1 //===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Perform peephole optimizations on the machine code: 11 // 12 // - Optimize Extensions 13 // 14 // Optimization of sign / zero extension instructions. It may be extended to 15 // handle other instructions with similar properties. 16 // 17 // On some targets, some instructions, e.g. X86 sign / zero extension, may 18 // leave the source value in the lower part of the result. This optimization 19 // will replace some uses of the pre-extension value with uses of the 20 // sub-register of the results. 21 // 22 // - Optimize Comparisons 23 // 24 // Optimization of comparison instructions. For instance, in this code: 25 // 26 // sub r1, 1 27 // cmp r1, 0 28 // bz L1 29 // 30 // If the "sub" instruction all ready sets (or could be modified to set) the 31 // same flag that the "cmp" instruction sets and that "bz" uses, then we can 32 // eliminate the "cmp" instruction. 33 // 34 // Another instance, in this code: 35 // 36 // sub r1, r3 | sub r1, imm 37 // cmp r3, r1 or cmp r1, r3 | cmp r1, imm 38 // bge L1 39 // 40 // If the branch instruction can use flag from "sub", then we can replace 41 // "sub" with "subs" and eliminate the "cmp" instruction. 42 // 43 // - Optimize Loads: 44 // 45 // Loads that can be folded into a later instruction. A load is foldable 46 // if it loads to virtual registers and the virtual register defined has 47 // a single use. 48 // 49 // - Optimize Copies and Bitcast (more generally, target specific copies): 50 // 51 // Rewrite copies and bitcasts to avoid cross register bank copies 52 // when possible. 53 // E.g., Consider the following example, where capital and lower 54 // letters denote different register file: 55 // b = copy A <-- cross-bank copy 56 // C = copy b <-- cross-bank copy 57 // => 58 // b = copy A <-- cross-bank copy 59 // C = copy A <-- same-bank copy 60 // 61 // E.g., for bitcast: 62 // b = bitcast A <-- cross-bank copy 63 // C = bitcast b <-- cross-bank copy 64 // => 65 // b = bitcast A <-- cross-bank copy 66 // C = copy A <-- same-bank copy 67 //===----------------------------------------------------------------------===// 68 69 #include "llvm/CodeGen/Passes.h" 70 #include "llvm/ADT/DenseMap.h" 71 #include "llvm/ADT/SmallPtrSet.h" 72 #include "llvm/ADT/SmallSet.h" 73 #include "llvm/ADT/Statistic.h" 74 #include "llvm/CodeGen/MachineDominators.h" 75 #include "llvm/CodeGen/MachineInstrBuilder.h" 76 #include "llvm/CodeGen/MachineRegisterInfo.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Target/TargetInstrInfo.h" 81 #include "llvm/Target/TargetRegisterInfo.h" 82 #include "llvm/Target/TargetSubtargetInfo.h" 83 #include <utility> 84 using namespace llvm; 85 86 #define DEBUG_TYPE "peephole-opt" 87 88 // Optimize Extensions 89 static cl::opt<bool> 90 Aggressive("aggressive-ext-opt", cl::Hidden, 91 cl::desc("Aggressive extension optimization")); 92 93 static cl::opt<bool> 94 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false), 95 cl::desc("Disable the peephole optimizer")); 96 97 static cl::opt<bool> 98 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false), 99 cl::desc("Disable advanced copy optimization")); 100 101 static cl::opt<bool> DisableNAPhysCopyOpt( 102 "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false), 103 cl::desc("Disable non-allocatable physical register copy optimization")); 104 105 // Limit the number of PHI instructions to process 106 // in PeepholeOptimizer::getNextSource. 