Home | History | Annotate | Download | only in AsmPrinter
      1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the AsmPrinter class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "asm-printer"
     15 #include "llvm/CodeGen/AsmPrinter.h"
     16 #include "DwarfDebug.h"
     17 #include "DwarfException.h"
     18 #include "llvm/Module.h"
     19 #include "llvm/CodeGen/GCMetadataPrinter.h"
     20 #include "llvm/CodeGen/MachineConstantPool.h"
     21 #include "llvm/CodeGen/MachineFrameInfo.h"
     22 #include "llvm/CodeGen/MachineFunction.h"
     23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     24 #include "llvm/CodeGen/MachineLoopInfo.h"
     25 #include "llvm/CodeGen/MachineModuleInfo.h"
     26 #include "llvm/Analysis/ConstantFolding.h"
     27 #include "llvm/Analysis/DebugInfo.h"
     28 #include "llvm/MC/MCAsmInfo.h"
     29 #include "llvm/MC/MCContext.h"
     30 #include "llvm/MC/MCExpr.h"
     31 #include "llvm/MC/MCInst.h"
     32 #include "llvm/MC/MCSection.h"
     33 #include "llvm/MC/MCStreamer.h"
     34 #include "llvm/MC/MCSymbol.h"
     35 #include "llvm/Target/Mangler.h"
     36 #include "llvm/Target/TargetData.h"
     37 #include "llvm/Target/TargetInstrInfo.h"
     38 #include "llvm/Target/TargetLowering.h"
     39 #include "llvm/Target/TargetLoweringObjectFile.h"
     40 #include "llvm/Target/TargetOptions.h"
     41 #include "llvm/Target/TargetRegisterInfo.h"
     42 #include "llvm/Assembly/Writer.h"
     43 #include "llvm/ADT/SmallString.h"
     44 #include "llvm/ADT/Statistic.h"
     45 #include "llvm/Support/ErrorHandling.h"
     46 #include "llvm/Support/Format.h"
     47 #include "llvm/Support/MathExtras.h"
     48 #include "llvm/Support/Timer.h"
     49 using namespace llvm;
     50 
     51 static const char *DWARFGroupName = "DWARF Emission";
     52 static const char *DbgTimerName = "DWARF Debug Writer";
     53 static const char *EHTimerName = "DWARF Exception Writer";
     54 
     55 STATISTIC(EmittedInsts, "Number of machine instrs printed");
     56 
     57 char AsmPrinter::ID = 0;
     58 
     59 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
     60 static gcp_map_type &getGCMap(void *&P) {
     61   if (P == 0)
     62     P = new gcp_map_type();
     63   return *(gcp_map_type*)P;
     64 }
     65 
     66 
     67 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
     68 /// value in log2 form.  This rounds up to the preferred alignment if possible
     69 /// and legal.
     70 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
     71                                    unsigned InBits = 0) {
     72   unsigned NumBits = 0;
     73   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
     74     NumBits = TD.getPreferredAlignmentLog(GVar);
     75 
     76   // If InBits is specified, round it to it.
     77   if (InBits > NumBits)
     78     NumBits = InBits;
     79 
     80   // If the GV has a specified alignment, take it into account.
     81   if (GV->getAlignment() == 0)
     82     return NumBits;
     83 
     84   unsigned GVAlign = Log2_32(GV->getAlignment());
     85 
     86   // If the GVAlign is larger than NumBits, or if we are required to obey
     87   // NumBits because the GV has an assigned section, obey it.
     88   if (GVAlign > NumBits || GV->hasSection())
     89     NumBits = GVAlign;
     90   return NumBits;
     91 }
     92 
     93 
     94 
     95 
     96 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
     97   : MachineFunctionPass(ID),
     98     TM(tm), MAI(tm.getMCAsmInfo()),
     99     OutContext(Streamer.getContext()),
    100     OutStreamer(Streamer),
    101     LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
    102   DD = 0; DE = 0; MMI = 0; LI = 0;
    103   GCMetadataPrinters = 0;
    104   VerboseAsm = Streamer.isVerboseAsm();
    105 }
    106 
    107 AsmPrinter::~AsmPrinter() {
    108   assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
    109 
    110   if (GCMetadataPrinters != 0) {
    111     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
    112 
    113     for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
    114       delete I->second;
    115     delete &GCMap;
    116     GCMetadataPrinters = 0;
    117   }
    118 
    119   delete &OutStreamer;
    120 }
    121 
    122 /// getFunctionNumber - Return a unique ID for the current function.
    123 ///
    124 unsigned AsmPrinter::getFunctionNumber() const {
    125   return MF->getFunctionNumber();
    126 }
    127 
    128 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
    129   return TM.getTargetLowering()->getObjFileLowering();
    130 }
    131 
    132 
    133 /// getTargetData - Return information about data layout.
    134 const TargetData &AsmPrinter::getTargetData() const {
    135   return *TM.getTargetData();
    136 }
    137 
    138 /// getCurrentSection() - Return the current section we are emitting to.
    139 const MCSection *AsmPrinter::getCurrentSection() const {
    140   return OutStreamer.getCurrentSection();
    141 }
    142 
    143 
    144 
    145 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
    146   AU.setPreservesAll();
    147   MachineFunctionPass::getAnalysisUsage(AU);
    148   AU.addRequired<MachineModuleInfo>();
    149   AU.addRequired<GCModuleInfo>();
    150   if (isVerbose())
    151     AU.addRequired<MachineLoopInfo>();
    152 }
    153 
    154 bool AsmPrinter::doInitialization(Module &M) {
    155   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
    156   MMI->AnalyzeModule(M);
    157 
    158   // Initialize TargetLoweringObjectFile.
    159   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
    160     .Initialize(OutContext, TM);
    161 
    162   Mang = new Mangler(OutContext, *TM.getTargetData());
    163 
    164   // Allow the target to emit any magic that it wants at the start of the file.
    165   EmitStartOfAsmFile(M);
    166 
    167   // Very minimal debug info. It is ignored if we emit actual debug info. If we
    168   // don't, this at least helps the user find where a global came from.
    169   if (MAI->hasSingleParameterDotFile()) {
    170     // .file "foo.c"
    171     OutStreamer.EmitFileDirective(M.getModuleIdentifier());
    172   }
    173 
    174   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
    175   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
    176   for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
    177     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
    178       MP->beginAssembly(*this);
    179 
    180   // Emit module-level inline asm if it exists.
    181   if (!M.getModuleInlineAsm().empty()) {
    182     OutStreamer.AddComment("Start of file scope inline assembly");
    183     OutStreamer.AddBlankLine();
    184     EmitInlineAsm(M.getModuleInlineAsm()+"\n");
    185     OutStreamer.AddComment("End of file scope inline assembly");
    186     OutStreamer.AddBlankLine();
    187   }
    188 
    189   if (MAI->doesSupportDebugInformation())
    190     DD = new DwarfDebug(this, &M);
    191 
    192   switch (MAI->getExceptionHandlingType()) {
    193   case ExceptionHandling::None:
    194     return false;
    195   case ExceptionHandling::SjLj:
    196   case ExceptionHandling::DwarfCFI:
    197     DE = new DwarfCFIException(this);
    198     return false;
    199   case ExceptionHandling::ARM:
    200     DE = new ARMException(this);
    201     return false;
    202   case ExceptionHandling::Win64:
    203     DE = new Win64Exception(this);
    204     return false;
    205   }
    206 
    207   llvm_unreachable("Unknown exception type.");
    208 }
    209 
    210 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
    211   switch ((GlobalValue::LinkageTypes)Linkage) {
    212   case GlobalValue::CommonLinkage:
    213   case GlobalValue::LinkOnceAnyLinkage:
    214   case GlobalValue::LinkOnceODRLinkage:
    215   case GlobalValue::WeakAnyLinkage:
    216   case GlobalValue::WeakODRLinkage:
    217   case GlobalValue::LinkerPrivateWeakLinkage:
    218   case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
    219     if (MAI->getWeakDefDirective() != 0) {
    220       // .globl _foo
    221       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    222 
    223       if ((GlobalValue::LinkageTypes)Linkage !=
    224           GlobalValue::LinkerPrivateWeakDefAutoLinkage)
    225         // .weak_definition _foo
    226         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
    227       else
    228         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
    229     } else if (MAI->getLinkOnceDirective() != 0) {
    230       // .globl _foo
    231       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    232       //NOTE: linkonce is handled by the section the symbol was assigned to.
    233     } else {
    234       // .weak _foo
    235       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
    236     }
    237     break;
    238   case GlobalValue::DLLExportLinkage:
    239   case GlobalValue::AppendingLinkage:
    240     // FIXME: appending linkage variables should go into a section of
    241     // their name or something.  For now, just emit them as external.
    242   case GlobalValue::ExternalLinkage:
    243     // If external or appending, declare as a global symbol.
    244     // .globl _foo
    245     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    246     break;
    247   case GlobalValue::PrivateLinkage:
    248   case GlobalValue::InternalLinkage:
    249   case GlobalValue::LinkerPrivateLinkage:
    250     break;
    251   default:
    252     llvm_unreachable("Unknown linkage type!");
    253   }
    254 }
    255 
    256 
    257 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
    258 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
    259   if (GV->hasInitializer()) {
    260     // Check to see if this is a special global used by LLVM, if so, emit it.
