Home | History | Annotate | Download | only in ExecutionEngine
      1 //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the abstract interface that implements execution support
     11 // for LLVM.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_EXECUTION_ENGINE_H
     16 #define LLVM_EXECUTION_ENGINE_H
     17 
     18 #include <vector>
     19 #include <map>
     20 #include <string>
     21 #include "llvm/MC/MCCodeGenInfo.h"
     22 #include "llvm/ADT/SmallVector.h"
     23 #include "llvm/ADT/StringRef.h"
     24 #include "llvm/ADT/ValueMap.h"
     25 #include "llvm/ADT/DenseMap.h"
     26 #include "llvm/Support/ValueHandle.h"
     27 #include "llvm/Support/Mutex.h"
     28 #include "llvm/Target/TargetMachine.h"
     29 
     30 namespace llvm {
     31 
     32 struct GenericValue;
     33 class Constant;
     34 class ExecutionEngine;
     35 class Function;
     36 class GlobalVariable;
     37 class GlobalValue;
     38 class JITEventListener;
     39 class JITMemoryManager;
     40 class MachineCodeInfo;
     41 class Module;
     42 class MutexGuard;
     43 class TargetData;
     44 class Type;
     45 
     46 /// \brief Helper class for helping synchronize access to the global address map
     47 /// table.
     48 class ExecutionEngineState {
     49 public:
     50   struct AddressMapConfig : public ValueMapConfig<const GlobalValue*> {
     51     typedef ExecutionEngineState *ExtraData;
     52     static sys::Mutex *getMutex(ExecutionEngineState *EES);
     53     static void onDelete(ExecutionEngineState *EES, const GlobalValue *Old);
     54     static void onRAUW(ExecutionEngineState *, const GlobalValue *,
     55                        const GlobalValue *);
     56   };
     57 
     58   typedef ValueMap<const GlobalValue *, void *, AddressMapConfig>
     59       GlobalAddressMapTy;
     60 
     61 private:
     62   ExecutionEngine &EE;
     63 
     64   /// GlobalAddressMap - A mapping between LLVM global values and their
     65   /// actualized version...
     66   GlobalAddressMapTy GlobalAddressMap;
     67 
     68   /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
     69   /// used to convert raw addresses into the LLVM global value that is emitted
     70   /// at the address.  This map is not computed unless getGlobalValueAtAddress
     71   /// is called at some point.
     72   std::map<void *, AssertingVH<const GlobalValue> > GlobalAddressReverseMap;
     73 
     74 public:
     75   ExecutionEngineState(ExecutionEngine &EE);
     76 
     77   GlobalAddressMapTy &getGlobalAddressMap(const MutexGuard &) {
     78     return GlobalAddressMap;
     79   }
     80 
     81   std::map<void*, AssertingVH<const GlobalValue> > &
     82   getGlobalAddressReverseMap(const MutexGuard &) {
     83     return GlobalAddressReverseMap;
     84   }
     85 
     86   /// \brief Erase an entry from the mapping table.
     87   ///
     88   /// \returns The address that \arg ToUnmap was happed to.
     89   void *RemoveMapping(const MutexGuard &, const GlobalValue *ToUnmap);
     90 };
     91 
     92 /// \brief Abstract interface for implementation execution of LLVM modules,
     93 /// designed to support both interpreter and just-in-time (JIT) compiler
     94 /// implementations.
     95 class ExecutionEngine {
     96   /// The state object holding the global address mapping, which must be
     97   /// accessed synchronously.
     98   //
     99   // FIXME: There is no particular need the entire map needs to be
    100   // synchronized.  Wouldn't a reader-writer design be better here?
    101   ExecutionEngineState EEState;
    102 
    103   /// The target data for the platform for which execution is being performed.
    104   const TargetData *TD;
    105 
    106   /// Whether lazy JIT compilation is enabled.
    107   bool CompilingLazily;
    108 
    109   /// Whether JIT compilation of external global variables is allowed.
    110   bool GVCompilationDisabled;
    111 
    112   /// Whether the JIT should perform lookups of external symbols (e.g.,
    113   /// using dlsym).