107 static cl::opt<unsigned> RewritePHILimit( 108 "rewrite-phi-limit", cl::Hidden, cl::init(10), 109 cl::desc("Limit the length of PHI chains to lookup")); 110 111 STATISTIC(NumReuse, "Number of extension results reused"); 112 STATISTIC(NumCmps, "Number of compares eliminated"); 113 STATISTIC(NumImmFold, "Number of move immediate folded"); 114 STATISTIC(NumLoadFold, "Number of loads folded"); 115 STATISTIC(NumSelects, "Number of selects optimized"); 116 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized"); 117 STATISTIC(NumRewrittenCopies, "Number of copies rewritten"); 118 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed"); 119 120 namespace { 121 class ValueTrackerResult; 122 123 class PeepholeOptimizer : public MachineFunctionPass { 124 const TargetInstrInfo *TII; 125 const TargetRegisterInfo *TRI; 126 MachineRegisterInfo *MRI; 127 MachineDominatorTree *DT; // Machine dominator tree 128 129 public: 130 static char ID; // Pass identification 131 PeepholeOptimizer() : MachineFunctionPass(ID) { 132 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry()); 133 } 134 135 bool runOnMachineFunction(MachineFunction &MF) override; 136 137 void getAnalysisUsage(AnalysisUsage &AU) const override { 138 AU.setPreservesCFG(); 139 MachineFunctionPass::getAnalysisUsage(AU); 140 if (Aggressive) { 141 AU.addRequired<MachineDominatorTree>(); 142 AU.addPreserved<MachineDominatorTree>(); 143 } 144 } 145 146 /// \brief Track Def -> Use info used for rewriting copies. 147 typedef SmallDenseMap<TargetInstrInfo::RegSubRegPair, ValueTrackerResult> 148 RewriteMapTy; 149 150 private: 151 bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB); 152 bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB, 153 SmallPtrSetImpl<MachineInstr*> &LocalMIs); 154 bool optimizeSelect(MachineInstr *MI, 155 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 156 bool optimizeCondBranch(MachineInstr *MI); 157 bool optimizeCoalescableCopy(MachineInstr *MI); 158 bool optimizeUncoalescableCopy(MachineInstr *MI, 159 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 160 bool findNextSource(unsigned Reg, unsigned SubReg, 161 RewriteMapTy &RewriteMap); 162 bool isMoveImmediate(MachineInstr *MI, 163 SmallSet<unsigned, 4> &ImmDefRegs, 164 DenseMap<unsigned, MachineInstr*> &ImmDefMIs); 165 bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB, 166 SmallSet<unsigned, 4> &ImmDefRegs, 167 DenseMap<unsigned, MachineInstr*> &ImmDefMIs); 168 169 /// \brief If copy instruction \p MI is a virtual register copy, track it in 170 /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was 171 /// previously seen as a copy, replace the uses of this copy with the 172 /// previously seen copy's destination register. 173 bool foldRedundantCopy(MachineInstr *MI, 174 SmallSet<unsigned, 4> &CopySrcRegs, 175 DenseMap<unsigned, MachineInstr *> &CopyMIs); 176 177 /// \brief Is the register \p Reg a non-allocatable physical register? 178 bool isNAPhysCopy(unsigned Reg); 179 180 /// \brief If copy instruction \p MI is a non-allocatable virtual<->physical 181 /// register copy, track it in the \p NAPhysToVirtMIs map. If this 182 /// non-allocatable physical register was previously copied to a virtual 183 /// registered and hasn't been clobbered, the virt->phys copy can be 184 /// deleted. 185 bool foldRedundantNAPhysCopy( 186 MachineInstr *MI, 187 DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs); 188 189 bool isLoadFoldable(MachineInstr *MI, 190 SmallSet<unsigned, 16> &FoldAsLoadDefCandidates); 191 192 /// \brief Check whether \p MI is understood by the register coalescer 193 /// but may require some rewriting. 194 bool isCoalescableCopy(const MachineInstr &MI) { 195 // SubregToRegs are not interesting, because they are already register 196 // coalescer friendly. 197 return MI.isCopy() || (!DisableAdvCopyOpt && 198 (MI.isRegSequence() || MI.isInsertSubreg() || 199 MI.isExtractSubreg())); 200 } 201 202 /// \brief Check whether \p MI is a copy like instruction that is 203 /// not recognized by the register coalescer. 204 bool isUncoalescableCopy(const MachineInstr &MI) { 205 return MI.isBitcast() || 206 (!DisableAdvCopyOpt && 207 (MI.isRegSequenceLike() || MI.isInsertSubregLike() || 208 MI.isExtractSubregLike())); 209 } 210 }; 211 212 /// \brief Helper class to hold a reply for ValueTracker queries. Contains the 213 /// returned sources for a given search and the instructions where the sources 214 /// were tracked from. 215 class ValueTrackerResult { 216 private: 217 /// Track all sources found by one ValueTracker query. 