   3807     // flexible array member, which we explicitly want to
   3808     // white-list anyway), which makes the following checks trivial.
   3809     if (!FD->getType()->isReferenceType())
   3810       return false;
   3811   }
   3812 
   3813   return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
   3814 }
   3815 
   3816 bool Sema::CheckVecStepExpr(Expr *E) {
   3817   E = E->IgnoreParens();
   3818 
   3819   // Cannot know anything else if the expression is dependent.
   3820   if (E->isTypeDependent())
   3821     return false;
   3822 
   3823   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
   3824 }
   3825 
   3826 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
   3827                                         CapturingScopeInfo *CSI) {
   3828   assert(T->isVariablyModifiedType());
   3829   assert(CSI != nullptr);
   3830 
   3831   // We're going to walk down into the type and look for VLA expressions.
   3832   do {
   3833     const Type *Ty = T.getTypePtr();
   3834     switch (Ty->getTypeClass()) {
   3835 #define TYPE(Class, Base)
   3836 #define ABSTRACT_TYPE(Class, Base)
   3837 #define NON_CANONICAL_TYPE(Class, Base)
   3838 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   3839 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
   3840 #include "clang/AST/TypeNodes.def"
   3841       T = QualType();
   3842       break;
   3843     // These types are never variably-modified.
   3844     case Type::Builtin:
   3845     case Type::Complex:
   3846     case Type::Vector:
   3847     case Type::ExtVector:
   3848     case Type::Record:
   3849     case Type::Enum:
   3850     case Type::Elaborated:
   3851     case Type::TemplateSpecialization:
   3852     case Type::ObjCObject:
   3853     case Type::ObjCInterface:
   3854     case Type::ObjCObjectPointer:
   3855     case Type::Pipe:
   3856       llvm_unreachable("type class is never variably-modified!");
   3857     case Type::Adjusted:
   3858       T = cast<AdjustedType>(Ty)->getOriginalType();
   3859       break;
   3860     case Type::Decayed:
   3861       T = cast<DecayedType>(Ty)->getPointeeType();
   3862       break;
   3863     case Type::Pointer:
   3864       T = cast<PointerType>(Ty)->getPointeeType();
   3865       break;
   3866     case Type::BlockPointer:
   3867       T = cast<BlockPointerType>(Ty)->getPointeeType();
   3868       break;
   3869     case Type::LValueReference:
   3870     case Type::RValueReference:
   3871       T = cast<ReferenceType>(Ty)->getPointeeType();
   3872       break;
   3873     case Type::MemberPointer:
   3874       T = cast<MemberPointerType>(Ty)->getPointeeType();
   3875       break;
   3876     case Type::ConstantArray:
   3877     case Type::IncompleteArray:
   3878       // Losing element qualification here is fine.
   3879       T = cast<ArrayType>(Ty)->getElementType();
   3880       break;
   3881     case Type::VariableArray: {
   3882       // Losing element qualification here is fine.
   3883       const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
   3884 
   3885       // Unknown size indication requires no size computation.
   3886       // Otherwise, evaluate and record it.
   3887       if (auto Size = VAT->getSizeExpr()) {
   3888         if (!CSI->isVLATypeCaptured(VAT)) {
   3889           RecordDecl *CapRecord = nullptr;
   3890           if (auto LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
   3891             CapRecord = LSI->Lambda;
   3892           } else if (auto CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
   3893             CapRecord = CRSI->TheRecordDecl;
   3894           }
   3895           if (CapRecord) {
   3896             auto ExprLoc = Size->getExprLoc();
   3897             auto SizeType = Context.getSizeType();
   3898             // Build the non-static data member.
   3899             auto Field =
   3900                 FieldDecl::Create(Context, CapRecord, ExprLoc, ExprLoc,
   3901                                   /*Id*/ nullptr, SizeType, /*TInfo*/ nullptr,
   3902                                   /*BW*/ nullptr, /*Mutable*/ false,
   3903                                   /*InitStyle*/ ICIS_NoInit);
   3904             Field->setImplicit(true);
   3905             Field->setAccess(AS_private);
   3906             Field->setCapturedVLAType(VAT);
   3907             CapRecord->addDecl(Field);
   3908 
   3909             CSI->addVLATypeCapture(ExprLoc, SizeType);
   3910           }
   3911         }
   3912       }
   3913       T = VAT->getElementType();
   3914       break;
   3915     }
   3916     case Type::FunctionProto:
   3917     case Type::FunctionNoProto:
   3918       T = cast<FunctionType>(Ty)->getReturnType();
   3919       break;
   3920     case Type::Paren:
   3921     case Type::TypeOf:
   3922     case Type::UnaryTransform:
   3923     case Type::Attributed:
   3924     case Type::SubstTemplateTypeParm:
   3925     case Type::PackExpansion:
   3926       // Keep walking after single level desugaring.
   3927       T = T.getSingleStepDesugaredType(Context);
   3928       break;
   3929     case Type::Typedef:
   3930       T = cast<TypedefType>(Ty)->desugar();
   3931       break;
   3932     case Type::Decltype:
   3933       T = cast<DecltypeType>(Ty)->desugar();
   3934       break;
   3935     case Type::Auto:
   3936       T = cast<AutoType>(Ty)->getDeducedType();
   3937       break;
   3938     case Type::TypeOfExpr:
   3939       T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
   3940       break;
   3941     case Type::Atomic:
   3942       T = cast<AtomicType>(Ty)->getValueType();
   3943       break;
   3944     }
   3945   } while (!T.isNull() && T->isVariablyModifiedType());
   3946 }
   3947 
   3948 /// \brief Build a sizeof or alignof expression given a type operand.
   3949 ExprResult
   3950 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
   3951                                      SourceLocation OpLoc,
   3952                                      UnaryExprOrTypeTrait ExprKind,
   3953                                      SourceRange R) {
   3954   if (!TInfo)
   3955     return ExprError();
   3956 
   3957   QualType T = TInfo->getType();
   3958 
   3959   if (!T->isDependentType() &&
   3960       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
   3961     return ExprError();
   3962 
   3963   if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
   3964     if (auto *TT = T->getAs<TypedefType>()) {
   3965       for (auto I = FunctionScopes.rbegin(),
   3966                 E = std::prev(FunctionScopes.rend());
   3967            I != E; ++I) {
   3968         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
   3969         if (CSI == nullptr)
   3970           break;
   3971         DeclContext *DC = nullptr;
   3972         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
   3973           DC = LSI->CallOperator;
   3974         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
   3975           DC = CRSI->TheCapturedDecl;
   3976         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
   3977           DC = BSI->TheDecl;
   3978         if (DC) {
   3979           if (DC->containsDecl(TT->getDecl()))
   3980             break;
   3981           captureVariablyModifiedType(Context, T, CSI);
   3982         }
   3983       }
   3984     }
   3985   }
   3986 
   3987   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   3988   return new (Context) UnaryExprOrTypeTraitExpr(
   3989       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
   3990 }
   3991 
   3992 /// \brief Build a sizeof or alignof expression given an expression
   3993 /// operand.