    114   bool SymbolSearchingDisabled;
    115 
    116   friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
    117 
    118 protected:
    119   /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
    120   /// optimize for the case where there is only one module.
    121   SmallVector<Module*, 1> Modules;
    122 
    123   void setTargetData(const TargetData *td) { TD = td; }
    124 
    125   /// getMemoryforGV - Allocate memory for a global variable.
    126   virtual char *getMemoryForGV(const GlobalVariable *GV);
    127 
    128   // To avoid having libexecutionengine depend on the JIT and interpreter
    129   // libraries, the execution engine implementations set these functions to ctor
    130   // pointers at startup time if they are linked in.
    131   static ExecutionEngine *(*JITCtor)(
    132     Module *M,
    133     std::string *ErrorStr,
    134     JITMemoryManager *JMM,
    135     CodeGenOpt::Level OptLevel,
    136     bool GVsWithCode,
    137     TargetMachine *TM);
    138   static ExecutionEngine *(*MCJITCtor)(
    139     Module *M,
    140     std::string *ErrorStr,
    141     JITMemoryManager *JMM,
    142     CodeGenOpt::Level OptLevel,
    143     bool GVsWithCode,
    144     TargetMachine *TM);
    145   static ExecutionEngine *(*InterpCtor)(Module *M, std::string *ErrorStr);
    146 
    147   /// LazyFunctionCreator - If an unknown function is needed, this function
    148   /// pointer is invoked to create it.  If this returns null, the JIT will
    149   /// abort.
    150   void *(*LazyFunctionCreator)(const std::string &);
    151 
    152   /// ExceptionTableRegister - If Exception Handling is set, the JIT will
    153   /// register dwarf tables with this function.
    154   typedef void (*EERegisterFn)(void*);
    155   EERegisterFn ExceptionTableRegister;
    156   EERegisterFn ExceptionTableDeregister;
    157   /// This maps functions to their exception tables frames.
    158   DenseMap<const Function*, void*> AllExceptionTables;
    159 
    160 
    161 public:
    162   /// lock - This lock protects the ExecutionEngine, JIT, JITResolver and
    163   /// JITEmitter classes.  It must be held while changing the internal state of
    164   /// any of those classes.
    165   sys::Mutex lock;
    166 
    167   //===--------------------------------------------------------------------===//
    168   //  ExecutionEngine Startup
    169   //===--------------------------------------------------------------------===//
    170 
    171   virtual ~ExecutionEngine();
    172 
    173   /// create - This is the factory method for creating an execution engine which
    174   /// is appropriate for the current machine.  This takes ownership of the
    175   /// module.
    176   ///
    177   /// \param GVsWithCode - Allocating globals with code breaks
    178   /// freeMachineCodeForFunction and is probably unsafe and bad for performance.
    179   /// However, we have clients who depend on this behavior, so we must support
    180   /// it.  Eventually, when we're willing to break some backwards compatibility,
    181   /// this flag should be flipped to false, so that by default
    182   /// freeMachineCodeForFunction works.
    183   static ExecutionEngine *create(Module *M,
    184                                  bool ForceInterpreter = false,
    185                                  std::string *ErrorStr = 0,
    186                                  CodeGenOpt::Level OptLevel =
    187                                  CodeGenOpt::Default,
    188                                  bool GVsWithCode = true);
    189 
    190   /// createJIT - This is the factory method for creating a JIT for the current
    191   /// machine, it does not fall back to the interpreter.  This takes ownership
    192   /// of the Module and JITMemoryManager if successful.
    193   ///
    194   /// Clients should make sure to initialize targets prior to calling this
    195   /// function.
    196   static ExecutionEngine *createJIT(Module *M,
    197                                     std::string *ErrorStr = 0,
    198                                     JITMemoryManager *JMM = 0,
    199                                     CodeGenOpt::Level OptLevel =
    200                                     CodeGenOpt::Default,
    201                                     bool GVsWithCode = true,
    202                                     Reloc::Model RM = Reloc::Default,
    203                                     CodeModel::Model CMM =
    204                                     CodeModel::JITDefault);
    205 
    206   /// addModule - Add a Module to the list of modules that we can JIT from.