218 SmallVector<TargetInstrInfo::RegSubRegPair, 2> RegSrcs; 219 220 /// Instruction using the sources in 'RegSrcs'. 221 const MachineInstr *Inst; 222 223 public: 224 ValueTrackerResult() : Inst(nullptr) {} 225 ValueTrackerResult(unsigned Reg, unsigned SubReg) : Inst(nullptr) { 226 addSource(Reg, SubReg); 227 } 228 229 bool isValid() const { return getNumSources() > 0; } 230 231 void setInst(const MachineInstr *I) { Inst = I; } 232 const MachineInstr *getInst() const { return Inst; } 233 234 void clear() { 235 RegSrcs.clear(); 236 Inst = nullptr; 237 } 238 239 void addSource(unsigned SrcReg, unsigned SrcSubReg) { 240 RegSrcs.push_back(TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg)); 241 } 242 243 void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) { 244 assert(Idx < getNumSources() && "Reg pair source out of index"); 245 RegSrcs[Idx] = TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg); 246 } 247 248 int getNumSources() const { return RegSrcs.size(); } 249 250 unsigned getSrcReg(int Idx) const { 251 assert(Idx < getNumSources() && "Reg source out of index"); 252 return RegSrcs[Idx].Reg; 253 } 254 255 unsigned getSrcSubReg(int Idx) const { 256 assert(Idx < getNumSources() && "SubReg source out of index"); 257 return RegSrcs[Idx].SubReg; 258 } 259 260 bool operator==(const ValueTrackerResult &Other) { 261 if (Other.getInst() != getInst()) 262 return false; 263 264 if (Other.getNumSources() != getNumSources()) 265 return false; 266 267 for (int i = 0, e = Other.getNumSources(); i != e; ++i) 268 if (Other.getSrcReg(i) != getSrcReg(i) || 269 Other.getSrcSubReg(i) != getSrcSubReg(i)) 270 return false; 271 return true; 272 } 273 }; 274 275 /// \brief Helper class to track the possible sources of a value defined by 276 /// a (chain of) copy related instructions. 277 /// Given a definition (instruction and definition index), this class 278 /// follows the use-def chain to find successive suitable sources. 279 /// The given source can be used to rewrite the definition into 280 /// def = COPY src. 281 /// 282 /// For instance, let us consider the following snippet: 283 /// v0 = 284 /// v2 = INSERT_SUBREG v1, v0, sub0 285 /// def = COPY v2.sub0 286 /// 287 /// Using a ValueTracker for def = COPY v2.sub0 will give the following 288 /// suitable sources: 289 /// v2.sub0 and v0. 290 /// Then, def can be rewritten into def = COPY v0. 291 class ValueTracker { 292 private: 293 /// The current point into the use-def chain. 294 const MachineInstr *Def; 295 /// The index of the definition in Def. 296 unsigned DefIdx; 297 /// The sub register index of the definition. 298 unsigned DefSubReg; 299 /// The register where the value can be found. 300 unsigned Reg; 301 /// Specifiy whether or not the value tracking looks through 302 /// complex instructions. When this is false, the value tracker 303 /// bails on everything that is not a copy or a bitcast. 304 /// 305 /// Note: This could have been implemented as a specialized version of 306 /// the ValueTracker class but that would have complicated the code of 307 /// the users of this class. 308 bool UseAdvancedTracking; 309 /// MachineRegisterInfo used to perform tracking. 310 const MachineRegisterInfo &MRI; 311 /// Optional TargetInstrInfo used to perform some complex 312 /// tracking. 313 const TargetInstrInfo *TII; 314 315 /// \brief Dispatcher to the right underlying implementation of 316 /// getNextSource. 317 ValueTrackerResult getNextSourceImpl(); 318 /// \brief Specialized version of getNextSource for Copy instructions. 319 ValueTrackerResult getNextSourceFromCopy(); 320 /// \brief Specialized version of getNextSource for Bitcast instructions. 321 ValueTrackerResult getNextSourceFromBitcast(); 322 /// \brief Specialized version of getNextSource for RegSequence 323 /// instructions. 324 ValueTrackerResult getNextSourceFromRegSequence(); 325 /// \brief Specialized version of getNextSource for InsertSubreg 326 /// instructions. 327 ValueTrackerResult getNextSourceFromInsertSubreg(); 328 /// \brief Specialized version of getNextSource for ExtractSubreg 329 /// instructions. 