    261     if (EmitSpecialLLVMGlobal(GV))
    262       return;
    263 
    264     if (isVerbose()) {
    265       WriteAsOperand(OutStreamer.GetCommentOS(), GV,
    266                      /*PrintType=*/false, GV->getParent());
    267       OutStreamer.GetCommentOS() << '\n';
    268     }
    269   }
    270 
    271   MCSymbol *GVSym = Mang->getSymbol(GV);
    272   EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
    273 
    274   if (!GV->hasInitializer())   // External globals require no extra code.
    275     return;
    276 
    277   if (MAI->hasDotTypeDotSizeDirective())
    278     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
    279 
    280   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
    281 
    282   const TargetData *TD = TM.getTargetData();
    283   uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
    284 
    285   // If the alignment is specified, we *must* obey it.  Overaligning a global
    286   // with a specified alignment is a prompt way to break globals emitted to
    287   // sections and expected to be contiguous (e.g. ObjC metadata).
    288   unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
    289 
    290   // Handle common and BSS local symbols (.lcomm).
    291   if (GVKind.isCommon() || GVKind.isBSSLocal()) {
    292     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
    293     unsigned Align = 1 << AlignLog;
    294 
    295     // Handle common symbols.
    296     if (GVKind.isCommon()) {
    297       if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
    298         Align = 0;
    299 
    300       // .comm _foo, 42, 4
    301       OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
    302       return;
    303     }
    304 
    305     // Handle local BSS symbols.
    306     if (MAI->hasMachoZeroFillDirective()) {
    307       const MCSection *TheSection =
    308         getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
    309       // .zerofill __DATA, __bss, _foo, 400, 5
    310       OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
    311       return;
    312     }
    313 
    314     if (MAI->getLCOMMDirectiveType() != LCOMM::None &&
    315         (MAI->getLCOMMDirectiveType() != LCOMM::NoAlignment || Align == 1)) {
    316       // .lcomm _foo, 42
    317       OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
    318       return;
    319     }
    320 
    321     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
    322       Align = 0;
    323 
    324     // .local _foo
    325     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
    326     // .comm _foo, 42, 4
    327     OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
    328     return;
    329   }
    330 
    331   const MCSection *TheSection =
    332     getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
    333 
    334   // Handle the zerofill directive on darwin, which is a special form of BSS
    335   // emission.
    336   if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
    337     if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
    338 
    339     // .globl _foo
    340     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
    341     // .zerofill __DATA, __common, _foo, 400, 5
    342     OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
    343     return;
    344   }
    345 
    346   // Handle thread local data for mach-o which requires us to output an
    347   // additional structure of data and mangle the original symbol so that we
    348   // can reference it later.
    349   //
    350   // TODO: This should become an "emit thread local global" method on TLOF.
    351   // All of this macho specific stuff should be sunk down into TLOFMachO and
    352   // stuff like "TLSExtraDataSection" should no longer be part of the parent
    353   // TLOF class.  This will also make it more obvious that stuff like
    354   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
    355   // specific code.
    356   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
    357     // Emit the .tbss symbol
    358     MCSymbol *MangSym =
    359       OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
    360 
    361     if (GVKind.isThreadBSS())
    362       OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
    363     else if (GVKind.isThreadData()) {
    364       OutStreamer.SwitchSection(TheSection);
    365 
    366       EmitAlignment(AlignLog, GV);
    367       OutStreamer.EmitLabel(MangSym);
    368 
    369       EmitGlobalConstant(GV->getInitializer());
    370     }
    371 
    372     OutStreamer.AddBlankLine();
    373 
    374     // Emit the variable struct for the runtime.
    375     const MCSection *TLVSect
    376       = getObjFileLowering().getTLSExtraDataSection();
    377 
    378     OutStreamer.SwitchSection(TLVSect);
    379     // Emit the linkage here.
    380     EmitLinkage(GV->getLinkage(), GVSym);
    381     OutStreamer.EmitLabel(GVSym);
    382 
    383     // Three pointers in size:
    384     //   - __tlv_bootstrap - used to make sure support exists
    385     //   - spare pointer, used when mapped by the runtime
    386     //   - pointer to mangled symbol above with initializer
    387     unsigned PtrSize = TD->getPointerSizeInBits()/8;
    388     OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
    389                           PtrSize, 0);
    390     OutStreamer.EmitIntValue(0, PtrSize, 0);
    391     OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
    392 
    393     OutStreamer.AddBlankLine();
    394     return;
    395   }
    396 
    397   OutStreamer.SwitchSection(TheSection);
    398 
    399   EmitLinkage(GV->getLinkage(), GVSym);
    400   EmitAlignment(AlignLog, GV);
    401 
    402   OutStreamer.EmitLabel(GVSym);
    403 
    404   EmitGlobalConstant(GV->getInitializer());
    405 
    406   if (MAI->hasDotTypeDotSizeDirective())
    407     // .size foo, 42
    408     OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
    409 
    410   OutStreamer.AddBlankLine();
    411 }
    412 
    413 /// EmitFunctionHeader - This method emits the header for the current
    414 /// function.
    415 void AsmPrinter::EmitFunctionHeader() {
    416   // Print out constants referenced by the function
    417   EmitConstantPool();
    418 
    419   // Print the 'header' of function.
    420   const Function *F = MF->getFunction();
    421 
    422   OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
    423   EmitVisibility(CurrentFnSym, F->getVisibility());
    424 
    425   EmitLinkage(F->getLinkage(), CurrentFnSym);
    426   EmitAlignment(MF->getAlignment(), F);
    427 
    428   if (MAI->hasDotTypeDotSizeDirective())
    429     OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
    430 
    431   if (isVerbose()) {
    432     WriteAsOperand(OutStreamer.GetCommentOS(), F,
    433                    /*PrintType=*/false, F->getParent());
    434     OutStreamer.GetCommentOS() << '\n';
    435   }
    436 
    437   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
    438   // do their wild and crazy things as required.
    439   EmitFunctionEntryLabel();
    440 
    441   // If the function had address-taken blocks that got deleted, then we have
    442   // references to the dangling symbols.  Emit them at the start of the function
    443   // so that we don't get references to undefined symbols.
    444   std::vector<MCSymbol*> DeadBlockSyms;
    445   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
    446   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
    447     OutStreamer.AddComment("Address taken block that was later removed");
    448     OutStreamer.EmitLabel(DeadBlockSyms[i]);
    449   }
    450 
    451   // Add some workaround for linkonce linkage on Cygwin\MinGW.
    452   if (MAI->getLinkOnceDirective() != 0 &&
    453       (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
    454     // FIXME: What is this?
    455     MCSymbol *FakeStub =
    456       OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
    457                                    CurrentFnSym->getName());
    458     OutStreamer.EmitLabel(FakeStub);
    459   }
    460 
    461   // Emit pre-function debug and/or EH information.
    462   if (DE) {
    463     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
    464     DE->BeginFunction(MF);
    465   }
    466   if (DD) {
    467     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    468     DD->beginFunction(MF);
    469   }
    470 }
    471 
    472 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
    473 /// function.  This can be overridden by targets as required to do custom stuff.
    474 void AsmPrinter::EmitFunctionEntryLabel() {
    475   // The function label could have already been emitted if two symbols end up
    476   // conflicting due to asm renaming.  Detect this and emit an error.
    477   if (CurrentFnSym->isUndefined()) {
    478     OutStreamer.ForceCodeRegion();
    479     return OutStreamer.EmitLabel(CurrentFnSym);
    480   }
    481 
    482   report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
    483                      "' label emitted multiple times to assembly file");
    484 }
    485 
    486 
    487 /// EmitComments - Pretty-print comments for instructions.
    488 static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
    489   const MachineFunction *MF = MI.getParent()->getParent();
    490   const TargetMachine &TM = MF->getTarget();
    491 
    492   // Check for spills and reloads
    493   int FI;
    494 
    495   const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
    496 
    497   // We assume a single instruction only has a spill or reload, not
    498   // both.
    499   const MachineMemOperand *MMO;
    500   if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
    501     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
    502       MMO = *MI.memoperands_begin();
    503       CommentOS << MMO->getSize() << "-byte Reload\n";
    504     }
    505   } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
    506     if (FrameInfo->isSpillSlotObjectIndex(FI))
    507       CommentOS << MMO->getSize() << "-byte Folded Reload\n";
    508   } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
    509     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
    510       MMO = *MI.memoperands_begin();
    511       CommentOS << MMO->getSize() << "-byte Spill\n";
    512     }
    513   } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
    514     if (FrameInfo->isSpillSlotObjectIndex(FI))
    515       CommentOS << MMO->getSize() << "-byte Folded Spill\n";
    516   }
    517 
    518   // Check for spill-induced copies
    519   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
    520     CommentOS << " Reload Reuse\n";
    521 }
    522 
    523 /// EmitImplicitDef - This method emits the specified machine instruction
    524 /// that is an implicit def.