    207   /// Note that this takes ownership of the Module: when the ExecutionEngine is
    208   /// destroyed, it destroys the Module as well.
    209   virtual void addModule(Module *M) {
    210     Modules.push_back(M);
    211   }
    212 
    213   //===--------------------------------------------------------------------===//
    214 
    215   const TargetData *getTargetData() const { return TD; }
    216 
    217   /// removeModule - Remove a Module from the list of modules.  Returns true if
    218   /// M is found.
    219   virtual bool removeModule(Module *M);
    220 
    221   /// FindFunctionNamed - Search all of the active modules to find the one that
    222   /// defines FnName.  This is very slow operation and shouldn't be used for
    223   /// general code.
    224   Function *FindFunctionNamed(const char *FnName);
    225 
    226   /// runFunction - Execute the specified function with the specified arguments,
    227   /// and return the result.
    228   virtual GenericValue runFunction(Function *F,
    229                                 const std::vector<GenericValue> &ArgValues) = 0;
    230 
    231   /// runStaticConstructorsDestructors - This method is used to execute all of
    232   /// the static constructors or destructors for a program.
    233   ///
    234   /// \param isDtors - Run the destructors instead of constructors.
    235   void runStaticConstructorsDestructors(bool isDtors);
    236 
    237   /// runStaticConstructorsDestructors - This method is used to execute all of
    238   /// the static constructors or destructors for a particular module.
    239   ///
    240   /// \param isDtors - Run the destructors instead of constructors.
    241   void runStaticConstructorsDestructors(Module *module, bool isDtors);
    242 
    243 
    244   /// runFunctionAsMain - This is a helper function which wraps runFunction to
    245   /// handle the common task of starting up main with the specified argc, argv,
    246   /// and envp parameters.
    247   int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
    248                         const char * const * envp);
    249 
    250 
    251   /// addGlobalMapping - Tell the execution engine that the specified global is
    252   /// at the specified location.  This is used internally as functions are JIT'd
    253   /// and as global variables are laid out in memory.  It can and should also be
    254   /// used by clients of the EE that want to have an LLVM global overlay
    255   /// existing data in memory.  Mappings are automatically removed when their
    256   /// GlobalValue is destroyed.
    257   void addGlobalMapping(const GlobalValue *GV, void *Addr);
    258 
    259   /// clearAllGlobalMappings - Clear all global mappings and start over again,
    260   /// for use in dynamic compilation scenarios to move globals.
    261   void clearAllGlobalMappings();
    262 
    263   /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
    264   /// particular module, because it has been removed from the JIT.
    265   void clearGlobalMappingsFromModule(Module *M);
    266 
    267   /// updateGlobalMapping - Replace an existing mapping for GV with a new
    268   /// address.  This updates both maps as required.  If "Addr" is null, the
    269   /// entry for the global is removed from the mappings.  This returns the old
    270   /// value of the pointer, or null if it was not in the map.
    271   void *updateGlobalMapping(const GlobalValue *GV, void *Addr);
    272 
    273   /// getPointerToGlobalIfAvailable - This returns the address of the specified
    274   /// global value if it is has already been codegen'd, otherwise it returns
    275   /// null.
    276   void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
    277 
    278   /// getPointerToGlobal - This returns the address of the specified global
    279   /// value. This may involve code generation if it's a function.
    280   void *getPointerToGlobal(const GlobalValue *GV);
    281 
    282   /// getPointerToFunction - The different EE's represent function bodies in
    283   /// different ways.  They should each implement this to say what a function
    284   /// pointer should look like.  When F is destroyed, the ExecutionEngine will
    285   /// remove its global mapping and free any machine code.  Be sure no threads
    286   /// are running inside F when that happens.
    287   virtual void *getPointerToFunction(Function *F) = 0;
    288 
    289   /// getPointerToBasicBlock - The different EE's represent basic blocks in
    290   /// different ways.  Return the representation for a blockaddress of the
    291   /// specified block.
