Home | History | Annotate | Download | only in crankshaft
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_CRANKSHAFT_LITHIUM_ALLOCATOR_H_
      6 #define V8_CRANKSHAFT_LITHIUM_ALLOCATOR_H_
      7 
      8 #include "src/allocation.h"
      9 #include "src/base/compiler-specific.h"
     10 #include "src/crankshaft/compilation-phase.h"
     11 #include "src/crankshaft/lithium.h"
     12 #include "src/zone/zone.h"
     13 
     14 namespace v8 {
     15 namespace internal {
     16 
     17 // Forward declarations.
     18 class HBasicBlock;
     19 class HGraph;
     20 class HPhi;
     21 class HTracer;
     22 class HValue;
     23 class BitVector;
     24 class StringStream;
     25 
     26 class LPlatformChunk;
     27 class LOperand;
     28 class LUnallocated;
     29 class LGap;
     30 class LParallelMove;
     31 class LPointerMap;
     32 
     33 
     34 // This class represents a single point of a LOperand's lifetime.
     35 // For each lithium instruction there are exactly two lifetime positions:
     36 // the beginning and the end of the instruction. Lifetime positions for
     37 // different lithium instructions are disjoint.
     38 class LifetimePosition {
     39  public:
     40   // Return the lifetime position that corresponds to the beginning of
     41   // the instruction with the given index.
     42   static LifetimePosition FromInstructionIndex(int index) {
     43     return LifetimePosition(index * kStep);
     44   }
     45 
     46   // Returns a numeric representation of this lifetime position.
     47   int Value() const {
     48     return value_;
     49   }
     50 
     51   // Returns the index of the instruction to which this lifetime position
     52   // corresponds.
     53   int InstructionIndex() const {
     54     DCHECK(IsValid());
     55     return value_ / kStep;
     56   }
     57 
     58   // Returns true if this lifetime position corresponds to the instruction
     59   // start.
     60   bool IsInstructionStart() const {
     61     return (value_ & (kStep - 1)) == 0;
     62   }
     63 
     64   // Returns the lifetime position for the start of the instruction which
     65   // corresponds to this lifetime position.
     66   LifetimePosition InstructionStart() const {
     67     DCHECK(IsValid());
     68     return LifetimePosition(value_ & ~(kStep - 1));
     69   }
     70 
     71   // Returns the lifetime position for the end of the instruction which
     72   // corresponds to this lifetime position.
     73   LifetimePosition InstructionEnd() const {
     74     DCHECK(IsValid());
     75     return LifetimePosition(InstructionStart().Value() + kStep/2);
     76   }
     77 
     78   // Returns the lifetime position for the beginning of the next instruction.
     79   LifetimePosition NextInstruction() const {
     80     DCHECK(IsValid());
     81     return LifetimePosition(InstructionStart().Value() + kStep);
     82   }
     83 
     84   // Returns the lifetime position for the beginning of the previous
     85   // instruction.
     86   LifetimePosition PrevInstruction() const {
     87     DCHECK(IsValid());
     88     DCHECK(value_ > 1);
     89     return LifetimePosition(InstructionStart().Value() - kStep);
     90   }
     91 
     92   // Constructs the lifetime position which does not correspond to any
     93   // instruction.
     94   LifetimePosition() : value_(-1) {}
     95 
     96   // Returns true if this lifetime positions corrensponds to some
     97   // instruction.
     98   bool IsValid() const { return value_ != -1; }
     99 
    100   static inline LifetimePosition Invalid() { return LifetimePosition(); }
    101 
    102   static inline LifetimePosition MaxPosition() {
    103     // We have to use this kind of getter instead of static member due to
    104     // crash bug in GDB.
    105     return LifetimePosition(kMaxInt);
    106   }
    107 
    108  private:
    109   static const int kStep = 2;
    110 
    111   // Code relies on kStep being a power of two.
    112   STATIC_ASSERT(IS_POWER_OF_TWO(kStep));
    113 
    114   explicit LifetimePosition(int value) : value_(value) { }
    115 
    116   int value_;
    117 };
    118 
    119 
    120 // Representation of the non-empty interval [start,end[.
    121 class UseInterval: public ZoneObject {
    122  public:
    123   UseInterval(LifetimePosition start, LifetimePosition end)
    124       : start_(start), end_(end), next_(NULL) {
    125     DCHECK(start.Value() < end.Value());
    126   }
    127 
    128   LifetimePosition start() const { return start_; }
    129   LifetimePosition end() const { return end_; }
    130   UseInterval* next() const { return next_; }
    131 
    132   // Split this interval at the given position without effecting the
    133   // live range that owns it. The interval must contain the position.