    525 static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
    526   unsigned RegNo = MI->getOperand(0).getReg();
    527   AP.OutStreamer.AddComment(Twine("implicit-def: ") +
    528                             AP.TM.getRegisterInfo()->getName(RegNo));
    529   AP.OutStreamer.AddBlankLine();
    530 }
    531 
    532 static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) {
    533   std::string Str = "kill:";
    534   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    535     const MachineOperand &Op = MI->getOperand(i);
    536     assert(Op.isReg() && "KILL instruction must have only register operands");
    537     Str += ' ';
    538     Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
    539     Str += (Op.isDef() ? "<def>" : "<kill>");
    540   }
    541   AP.OutStreamer.AddComment(Str);
    542   AP.OutStreamer.AddBlankLine();
    543 }
    544 
    545 /// EmitDebugValueComment - This method handles the target-independent form
    546 /// of DBG_VALUE, returning true if it was able to do so.  A false return
    547 /// means the target will need to handle MI in EmitInstruction.
    548 static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
    549   // This code handles only the 3-operand target-independent form.
    550   if (MI->getNumOperands() != 3)
    551     return false;
    552 
    553   SmallString<128> Str;
    554   raw_svector_ostream OS(Str);
    555   OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
    556 
    557   // cast away const; DIetc do not take const operands for some reason.
    558   DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
    559   if (V.getContext().isSubprogram())
    560     OS << DISubprogram(V.getContext()).getDisplayName() << ":";
    561   OS << V.getName() << " <- ";
    562 
    563   // Register or immediate value. Register 0 means undef.
    564   if (MI->getOperand(0).isFPImm()) {
    565     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
    566     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
    567       OS << (double)APF.convertToFloat();
    568     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
    569       OS << APF.convertToDouble();
    570     } else {
    571       // There is no good way to print long double.  Convert a copy to
    572       // double.  Ah well, it's only a comment.
    573       bool ignored;
    574       APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
    575                   &ignored);
    576       OS << "(long double) " << APF.convertToDouble();
    577     }
    578   } else if (MI->getOperand(0).isImm()) {
    579     OS << MI->getOperand(0).getImm();
    580   } else if (MI->getOperand(0).isCImm()) {
    581     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
    582   } else {
    583     assert(MI->getOperand(0).isReg() && "Unknown operand type");
    584     if (MI->getOperand(0).getReg() == 0) {
    585       // Suppress offset, it is not meaningful here.
    586       OS << "undef";
    587       // NOTE: Want this comment at start of line, don't emit with AddComment.
    588       AP.OutStreamer.EmitRawText(OS.str());
    589       return true;
    590     }
    591     OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
    592   }
    593 
    594   OS << '+' << MI->getOperand(1).getImm();
    595   // NOTE: Want this comment at start of line, don't emit with AddComment.
    596   AP.OutStreamer.EmitRawText(OS.str());
    597   return true;
    598 }
    599 
    600 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
    601   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
    602       MF->getFunction()->needsUnwindTableEntry())
    603     return CFI_M_EH;
    604 
    605   if (MMI->hasDebugInfo())
    606     return CFI_M_Debug;
    607 
    608   return CFI_M_None;
    609 }
    610 
    611 bool AsmPrinter::needsSEHMoves() {
    612   return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
    613     MF->getFunction()->needsUnwindTableEntry();
    614 }
    615 
    616 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
    617   MCSymbol *Label = MI.getOperand(0).getMCSymbol();
    618 
    619   if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
    620     return;
    621 
    622   if (needsCFIMoves() == CFI_M_None)
    623     return;
    624 
    625   if (MMI->getCompactUnwindEncoding() != 0)
    626     OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
    627 
    628   MachineModuleInfo &MMI = MF->getMMI();
    629   std::vector<MachineMove> &Moves = MMI.getFrameMoves();
    630   bool FoundOne = false;
    631   (void)FoundOne;
    632   for (std::vector<MachineMove>::iterator I = Moves.begin(),
    633          E = Moves.end(); I != E; ++I) {
    634     if (I->getLabel() == Label) {
    635       EmitCFIFrameMove(*I);
    636       FoundOne = true;
    637     }
    638   }
    639   assert(FoundOne);
    640 }
    641 
    642 /// EmitFunctionBody - This method emits the body and trailer for a
    643 /// function.
    644 void AsmPrinter::EmitFunctionBody() {
    645   // Emit target-specific gunk before the function body.
    646   EmitFunctionBodyStart();
    647 
    648   bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
    649 
    650   // Print out code for the function.
    651   bool HasAnyRealCode = false;
    652   const MachineInstr *LastMI = 0;
    653   for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
    654        I != E; ++I) {
    655     // Print a label for the basic block.
    656     EmitBasicBlockStart(I);
    657     for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
    658          II != IE; ++II) {
    659       LastMI = II;
    660 
    661       // Print the assembly for the instruction.
    662       if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
    663           !II->isDebugValue()) {
    664         HasAnyRealCode = true;
    665         ++EmittedInsts;
    666       }
    667 
    668       if (ShouldPrintDebugScopes) {
    669         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    670         DD->beginInstruction(II);
    671       }
    672 
    673       if (isVerbose())
    674         EmitComments(*II, OutStreamer.GetCommentOS());
    675 
    676       switch (II->getOpcode()) {
    677       case TargetOpcode::PROLOG_LABEL:
    678         emitPrologLabel(*II);
    679         break;
    680 
    681       case TargetOpcode::EH_LABEL:
    682       case TargetOpcode::GC_LABEL:
    683         OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
    684         break;
    685       case TargetOpcode::INLINEASM:
    686         EmitInlineAsm(II);
    687         break;
    688       case TargetOpcode::DBG_VALUE:
    689         if (isVerbose()) {
    690           if (!EmitDebugValueComment(II, *this))
    691             EmitInstruction(II);
    692         }
    693         break;
    694       case TargetOpcode::IMPLICIT_DEF:
    695         if (isVerbose()) EmitImplicitDef(II, *this);
    696         break;
    697       case TargetOpcode::KILL:
    698         if (isVerbose()) EmitKill(II, *this);
    699         break;
    700       default:
    701         if (!TM.hasMCUseLoc())
    702           MCLineEntry::Make(&OutStreamer, getCurrentSection());
    703 
    704         EmitInstruction(II);
    705         break;
    706       }
    707 
    708       if (ShouldPrintDebugScopes) {
    709         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    710         DD->endInstruction(II);
    711       }
    712     }
    713   }
    714 
    715   // If the last instruction was a prolog label, then we have a situation where
    716   // we emitted a prolog but no function body. This results in the ending prolog
    717   // label equaling the end of function label and an invalid "row" in the
    718   // FDE. We need to emit a noop in this situation so that the FDE's rows are
    719   // valid.
    720   bool RequiresNoop = LastMI && LastMI->isPrologLabel();
    721 
    722   // If the function is empty and the object file uses .subsections_via_symbols,
    723   // then we need to emit *something* to the function body to prevent the
    724   // labels from collapsing together.  Just emit a noop.
    725   if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
    726     MCInst Noop;
    727     TM.getInstrInfo()->getNoopForMachoTarget(Noop);
    728     if (Noop.getOpcode()) {
    729       OutStreamer.AddComment("avoids zero-length function");
    730       OutStreamer.EmitInstruction(Noop);
    731     } else  // Target not mc-ized yet.
    732       OutStreamer.EmitRawText(StringRef("\tnop\n"));
    733   }
    734 
    735   // Emit target-specific gunk after the function body.
    736   EmitFunctionBodyEnd();
    737 
    738   // If the target wants a .size directive for the size of the function, emit
    739   // it.
    740   if (MAI->hasDotTypeDotSizeDirective()) {
    741     // Create a symbol for the end of function, so we can get the size as
    742     // difference between the function label and the temp label.
    743     MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
    744     OutStreamer.EmitLabel(FnEndLabel);
    745 
    746     const MCExpr *SizeExp =
    747       MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
    748                               MCSymbolRefExpr::Create(CurrentFnSym, OutContext),
    749                               OutContext);
    750     OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
    751   }
    752 
    753   // Emit post-function debug information.
    754   if (DD) {
    755     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    756     DD->endFunction(MF);
    757   }
    758   if (DE) {
    759     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
    760     DE->EndFunction();
    761   }
    762   MMI->EndFunction();
    763 
    764   // Print out jump tables referenced by the function.
    765   EmitJumpTableInfo();
    766 
    767   OutStreamer.AddBlankLine();
    768 }
    769 
    770 /// getDebugValueLocation - Get location information encoded by DBG_VALUE
    771 /// operands.
    772 MachineLocation AsmPrinter::
    773 getDebugValueLocation(const MachineInstr *MI) const {
    774   // Target specific DBG_VALUE instructions are handled by each target.
    775   return MachineLocation();
    776 }
    777 
    778 /// EmitDwarfRegOp - Emit dwarf register operation.
    779 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
    780   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
    781   int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
    782 
    783   for (const unsigned *SR = TRI->getSuperRegisters(MLoc.getReg());
    784        *SR && Reg < 0; ++SR) {
    785     Reg = TRI->getDwarfRegNum(*SR, false);
    786     // FIXME: Get the bit range this register uses of the superregister
    787     // so that we can produce a DW_OP_bit_piece
    788   }
    789 
    790   // FIXME: Handle cases like a super register being encoded as
    791   // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
    792 
    793   // FIXME: We have no reasonable way of handling errors in here. The
    794   // caller might be in the middle of an dwarf expression. We should
    795   // probably assert that Reg >= 0 once debug info generation is more mature.