   3994 ExprResult
   3995 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
   3996                                      UnaryExprOrTypeTrait ExprKind) {
   3997   ExprResult PE = CheckPlaceholderExpr(E);
   3998   if (PE.isInvalid())
   3999     return ExprError();
   4000 
   4001   E = PE.get();
   4002 
   4003   // Verify that the operand is valid.
   4004   bool isInvalid = false;
   4005   if (E->isTypeDependent()) {
   4006     // Delay type-checking for type-dependent expressions.
   4007   } else if (ExprKind == UETT_AlignOf) {
   4008     isInvalid = CheckAlignOfExpr(*this, E);
   4009   } else if (ExprKind == UETT_VecStep) {
   4010     isInvalid = CheckVecStepExpr(E);
   4011   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
   4012       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
   4013       isInvalid = true;
   4014   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
   4015     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
   4016     isInvalid = true;
   4017   } else {
   4018     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
   4019   }
   4020 
   4021   if (isInvalid)
   4022     return ExprError();
   4023 
   4024   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
   4025     PE = TransformToPotentiallyEvaluated(E);
   4026     if (PE.isInvalid()) return ExprError();
   4027     E = PE.get();
   4028   }
   4029 
   4030   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   4031   return new (Context) UnaryExprOrTypeTraitExpr(
   4032       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
   4033 }
   4034 
   4035 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
   4036 /// expr and the same for @c alignof and @c __alignof
   4037 /// Note that the ArgRange is invalid if isType is false.
   4038 ExprResult
   4039 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
   4040                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
   4041                                     void *TyOrEx, SourceRange ArgRange) {
   4042   // If error parsing type, ignore.
   4043   if (!TyOrEx) return ExprError();
   4044 
   4045   if (IsType) {
   4046     TypeSourceInfo *TInfo;
   4047     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
   4048     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
   4049   }
   4050 
   4051   Expr *ArgEx = (Expr *)TyOrEx;
   4052   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
   4053   return Result;
   4054 }
   4055 
   4056 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
   4057                                      bool IsReal) {
   4058   if (V.get()->isTypeDependent())
   4059     return S.Context.DependentTy;
   4060 
   4061   // _Real and _Imag are only l-values for normal l-values.
   4062   if (V.get()->getObjectKind() != OK_Ordinary) {
   4063     V = S.DefaultLvalueConversion(V.get());
   4064     if (V.isInvalid())
   4065       return QualType();
   4066   }
   4067 
   4068   // These operators return the element type of a complex type.
   4069   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
   4070     return CT->getElementType();
   4071 
   4072   // Otherwise they pass through real integer and floating point types here.
   4073   if (V.get()->getType()->isArithmeticType())
   4074     return V.get()->getType();
   4075 
   4076   // Test for placeholders.
   4077   ExprResult PR = S.CheckPlaceholderExpr(V.get());
   4078   if (PR.isInvalid()) return QualType();
   4079   if (PR.get() != V.get()) {
   4080     V = PR;
   4081     return CheckRealImagOperand(S, V, Loc, IsReal);
   4082   }
   4083 
   4084   // Reject anything else.
   4085   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
   4086     << (IsReal ? "__real" : "__imag");
   4087   return QualType();
   4088 }
   4089 
   4090 
   4091 
   4092 ExprResult
   4093 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
   4094                           tok::TokenKind Kind, Expr *Input) {
   4095   UnaryOperatorKind Opc;
   4096   switch (Kind) {
   4097   default: llvm_unreachable("Unknown unary op!");
   4098   case tok::plusplus:   Opc = UO_PostInc; break;
   4099   case tok::minusminus: Opc = UO_PostDec; break;
   4100   }
   4101 
   4102   // Since this might is a postfix expression, get rid of ParenListExprs.
   4103   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
   4104   if (Result.isInvalid()) return ExprError();
   4105   Input = Result.get();
   4106 
   4107   return BuildUnaryOp(S, OpLoc, Opc, Input);
   4108 }
   4109 
   4110 /// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
   4111 ///
   4112 /// \return true on error
   4113 static bool checkArithmeticOnObjCPointer(Sema &S,
   4114                                          SourceLocation opLoc,
   4115                                          Expr *op) {
   4116   assert(op->getType()->isObjCObjectPointerType());
   4117   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
   4118       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
   4119     return false;
   4120 
   4121   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
   4122     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
   4123     << op->getSourceRange();
   4124   return true;
   4125 }
   4126 
   4127 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
   4128   auto *BaseNoParens = Base->IgnoreParens();
   4129   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
   4130     return MSProp->getPropertyDecl()->getType()->isArrayType();
   4131   return isa<MSPropertySubscriptExpr>(BaseNoParens);
   4132 }
   4133 
   4134 ExprResult
   4135 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
   4136                               Expr *idx, SourceLocation rbLoc) {
   4137   if (base && !base->getType().isNull() &&
   4138       base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
   4139     return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
   4140                                     /*Length=*/nullptr, rbLoc);
   4141 
   4142   // Since this might be a postfix expression, get rid of ParenListExprs.
   4143   if (isa<ParenListExpr>(base)) {
   4144     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
   4145     if (result.isInvalid()) return ExprError();
   4146     base = result.get();
   4147   }
   4148 
   4149   // Handle any non-overload placeholder types in the base and index
   4150   // expressions.  We can't handle overloads here because the other
   4151   // operand might be an overloadable type, in which case the overload
   4152   // resolution for the operator overload should get the first crack
   4153   // at the overload.
   4154   bool IsMSPropertySubscript = false;
   4155   if (base->getType()->isNonOverloadPlaceholderType()) {
   4156     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
   4157     if (!IsMSPropertySubscript) {
   4158       ExprResult result = CheckPlaceholderExpr(base);
   4159       if (result.isInvalid())
   4160         return ExprError();
   4161       base = result.get();
   4162     }
   4163   }
   4164   if (idx->getType()->isNonOverloadPlaceholderType()) {
   4165     ExprResult result = CheckPlaceholderExpr(idx);
   4166     if (result.isInvalid()) return ExprError();
   4167     idx = result.get();
   4168   }
   4169 
   4170   // Build an unanalyzed expression if either operand is type-dependent.