    134   void SplitAt(LifetimePosition pos, Zone* zone);
    135 
    136   // If this interval intersects with other return smallest position
    137   // that belongs to both of them.
    138   LifetimePosition Intersect(const UseInterval* other) const {
    139     if (other->start().Value() < start_.Value()) return other->Intersect(this);
    140     if (other->start().Value() < end_.Value()) return other->start();
    141     return LifetimePosition::Invalid();
    142   }
    143 
    144   bool Contains(LifetimePosition point) const {
    145     return start_.Value() <= point.Value() && point.Value() < end_.Value();
    146   }
    147 
    148  private:
    149   void set_start(LifetimePosition start) { start_ = start; }
    150   void set_next(UseInterval* next) { next_ = next; }
    151 
    152   LifetimePosition start_;
    153   LifetimePosition end_;
    154   UseInterval* next_;
    155 
    156   friend class LiveRange;  // Assigns to start_.
    157 };
    158 
    159 // Representation of a use position.
    160 class UsePosition: public ZoneObject {
    161  public:
    162   UsePosition(LifetimePosition pos, LOperand* operand, LOperand* hint);
    163 
    164   LOperand* operand() const { return operand_; }
    165   bool HasOperand() const { return operand_ != NULL; }
    166 
    167   LOperand* hint() const { return hint_; }
    168   bool HasHint() const;
    169   bool RequiresRegister() const;
    170   bool RegisterIsBeneficial() const;
    171 
    172   LifetimePosition pos() const { return pos_; }
    173   UsePosition* next() const { return next_; }
    174 
    175  private:
    176   void set_next(UsePosition* next) { next_ = next; }
    177 
    178   LOperand* const operand_;
    179   LOperand* const hint_;
    180   LifetimePosition const pos_;
    181   UsePosition* next_;
    182   bool requires_reg_;
    183   bool register_beneficial_;
    184 
    185   friend class LiveRange;
    186 };
    187 
    188 // Representation of SSA values' live ranges as a collection of (continuous)
    189 // intervals over the instruction ordering.
    190 class LiveRange: public ZoneObject {
    191  public:
    192   static const int kInvalidAssignment = 0x7fffffff;
    193 
    194   LiveRange(int id, Zone* zone);
    195 
    196   UseInterval* first_interval() const { return first_interval_; }
    197   UsePosition* first_pos() const { return first_pos_; }
    198   LiveRange* parent() const { return parent_; }
    199   LiveRange* TopLevel() { return (parent_ == NULL) ? this : parent_; }
    200   LiveRange* next() const { return next_; }
    201   bool IsChild() const { return parent() != NULL; }
    202   int id() const { return id_; }
    203   bool IsFixed() const { return id_ < 0; }
    204   bool IsEmpty() const { return first_interval() == NULL; }
    205   LOperand* CreateAssignedOperand(Zone* zone);
    206   int assigned_register() const { return assigned_register_; }
    207   int spill_start_index() const { return spill_start_index_; }
    208   void set_assigned_register(int reg, Zone* zone);
    209   void MakeSpilled(Zone* zone);
    210 
    211   // Returns use position in this live range that follows both start
    212   // and last processed use position.
    213   // Modifies internal state of live range!
    214   UsePosition* NextUsePosition(LifetimePosition start);
    215 
    216   // Returns use position for which register is required in this live
    217   // range and which follows both start and last processed use position
    218   // Modifies internal state of live range!
    219   UsePosition* NextRegisterPosition(LifetimePosition start);
    220 
    221   // Returns use position for which register is beneficial in this live
    222   // range and which follows both start and last processed use position
    223   // Modifies internal state of live range!
    224   UsePosition* NextUsePositionRegisterIsBeneficial(LifetimePosition start);
    225 
    226   // Returns use position for which register is beneficial in this live
    227   // range and which precedes start.
    228   UsePosition* PreviousUsePositionRegisterIsBeneficial(LifetimePosition start);
    229 
    230   // Can this live range be spilled at this position.
    231   bool CanBeSpilled(LifetimePosition pos);
    232 
    233   // Split this live range at the given position which must follow the start of
    234   // the range.
    235   // All uses following the given position will be moved from this
    236   // live range to the result live range.