    796 
    797   if (int Offset =  MLoc.getOffset()) {
    798     if (Reg < 32) {
    799       OutStreamer.AddComment(
    800         dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
    801       EmitInt8(dwarf::DW_OP_breg0 + Reg);
    802     } else {
    803       OutStreamer.AddComment("DW_OP_bregx");
    804       EmitInt8(dwarf::DW_OP_bregx);
    805       OutStreamer.AddComment(Twine(Reg));
    806       EmitULEB128(Reg);
    807     }
    808     EmitSLEB128(Offset);
    809   } else {
    810     if (Reg < 32) {
    811       OutStreamer.AddComment(
    812         dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
    813       EmitInt8(dwarf::DW_OP_reg0 + Reg);
    814     } else {
    815       OutStreamer.AddComment("DW_OP_regx");
    816       EmitInt8(dwarf::DW_OP_regx);
    817       OutStreamer.AddComment(Twine(Reg));
    818       EmitULEB128(Reg);
    819     }
    820   }
    821 
    822   // FIXME: Produce a DW_OP_bit_piece if we used a superregister
    823 }
    824 
    825 bool AsmPrinter::doFinalization(Module &M) {
    826   // Emit global variables.
    827   for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
    828        I != E; ++I)
    829     EmitGlobalVariable(I);
    830 
    831   // Emit visibility info for declarations
    832   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
    833     const Function &F = *I;
    834     if (!F.isDeclaration())
    835       continue;
    836     GlobalValue::VisibilityTypes V = F.getVisibility();
    837     if (V == GlobalValue::DefaultVisibility)
    838       continue;
    839 
    840     MCSymbol *Name = Mang->getSymbol(&F);
    841     EmitVisibility(Name, V, false);
    842   }
    843 
    844   // Finalize debug and EH information.
    845   if (DE) {
    846     {
    847       NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
    848       DE->EndModule();
    849     }
    850     delete DE; DE = 0;
    851   }
    852   if (DD) {
    853     {
    854       NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
    855       DD->endModule();
    856     }
    857     delete DD; DD = 0;
    858   }
    859 
    860   // If the target wants to know about weak references, print them all.
    861   if (MAI->getWeakRefDirective()) {
    862     // FIXME: This is not lazy, it would be nice to only print weak references
    863     // to stuff that is actually used.  Note that doing so would require targets
    864     // to notice uses in operands (due to constant exprs etc).  This should
    865     // happen with the MC stuff eventually.
    866 
    867     // Print out module-level global variables here.
    868     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
    869          I != E; ++I) {
    870       if (!I->hasExternalWeakLinkage()) continue;
    871       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
    872     }
    873 
    874     for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
    875       if (!I->hasExternalWeakLinkage()) continue;
    876       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
    877     }
    878   }
    879 
    880   if (MAI->hasSetDirective()) {
    881     OutStreamer.AddBlankLine();
    882     for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
    883          I != E; ++I) {
    884       MCSymbol *Name = Mang->getSymbol(I);
    885 
    886       const GlobalValue *GV = I->getAliasedGlobal();
    887       MCSymbol *Target = Mang->getSymbol(GV);
    888 
    889       if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
    890         OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
    891       else if (I->hasWeakLinkage())
    892         OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
    893       else
    894         assert(I->hasLocalLinkage() && "Invalid alias linkage");
    895 
    896       EmitVisibility(Name, I->getVisibility());
    897 
    898       // Emit the directives as assignments aka .set:
    899       OutStreamer.EmitAssignment(Name,
    900                                  MCSymbolRefExpr::Create(Target, OutContext));
    901     }
    902   }
    903 
    904   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
    905   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
    906   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
    907     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
    908       MP->finishAssembly(*this);
    909 
    910   // If we don't have any trampolines, then we don't require stack memory
    911   // to be executable. Some targets have a directive to declare this.
    912   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
    913   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
    914     if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
    915       OutStreamer.SwitchSection(S);
    916 
    917   // Allow the target to emit any magic that it wants at the end of the file,
    918   // after everything else has gone out.
    919   EmitEndOfAsmFile(M);
    920 
    921   delete Mang; Mang = 0;
    922   MMI = 0;
    923 
    924   OutStreamer.Finish();
    925   return false;
    926 }
    927 
    928 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
    929   this->MF = &MF;
    930   // Get the function symbol.
    931   CurrentFnSym = Mang->getSymbol(MF.getFunction());
    932 
    933   if (isVerbose())
    934     LI = &getAnalysis<MachineLoopInfo>();
    935 }
    936 
    937 namespace {
    938   // SectionCPs - Keep track the alignment, constpool entries per Section.
    939   struct SectionCPs {
    940     const MCSection *S;
    941     unsigned Alignment;
    942     SmallVector<unsigned, 4> CPEs;
    943     SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
    944   };
    945 }
    946 
    947 /// EmitConstantPool - Print to the current output stream assembly
    948 /// representations of the constants in the constant pool MCP. This is
    949 /// used to print out constants which have been "spilled to memory" by
    950 /// the code generator.
    951 ///
    952 void AsmPrinter::EmitConstantPool() {
    953   const MachineConstantPool *MCP = MF->getConstantPool();
    954   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
    955   if (CP.empty()) return;
    956 
    957   // Calculate sections for constant pool entries. We collect entries to go into
    958   // the same section together to reduce amount of section switch statements.
    959   SmallVector<SectionCPs, 4> CPSections;
    960   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
    961     const MachineConstantPoolEntry &CPE = CP[i];
    962     unsigned Align = CPE.getAlignment();
    963 
    964     SectionKind Kind;
    965     switch (CPE.getRelocationInfo()) {
    966     default: llvm_unreachable("Unknown section kind");
    967     case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
    968     case 1:
    969       Kind = SectionKind::getReadOnlyWithRelLocal();
    970       break;
    971     case 0:
    972     switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
    973     case 4:  Kind = SectionKind::getMergeableConst4(); break;
    974     case 8:  Kind = SectionKind::getMergeableConst8(); break;
    975     case 16: Kind = SectionKind::getMergeableConst16();break;
    976     default: Kind = SectionKind::getMergeableConst(); break;
    977     }
    978     }
    979 
    980     const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
    981 
    982     // The number of sections are small, just do a linear search from the
    983     // last section to the first.
    984     bool Found = false;
    985     unsigned SecIdx = CPSections.size();
    986     while (SecIdx != 0) {
    987       if (CPSections[--SecIdx].S == S) {
    988         Found = true;
    989         break;
    990       }
    991     }
    992     if (!Found) {
    993       SecIdx = CPSections.size();
    994       CPSections.push_back(SectionCPs(S, Align));
    995     }
    996 
    997     if (Align > CPSections[SecIdx].Alignment)
    998       CPSections[SecIdx].Alignment = Align;
    999     CPSections[SecIdx].CPEs.push_back(i);
   1000   }
   1001 
   1002   // Now print stuff into the calculated sections.
   1003   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
   1004     OutStreamer.SwitchSection(CPSections[i].S);
   1005     EmitAlignment(Log2_32(CPSections[i].Alignment));
   1006 
   1007     unsigned Offset = 0;
   1008     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
   1009       unsigned CPI = CPSections[i].CPEs[j];
   1010       MachineConstantPoolEntry CPE = CP[CPI];
   1011 
   1012       // Emit inter-object padding for alignment.
   1013       unsigned AlignMask = CPE.getAlignment() - 1;
   1014       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
   1015       OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
   1016 
   1017       Type *Ty = CPE.getType();
   1018       Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
   1019       OutStreamer.EmitLabel(GetCPISymbol(CPI));
   1020 
   1021       if (CPE.isMachineConstantPoolEntry())
   1022         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
   1023       else
   1024         EmitGlobalConstant(CPE.Val.ConstVal);
   1025     }
   1026   }
   1027 }
   1028 
   1029 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
   1030 /// by the current function to the current output stream.
   1031 ///
   1032 void AsmPrinter::EmitJumpTableInfo() {
   1033   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
   1034   if (MJTI == 0) return;
   1035   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
   1036   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1037   if (JT.empty()) return;
   1038 
   1039   // Pick the directive to use to print the jump table entries, and switch to
   1040   // the appropriate section.
   1041   const Function *F = MF->getFunction();
   1042   bool JTInDiffSection = false;
   1043   if (// In PIC mode, we need to emit the jump table to the same section as the
   1044       // function body itself, otherwise the label differences won't make sense.
   1045       // FIXME: Need a better predicate for this: what about custom entries?
   1046       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
   1047       // We should also do if the section name is NULL or function is declared
   1048       // in discardable section
   1049       // FIXME: this isn't the right predicate, should be based on the MCSection
   1050       // for the function.
   1051       F->isWeakForLinker()) {
   1052     OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
   1053   } else {
   1054     // Otherwise, drop it in the readonly section.