   4171   if (getLangOpts().CPlusPlus &&
   4172       (base->isTypeDependent() || idx->isTypeDependent())) {
   4173     return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
   4174                                             VK_LValue, OK_Ordinary, rbLoc);
   4175   }
   4176 
   4177   // MSDN, property (C++)
   4178   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
   4179   // This attribute can also be used in the declaration of an empty array in a
   4180   // class or structure definition. For example:
   4181   // __declspec(property(get=GetX, put=PutX)) int x[];
   4182   // The above statement indicates that x[] can be used with one or more array
   4183   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
   4184   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
   4185   if (IsMSPropertySubscript) {
   4186     // Build MS property subscript expression if base is MS property reference
   4187     // or MS property subscript.
   4188     return new (Context) MSPropertySubscriptExpr(
   4189         base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
   4190   }
   4191 
   4192   // Use C++ overloaded-operator rules if either operand has record
   4193   // type.  The spec says to do this if either type is *overloadable*,
   4194   // but enum types can't declare subscript operators or conversion
   4195   // operators, so there's nothing interesting for overload resolution
   4196   // to do if there aren't any record types involved.
   4197   //
   4198   // ObjC pointers have their own subscripting logic that is not tied
   4199   // to overload resolution and so should not take this path.
   4200   if (getLangOpts().CPlusPlus &&
   4201       (base->getType()->isRecordType() ||
   4202        (!base->getType()->isObjCObjectPointerType() &&
   4203         idx->getType()->isRecordType()))) {
   4204     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
   4205   }
   4206 
   4207   return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
   4208 }
   4209 
   4210 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
   4211                                           Expr *LowerBound,
   4212                                           SourceLocation ColonLoc, Expr *Length,
   4213                                           SourceLocation RBLoc) {
   4214   if (Base->getType()->isPlaceholderType() &&
   4215       !Base->getType()->isSpecificPlaceholderType(
   4216           BuiltinType::OMPArraySection)) {
   4217     ExprResult Result = CheckPlaceholderExpr(Base);
   4218     if (Result.isInvalid())
   4219       return ExprError();
   4220     Base = Result.get();
   4221   }
   4222   if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
   4223     ExprResult Result = CheckPlaceholderExpr(LowerBound);
   4224     if (Result.isInvalid())
   4225       return ExprError();
   4226     Result = DefaultLvalueConversion(Result.get());
   4227     if (Result.isInvalid())
   4228       return ExprError();
   4229     LowerBound = Result.get();
   4230   }
   4231   if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
   4232     ExprResult Result = CheckPlaceholderExpr(Length);
   4233     if (Result.isInvalid())
   4234       return ExprError();
   4235     Result = DefaultLvalueConversion(Result.get());
   4236     if (Result.isInvalid())
   4237       return ExprError();
   4238     Length = Result.get();
   4239   }
   4240 
   4241   // Build an unanalyzed expression if either operand is type-dependent.
   4242   if (Base->isTypeDependent() ||
   4243       (LowerBound &&
   4244        (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
   4245       (Length && (Length->isTypeDependent() || Length->isValueDependent()))) {
   4246     return new (Context)
   4247         OMPArraySectionExpr(Base, LowerBound, Length, Context.DependentTy,
   4248                             VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
   4249   }
   4250 
   4251   // Perform default conversions.
   4252   QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
   4253   QualType ResultTy;
   4254   if (OriginalTy->isAnyPointerType()) {
   4255     ResultTy = OriginalTy->getPointeeType();
   4256   } else if (OriginalTy->isArrayType()) {
   4257     ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
   4258   } else {
   4259     return ExprError(
   4260         Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
   4261         << Base->getSourceRange());
   4262   }
   4263   // C99 6.5.2.1p1
   4264   if (LowerBound) {
   4265     auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
   4266                                                       LowerBound);
   4267     if (Res.isInvalid())
   4268       return ExprError(Diag(LowerBound->getExprLoc(),
   4269                             diag::err_omp_typecheck_section_not_integer)
   4270                        << 0 << LowerBound->getSourceRange());
   4271     LowerBound = Res.get();
   4272 
   4273     if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
   4274         LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
   4275       Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
   4276           << 0 << LowerBound->getSourceRange();
   4277   }
   4278   if (Length) {
   4279     auto Res =
   4280         PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
   4281     if (Res.isInvalid())
   4282       return ExprError(Diag(Length->getExprLoc(),
   4283                             diag::err_omp_typecheck_section_not_integer)
   4284                        << 1 << Length->getSourceRange());
   4285     Length = Res.get();
   4286 
   4287     if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
   4288         Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
   4289       Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
   4290           << 1 << Length->getSourceRange();
   4291   }
   4292 
   4293   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
   4294   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
   4295   // type. Note that functions are not objects, and that (in C99 parlance)
   4296   // incomplete types are not object types.
   4297   if (ResultTy->isFunctionType()) {
   4298     Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
   4299         << ResultTy << Base->getSourceRange();
   4300     return ExprError();
   4301   }
   4302 
   4303   if (RequireCompleteType(Base->getExprLoc(), ResultTy,
   4304                           diag::err_omp_section_incomplete_type, Base))
   4305     return ExprError();
   4306 
   4307   if (LowerBound) {
   4308     llvm::APSInt LowerBoundValue;
   4309     if (LowerBound->EvaluateAsInt(LowerBoundValue, Context)) {
   4310       // OpenMP 4.0, [2.4 Array Sections]
   4311       // The lower-bound and length must evaluate to non-negative integers.
   4312       if (LowerBoundValue.isNegative()) {
   4313         Diag(LowerBound->getExprLoc(), diag::err_omp_section_negative)
   4314             << 0 << LowerBoundValue.toString(/*Radix=*/10, /*Signed=*/true)
   4315             << LowerBound->getSourceRange();
   4316         return ExprError();
   4317       }
   4318     }
   4319   }
   4320 
   4321   if (Length) {
   4322     llvm::APSInt LengthValue;
   4323     if (Length->EvaluateAsInt(LengthValue, Context)) {
   4324       // OpenMP 4.0, [2.4 Array Sections]
   4325       // The lower-bound and length must evaluate to non-negative integers.