    292   virtual void *getPointerToBasicBlock(BasicBlock *BB) = 0;
    293 
    294   /// getPointerToFunctionOrStub - If the specified function has been
    295   /// code-gen'd, return a pointer to the function.  If not, compile it, or use
    296   /// a stub to implement lazy compilation if available.  See
    297   /// getPointerToFunction for the requirements on destroying F.
    298   virtual void *getPointerToFunctionOrStub(Function *F) {
    299     // Default implementation, just codegen the function.
    300     return getPointerToFunction(F);
    301   }
    302 
    303   // The JIT overrides a version that actually does this.
    304   virtual void runJITOnFunction(Function *, MachineCodeInfo * = 0) { }
    305 
    306   /// getGlobalValueAtAddress - Return the LLVM global value object that starts
    307   /// at the specified address.
    308   ///
    309   const GlobalValue *getGlobalValueAtAddress(void *Addr);
    310 
    311   /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
    312   /// Ptr is the address of the memory at which to store Val, cast to
    313   /// GenericValue *.  It is not a pointer to a GenericValue containing the
    314   /// address at which to store Val.
    315   void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
    316                           Type *Ty);
    317 
    318   void InitializeMemory(const Constant *Init, void *Addr);
    319 
    320   /// recompileAndRelinkFunction - This method is used to force a function which
    321   /// has already been compiled to be compiled again, possibly after it has been
    322   /// modified.  Then the entry to the old copy is overwritten with a branch to
    323   /// the new copy.  If there was no old copy, this acts just like
    324   /// VM::getPointerToFunction().
    325   virtual void *recompileAndRelinkFunction(Function *F) = 0;
    326 
    327   /// freeMachineCodeForFunction - Release memory in the ExecutionEngine
    328   /// corresponding to the machine code emitted to execute this function, useful
    329   /// for garbage-collecting generated code.
    330   virtual void freeMachineCodeForFunction(Function *F) = 0;
    331 
    332   /// getOrEmitGlobalVariable - Return the address of the specified global
    333   /// variable, possibly emitting it to memory if needed.  This is used by the
    334   /// Emitter.
    335   virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
    336     return getPointerToGlobal((GlobalValue*)GV);
    337   }
    338 
    339   /// Registers a listener to be called back on various events within
    340   /// the JIT.  See JITEventListener.h for more details.  Does not
    341   /// take ownership of the argument.  The argument may be NULL, in
    342   /// which case these functions do nothing.
    343   virtual void RegisterJITEventListener(JITEventListener *) {}
    344   virtual void UnregisterJITEventListener(JITEventListener *) {}
    345 
    346   /// DisableLazyCompilation - When lazy compilation is off (the default), the
    347   /// JIT will eagerly compile every function reachable from the argument to
    348   /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
    349   /// compile the one function and emit stubs to compile the rest when they're
    350   /// first called.  If lazy compilation is turned off again while some lazy
    351   /// stubs are still around, and one of those stubs is called, the program will
    352   /// abort.
    353   ///
    354   /// In order to safely compile lazily in a threaded program, the user must
    355   /// ensure that 1) only one thread at a time can call any particular lazy
    356   /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
    357   /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
    358   /// lazy stub.  See http://llvm.org/PR5184 for details.
    359   void DisableLazyCompilation(bool Disabled = true) {
    360     CompilingLazily = !Disabled;
    361   }
    362   bool isCompilingLazily() const {
    363     return CompilingLazily;
    364   }
    365   // Deprecated in favor of isCompilingLazily (to reduce double-negatives).
    366   // Remove this in LLVM 2.8.
    367   bool isLazyCompilationDisabled() const {
    368     return !CompilingLazily;
    369   }
    370 
    371   /// DisableGVCompilation - If called, the JIT will abort if it's asked to
    372   /// allocate space and populate a GlobalVariable that is not internal to
    373   /// the module.
    374   void DisableGVCompilation(bool Disabled = true) {
    375     GVCompilationDisabled = Disabled;
    376   }
    377   bool isGVCompilationDisabled() const {
    378     return GVCompilationDisabled;
    379   }
    380 
    381   /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
    382   /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
    383   /// resolve symbols in a custom way.