    237   void SplitAt(LifetimePosition position, LiveRange* result, Zone* zone);
    238 
    239   RegisterKind Kind() const { return kind_; }
    240   bool HasRegisterAssigned() const {
    241     return assigned_register_ != kInvalidAssignment;
    242   }
    243   bool IsSpilled() const { return spilled_; }
    244 
    245   LOperand* current_hint_operand() const {
    246     DCHECK(current_hint_operand_ == FirstHint());
    247     return current_hint_operand_;
    248   }
    249   LOperand* FirstHint() const {
    250     UsePosition* pos = first_pos_;
    251     while (pos != NULL && !pos->HasHint()) pos = pos->next();
    252     if (pos != NULL) return pos->hint();
    253     return NULL;
    254   }
    255 
    256   LifetimePosition Start() const {
    257     DCHECK(!IsEmpty());
    258     return first_interval()->start();
    259   }
    260 
    261   LifetimePosition End() const {
    262     DCHECK(!IsEmpty());
    263     return last_interval_->end();
    264   }
    265 
    266   bool HasAllocatedSpillOperand() const;
    267   LOperand* GetSpillOperand() const { return spill_operand_; }
    268   void SetSpillOperand(LOperand* operand);
    269 
    270   void SetSpillStartIndex(int start) {
    271     spill_start_index_ = Min(start, spill_start_index_);
    272   }
    273 
    274   bool ShouldBeAllocatedBefore(const LiveRange* other) const;
    275   bool CanCover(LifetimePosition position) const;
    276   bool Covers(LifetimePosition position);
    277   LifetimePosition FirstIntersection(LiveRange* other);
    278 
    279   // Add a new interval or a new use position to this live range.
    280   void EnsureInterval(LifetimePosition start,
    281                       LifetimePosition end,
    282                       Zone* zone);
    283   void AddUseInterval(LifetimePosition start,
    284                       LifetimePosition end,
    285                       Zone* zone);
    286   void AddUsePosition(LifetimePosition pos,
    287                       LOperand* operand,
    288                       LOperand* hint,
    289                       Zone* zone);
    290 
    291   // Shorten the most recently added interval by setting a new start.
    292   void ShortenTo(LifetimePosition start);
    293 
    294 #ifdef DEBUG
    295   // True if target overlaps an existing interval.
    296   bool HasOverlap(UseInterval* target) const;
    297   void Verify() const;
    298 #endif
    299 
    300  private:
    301   void ConvertOperands(Zone* zone);
    302   UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const;
    303   void AdvanceLastProcessedMarker(UseInterval* to_start_of,
    304                                   LifetimePosition but_not_past) const;
    305 
    306   int id_;
    307   bool spilled_;
    308   RegisterKind kind_;
    309   int assigned_register_;
    310   UseInterval* last_interval_;
    311   UseInterval* first_interval_;
    312   UsePosition* first_pos_;
    313   LiveRange* parent_;
    314   LiveRange* next_;
    315   // This is used as a cache, it doesn't affect correctness.
    316   mutable UseInterval* current_interval_;
    317   UsePosition* last_processed_use_;
    318   // This is used as a cache, it's invalid outside of BuildLiveRanges.
    319   LOperand* current_hint_operand_;
    320   LOperand* spill_operand_;
    321   int spill_start_index_;
    322 
    323   friend class LAllocator;  // Assigns to kind_.
    324 };
    325 
    326 
    327 class LAllocator BASE_EMBEDDED {
    328  public:
    329   LAllocator(int first_virtual_register, HGraph* graph);
    330 
    331   static PRINTF_FORMAT(1, 2) void TraceAlloc(const char* msg, ...);
    332 
    333   // Checks whether the value of a given virtual register is tagged.
    334   bool HasTaggedValue(int virtual_register) const;
    335 
    336   // Returns the register kind required by the given virtual register.
    337   RegisterKind RequiredRegisterKind(int virtual_register) const;
    338 
    339   bool Allocate(LChunk* chunk);
    340 
    341   const ZoneList<LiveRange*>* live_ranges() const { return &live_ranges_; }
    342   const Vector<LiveRange*>* fixed_live_ranges() const {
    343     return &fixed_live_ranges_;
    344   }
    345   const Vector<LiveRange*>* fixed_double_live_ranges() const {
    346     return &fixed_double_live_ranges_;
    347   }
    348 
    349   LPlatformChunk* chunk() const { return chunk_; }
    350   HGraph* graph() const { return graph_; }
    351   Isolate* isolate() const { return graph_->isolate(); }
    352   Zone* zone() { return &zone_; }
    353 
    354   int GetVirtualRegister() {
    355     if (next_virtual_register_ >= LUnallocated::kMaxVirtualRegisters) {
    356       allocation_ok_ = false;
    357       // Maintain the invariant that we return something below the maximum.