   4326       if (LengthValue.isNegative()) {
   4327         Diag(Length->getExprLoc(), diag::err_omp_section_negative)
   4328             << 1 << LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
   4329             << Length->getSourceRange();
   4330         return ExprError();
   4331       }
   4332     }
   4333   } else if (ColonLoc.isValid() &&
   4334              (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
   4335                                       !OriginalTy->isVariableArrayType()))) {
   4336     // OpenMP 4.0, [2.4 Array Sections]
   4337     // When the size of the array dimension is not known, the length must be
   4338     // specified explicitly.
   4339     Diag(ColonLoc, diag::err_omp_section_length_undefined)
   4340         << (!OriginalTy.isNull() && OriginalTy->isArrayType());
   4341     return ExprError();
   4342   }
   4343 
   4344   if (!Base->getType()->isSpecificPlaceholderType(
   4345           BuiltinType::OMPArraySection)) {
   4346     ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
   4347     if (Result.isInvalid())
   4348       return ExprError();
   4349     Base = Result.get();
   4350   }
   4351   return new (Context)
   4352       OMPArraySectionExpr(Base, LowerBound, Length, Context.OMPArraySectionTy,
   4353                           VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
   4354 }
   4355 
   4356 ExprResult
   4357 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
   4358                                       Expr *Idx, SourceLocation RLoc) {
   4359   Expr *LHSExp = Base;
   4360   Expr *RHSExp = Idx;
   4361 
   4362   // Perform default conversions.
   4363   if (!LHSExp->getType()->getAs<VectorType>()) {
   4364     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
   4365     if (Result.isInvalid())
   4366       return ExprError();
   4367     LHSExp = Result.get();
   4368   }
   4369   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
   4370   if (Result.isInvalid())
   4371     return ExprError();
   4372   RHSExp = Result.get();
   4373 
   4374   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
   4375   ExprValueKind VK = VK_LValue;
   4376   ExprObjectKind OK = OK_Ordinary;
   4377 
   4378   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
   4379   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
   4380   // in the subscript position. As a result, we need to derive the array base
   4381   // and index from the expression types.
   4382   Expr *BaseExpr, *IndexExpr;
   4383   QualType ResultType;
   4384   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
   4385     BaseExpr = LHSExp;
   4386     IndexExpr = RHSExp;
   4387     ResultType = Context.DependentTy;
   4388   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
   4389     BaseExpr = LHSExp;
   4390     IndexExpr = RHSExp;
   4391     ResultType = PTy->getPointeeType();
   4392   } else if (const ObjCObjectPointerType *PTy =
   4393                LHSTy->getAs<ObjCObjectPointerType>()) {
   4394     BaseExpr = LHSExp;
   4395     IndexExpr = RHSExp;
   4396 
   4397     // Use custom logic if this should be the pseudo-object subscript
   4398     // expression.
   4399     if (!LangOpts.isSubscriptPointerArithmetic())
   4400       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
   4401                                           nullptr);
   4402 
   4403     ResultType = PTy->getPointeeType();
   4404   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
   4405      // Handle the uncommon case of "123[Ptr]".
   4406     BaseExpr = RHSExp;
   4407     IndexExpr = LHSExp;
   4408     ResultType = PTy->getPointeeType();
   4409   } else if (const ObjCObjectPointerType *PTy =
   4410                RHSTy->getAs<ObjCObjectPointerType>()) {
   4411      // Handle the uncommon case of "123[Ptr]".
   4412     BaseExpr = RHSExp;
   4413     IndexExpr = LHSExp;
   4414     ResultType = PTy->getPointeeType();
   4415     if (!LangOpts.isSubscriptPointerArithmetic()) {
   4416       Diag(LLoc, diag::err_subscript_nonfragile_interface)
   4417         << ResultType << BaseExpr->getSourceRange();
   4418       return ExprError();
   4419     }
   4420   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
   4421     BaseExpr = LHSExp;    // vectors: V[123]
   4422     IndexExpr = RHSExp;
   4423     VK = LHSExp->getValueKind();
   4424     if (VK != VK_RValue)
   4425       OK = OK_VectorComponent;
   4426 
   4427     // FIXME: need to deal with const...
   4428     ResultType = VTy->getElementType();
   4429   } else if (LHSTy->isArrayType()) {
   4430     // If we see an array that wasn't promoted by
   4431     // DefaultFunctionArrayLvalueConversion, it must be an array that
   4432     // wasn't promoted because of the C90 rule that doesn't
   4433     // allow promoting non-lvalue arrays.  Warn, then
   4434     // force the promotion here.
   4435     Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   4436         LHSExp->getSourceRange();
   4437     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
   4438                                CK_ArrayToPointerDecay).get();
   4439     LHSTy = LHSExp->getType();
   4440 
   4441     BaseExpr = LHSExp;
   4442     IndexExpr = RHSExp;
   4443     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
   4444   } else if (RHSTy->isArrayType()) {
   4445     // Same as previous, except for 123[f().a] case
   4446     Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   4447         RHSExp->getSourceRange();
   4448     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
   4449                                CK_ArrayToPointerDecay).get();
   4450     RHSTy = RHSExp->getType();
   4451 
   4452     BaseExpr = RHSExp;
   4453     IndexExpr = LHSExp;
   4454     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
   4455   } else {
   4456     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
   4457        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
   4458   }
   4459   // C99 6.5.2.1p1
   4460   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
   4461     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
   4462                      << IndexExpr->getSourceRange());
   4463 
   4464   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
   4465        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
   4466          && !IndexExpr->isTypeDependent())
   4467     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
   4468 
   4469   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
   4470   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
   4471   // type. Note that Functions are not objects, and that (in C99 parlance)
   4472   // incomplete types are not object types.
   4473   if (ResultType->isFunctionType()) {
   4474     Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
   4475       << ResultType << BaseExpr->getSourceRange();
   4476     return ExprError();
   4477   }
   4478 
   4479   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
   4480     // GNU extension: subscripting on pointer to void
   4481     Diag(LLoc, diag::ext_gnu_subscript_void_type)
   4482       << BaseExpr->getSourceRange();
   4483 
   4484     // C forbids expressions of unqualified void type from being l-values.
   4485     // See IsCForbiddenLValueType.