   1055     const MCSection *ReadOnlySection =
   1056       getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
   1057     OutStreamer.SwitchSection(ReadOnlySection);
   1058     JTInDiffSection = true;
   1059   }
   1060 
   1061   EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
   1062 
   1063   // If we know the form of the jump table, go ahead and tag it as such.
   1064   if (!JTInDiffSection) {
   1065     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32) {
   1066       OutStreamer.EmitJumpTable32Region();
   1067     } else {
   1068       OutStreamer.EmitDataRegion();
   1069     }
   1070   }
   1071 
   1072   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
   1073     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1074 
   1075     // If this jump table was deleted, ignore it.
   1076     if (JTBBs.empty()) continue;
   1077 
   1078     // For the EK_LabelDifference32 entry, if the target supports .set, emit a
   1079     // .set directive for each unique entry.  This reduces the number of
   1080     // relocations the assembler will generate for the jump table.
   1081     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
   1082         MAI->hasSetDirective()) {
   1083       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
   1084       const TargetLowering *TLI = TM.getTargetLowering();
   1085       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
   1086       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
   1087         const MachineBasicBlock *MBB = JTBBs[ii];
   1088         if (!EmittedSets.insert(MBB)) continue;
   1089 
   1090         // .set LJTSet, LBB32-base
   1091         const MCExpr *LHS =
   1092           MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1093         OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
   1094                                 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
   1095       }
   1096     }
   1097 
   1098     // On some targets (e.g. Darwin) we want to emit two consecutive labels
   1099     // before each jump table.  The first label is never referenced, but tells
   1100     // the assembler and linker the extents of the jump table object.  The
   1101     // second label is actually referenced by the code.
   1102     if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
   1103       // FIXME: This doesn't have to have any specific name, just any randomly
   1104       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
   1105       OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
   1106 
   1107     OutStreamer.EmitLabel(GetJTISymbol(JTI));
   1108 
   1109     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
   1110       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
   1111   }
   1112 }
   1113 
   1114 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
   1115 /// current stream.
   1116 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
   1117                                     const MachineBasicBlock *MBB,
   1118                                     unsigned UID) const {
   1119   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
   1120   const MCExpr *Value = 0;
   1121   switch (MJTI->getEntryKind()) {
   1122   case MachineJumpTableInfo::EK_Inline:
   1123     llvm_unreachable("Cannot emit EK_Inline jump table entry"); break;
   1124   case MachineJumpTableInfo::EK_Custom32:
   1125     Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
   1126                                                               OutContext);
   1127     break;
   1128   case MachineJumpTableInfo::EK_BlockAddress:
   1129     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
   1130     //     .word LBB123
   1131     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1132     break;
   1133   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
   1134     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
   1135     // with a relocation as gp-relative, e.g.:
   1136     //     .gprel32 LBB123
   1137     MCSymbol *MBBSym = MBB->getSymbol();
   1138     OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
   1139     return;
   1140   }
   1141 
   1142   case MachineJumpTableInfo::EK_LabelDifference32: {
   1143     // EK_LabelDifference32 - Each entry is the address of the block minus
   1144     // the address of the jump table.  This is used for PIC jump tables where
   1145     // gprel32 is not supported.  e.g.:
   1146     //      .word LBB123 - LJTI1_2
   1147     // If the .set directive is supported, this is emitted as:
   1148     //      .set L4_5_set_123, LBB123 - LJTI1_2
   1149     //      .word L4_5_set_123
   1150 
   1151     // If we have emitted set directives for the jump table entries, print
   1152     // them rather than the entries themselves.  If we're emitting PIC, then
   1153     // emit the table entries as differences between two text section labels.
   1154     if (MAI->hasSetDirective()) {
   1155       // If we used .set, reference the .set's symbol.
   1156       Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
   1157                                       OutContext);
   1158       break;
   1159     }
   1160     // Otherwise, use the difference as the jump table entry.
   1161     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
   1162     const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
   1163     Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
   1164     break;
   1165   }
   1166   }
   1167 
   1168   assert(Value && "Unknown entry kind!");
   1169 
   1170   unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
   1171   OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
   1172 }
   1173 
   1174 
   1175 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
   1176 /// special global used by LLVM.  If so, emit it and return true, otherwise
   1177 /// do nothing and return false.
   1178 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
   1179   if (GV->getName() == "llvm.used") {
   1180     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
   1181       EmitLLVMUsedList(GV->getInitializer());
   1182     return true;
   1183   }
   1184 
   1185   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
   1186   if (GV->getSection() == "llvm.metadata" ||
   1187       GV->hasAvailableExternallyLinkage())
   1188     return true;
   1189 
   1190   if (!GV->hasAppendingLinkage()) return false;
   1191 
   1192   assert(GV->hasInitializer() && "Not a special LLVM global!");
   1193 
   1194   const TargetData *TD = TM.getTargetData();
   1195   unsigned Align = Log2_32(TD->getPointerPrefAlignment());
   1196   if (GV->getName() == "llvm.global_ctors") {
   1197     OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection());
   1198     EmitAlignment(Align);
   1199     EmitXXStructorList(GV->getInitializer());
   1200 
   1201     if (TM.getRelocationModel() == Reloc::Static &&
   1202         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
   1203       StringRef Sym(".constructors_used");
   1204       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
   1205                                       MCSA_Reference);
   1206     }
   1207     return true;
   1208   }
   1209 
   1210   if (GV->getName() == "llvm.global_dtors") {
   1211     OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection());
   1212     EmitAlignment(Align);
   1213     EmitXXStructorList(GV->getInitializer());
   1214 
   1215     if (TM.getRelocationModel() == Reloc::Static &&
   1216         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
   1217       StringRef Sym(".destructors_used");
   1218       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
   1219                                       MCSA_Reference);
   1220     }
   1221     return true;
   1222   }
   1223 
   1224   return false;
   1225 }
   1226 
   1227 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
   1228 /// global in the specified llvm.used list for which emitUsedDirectiveFor
   1229 /// is true, as being used with this directive.
   1230 void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
   1231   // Should be an array of 'i8*'.
   1232   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
   1233   if (InitList == 0) return;
   1234 
   1235   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
   1236     const GlobalValue *GV =
   1237       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
   1238     if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
   1239       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
   1240   }
   1241 }
   1242 
   1243 typedef std::pair<int, Constant*> Structor;
   1244 
   1245 static bool priority_order(const Structor& lhs, const Structor& rhs) {
   1246   return lhs.first < rhs.first;
   1247 }
   1248 
   1249 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
   1250 /// priority.
   1251 void AsmPrinter::EmitXXStructorList(const Constant *List) {
   1252   // Should be an array of '{ int, void ()* }' structs.  The first value is the
   1253   // init priority.
   1254   if (!isa<ConstantArray>(List)) return;
   1255 
   1256   // Sanity check the structors list.
   1257   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
   1258   if (!InitList) return; // Not an array!
   1259   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
   1260   if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
   1261   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
   1262       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
   1263 
   1264   // Gather the structors in a form that's convenient for sorting by priority.
   1265   SmallVector<Structor, 8> Structors;
   1266   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
   1267     ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
   1268     if (!CS) continue; // Malformed.
   1269     if (CS->getOperand(1)->isNullValue())
   1270       break;  // Found a null terminator, skip the rest.
   1271     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
   1272     if (!Priority) continue; // Malformed.
   1273     Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
   1274                                        CS->getOperand(1)));
   1275   }
   1276 
   1277   // Emit the function pointers in reverse priority order.
   1278   switch (MAI->getStructorOutputOrder()) {
   1279   case Structors::None:
   1280     break;
   1281   case Structors::PriorityOrder:
   1282     std::sort(Structors.begin(), Structors.end(), priority_order);
   1283     break;
   1284   case Structors::ReversePriorityOrder:
   1285     std::sort(Structors.rbegin(), Structors.rend(), priority_order);
   1286     break;
   1287   }
   1288   for (unsigned i = 0, e = Structors.size(); i != e; ++i)
   1289     EmitGlobalConstant(Structors[i].second);
   1290 }
   1291 
   1292 //===--------------------------------------------------------------------===//
   1293 // Emission and print routines
   1294 //
   1295 
   1296 /// EmitInt8 - Emit a byte directive and value.
   1297 ///
   1298 void AsmPrinter::EmitInt8(int Value) const {
   1299   OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
   1300 }
   1301 
   1302 /// EmitInt16 - Emit a short directive and value.
   1303 ///
   1304 void AsmPrinter::EmitInt16(int Value) const {
   1305   OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
   1306 }
   1307 
   1308 /// EmitInt32 - Emit a long directive and value.
   1309 ///
   1310 void AsmPrinter::EmitInt32(int Value) const {
   1311   OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
   1312 }
   1313 
   1314 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
   1315 /// in bytes of the directive is specified by Size and Hi/Lo specify the
   1316 /// labels.  This implicitly uses .set if it is available.
   1317 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
   1318                                      unsigned Size) const {
   1319   // Get the Hi-Lo expression.
   1320   const MCExpr *Diff =
   1321     MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
   1322                             MCSymbolRefExpr::Create(Lo, OutContext),
   1323                             OutContext);
   1324 
   1325   if (!MAI->hasSetDirective()) {
   1326     OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
   1327     return;
   1328   }
   1329 
   1330   // Otherwise, emit with .set (aka assignment).