    384   void DisableSymbolSearching(bool Disabled = true) {
    385     SymbolSearchingDisabled = Disabled;
    386   }
    387   bool isSymbolSearchingDisabled() const {
    388     return SymbolSearchingDisabled;
    389   }
    390 
    391   /// InstallLazyFunctionCreator - If an unknown function is needed, the
    392   /// specified function pointer is invoked to create it.  If it returns null,
    393   /// the JIT will abort.
    394   void InstallLazyFunctionCreator(void* (*P)(const std::string &)) {
    395     LazyFunctionCreator = P;
    396   }
    397 
    398   /// InstallExceptionTableRegister - The JIT will use the given function
    399   /// to register the exception tables it generates.
    400   void InstallExceptionTableRegister(EERegisterFn F) {
    401     ExceptionTableRegister = F;
    402   }
    403   void InstallExceptionTableDeregister(EERegisterFn F) {
    404     ExceptionTableDeregister = F;
    405   }
    406 
    407   /// RegisterTable - Registers the given pointer as an exception table.  It
    408   /// uses the ExceptionTableRegister function.
    409   void RegisterTable(const Function *fn, void* res) {
    410     if (ExceptionTableRegister) {
    411       ExceptionTableRegister(res);
    412       AllExceptionTables[fn] = res;
    413     }
    414   }
    415 
    416   /// DeregisterTable - Deregisters the exception frame previously registered
    417   /// for the given function.
    418   void DeregisterTable(const Function *Fn) {
    419     if (ExceptionTableDeregister) {
    420       DenseMap<const Function*, void*>::iterator frame =
    421         AllExceptionTables.find(Fn);
    422       if(frame != AllExceptionTables.end()) {
    423         ExceptionTableDeregister(frame->second);
    424         AllExceptionTables.erase(frame);
    425       }
    426     }
    427   }
    428 
    429   /// DeregisterAllTables - Deregisters all previously registered pointers to an
    430   /// exception tables.  It uses the ExceptionTableoDeregister function.
    431   void DeregisterAllTables();
    432 
    433 protected:
    434   explicit ExecutionEngine(Module *M);
    435 
    436   void emitGlobals();
    437 
    438   void EmitGlobalVariable(const GlobalVariable *GV);
    439 
    440   GenericValue getConstantValue(const Constant *C);
    441   void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
    442                            Type *Ty);
    443 };
    444 
    445 namespace EngineKind {
    446   // These are actually bitmasks that get or-ed together.
    447   enum Kind {
    448     JIT         = 0x1,
    449     Interpreter = 0x2
    450   };
    451   const static Kind Either = (Kind)(JIT | Interpreter);
    452 }
    453 
    454 /// EngineBuilder - Builder class for ExecutionEngines.  Use this by
    455 /// stack-allocating a builder, chaining the various set* methods, and
    456 /// terminating it with a .create() call.
    457 class EngineBuilder {
    458 private:
    459   Module *M;
    460   EngineKind::Kind WhichEngine;
    461   std::string *ErrorStr;
    462   CodeGenOpt::Level OptLevel;
    463   JITMemoryManager *JMM;
    464   bool AllocateGVsWithCode;
    465   Reloc::Model RelocModel;
    466   CodeModel::Model CMModel;
    467   std::string MArch;
    468   std::string MCPU;
    469   SmallVector<std::string, 4> MAttrs;
    470   bool UseMCJIT;
    471 
    472   /// InitEngine - Does the common initialization of default options.
    473   void InitEngine() {
    474     WhichEngine = EngineKind::Either;
    475     ErrorStr = NULL;
    476     OptLevel = CodeGenOpt::Default;
    477     JMM = NULL;
    478     AllocateGVsWithCode = false;
    479     RelocModel = Reloc::Default;
    480     CMModel = CodeModel::JITDefault;
    481     UseMCJIT = false;
    482   }
    483 
    484 public:
    485   /// EngineBuilder - Constructor for EngineBuilder.  If create() is called and
    486   /// is successful, the created engine takes ownership of the module.