   4486     if (!ResultType.hasQualifiers()) VK = VK_RValue;
   4487   } else if (!ResultType->isDependentType() &&
   4488       RequireCompleteType(LLoc, ResultType,
   4489                           diag::err_subscript_incomplete_type, BaseExpr))
   4490     return ExprError();
   4491 
   4492   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
   4493          !ResultType.isCForbiddenLValueType());
   4494 
   4495   return new (Context)
   4496       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
   4497 }
   4498 
   4499 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
   4500                                         FunctionDecl *FD,
   4501                                         ParmVarDecl *Param) {
   4502   if (Param->hasUnparsedDefaultArg()) {
   4503     Diag(CallLoc,
   4504          diag::err_use_of_default_argument_to_function_declared_later) <<
   4505       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
   4506     Diag(UnparsedDefaultArgLocs[Param],
   4507          diag::note_default_argument_declared_here);
   4508     return ExprError();
   4509   }
   4510 
   4511   if (Param->hasUninstantiatedDefaultArg()) {
   4512     Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
   4513 
   4514     EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
   4515                                                  Param);
   4516 
   4517     // Instantiate the expression.
   4518     MultiLevelTemplateArgumentList MutiLevelArgList
   4519       = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
   4520 
   4521     InstantiatingTemplate Inst(*this, CallLoc, Param,
   4522                                MutiLevelArgList.getInnermost());
   4523     if (Inst.isInvalid())
   4524       return ExprError();
   4525 
   4526     ExprResult Result;
   4527     {
   4528       // C++ [dcl.fct.default]p5:
   4529       //   The names in the [default argument] expression are bound, and
   4530       //   the semantic constraints are checked, at the point where the
   4531       //   default argument expression appears.
   4532       ContextRAII SavedContext(*this, FD);
   4533       LocalInstantiationScope Local(*this);
   4534       Result = SubstExpr(UninstExpr, MutiLevelArgList);
   4535     }
   4536     if (Result.isInvalid())
   4537       return ExprError();
   4538 
   4539     // Check the expression as an initializer for the parameter.
   4540     InitializedEntity Entity
   4541       = InitializedEntity::InitializeParameter(Context, Param);
   4542     InitializationKind Kind
   4543       = InitializationKind::CreateCopy(Param->getLocation(),
   4544              /*FIXME:EqualLoc*/UninstExpr->getLocStart());
   4545     Expr *ResultE = Result.getAs<Expr>();
   4546 
   4547     InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
   4548     Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
   4549     if (Result.isInvalid())
   4550       return ExprError();
   4551 
   4552     Result = ActOnFinishFullExpr(Result.getAs<Expr>(),
   4553                                  Param->getOuterLocStart());
   4554     if (Result.isInvalid())
   4555       return ExprError();
   4556 
   4557     // Remember the instantiated default argument.
   4558     Param->setDefaultArg(Result.getAs<Expr>());
   4559     if (ASTMutationListener *L = getASTMutationListener()) {
   4560       L->DefaultArgumentInstantiated(Param);
   4561     }
   4562   }
   4563 
   4564   // If the default argument expression is not set yet, we are building it now.
   4565   if (!Param->hasInit()) {
   4566     Diag(Param->getLocStart(), diag::err_recursive_default_argument) << FD;
   4567     Param->setInvalidDecl();
   4568     return ExprError();
   4569   }
   4570 
   4571   // If the default expression creates temporaries, we need to
   4572   // push them to the current stack of expression temporaries so they'll
   4573   // be properly destroyed.
   4574   // FIXME: We should really be rebuilding the default argument with new
   4575   // bound temporaries; see the comment in PR5810.
   4576   // We don't need to do that with block decls, though, because
   4577   // blocks in default argument expression can never capture anything.
   4578   if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
   4579     // Set the "needs cleanups" bit regardless of whether there are
   4580     // any explicit objects.
   4581     Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
   4582 
   4583     // Append all the objects to the cleanup list.  Right now, this
   4584     // should always be a no-op, because blocks in default argument
   4585     // expressions should never be able to capture anything.
   4586     assert(!Init->getNumObjects() &&
   4587            "default argument expression has capturing blocks?");
   4588   }
   4589 
   4590   // We already type-checked the argument, so we know it works.
   4591   // Just mark all of the declarations in this potentially-evaluated expression
   4592   // as being "referenced".
   4593   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
   4594                                    /*SkipLocalVariables=*/true);
   4595   return CXXDefaultArgExpr::Create(Context, CallLoc, Param);
   4596 }
   4597 
   4598 
   4599 Sema::VariadicCallType
   4600 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
   4601                           Expr *Fn) {
   4602   if (Proto && Proto->isVariadic()) {
   4603     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
   4604       return VariadicConstructor;
   4605     else if (Fn && Fn->getType()->isBlockPointerType())
   4606       return VariadicBlock;
   4607     else if (FDecl) {
   4608       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
   4609         if (Method->isInstance())
   4610           return VariadicMethod;
   4611     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
   4612       return VariadicMethod;
   4613     return VariadicFunction;
   4614   }
   4615   return VariadicDoesNotApply;
   4616 }
   4617 
   4618 namespace {
   4619 class FunctionCallCCC : public FunctionCallFilterCCC {
   4620 public:
   4621   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
   4622                   unsigned NumArgs, MemberExpr *ME)
   4623       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
   4624         FunctionName(FuncName) {}
   4625 
   4626   bool ValidateCandidate(const TypoCorrection &candidate) override {
   4627     if (!candidate.getCorrectionSpecifier() ||
   4628         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
   4629       return false;
   4630     }
   4631 
   4632     return FunctionCallFilterCCC::ValidateCandidate(candidate);
   4633   }
   4634 
   4635 private:
   4636   const IdentifierInfo *const FunctionName;
   4637 };
   4638 }
   4639 
   4640 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
   4641                                                FunctionDecl *FDecl,
   4642                                                ArrayRef<Expr *> Args) {
   4643   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
   4644   DeclarationName FuncName = FDecl->getDeclName();
   4645   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getLocStart();
   4646 
   4647   if (TypoCorrection Corrected = S.CorrectTypo(
   4648           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
   4649           S.getScopeForContext(S.CurContext), nullptr,
   4650           llvm::make_unique<FunctionCallCCC>(S, FuncName.getAsIdentifierInfo(),
   4651                                              Args.size(), ME),
   4652           Sema::CTK_ErrorRecovery)) {
   4653     if (NamedDecl *ND = Corrected.getFoundDecl()) {
   4654       if (Corrected.isOverloaded()) {
   4655         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
   4656         OverloadCandidateSet::iterator Best;
   4657         for (NamedDecl *CD : Corrected) {
   4658           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
   4659             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
   4660                                    OCS);
   4661         }
   4662         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
   4663         case OR_Success:
   4664           ND = Best->FoundDecl;
   4665           Corrected.setCorrectionDecl(ND);
   4666           break;
   4667         default:
   4668           break;
   4669         }
   4670       }
   4671       ND = ND->getUnderlyingDecl();
   4672       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
   4673         return Corrected;
   4674     }
   4675   }
   4676   return TypoCorrection();
   4677 }
   4678 
   4679 /// ConvertArgumentsForCall - Converts the arguments specified in
   4680 /// Args/NumArgs to the parameter types of the function FDecl with
   4681 /// function prototype Proto. Call is the call expression itself, and
   4682 /// Fn is the function expression. For a C++ member function, this
   4683 /// routine does not attempt to convert the object argument. Returns
   4684 /// true if the call is ill-formed.