   1331   MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
   1332   OutStreamer.EmitAssignment(SetLabel, Diff);
   1333   OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
   1334 }
   1335 
   1336 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
   1337 /// where the size in bytes of the directive is specified by Size and Hi/Lo
   1338 /// specify the labels.  This implicitly uses .set if it is available.
   1339 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
   1340                                            const MCSymbol *Lo, unsigned Size)
   1341   const {
   1342 
   1343   // Emit Hi+Offset - Lo
   1344   // Get the Hi+Offset expression.
   1345   const MCExpr *Plus =
   1346     MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
   1347                             MCConstantExpr::Create(Offset, OutContext),
   1348                             OutContext);
   1349 
   1350   // Get the Hi+Offset-Lo expression.
   1351   const MCExpr *Diff =
   1352     MCBinaryExpr::CreateSub(Plus,
   1353                             MCSymbolRefExpr::Create(Lo, OutContext),
   1354                             OutContext);
   1355 
   1356   if (!MAI->hasSetDirective())
   1357     OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
   1358   else {
   1359     // Otherwise, emit with .set (aka assignment).
   1360     MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
   1361     OutStreamer.EmitAssignment(SetLabel, Diff);
   1362     OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
   1363   }
   1364 }
   1365 
   1366 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
   1367 /// where the size in bytes of the directive is specified by Size and Label
   1368 /// specifies the label.  This implicitly uses .set if it is available.
   1369 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
   1370                                       unsigned Size)
   1371   const {
   1372 
   1373   // Emit Label+Offset
   1374   const MCExpr *Plus =
   1375     MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext),
   1376                             MCConstantExpr::Create(Offset, OutContext),
   1377                             OutContext);
   1378 
   1379   OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/);
   1380 }
   1381 
   1382 
   1383 //===----------------------------------------------------------------------===//
   1384 
   1385 // EmitAlignment - Emit an alignment directive to the specified power of
   1386 // two boundary.  For example, if you pass in 3 here, you will get an 8
   1387 // byte alignment.  If a global value is specified, and if that global has
   1388 // an explicit alignment requested, it will override the alignment request
   1389 // if required for correctness.
   1390 //
   1391 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
   1392   if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
   1393 
   1394   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
   1395 
   1396   if (getCurrentSection()->getKind().isText())
   1397     OutStreamer.EmitCodeAlignment(1 << NumBits);
   1398   else
   1399     OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
   1400 }
   1401 
   1402 //===----------------------------------------------------------------------===//
   1403 // Constant emission.
   1404 //===----------------------------------------------------------------------===//
   1405 
   1406 /// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
   1407 ///
   1408 static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) {
   1409   MCContext &Ctx = AP.OutContext;
   1410 
   1411   if (CV->isNullValue() || isa<UndefValue>(CV))
   1412     return MCConstantExpr::Create(0, Ctx);
   1413 
   1414   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
   1415     return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
   1416 
   1417   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
   1418     return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
   1419 
   1420   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
   1421     return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
   1422 
   1423   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
   1424   if (CE == 0) {
   1425     llvm_unreachable("Unknown constant value to lower!");
   1426     return MCConstantExpr::Create(0, Ctx);
   1427   }
   1428 
   1429   switch (CE->getOpcode()) {
   1430   default:
   1431     // If the code isn't optimized, there may be outstanding folding
   1432     // opportunities. Attempt to fold the expression using TargetData as a
   1433     // last resort before giving up.
   1434     if (Constant *C =
   1435           ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
   1436       if (C != CE)
   1437         return LowerConstant(C, AP);
   1438 
   1439     // Otherwise report the problem to the user.
   1440     {
   1441       std::string S;
   1442       raw_string_ostream OS(S);
   1443       OS << "Unsupported expression in static initializer: ";
   1444       WriteAsOperand(OS, CE, /*PrintType=*/false,
   1445                      !AP.MF ? 0 : AP.MF->getFunction()->getParent());
   1446       report_fatal_error(OS.str());
   1447     }
   1448     return MCConstantExpr::Create(0, Ctx);
   1449   case Instruction::GetElementPtr: {
   1450     const TargetData &TD = *AP.TM.getTargetData();
   1451     // Generate a symbolic expression for the byte address
   1452     const Constant *PtrVal = CE->getOperand(0);
   1453     SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
   1454     int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
   1455 
   1456     const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
   1457     if (Offset == 0)
   1458       return Base;
   1459 
   1460     // Truncate/sext the offset to the pointer size.
   1461     if (TD.getPointerSizeInBits() != 64) {
   1462       int SExtAmount = 64-TD.getPointerSizeInBits();
   1463       Offset = (Offset << SExtAmount) >> SExtAmount;
   1464     }
   1465 
   1466     return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
   1467                                    Ctx);
   1468   }
   1469 
   1470   case Instruction::Trunc:
   1471     // We emit the value and depend on the assembler to truncate the generated
   1472     // expression properly.  This is important for differences between
   1473     // blockaddress labels.  Since the two labels are in the same function, it
   1474     // is reasonable to treat their delta as a 32-bit value.
   1475     // FALL THROUGH.
   1476   case Instruction::BitCast:
   1477     return LowerConstant(CE->getOperand(0), AP);
   1478 
   1479   case Instruction::IntToPtr: {
   1480     const TargetData &TD = *AP.TM.getTargetData();
   1481     // Handle casts to pointers by changing them into casts to the appropriate
   1482     // integer type.  This promotes constant folding and simplifies this code.
   1483     Constant *Op = CE->getOperand(0);
   1484     Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
   1485                                       false/*ZExt*/);
   1486     return LowerConstant(Op, AP);
   1487   }
   1488 
   1489   case Instruction::PtrToInt: {
   1490     const TargetData &TD = *AP.TM.getTargetData();
   1491     // Support only foldable casts to/from pointers that can be eliminated by
   1492     // changing the pointer to the appropriately sized integer type.
   1493     Constant *Op = CE->getOperand(0);
   1494     Type *Ty = CE->getType();
   1495 
   1496     const MCExpr *OpExpr = LowerConstant(Op, AP);
   1497 
   1498     // We can emit the pointer value into this slot if the slot is an
   1499     // integer slot equal to the size of the pointer.
   1500     if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
   1501       return OpExpr;
   1502 
   1503     // Otherwise the pointer is smaller than the resultant integer, mask off
   1504     // the high bits so we are sure to get a proper truncation if the input is
   1505     // a constant expr.
   1506     unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
   1507     const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
   1508     return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
   1509   }
   1510 
   1511   // The MC library also has a right-shift operator, but it isn't consistently
   1512   // signed or unsigned between different targets.
   1513   case Instruction::Add:
   1514   case Instruction::Sub:
   1515   case Instruction::Mul:
   1516   case Instruction::SDiv:
   1517   case Instruction::SRem:
   1518   case Instruction::Shl:
   1519   case Instruction::And:
   1520   case Instruction::Or:
   1521   case Instruction::Xor: {
   1522     const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
   1523     const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
   1524     switch (CE->getOpcode()) {
   1525     default: llvm_unreachable("Unknown binary operator constant cast expr");
   1526     case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
   1527     case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
   1528     case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
   1529     case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
   1530     case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
   1531     case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
   1532     case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
   1533     case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
   1534     case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
   1535     }
   1536   }
   1537   }
   1538 }
   1539 
   1540 static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
   1541                                    AsmPrinter &AP);
   1542 
   1543 /// isRepeatedByteSequence - Determine whether the given value is
   1544 /// composed of a repeated sequence of identical bytes and return the
   1545 /// byte value.  If it is not a repeated sequence, return -1.
   1546 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
   1547 
   1548   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
   1549     if (CI->getBitWidth() > 64) return -1;
   1550 
   1551     uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType());
   1552     uint64_t Value = CI->getZExtValue();
   1553 
   1554     // Make sure the constant is at least 8 bits long and has a power
   1555     // of 2 bit width.  This guarantees the constant bit width is
   1556     // always a multiple of 8 bits, avoiding issues with padding out
   1557     // to Size and other such corner cases.
   1558     if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
   1559 
   1560     uint8_t Byte = static_cast<uint8_t>(Value);
   1561 
   1562     for (unsigned i = 1; i < Size; ++i) {
   1563       Value >>= 8;
   1564       if (static_cast<uint8_t>(Value) != Byte) return -1;
   1565     }
   1566     return Byte;
   1567   }
   1568   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
   1569     // Make sure all array elements are sequences of the same repeated
   1570     // byte.
   1571     if (CA->getNumOperands() == 0) return -1;
   1572 
   1573     int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
   1574     if (Byte == -1) return -1;
   1575 
   1576     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
   1577       int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
   1578       if (ThisByte == -1) return -1;
   1579       if (Byte != ThisByte) return -1;
   1580     }
   1581     return Byte;
   1582   }
   1583 
   1584   return -1;
   1585 }
   1586 
   1587 static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
   1588                                     AsmPrinter &AP) {
   1589   if (AddrSpace != 0 || !CA->isString()) {
   1590     // Not a string.  Print the values in successive locations.