330 ValueTrackerResult getNextSourceFromExtractSubreg(); 331 /// \brief Specialized version of getNextSource for SubregToReg 332 /// instructions. 333 ValueTrackerResult getNextSourceFromSubregToReg(); 334 /// \brief Specialized version of getNextSource for PHI instructions. 335 ValueTrackerResult getNextSourceFromPHI(); 336 337 public: 338 /// \brief Create a ValueTracker instance for the value defined by \p Reg. 339 /// \p DefSubReg represents the sub register index the value tracker will 340 /// track. It does not need to match the sub register index used in the 341 /// definition of \p Reg. 342 /// \p UseAdvancedTracking specifies whether or not the value tracker looks 343 /// through complex instructions. By default (false), it handles only copy 344 /// and bitcast instructions. 345 /// If \p Reg is a physical register, a value tracker constructed with 346 /// this constructor will not find any alternative source. 347 /// Indeed, when \p Reg is a physical register that constructor does not 348 /// know which definition of \p Reg it should track. 349 /// Use the next constructor to track a physical register. 350 ValueTracker(unsigned Reg, unsigned DefSubReg, 351 const MachineRegisterInfo &MRI, 352 bool UseAdvancedTracking = false, 353 const TargetInstrInfo *TII = nullptr) 354 : Def(nullptr), DefIdx(0), DefSubReg(DefSubReg), Reg(Reg), 355 UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) { 356 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) { 357 Def = MRI.getVRegDef(Reg); 358 DefIdx = MRI.def_begin(Reg).getOperandNo(); 359 } 360 } 361 362 /// \brief Create a ValueTracker instance for the value defined by 363 /// the pair \p MI, \p DefIdx. 364 /// Unlike the other constructor, the value tracker produced by this one 365 /// may be able to find a new source when the definition is a physical 366 /// register. 367 /// This could be useful to rewrite target specific instructions into 368 /// generic copy instructions. 369 ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg, 370 const MachineRegisterInfo &MRI, 371 bool UseAdvancedTracking = false, 372 const TargetInstrInfo *TII = nullptr) 373 : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg), 374 UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) { 375 assert(DefIdx < Def->getDesc().getNumDefs() && 376 Def->getOperand(DefIdx).isReg() && "Invalid definition"); 377 Reg = Def->getOperand(DefIdx).getReg(); 378 } 379 380 /// \brief Following the use-def chain, get the next available source 381 /// for the tracked value. 382 /// \return A ValueTrackerResult containing a set of registers 383 /// and sub registers with tracked values. A ValueTrackerResult with 384 /// an empty set of registers means no source was found. 385 ValueTrackerResult getNextSource(); 386 387 /// \brief Get the last register where the initial value can be found. 388 /// Initially this is the register of the definition. 389 /// Then, after each successful call to getNextSource, this is the 390 /// register of the last source. 391 unsigned getReg() const { return Reg; } 392 }; 393 } 394 395 char PeepholeOptimizer::ID = 0; 396 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID; 397 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE, 398 "Peephole Optimizations", false, false) 399 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 400 INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE, 401 "Peephole Optimizations", false, false) 402 403 /// If instruction is a copy-like instruction, i.e. it reads a single register 404 /// and writes a single register and it does not modify the source, and if the 405 /// source value is preserved as a sub-register of the result, then replace all 406 /// reachable uses of the source with the subreg of the result. 