   4685 bool
   4686 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
   4687                               FunctionDecl *FDecl,
   4688                               const FunctionProtoType *Proto,
   4689                               ArrayRef<Expr *> Args,
   4690                               SourceLocation RParenLoc,
   4691                               bool IsExecConfig) {
   4692   // Bail out early if calling a builtin with custom typechecking.
   4693   if (FDecl)
   4694     if (unsigned ID = FDecl->getBuiltinID())
   4695       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
   4696         return false;
   4697 
   4698   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
   4699   // assignment, to the types of the corresponding parameter, ...
   4700   unsigned NumParams = Proto->getNumParams();
   4701   bool Invalid = false;
   4702   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
   4703   unsigned FnKind = Fn->getType()->isBlockPointerType()
   4704                        ? 1 /* block */
   4705                        : (IsExecConfig ? 3 /* kernel function (exec config) */
   4706                                        : 0 /* function */);
   4707 
   4708   // If too few arguments are available (and we don't have default
   4709   // arguments for the remaining parameters), don't make the call.
   4710   if (Args.size() < NumParams) {
   4711     if (Args.size() < MinArgs) {
   4712       TypoCorrection TC;
   4713       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
   4714         unsigned diag_id =
   4715             MinArgs == NumParams && !Proto->isVariadic()
   4716                 ? diag::err_typecheck_call_too_few_args_suggest
   4717                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
   4718         diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
   4719                                         << static_cast<unsigned>(Args.size())
   4720                                         << TC.getCorrectionRange());
   4721       } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
   4722         Diag(RParenLoc,
   4723              MinArgs == NumParams && !Proto->isVariadic()
   4724                  ? diag::err_typecheck_call_too_few_args_one
   4725                  : diag::err_typecheck_call_too_few_args_at_least_one)
   4726             << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
   4727       else
   4728         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
   4729                             ? diag::err_typecheck_call_too_few_args
   4730                             : diag::err_typecheck_call_too_few_args_at_least)
   4731             << FnKind << MinArgs << static_cast<unsigned>(Args.size())
   4732             << Fn->getSourceRange();
   4733 
   4734       // Emit the location of the prototype.
   4735       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
   4736         Diag(FDecl->getLocStart(), diag::note_callee_decl)
   4737           << FDecl;
   4738 
   4739       return true;
   4740     }
   4741     Call->setNumArgs(Context, NumParams);
   4742   }
   4743 
   4744   // If too many are passed and not variadic, error on the extras and drop
   4745   // them.
   4746   if (Args.size() > NumParams) {
   4747     if (!Proto->isVariadic()) {
   4748       TypoCorrection TC;
   4749       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
   4750         unsigned diag_id =
   4751             MinArgs == NumParams && !Proto->isVariadic()
   4752                 ? diag::err_typecheck_call_too_many_args_suggest
   4753                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
   4754         diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
   4755                                         << static_cast<unsigned>(Args.size())
   4756                                         << TC.getCorrectionRange());
   4757       } else if (NumParams == 1 && FDecl &&
   4758                  FDecl->getParamDecl(0)->getDeclName())
   4759         Diag(Args[NumParams]->getLocStart(),
   4760              MinArgs == NumParams
   4761                  ? diag::err_typecheck_call_too_many_args_one
   4762                  : diag::err_typecheck_call_too_many_args_at_most_one)
   4763             << FnKind << FDecl->getParamDecl(0)
   4764             << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
   4765             << SourceRange(Args[NumParams]->getLocStart(),
   4766                            Args.back()->getLocEnd());
   4767       else
   4768         Diag(Args[NumParams]->getLocStart(),
   4769              MinArgs == NumParams
   4770                  ? diag::err_typecheck_call_too_many_args
   4771                  : diag::err_typecheck_call_too_many_args_at_most)
   4772             << FnKind << NumParams << static_cast<unsigned>(Args.size())
   4773             << Fn->getSourceRange()
   4774             << SourceRange(Args[NumParams]->getLocStart(),
   4775                            Args.back()->getLocEnd());
   4776 
   4777       // Emit the location of the prototype.
   4778       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
   4779         Diag(FDecl->getLocStart(), diag::note_callee_decl)
   4780           << FDecl;
   4781 
   4782       // This deletes the extra arguments.
   4783       Call->setNumArgs(Context, NumParams);
   4784       return true;
   4785     }
   4786   }
   4787   SmallVector<Expr *, 8> AllArgs;
   4788   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
   4789 
   4790   Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
   4791                                    Proto, 0, Args, AllArgs, CallType);
   4792   if (Invalid)
   4793     return true;
   4794   unsigned TotalNumArgs = AllArgs.size();
   4795   for (unsigned i = 0; i < TotalNumArgs; ++i)
   4796     Call->setArg(i, AllArgs[i]);
   4797 
   4798   return false;
   4799 }
   4800 
   4801 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
   4802                                   const FunctionProtoType *Proto,
   4803                                   unsigned FirstParam, ArrayRef<Expr *> Args,
   4804                                   SmallVectorImpl<Expr *> &AllArgs,
   4805                                   VariadicCallType CallType, bool AllowExplicit,
   4806                                   bool IsListInitialization) {
   4807   unsigned NumParams = Proto->getNumParams();
   4808   bool Invalid = false;
   4809   size_t ArgIx = 0;
   4810   // Continue to check argument types (even if we have too few/many args).
   4811   for (unsigned i = FirstParam; i < NumParams; i++) {
   4812     QualType ProtoArgType = Proto->getParamType(i);
   4813 
   4814     Expr *Arg;
   4815     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
   4816     if (ArgIx < Args.size()) {
   4817       Arg = Args[ArgIx++];
   4818 
   4819       if (RequireCompleteType(Arg->getLocStart(),
   4820                               ProtoArgType,
   4821                               diag::err_call_incomplete_argument, Arg))
   4822         return true;
   4823 
   4824       // Strip the unbridged-cast placeholder expression off, if applicable.