    358       return 0;
    359     }
    360     return next_virtual_register_++;
    361   }
    362 
    363   bool AllocationOk() { return allocation_ok_; }
    364 
    365   void MarkAsOsrEntry() {
    366     // There can be only one.
    367     DCHECK(!has_osr_entry_);
    368     // Simply set a flag to find and process instruction later.
    369     has_osr_entry_ = true;
    370   }
    371 
    372 #ifdef DEBUG
    373   void Verify() const;
    374 #endif
    375 
    376   BitVector* assigned_registers() {
    377     return assigned_registers_;
    378   }
    379   BitVector* assigned_double_registers() {
    380     return assigned_double_registers_;
    381   }
    382 
    383  private:
    384   void MeetRegisterConstraints();
    385   void ResolvePhis();
    386   void BuildLiveRanges();
    387   void AllocateGeneralRegisters();
    388   void AllocateDoubleRegisters();
    389   void ConnectRanges();
    390   void ResolveControlFlow();
    391   void PopulatePointerMaps();
    392   void AllocateRegisters();
    393   bool CanEagerlyResolveControlFlow(HBasicBlock* block) const;
    394   inline bool SafePointsAreInOrder() const;
    395 
    396   // Liveness analysis support.
    397   void InitializeLivenessAnalysis();
    398   BitVector* ComputeLiveOut(HBasicBlock* block);
    399   void AddInitialIntervals(HBasicBlock* block, BitVector* live_out);
    400   void ProcessInstructions(HBasicBlock* block, BitVector* live);
    401   void MeetRegisterConstraints(HBasicBlock* block);
    402   void MeetConstraintsBetween(LInstruction* first,
    403                               LInstruction* second,
    404                               int gap_index);
    405   void ResolvePhis(HBasicBlock* block);
    406 
    407   // Helper methods for building intervals.
    408   LOperand* AllocateFixed(LUnallocated* operand, int pos, bool is_tagged);
    409   LiveRange* LiveRangeFor(LOperand* operand);
    410   void Define(LifetimePosition position, LOperand* operand, LOperand* hint);
    411   void Use(LifetimePosition block_start,
    412            LifetimePosition position,
    413            LOperand* operand,
    414            LOperand* hint);
    415   void AddConstraintsGapMove(int index, LOperand* from, LOperand* to);
    416 
    417   // Helper methods for updating the life range lists.
    418   void AddToActive(LiveRange* range);
    419   void AddToInactive(LiveRange* range);
    420   void AddToUnhandledSorted(LiveRange* range);
    421   void AddToUnhandledUnsorted(LiveRange* range);
    422   void SortUnhandled();
    423   bool UnhandledIsSorted();
    424   void ActiveToHandled(LiveRange* range);
    425   void ActiveToInactive(LiveRange* range);
    426   void InactiveToHandled(LiveRange* range);
    427   void InactiveToActive(LiveRange* range);
    428   void FreeSpillSlot(LiveRange* range);
    429   LOperand* TryReuseSpillSlot(LiveRange* range);
    430 
    431   // Helper methods for allocating registers.
    432   bool TryAllocateFreeReg(LiveRange* range);
    433   void AllocateBlockedReg(LiveRange* range);
    434 
    435   // Live range splitting helpers.
    436 
    437   // Split the given range at the given position.
    438   // If range starts at or after the given position then the
    439   // original range is returned.
    440   // Otherwise returns the live range that starts at pos and contains
    441   // all uses from the original range that follow pos. Uses at pos will
    442   // still be owned by the original range after splitting.
    443   LiveRange* SplitRangeAt(LiveRange* range, LifetimePosition pos);
    444 
    445   // Split the given range in a position from the interval [start, end].
    446   LiveRange* SplitBetween(LiveRange* range,
    447                           LifetimePosition start,
    448                           LifetimePosition end);
    449 
    450   // Find a lifetime position in the interval [start, end] which
    451   // is optimal for splitting: it is either header of the outermost
    452   // loop covered by this interval or the latest possible position.
    453   LifetimePosition FindOptimalSplitPos(LifetimePosition start,
    454                                        LifetimePosition end);
    455 
    456   // Spill the given life range after position pos.
    457   void SpillAfter(LiveRange* range, LifetimePosition pos);
    458 
    459   // Spill the given life range after position [start] and up to position [end].