407 /// 408 /// Do not generate an EXTRACT that is used only in a debug use, as this changes 409 /// the code. Since this code does not currently share EXTRACTs, just ignore all 410 /// debug uses. 411 bool PeepholeOptimizer:: 412 optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB, 413 SmallPtrSetImpl<MachineInstr*> &LocalMIs) { 414 unsigned SrcReg, DstReg, SubIdx; 415 if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx)) 416 return false; 417 418 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 419 TargetRegisterInfo::isPhysicalRegister(SrcReg)) 420 return false; 421 422 if (MRI->hasOneNonDBGUse(SrcReg)) 423 // No other uses. 424 return false; 425 426 // Ensure DstReg can get a register class that actually supports 427 // sub-registers. Don't change the class until we commit. 428 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 429 DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx); 430 if (!DstRC) 431 return false; 432 433 // The ext instr may be operating on a sub-register of SrcReg as well. 434 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit 435 // register. 436 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of 437 // SrcReg:SubIdx should be replaced. 438 bool UseSrcSubIdx = 439 TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr; 440 441 // The source has other uses. See if we can replace the other uses with use of 442 // the result of the extension. 443 SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs; 444 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 445 ReachedBBs.insert(UI.getParent()); 446 447 // Uses that are in the same BB of uses of the result of the instruction. 448 SmallVector<MachineOperand*, 8> Uses; 449 450 // Uses that the result of the instruction can reach. 451 SmallVector<MachineOperand*, 8> ExtendedUses; 452 453 bool ExtendLife = true; 454 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 455 MachineInstr *UseMI = UseMO.getParent(); 456 if (UseMI == MI) 457 continue; 458 459 if (UseMI->isPHI()) { 460 ExtendLife = false; 461 continue; 462 } 463 464 // Only accept uses of SrcReg:SubIdx. 465 if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx) 466 continue; 467 468 // It's an error to translate this: 469 // 470 // %reg1025 = <sext> %reg1024 471 // ... 472 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 473 // 474 // into this: 475 // 476 // %reg1025 = <sext> %reg1024 477 // ... 478 // %reg1027 = COPY %reg1025:4 479 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 480 // 481 // The problem here is that SUBREG_TO_REG is there to assert that an 482 // implicit zext occurs. It doesn't insert a zext instruction. If we allow 483 // the COPY here, it will give us the value after the <sext>, not the 484 // original value of %reg1024 before <sext>. 485 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) 486 continue; 487 488 MachineBasicBlock *UseMBB = UseMI->getParent(); 489 if (UseMBB == MBB) { 490 // Local uses that come after the extension. 491 if (!LocalMIs.count(UseMI)) 492 Uses.push_back(&UseMO); 493 } else if (ReachedBBs.count(UseMBB)) { 494 // Non-local uses where the result of the extension is used. Always 495 // replace these unless it's a PHI. 496 Uses.push_back(&UseMO); 497 } else if (Aggressive && DT->dominates(MBB, UseMBB)) { 498 // We may want to extend the live range of the extension result in order 499 // to replace these uses. 500 ExtendedUses.push_back(&UseMO); 501 } else { 502 // Both will be live out of the def MBB anyway. Don't extend live range of 503 // the extension result. 504 ExtendLife = false; 505 break; 506 } 507 } 508 509 if (ExtendLife && !ExtendedUses.empty()) 510 // Extend the liveness of the extension result. 511 Uses.append(ExtendedUses.begin(), ExtendedUses.end()); 512 513 // Now replace all uses. 514 bool Changed = false; 515 if (!Uses.empty()) { 516 SmallPtrSet<MachineBasicBlock*, 4> PHIBBs; 517 518 // Look for PHI uses of the extended result, we don't want to extend the 519 // liveness of a PHI input. It breaks all kinds of assumptions down 520 // stream. A PHI use is expected to be the kill of its source values. 