   4825       bool CFAudited = false;
   4826       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
   4827           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
   4828           (!Param || !Param->hasAttr<CFConsumedAttr>()))
   4829         Arg = stripARCUnbridgedCast(Arg);
   4830       else if (getLangOpts().ObjCAutoRefCount &&
   4831                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
   4832                (!Param || !Param->hasAttr<CFConsumedAttr>()))
   4833         CFAudited = true;
   4834 
   4835       InitializedEntity Entity =
   4836           Param ? InitializedEntity::InitializeParameter(Context, Param,
   4837                                                          ProtoArgType)
   4838                 : InitializedEntity::InitializeParameter(
   4839                       Context, ProtoArgType, Proto->isParamConsumed(i));
   4840 
   4841       // Remember that parameter belongs to a CF audited API.
   4842       if (CFAudited)
   4843         Entity.setParameterCFAudited();
   4844 
   4845       ExprResult ArgE = PerformCopyInitialization(
   4846           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
   4847       if (ArgE.isInvalid())
   4848         return true;
   4849 
   4850       Arg = ArgE.getAs<Expr>();
   4851     } else {
   4852       assert(Param && "can't use default arguments without a known callee");
   4853 
   4854       ExprResult ArgExpr =
   4855         BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
   4856       if (ArgExpr.isInvalid())
   4857         return true;
   4858 
   4859       Arg = ArgExpr.getAs<Expr>();
   4860     }
   4861 
   4862     // Check for array bounds violations for each argument to the call. This
   4863     // check only triggers warnings when the argument isn't a more complex Expr
   4864     // with its own checking, such as a BinaryOperator.
   4865     CheckArrayAccess(Arg);
   4866 
   4867     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
   4868     CheckStaticArrayArgument(CallLoc, Param, Arg);
   4869 
   4870     AllArgs.push_back(Arg);
   4871   }
   4872 
   4873   // If this is a variadic call, handle args passed through "...".
   4874   if (CallType != VariadicDoesNotApply) {
   4875     // Assume that extern "C" functions with variadic arguments that
   4876     // return __unknown_anytype aren't *really* variadic.
   4877     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
   4878         FDecl->isExternC()) {
   4879       for (Expr *A : Args.slice(ArgIx)) {
   4880         QualType paramType; // ignored
   4881         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
   4882         Invalid |= arg.isInvalid();
   4883         AllArgs.push_back(arg.get());
   4884       }
   4885 
   4886     // Otherwise do argument promotion, (C99 6.5.2.2p7).
   4887     } else {
   4888       for (Expr *A : Args.slice(ArgIx)) {
   4889         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
   4890         Invalid |= Arg.isInvalid();
   4891         AllArgs.push_back(Arg.get());
   4892       }
   4893     }
   4894 
   4895     // Check for array bounds violations.
   4896     for (Expr *A : Args.slice(ArgIx))
   4897       CheckArrayAccess(A);
   4898   }
   4899   return Invalid;
   4900 }
   4901 
   4902 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
   4903   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
   4904   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
   4905     TL = DTL.getOriginalLoc();
   4906   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
   4907     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
   4908       << ATL.getLocalSourceRange();
   4909 }
   4910 
   4911 /// CheckStaticArrayArgument - If the given argument corresponds to a static
   4912 /// array parameter, check that it is non-null, and that if it is formed by
   4913 /// array-to-pointer decay, the underlying array is sufficiently large.
   4914 ///
   4915 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
   4916 /// array type derivation, then for each call to the function, the value of the
   4917 /// corresponding actual argument shall provide access to the first element of
   4918 /// an array with at least as many elements as specified by the size expression.
   4919 void
   4920 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
   4921                                ParmVarDecl *Param,
   4922                                const Expr *ArgExpr) {
   4923   // Static array parameters are not supported in C++.
   4924   if (!Param || getLangOpts().CPlusPlus)
   4925     return;
   4926 
   4927   QualType OrigTy = Param->getOriginalType();
   4928 
   4929   const ArrayType *AT = Context.getAsArrayType(OrigTy);
   4930   if (!AT || AT->getSizeModifier() != ArrayType::Static)
   4931     return;
   4932 
   4933   if (ArgExpr->isNullPointerConstant(Context,
   4934                                      Expr::NPC_NeverValueDependent)) {
   4935     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
   4936     DiagnoseCalleeStaticArrayParam(*this, Param);
   4937     return;
   4938   }
   4939 
   4940   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
   4941   if (!CAT)
   4942     return;
   4943 
   4944   const ConstantArrayType *ArgCAT =
   4945     Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
   4946   if (!ArgCAT)
   4947     return;
   4948 
   4949   if (ArgCAT->getSize().ult(CAT->getSize())) {
   4950     Diag(CallLoc, diag::warn_static_array_too_small)
   4951       << ArgExpr->getSourceRange()
   4952       << (unsigned) ArgCAT->getSize().getZExtValue()
   4953       << (unsigned) CAT->getSize().getZExtValue();
   4954     DiagnoseCalleeStaticArrayParam(*this, Param);
   4955   }
   4956 }
   4957 
   4958 /// Given a function expression of unknown-any type, try to rebuild it
   4959 /// to have a function type.
   4960 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
   4961 
   4962 /// Is the given type a placeholder that we need to lower out
   4963 /// immediately during argument processing?
   4964 static bool isPlaceholderToRemoveAsArg(QualType type) {
   4965   // Placeholders are never sugared.
   4966   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
   4967   if (!placeholder) return false;
   4968 
   4969   switch (placeholder->getKind()) {
   4970   // Ignore all the non-placeholder types.
   4971 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
   4972   case BuiltinType::Id:
   4973 #include "clang/Basic/OpenCLImageTypes.def"
   4974 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
   4975 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
   4976 #include "clang/AST/BuiltinTypes.def"
   4977     return false;
   4978 
   4979   // We cannot lower out overload sets; they might validly be resolved
   4980   // by the call machinery.
   4981   case BuiltinType::Overload:
   4982     return false;
   4983 
   4984   // Unbridged casts in ARC can be handled in some call positions and
   4985   // should be left in place.
   4986   case BuiltinType::ARCUnbridgedCast:
   4987     return false;
   4988 
   4989   // Pseudo-objects should be converted as soon as possible.