    460   void SpillBetween(LiveRange* range,
    461                     LifetimePosition start,
    462                     LifetimePosition end);
    463 
    464   // Spill the given life range after position [start] and up to position [end].
    465   // Range is guaranteed to be spilled at least until position [until].
    466   void SpillBetweenUntil(LiveRange* range,
    467                          LifetimePosition start,
    468                          LifetimePosition until,
    469                          LifetimePosition end);
    470 
    471   void SplitAndSpillIntersecting(LiveRange* range);
    472 
    473   // If we are trying to spill a range inside the loop try to
    474   // hoist spill position out to the point just before the loop.
    475   LifetimePosition FindOptimalSpillingPos(LiveRange* range,
    476                                           LifetimePosition pos);
    477 
    478   void Spill(LiveRange* range);
    479   bool IsBlockBoundary(LifetimePosition pos);
    480 
    481   // Helper methods for resolving control flow.
    482   void ResolveControlFlow(LiveRange* range,
    483                           HBasicBlock* block,
    484                           HBasicBlock* pred);
    485 
    486   inline void SetLiveRangeAssignedRegister(LiveRange* range, int reg);
    487 
    488   // Return parallel move that should be used to connect ranges split at the
    489   // given position.
    490   LParallelMove* GetConnectingParallelMove(LifetimePosition pos);
    491 
    492   // Return the block which contains give lifetime position.
    493   HBasicBlock* GetBlock(LifetimePosition pos);
    494 
    495   // Helper methods for the fixed registers.
    496   int RegisterCount() const;
    497   static int FixedLiveRangeID(int index) { return -index - 1; }
    498   static int FixedDoubleLiveRangeID(int index);
    499   LiveRange* FixedLiveRangeFor(int index);
    500   LiveRange* FixedDoubleLiveRangeFor(int index);
    501   LiveRange* LiveRangeFor(int index);
    502   HPhi* LookupPhi(LOperand* operand) const;
    503   LGap* GetLastGap(HBasicBlock* block);
    504 
    505   const char* RegisterName(int allocation_index);
    506 
    507   inline bool IsGapAt(int index);
    508 
    509   inline LInstruction* InstructionAt(int index);
    510 
    511   inline LGap* GapAt(int index);
    512 
    513   Zone zone_;
    514 
    515   LPlatformChunk* chunk_;
    516 
    517   // During liveness analysis keep a mapping from block id to live_in sets
    518   // for blocks already analyzed.
    519   ZoneList<BitVector*> live_in_sets_;
    520 
    521   // Liveness analysis results.
    522   ZoneList<LiveRange*> live_ranges_;
    523 
    524   // Lists of live ranges
    525   EmbeddedVector<LiveRange*, Register::kNumRegisters> fixed_live_ranges_;
    526   EmbeddedVector<LiveRange*, DoubleRegister::kMaxNumRegisters>
    527       fixed_double_live_ranges_;
    528   ZoneList<LiveRange*> unhandled_live_ranges_;
    529   ZoneList<LiveRange*> active_live_ranges_;
    530   ZoneList<LiveRange*> inactive_live_ranges_;
    531   ZoneList<LiveRange*> reusable_slots_;
    532 
    533   // Next virtual register number to be assigned to temporaries.
    534   int next_virtual_register_;
    535   int first_artificial_register_;
    536   GrowableBitVector double_artificial_registers_;
    537 
    538   RegisterKind mode_;
    539   int num_registers_;
    540   const int* allocatable_register_codes_;
    541 
    542   BitVector* assigned_registers_;
    543   BitVector* assigned_double_registers_;
    544 
    545   HGraph* graph_;
    546 
    547   bool has_osr_entry_;
    548 
    549   // Indicates success or failure during register allocation.
    550   bool allocation_ok_;
    551 
    552 #ifdef DEBUG
    553   LifetimePosition allocation_finger_;
    554 #endif
    555 
    556   DISALLOW_COPY_AND_ASSIGN(LAllocator);
    557 };
    558 
    559 
    560 class LAllocatorPhase : public CompilationPhase {
    561  public:
    562   LAllocatorPhase(const char* name, LAllocator* allocator);
    563   ~LAllocatorPhase();
    564 
    565  private:
    566   LAllocator* allocator_;
    567   size_t allocator_zone_start_allocation_size_;
    568 
    569   DISALLOW_COPY_AND_ASSIGN(LAllocatorPhase);
    570 };
    571 
    572 
    573 }  // namespace internal
    574 }  // namespace v8
    575 
    576 #endif  // V8_CRANKSHAFT_LITHIUM_ALLOCATOR_H_
    577