521 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 522 if (UI.isPHI()) 523 PHIBBs.insert(UI.getParent()); 524 525 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 526 for (unsigned i = 0, e = Uses.size(); i != e; ++i) { 527 MachineOperand *UseMO = Uses[i]; 528 MachineInstr *UseMI = UseMO->getParent(); 529 MachineBasicBlock *UseMBB = UseMI->getParent(); 530 if (PHIBBs.count(UseMBB)) 531 continue; 532 533 // About to add uses of DstReg, clear DstReg's kill flags. 534 if (!Changed) { 535 MRI->clearKillFlags(DstReg); 536 MRI->constrainRegClass(DstReg, DstRC); 537 } 538 539 unsigned NewVR = MRI->createVirtualRegister(RC); 540 MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(), 541 TII->get(TargetOpcode::COPY), NewVR) 542 .addReg(DstReg, 0, SubIdx); 543 // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set. 544 if (UseSrcSubIdx) { 545 Copy->getOperand(0).setSubReg(SubIdx); 546 Copy->getOperand(0).setIsUndef(); 547 } 548 UseMO->setReg(NewVR); 549 ++NumReuse; 550 Changed = true; 551 } 552 } 553 554 return Changed; 555 } 556 557 /// If the instruction is a compare and the previous instruction it's comparing 558 /// against already sets (or could be modified to set) the same flag as the 559 /// compare, then we can remove the comparison and use the flag from the 560 /// previous instruction. 561 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI, 562 MachineBasicBlock *MBB) { 563 // If this instruction is a comparison against zero and isn't comparing a 564 // physical register, we can try to optimize it. 565 unsigned SrcReg, SrcReg2; 566 int CmpMask, CmpValue; 567 if (!TII->analyzeCompare(*MI, SrcReg, SrcReg2, CmpMask, CmpValue) || 568 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 569 (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2))) 570 return false; 571 572 // Attempt to optimize the comparison instruction. 573 if (TII->optimizeCompareInstr(*MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) { 574 ++NumCmps; 575 return true; 576 } 577 578 return false; 579 } 580 581 /// Optimize a select instruction. 582 bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI, 583 SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 584 unsigned TrueOp = 0; 585 unsigned FalseOp = 0; 586 bool Optimizable = false; 587 SmallVector<MachineOperand, 4> Cond; 588 if (TII->analyzeSelect(*MI, Cond, TrueOp, FalseOp, Optimizable)) 589 return false; 590 if (!Optimizable) 591 return false; 592 if (!TII->optimizeSelect(*MI, LocalMIs)) 593 return false; 594 MI->eraseFromParent(); 595 ++NumSelects; 596 return true; 597 } 598 599 /// \brief Check if a simpler conditional branch can be 600 // generated 601 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr *MI) { 602 return TII->optimizeCondBranch(*MI); 603 } 604 605 /// \brief Try to find the next source that share the same register file 606 /// for the value defined by \p Reg and \p SubReg. 607 /// When true is returned, the \p RewriteMap can be used by the client to 608 /// retrieve all Def -> Use along the way up to the next source. Any found 609 /// Use that is not itself a key for another entry, is the next source to 610 /// use. During the search for the next source, multiple sources can be found 611 /// given multiple incoming sources of a PHI instruction. In this case, we 612 /// look in each PHI source for the next source; all found next sources must 613 /// share the same register file as \p Reg and \p SubReg. The client should 614 /// then be capable to rewrite all intermediate PHIs to get the next source. 615 /// \return False if no alternative sources are available. True otherwise. 616 bool PeepholeOptimizer::findNextSource(unsigned Reg, unsigned SubReg, 617 RewriteMapTy &RewriteMap) { 618 // Do not try to find a new source for a physical register. 619 // So far we do not have any motivating example for doing that. 620 // Thus, instead of maintaining untested code, we will revisit that if 621 // that changes at some point. 