   1591 
   1592     // See if we can aggregate some values.  Make sure it can be
   1593     // represented as a series of bytes of the constant value.
   1594     int Value = isRepeatedByteSequence(CA, AP.TM);
   1595 
   1596     if (Value != -1) {
   1597       uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType());
   1598       AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
   1599     }
   1600     else {
   1601       for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
   1602         EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
   1603     }
   1604     return;
   1605   }
   1606 
   1607   // Otherwise, it can be emitted as .ascii.
   1608   SmallVector<char, 128> TmpVec;
   1609   TmpVec.reserve(CA->getNumOperands());
   1610   for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
   1611     TmpVec.push_back(cast<ConstantInt>(CA->getOperand(i))->getZExtValue());
   1612 
   1613   AP.OutStreamer.EmitBytes(StringRef(TmpVec.data(), TmpVec.size()), AddrSpace);
   1614 }
   1615 
   1616 static void EmitGlobalConstantVector(const ConstantVector *CV,
   1617                                      unsigned AddrSpace, AsmPrinter &AP) {
   1618   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
   1619     EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
   1620 
   1621   const TargetData &TD = *AP.TM.getTargetData();
   1622   unsigned Size = TD.getTypeAllocSize(CV->getType());
   1623   unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
   1624                          CV->getType()->getNumElements();
   1625   if (unsigned Padding = Size - EmittedSize)
   1626     AP.OutStreamer.EmitZeros(Padding, AddrSpace);
   1627 }
   1628 
   1629 static void EmitGlobalConstantStruct(const ConstantStruct *CS,
   1630                                      unsigned AddrSpace, AsmPrinter &AP) {
   1631   // Print the fields in successive locations. Pad to align if needed!
   1632   const TargetData *TD = AP.TM.getTargetData();
   1633   unsigned Size = TD->getTypeAllocSize(CS->getType());
   1634   const StructLayout *Layout = TD->getStructLayout(CS->getType());
   1635   uint64_t SizeSoFar = 0;
   1636   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
   1637     const Constant *Field = CS->getOperand(i);
   1638 
   1639     // Check if padding is needed and insert one or more 0s.
   1640     uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
   1641     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
   1642                         - Layout->getElementOffset(i)) - FieldSize;
   1643     SizeSoFar += FieldSize + PadSize;
   1644 
   1645     // Now print the actual field value.
   1646     EmitGlobalConstantImpl(Field, AddrSpace, AP);
   1647 
   1648     // Insert padding - this may include padding to increase the size of the
   1649     // current field up to the ABI size (if the struct is not packed) as well
   1650     // as padding to ensure that the next field starts at the right offset.
   1651     AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
   1652   }
   1653   assert(SizeSoFar == Layout->getSizeInBytes() &&
   1654          "Layout of constant struct may be incorrect!");
   1655 }
   1656 
   1657 static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
   1658                                  AsmPrinter &AP) {
   1659   // FP Constants are printed as integer constants to avoid losing
   1660   // precision.
   1661   if (CFP->getType()->isDoubleTy()) {
   1662     if (AP.isVerbose()) {
   1663       double Val = CFP->getValueAPF().convertToDouble();
   1664       AP.OutStreamer.GetCommentOS() << "double " << Val << '\n';
   1665     }
   1666 
   1667     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
   1668     AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
   1669     return;
   1670   }
   1671 
   1672   if (CFP->getType()->isFloatTy()) {
   1673     if (AP.isVerbose()) {
   1674       float Val = CFP->getValueAPF().convertToFloat();
   1675       AP.OutStreamer.GetCommentOS() << "float " << Val << '\n';
   1676     }
   1677     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
   1678     AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
   1679     return;
   1680   }
   1681 
   1682   if (CFP->getType()->isX86_FP80Ty()) {
   1683     // all long double variants are printed as hex
   1684     // API needed to prevent premature destruction
   1685     APInt API = CFP->getValueAPF().bitcastToAPInt();
   1686     const uint64_t *p = API.getRawData();
   1687     if (AP.isVerbose()) {
   1688       // Convert to double so we can print the approximate val as a comment.
   1689       APFloat DoubleVal = CFP->getValueAPF();
   1690       bool ignored;
   1691       DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
   1692                         &ignored);
   1693       AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
   1694         << DoubleVal.convertToDouble() << '\n';
   1695     }
   1696 
   1697     if (AP.TM.getTargetData()->isBigEndian()) {
   1698       AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
   1699       AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
   1700     } else {
   1701       AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
   1702       AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
   1703     }
   1704 
   1705     // Emit the tail padding for the long double.
   1706     const TargetData &TD = *AP.TM.getTargetData();
   1707     AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
   1708                              TD.getTypeStoreSize(CFP->getType()), AddrSpace);
   1709     return;
   1710   }
   1711 
   1712   assert(CFP->getType()->isPPC_FP128Ty() &&
   1713          "Floating point constant type not handled");
   1714   // All long double variants are printed as hex
   1715   // API needed to prevent premature destruction.
   1716   APInt API = CFP->getValueAPF().bitcastToAPInt();
   1717   const uint64_t *p = API.getRawData();
   1718   if (AP.TM.getTargetData()->isBigEndian()) {
   1719     AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
   1720     AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
   1721   } else {
   1722     AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
   1723     AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
   1724   }
   1725 }
   1726 
   1727 static void EmitGlobalConstantLargeInt(const ConstantInt *CI,
   1728                                        unsigned AddrSpace, AsmPrinter &AP) {
   1729   const TargetData *TD = AP.TM.getTargetData();
   1730   unsigned BitWidth = CI->getBitWidth();
   1731   assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
   1732 
   1733   // We don't expect assemblers to support integer data directives
   1734   // for more than 64 bits, so we emit the data in at most 64-bit
   1735   // quantities at a time.
   1736   const uint64_t *RawData = CI->getValue().getRawData();
   1737   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
   1738     uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
   1739     AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
   1740   }
   1741 }
   1742 
   1743 static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
   1744                                    AsmPrinter &AP) {
   1745   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) {
   1746     uint64_t Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
   1747     return AP.OutStreamer.EmitZeros(Size, AddrSpace);
   1748   }
   1749 
   1750   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
   1751     unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
   1752     switch (Size) {
   1753     case 1:
   1754     case 2:
   1755     case 4:
   1756     case 8:
   1757       if (AP.isVerbose())
   1758         AP.OutStreamer.GetCommentOS() << format("0x%llx\n", CI->getZExtValue());
   1759       AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
   1760       return;
   1761     default:
   1762       EmitGlobalConstantLargeInt(CI, AddrSpace, AP);
   1763       return;
   1764     }
   1765   }
   1766 
   1767   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
   1768     return EmitGlobalConstantArray(CVA, AddrSpace, AP);
   1769 
   1770   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
   1771     return EmitGlobalConstantStruct(CVS, AddrSpace, AP);
   1772 
   1773   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
   1774     return EmitGlobalConstantFP(CFP, AddrSpace, AP);
   1775 
   1776   if (isa<ConstantPointerNull>(CV)) {
   1777     unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
   1778     AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
   1779     return;
   1780   }
   1781 
   1782   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
   1783     return EmitGlobalConstantVector(V, AddrSpace, AP);
   1784 
   1785   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
   1786   // thread the streamer with EmitValue.
   1787   AP.OutStreamer.EmitValue(LowerConstant(CV, AP),
   1788                          AP.TM.getTargetData()->getTypeAllocSize(CV->getType()),
   1789                            AddrSpace);
   1790 }
   1791 
   1792 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
   1793 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
   1794   uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
   1795   if (Size)
   1796     EmitGlobalConstantImpl(CV, AddrSpace, *this);
   1797   else if (MAI->hasSubsectionsViaSymbols()) {
   1798     // If the global has zero size, emit a single byte so that two labels don't
   1799     // look like they are at the same location.
   1800     OutStreamer.EmitIntValue(0, 1, AddrSpace);
   1801   }
   1802 }
   1803 
   1804 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
   1805   // Target doesn't support this yet!
   1806   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
   1807 }
   1808 
   1809 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
   1810   if (Offset > 0)
   1811     OS << '+' << Offset;
   1812   else if (Offset < 0)
   1813     OS << Offset;
   1814 }
   1815 
   1816 //===----------------------------------------------------------------------===//
   1817 // Symbol Lowering Routines.
   1818 //===----------------------------------------------------------------------===//
   1819 
   1820 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler
   1821 /// temporary label with the specified stem and unique ID.
   1822 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
   1823   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
   1824                                       Name + Twine(ID));
   1825 }
   1826 
   1827 /// GetTempSymbol - Return an assembler temporary label with the specified
   1828 /// stem.
   1829 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
   1830   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
   1831                                       Name);
   1832 }
   1833 
   1834 
   1835 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
   1836   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
   1837 }
   1838 
   1839 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
   1840   return MMI->getAddrLabelSymbol(BB);
   1841 }
   1842 
   1843 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
   1844 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
   1845   return OutContext.GetOrCreateSymbol
   1846     (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
   1847      + "_" + Twine(CPID));
   1848 }
   1849 
   1850 /// GetJTISymbol - Return the symbol for the specified jump table entry.