    487   EngineBuilder(Module *m) : M(m) {
    488     InitEngine();
    489   }
    490 
    491   /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
    492   /// or whichever engine works.  This option defaults to EngineKind::Either.
    493   EngineBuilder &setEngineKind(EngineKind::Kind w) {
    494     WhichEngine = w;
    495     return *this;
    496   }
    497 
    498   /// setJITMemoryManager - Sets the memory manager to use.  This allows
    499   /// clients to customize their memory allocation policies.  If create() is
    500   /// called and is successful, the created engine takes ownership of the
    501   /// memory manager.  This option defaults to NULL.
    502   EngineBuilder &setJITMemoryManager(JITMemoryManager *jmm) {
    503     JMM = jmm;
    504     return *this;
    505   }
    506 
    507   /// setErrorStr - Set the error string to write to on error.  This option
    508   /// defaults to NULL.
    509   EngineBuilder &setErrorStr(std::string *e) {
    510     ErrorStr = e;
    511     return *this;
    512   }
    513 
    514   /// setOptLevel - Set the optimization level for the JIT.  This option
    515   /// defaults to CodeGenOpt::Default.
    516   EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
    517     OptLevel = l;
    518     return *this;
    519   }
    520 
    521   /// setRelocationModel - Set the relocation model that the ExecutionEngine
    522   /// target is using. Defaults to target specific default "Reloc::Default".
    523   EngineBuilder &setRelocationModel(Reloc::Model RM) {
    524     RelocModel = RM;
    525     return *this;
    526   }
    527 
    528   /// setCodeModel - Set the CodeModel that the ExecutionEngine target
    529   /// data is using. Defaults to target specific default
    530   /// "CodeModel::JITDefault".
    531   EngineBuilder &setCodeModel(CodeModel::Model M) {
    532     CMModel = M;
    533     return *this;
    534   }
    535 
    536   /// setAllocateGVsWithCode - Sets whether global values should be allocated
    537   /// into the same buffer as code.  For most applications this should be set
    538   /// to false.  Allocating globals with code breaks freeMachineCodeForFunction
    539   /// and is probably unsafe and bad for performance.  However, we have clients
    540   /// who depend on this behavior, so we must support it.  This option defaults
    541   /// to false so that users of the new API can safely use the new memory
    542   /// manager and free machine code.
    543   EngineBuilder &setAllocateGVsWithCode(bool a) {
    544     AllocateGVsWithCode = a;
    545     return *this;
    546   }
    547 
    548   /// setMArch - Override the architecture set by the Module's triple.
    549   EngineBuilder &setMArch(StringRef march) {
    550     MArch.assign(march.begin(), march.end());
    551     return *this;
    552   }
    553 
    554   /// setMCPU - Target a specific cpu type.
    555   EngineBuilder &setMCPU(StringRef mcpu) {
    556     MCPU.assign(mcpu.begin(), mcpu.end());
    557     return *this;
    558   }
    559 
    560   /// setUseMCJIT - Set whether the MC-JIT implementation should be used
    561   /// (experimental).
    562   EngineBuilder &setUseMCJIT(bool Value) {
    563     UseMCJIT = Value;
    564     return *this;
    565   }
    566 
    567   /// setMAttrs - Set cpu-specific attributes.
    568   template<typename StringSequence>
    569   EngineBuilder &setMAttrs(const StringSequence &mattrs) {
    570     MAttrs.clear();
    571     MAttrs.append(mattrs.begin(), mattrs.end());
    572     return *this;
    573   }
    574 
    575   /// selectTarget - Pick a target either via -march or by guessing the native
    576   /// arch.  Add any CPU features specified via -mcpu or -mattr.
    577   static TargetMachine *selectTarget(Module *M,
    578                                      StringRef MArch,
    579                                      StringRef MCPU,
    580                                      const SmallVectorImpl<std::string>& MAttrs,
    581                                      Reloc::Model RM,
    582                                      CodeModel::Model CM,
    583                                      std::string *Err);
    584 
    585   ExecutionEngine *create();
    586 };
    587 
    588 } // End llvm namespace
    589 
    590 #endif
    591