622 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 623 return false; 624 const TargetRegisterClass *DefRC = MRI->getRegClass(Reg); 625 626 SmallVector<TargetInstrInfo::RegSubRegPair, 4> SrcToLook; 627 TargetInstrInfo::RegSubRegPair CurSrcPair(Reg, SubReg); 628 SrcToLook.push_back(CurSrcPair); 629 630 unsigned PHICount = 0; 631 while (!SrcToLook.empty() && PHICount < RewritePHILimit) { 632 TargetInstrInfo::RegSubRegPair Pair = SrcToLook.pop_back_val(); 633 // As explained above, do not handle physical registers 634 if (TargetRegisterInfo::isPhysicalRegister(Pair.Reg)) 635 return false; 636 637 CurSrcPair = Pair; 638 ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, 639 !DisableAdvCopyOpt, TII); 640 ValueTrackerResult Res; 641 bool ShouldRewrite = false; 642 643 do { 644 // Follow the chain of copies until we reach the top of the use-def chain 645 // or find a more suitable source. 646 Res = ValTracker.getNextSource(); 647 if (!Res.isValid()) 648 break; 649 650 // Insert the Def -> Use entry for the recently found source. 651 ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair); 652 if (CurSrcRes.isValid()) { 653 assert(CurSrcRes == Res && "ValueTrackerResult found must match"); 654 // An existent entry with multiple sources is a PHI cycle we must avoid. 655 // Otherwise it's an entry with a valid next source we already found. 656 if (CurSrcRes.getNumSources() > 1) { 657 DEBUG(dbgs() << "findNextSource: found PHI cycle, aborting...\n"); 658 return false; 659 } 660 break; 661 } 662 RewriteMap.insert(std::make_pair(CurSrcPair, Res)); 663 664 // ValueTrackerResult usually have one source unless it's the result from 665 // a PHI instruction. Add the found PHI edges to be looked up further. 666 unsigned NumSrcs = Res.getNumSources(); 667 if (NumSrcs > 1) { 668 PHICount++; 669 for (unsigned i = 0; i < NumSrcs; ++i) 670 SrcToLook.push_back(TargetInstrInfo::RegSubRegPair( 671 Res.getSrcReg(i), Res.getSrcSubReg(i))); 672 break; 673 } 674 675 CurSrcPair.Reg = Res.getSrcReg(0); 676 CurSrcPair.SubReg = Res.getSrcSubReg(0); 677 // Do not extend the live-ranges of physical registers as they add 678 // constraints to the register allocator. Moreover, if we want to extend 679 // the live-range of a physical register, unlike SSA virtual register, 680 // we will have to check that they aren't redefine before the related use. 681 if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg)) 682 return false; 683 684 const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg); 685 ShouldRewrite = TRI->shouldRewriteCopySrc(DefRC, SubReg, SrcRC, 686 CurSrcPair.SubReg); 687 } while (!ShouldRewrite); 688 689 // Continue looking for new sources... 690 if (Res.isValid()) 691 continue; 692 693 // Do not continue searching for a new source if the there's at least 694 // one use-def which cannot be rewritten. 695 if (!ShouldRewrite) 696 return false; 697 } 698 699 if (PHICount >= RewritePHILimit) { 700 DEBUG(dbgs() << "findNextSource: PHI limit reached\n"); 701 return false; 702 } 703 704 // If we did not find a more suitable source, there is nothing to optimize. 705 return CurSrcPair.Reg != Reg; 706 } 707 708 /// \brief Insert a PHI instruction with incoming edges \p SrcRegs that are 709 /// guaranteed to have the same register class. This is necessary whenever we 710 /// successfully traverse a PHI instruction and find suitable sources coming 711 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def 712 /// suitable to be used in a new COPY instruction. 713 static MachineInstr * 714 insertPHI(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 715 const SmallVectorImpl<TargetInstrInfo::RegSubRegPair> &SrcRegs, 716 MachineInstr *OrigPHI) { 717 assert(!SrcRegs.empty() && "No sources to create a PHI instruction?"); 718 719 const TargetRegisterClass *NewRC = MRI->getRegClass(SrcRegs[0].Reg); 720 unsigned NewVR = MRI->createVirtualRegister(NewRC); 721 MachineBasicBlock *MBB = OrigPHI->getParent(); 722 MachineInstrBuilder MIB = BuildMI(*MBB, OrigPHI, OrigPHI->getDebugLoc(), 723 TII->get(TargetOpcode::PHI), NewVR); 724 725 unsigned MBBOpIdx = 2; 726 for (auto RegPair : SrcRegs) { 727 MIB.addReg(RegPair.Reg, 0, RegPair.SubReg); 728 MIB.addMBB(OrigPHI->getOperand(MBBOpIdx).getMBB()); 729 // Since we're extended the lifetime of RegPair.Reg, clear the 730 // kill flags to account for that and make RegPair.Reg reaches 731 // the new PHI. 732 MRI->clearKillFlags(RegPair.Reg); 733 MBBOpIdx += 2; 734 } 735 736 return MIB; 737 } 738 739 namespace { 740 /// \brief Helper class to rewrite the arguments of a copy-like instruction. 