   4990   case BuiltinType::PseudoObject:
   4991     return true;
   4992 
   4993   // The debugger mode could theoretically but currently does not try
   4994   // to resolve unknown-typed arguments based on known parameter types.
   4995   case BuiltinType::UnknownAny:
   4996     return true;
   4997 
   4998   // These are always invalid as call arguments and should be reported.
   4999   case BuiltinType::BoundMember:
   5000   case BuiltinType::BuiltinFn:
   5001   case BuiltinType::OMPArraySection:
   5002     return true;
   5003 
   5004   }
   5005   llvm_unreachable("bad builtin type kind");
   5006 }
   5007 
   5008 /// Check an argument list for placeholders that we won't try to
   5009 /// handle later.
   5010 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
   5011   // Apply this processing to all the arguments at once instead of
   5012   // dying at the first failure.
   5013   bool hasInvalid = false;
   5014   for (size_t i = 0, e = args.size(); i != e; i++) {
   5015     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
   5016       ExprResult result = S.CheckPlaceholderExpr(args[i]);
   5017       if (result.isInvalid()) hasInvalid = true;
   5018       else args[i] = result.get();
   5019     } else if (hasInvalid) {
   5020       (void)S.CorrectDelayedTyposInExpr(args[i]);
   5021     }
   5022   }
   5023   return hasInvalid;
   5024 }
   5025 
   5026 /// If a builtin function has a pointer argument with no explicit address
   5027 /// space, then it should be able to accept a pointer to any address
   5028 /// space as input.  In order to do this, we need to replace the
   5029 /// standard builtin declaration with one that uses the same address space
   5030 /// as the call.
   5031 ///
   5032 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
   5033 ///                  it does not contain any pointer arguments without
   5034 ///                  an address space qualifer.  Otherwise the rewritten
   5035 ///                  FunctionDecl is returned.
   5036 /// TODO: Handle pointer return types.
   5037 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
   5038                                                 const FunctionDecl *FDecl,
   5039                                                 MultiExprArg ArgExprs) {
   5040 
   5041   QualType DeclType = FDecl->getType();
   5042   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
   5043 
   5044   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) ||
   5045       !FT || FT->isVariadic() || ArgExprs.size() != FT->getNumParams())
   5046     return nullptr;
   5047 
   5048   bool NeedsNewDecl = false;
   5049   unsigned i = 0;
   5050   SmallVector<QualType, 8> OverloadParams;
   5051 
   5052   for (QualType ParamType : FT->param_types()) {
   5053 
   5054     // Convert array arguments to pointer to simplify type lookup.
   5055     Expr *Arg = Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]).get();
   5056     QualType ArgType = Arg->getType();
   5057     if (!ParamType->isPointerType() ||
   5058         ParamType.getQualifiers().hasAddressSpace() ||
   5059         !ArgType->isPointerType() ||
   5060         !ArgType->getPointeeType().getQualifiers().hasAddressSpace()) {
   5061       OverloadParams.push_back(ParamType);
   5062       continue;
   5063     }
   5064 
   5065     NeedsNewDecl = true;
   5066     unsigned AS = ArgType->getPointeeType().getQualifiers().getAddressSpace();
   5067 
   5068     QualType PointeeType = ParamType->getPointeeType();
   5069     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
   5070     OverloadParams.push_back(Context.getPointerType(PointeeType));
   5071   }
   5072 
   5073   if (!NeedsNewDecl)
   5074     return nullptr;
   5075 
   5076   FunctionProtoType::ExtProtoInfo EPI;
   5077   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
   5078                                                 OverloadParams, EPI);
   5079   DeclContext *Parent = Context.getTranslationUnitDecl();
   5080   FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
   5081                                                     FDecl->getLocation(),
   5082                                                     FDecl->getLocation(),
   5083                                                     FDecl->getIdentifier(),
   5084                                                     OverloadTy,
   5085                                                     /*TInfo=*/nullptr,
   5086                                                     SC_Extern, false,
   5087                                                     /*hasPrototype=*/true);
   5088   SmallVector<ParmVarDecl*, 16> Params;
   5089   FT = cast<FunctionProtoType>(OverloadTy);
   5090   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
   5091     QualType ParamType = FT->getParamType(i);
   5092     ParmVarDecl *Parm =
   5093         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
   5094                                 SourceLocation(), nullptr, ParamType,
   5095                                 /*TInfo=*/nullptr, SC_None, nullptr);
   5096     Parm->setScopeInfo(0, i);
   5097     Params.push_back(Parm);
   5098   }
   5099   OverloadDecl->setParams(Params);
   5100   return OverloadDecl;
   5101 }
   5102 
   5103 static bool isNumberOfArgsValidForCall(Sema &S, const FunctionDecl *Callee,
   5104                                        std::size_t NumArgs) {
   5105   if (S.TooManyArguments(Callee->getNumParams(), NumArgs,
   5106                          /*PartialOverloading=*/false))
   5107     return Callee->isVariadic();
   5108   return Callee->getMinRequiredArguments() <= NumArgs;
   5109 }
   5110 
   5111 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
   5112 /// This provides the location of the left/right parens and a list of comma
   5113 /// locations.
   5114 ExprResult
   5115 Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
   5116                     MultiExprArg ArgExprs, SourceLocation RParenLoc,
   5117                     Expr *ExecConfig, bool IsExecConfig) {
   5118   // Since this might be a postfix expression, get rid of ParenListExprs.
   5119   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
   5120   if (Result.isInvalid()) return ExprError();
   5121   Fn = Result.get();
   5122 
   5123   if (checkArgsForPlaceholders(*this, ArgExprs))
   5124     return ExprError();
   5125 
   5126   if (getLangOpts().CPlusPlus) {
   5127     // If this is a pseudo-destructor expression, build the call immediately.
   5128     if (isa<CXXPseudoDestructorExpr>(Fn)) {
   5129       if (!ArgExprs.empty()) {
   5130         // Pseudo-destructor calls should not have any arguments.
   5131         Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
   5132           << FixItHint::CreateRemoval(
   5133                                     SourceRange(ArgExprs.front()->getLocStart(),
   5134                                                 ArgExprs.back()->getLocEnd()));
   5135       }
   5136 
   5137       return new (Context)
   5138           CallExpr(Context, Fn, None, Context.VoidTy, VK_RValue, RParenLoc);
   5139     }
   5140     if (Fn->getType() == Context.PseudoObjectTy) {
   5141       ExprResult result = CheckPlaceholderExpr(Fn);
   5142       if (result.isInvalid()) return ExprError();
   5143       Fn = result.get();