   1851 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
   1852   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
   1853 }
   1854 
   1855 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
   1856 /// FIXME: privatize to AsmPrinter.
   1857 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
   1858   return OutContext.GetOrCreateSymbol
   1859   (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
   1860    Twine(UID) + "_set_" + Twine(MBBID));
   1861 }
   1862 
   1863 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
   1864 /// global value name as its base, with the specified suffix, and where the
   1865 /// symbol is forced to have private linkage if ForcePrivate is true.
   1866 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
   1867                                                    StringRef Suffix,
   1868                                                    bool ForcePrivate) const {
   1869   SmallString<60> NameStr;
   1870   Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
   1871   NameStr.append(Suffix.begin(), Suffix.end());
   1872   return OutContext.GetOrCreateSymbol(NameStr.str());
   1873 }
   1874 
   1875 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
   1876 /// ExternalSymbol.
   1877 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
   1878   SmallString<60> NameStr;
   1879   Mang->getNameWithPrefix(NameStr, Sym);
   1880   return OutContext.GetOrCreateSymbol(NameStr.str());
   1881 }
   1882 
   1883 
   1884 
   1885 /// PrintParentLoopComment - Print comments about parent loops of this one.
   1886 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
   1887                                    unsigned FunctionNumber) {
   1888   if (Loop == 0) return;
   1889   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
   1890   OS.indent(Loop->getLoopDepth()*2)
   1891     << "Parent Loop BB" << FunctionNumber << "_"
   1892     << Loop->getHeader()->getNumber()
   1893     << " Depth=" << Loop->getLoopDepth() << '\n';
   1894 }
   1895 
   1896 
   1897 /// PrintChildLoopComment - Print comments about child loops within
   1898 /// the loop for this basic block, with nesting.
   1899 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
   1900                                   unsigned FunctionNumber) {
   1901   // Add child loop information
   1902   for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
   1903     OS.indent((*CL)->getLoopDepth()*2)
   1904       << "Child Loop BB" << FunctionNumber << "_"
   1905       << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
   1906       << '\n';
   1907     PrintChildLoopComment(OS, *CL, FunctionNumber);
   1908   }
   1909 }
   1910 
   1911 /// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks.
   1912 static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB,
   1913                                        const MachineLoopInfo *LI,
   1914                                        const AsmPrinter &AP) {
   1915   // Add loop depth information
   1916   const MachineLoop *Loop = LI->getLoopFor(&MBB);
   1917   if (Loop == 0) return;
   1918 
   1919   MachineBasicBlock *Header = Loop->getHeader();
   1920   assert(Header && "No header for loop");
   1921 
   1922   // If this block is not a loop header, just print out what is the loop header
   1923   // and return.
   1924   if (Header != &MBB) {
   1925     AP.OutStreamer.AddComment("  in Loop: Header=BB" +
   1926                               Twine(AP.getFunctionNumber())+"_" +
   1927                               Twine(Loop->getHeader()->getNumber())+
   1928                               " Depth="+Twine(Loop->getLoopDepth()));
   1929     return;
   1930   }
   1931 
   1932   // Otherwise, it is a loop header.  Print out information about child and
   1933   // parent loops.
   1934   raw_ostream &OS = AP.OutStreamer.GetCommentOS();
   1935 
   1936   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
   1937 
   1938   OS << "=>";
   1939   OS.indent(Loop->getLoopDepth()*2-2);
   1940 
   1941   OS << "This ";
   1942   if (Loop->empty())
   1943     OS << "Inner ";
   1944   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
   1945 
   1946   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
   1947 }
   1948 
   1949 
   1950 /// EmitBasicBlockStart - This method prints the label for the specified
   1951 /// MachineBasicBlock, an alignment (if present) and a comment describing
   1952 /// it if appropriate.
   1953 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
   1954   // Emit an alignment directive for this block, if needed.
   1955   if (unsigned Align = MBB->getAlignment())
   1956     EmitAlignment(Log2_32(Align));
   1957 
   1958   // If the block has its address taken, emit any labels that were used to
   1959   // reference the block.  It is possible that there is more than one label
   1960   // here, because multiple LLVM BB's may have been RAUW'd to this block after
   1961   // the references were generated.
   1962   if (MBB->hasAddressTaken()) {
   1963     const BasicBlock *BB = MBB->getBasicBlock();
   1964     if (isVerbose())
   1965       OutStreamer.AddComment("Block address taken");
   1966 
   1967     std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
   1968 
   1969     for (unsigned i = 0, e = Syms.size(); i != e; ++i)
   1970       OutStreamer.EmitLabel(Syms[i]);
   1971   }
   1972 
   1973   // Print the main label for the block.
   1974   if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
   1975     if (isVerbose() && OutStreamer.hasRawTextSupport()) {
   1976       if (const BasicBlock *BB = MBB->getBasicBlock())
   1977         if (BB->hasName())
   1978           OutStreamer.AddComment("%" + BB->getName());
   1979 
   1980       EmitBasicBlockLoopComments(*MBB, LI, *this);
   1981 
   1982       // NOTE: Want this comment at start of line, don't emit with AddComment.
   1983       OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
   1984                               Twine(MBB->getNumber()) + ":");
   1985     }
   1986   } else {
   1987     if (isVerbose()) {
   1988       if (const BasicBlock *BB = MBB->getBasicBlock())
   1989         if (BB->hasName())
   1990           OutStreamer.AddComment("%" + BB->getName());
   1991       EmitBasicBlockLoopComments(*MBB, LI, *this);
   1992     }
   1993 
   1994     OutStreamer.EmitLabel(MBB->getSymbol());
   1995   }
   1996 }
   1997 
   1998 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
   1999                                 bool IsDefinition) const {
   2000   MCSymbolAttr Attr = MCSA_Invalid;
   2001 
   2002   switch (Visibility) {
   2003   default: break;
   2004   case GlobalValue::HiddenVisibility:
   2005     if (IsDefinition)
   2006       Attr = MAI->getHiddenVisibilityAttr();
   2007     else
   2008       Attr = MAI->getHiddenDeclarationVisibilityAttr();
   2009     break;
   2010   case GlobalValue::ProtectedVisibility:
   2011     Attr = MAI->getProtectedVisibilityAttr();
   2012     break;
   2013   }
   2014 
   2015   if (Attr != MCSA_Invalid)
   2016     OutStreamer.EmitSymbolAttribute(Sym, Attr);
   2017 }
   2018 
   2019 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
   2020 /// exactly one predecessor and the control transfer mechanism between
   2021 /// the predecessor and this block is a fall-through.
   2022 bool AsmPrinter::
   2023 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
   2024   // If this is a landing pad, it isn't a fall through.  If it has no preds,
   2025   // then nothing falls through to it.
   2026   if (MBB->isLandingPad() || MBB->pred_empty())
   2027     return false;
   2028 
   2029   // If there isn't exactly one predecessor, it can't be a fall through.
   2030   MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
   2031   ++PI2;
   2032   if (PI2 != MBB->pred_end())
   2033     return false;
   2034 
   2035   // The predecessor has to be immediately before this block.
   2036   MachineBasicBlock *Pred = *PI;
   2037 
   2038   if (!Pred->isLayoutSuccessor(MBB))
   2039     return false;
   2040 
   2041   // If the block is completely empty, then it definitely does fall through.
   2042   if (Pred->empty())
   2043     return true;
   2044 
   2045   // Check the terminators in the previous blocks
   2046   for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
   2047          IE = Pred->end(); II != IE; ++II) {
   2048     MachineInstr &MI = *II;
   2049 
   2050     // If it is not a simple branch, we are in a table somewhere.
   2051     if (!MI.getDesc().isBranch() || MI.getDesc().isIndirectBranch())
   2052       return false;
   2053 
   2054     // If we are the operands of one of the branches, this is not
   2055     // a fall through.
   2056     for (MachineInstr::mop_iterator OI = MI.operands_begin(),
   2057            OE = MI.operands_end(); OI != OE; ++OI) {
   2058       const MachineOperand& OP = *OI;
   2059       if (OP.isJTI())
   2060         return false;
   2061       if (OP.isMBB() && OP.getMBB() == MBB)
   2062         return false;
   2063     }
   2064   }
   2065 
   2066   return true;
   2067 }
   2068 
   2069 
   2070 
   2071 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
   2072   if (!S->usesMetadata())
   2073     return 0;
   2074 
   2075   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
   2076   gcp_map_type::iterator GCPI = GCMap.find(S);
   2077   if (GCPI != GCMap.end())
   2078     return GCPI->second;
   2079 
   2080   const char *Name = S->getName().c_str();
   2081 
   2082   for (GCMetadataPrinterRegistry::iterator
   2083          I = GCMetadataPrinterRegistry::begin(),
   2084          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
   2085     if (strcmp(Name, I->getName()) == 0) {
   2086       GCMetadataPrinter *GMP = I->instantiate();
   2087       GMP->S = S;
   2088       GCMap.insert(std::make_pair(S, GMP));
   2089       return GMP;
   2090     }
   2091 
   2092   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
   2093   return 0;
   2094 }
   2095 
   2096