741 class CopyRewriter { 742 protected: 743 /// The copy-like instruction. 744 MachineInstr &CopyLike; 745 /// The index of the source being rewritten. 746 unsigned CurrentSrcIdx; 747 748 public: 749 CopyRewriter(MachineInstr &MI) : CopyLike(MI), CurrentSrcIdx(0) {} 750 751 virtual ~CopyRewriter() {} 752 753 /// \brief Get the next rewritable source (SrcReg, SrcSubReg) and 754 /// the related value that it affects (TrackReg, TrackSubReg). 755 /// A source is considered rewritable if its register class and the 756 /// register class of the related TrackReg may not be register 757 /// coalescer friendly. In other words, given a copy-like instruction 758 /// not all the arguments may be returned at rewritable source, since 759 /// some arguments are none to be register coalescer friendly. 760 /// 761 /// Each call of this method moves the current source to the next 762 /// rewritable source. 763 /// For instance, let CopyLike be the instruction to rewrite. 764 /// CopyLike has one definition and one source: 765 /// dst.dstSubIdx = CopyLike src.srcSubIdx. 766 /// 767 /// The first call will give the first rewritable source, i.e., 768 /// the only source this instruction has: 769 /// (SrcReg, SrcSubReg) = (src, srcSubIdx). 770 /// This source defines the whole definition, i.e., 771 /// (TrackReg, TrackSubReg) = (dst, dstSubIdx). 772 /// 773 /// The second and subsequent calls will return false, as there is only one 774 /// rewritable source. 775 /// 776 /// \return True if a rewritable source has been found, false otherwise. 777 /// The output arguments are valid if and only if true is returned. 778 virtual bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 779 unsigned &TrackReg, 780 unsigned &TrackSubReg) { 781 // If CurrentSrcIdx == 1, this means this function has already been called 782 // once. CopyLike has one definition and one argument, thus, there is 783 // nothing else to rewrite. 784 if (!CopyLike.isCopy() || CurrentSrcIdx == 1) 785 return false; 786 // This is the first call to getNextRewritableSource. 787 // Move the CurrentSrcIdx to remember that we made that call. 788 CurrentSrcIdx = 1; 789 // The rewritable source is the argument. 790 const MachineOperand &MOSrc = CopyLike.getOperand(1); 791 SrcReg = MOSrc.getReg(); 792 SrcSubReg = MOSrc.getSubReg(); 793 // What we track are the alternative sources of the definition. 794 const MachineOperand &MODef = CopyLike.getOperand(0); 795 TrackReg = MODef.getReg(); 796 TrackSubReg = MODef.getSubReg(); 797 return true; 798 } 799 800 /// \brief Rewrite the current source with \p NewReg and \p NewSubReg 801 /// if possible. 802 /// \return True if the rewriting was possible, false otherwise. 803 virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) { 804 if (!CopyLike.isCopy() || CurrentSrcIdx != 1) 805 return false; 806 MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx); 807 MOSrc.setReg(NewReg); 808 MOSrc.setSubReg(NewSubReg); 809 return true; 810 } 811 812 /// \brief Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find 813 /// the new source to use for rewrite. If \p HandleMultipleSources is true and 814 /// multiple sources for a given \p Def are found along the way, we found a 815 /// PHI instructions that needs to be rewritten. 816 /// TODO: HandleMultipleSources should be removed once we test PHI handling 817 /// with coalescable copies. 818 TargetInstrInfo::RegSubRegPair 819 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 820 TargetInstrInfo::RegSubRegPair Def, 821 PeepholeOptimizer::RewriteMapTy &RewriteMap, 822 bool HandleMultipleSources = true) { 823 824 TargetInstrInfo::RegSubRegPair LookupSrc(Def.Reg, Def.SubReg); 825 do { 826 ValueTrackerResult Res = RewriteMap.lookup(LookupSrc); 827 // If there are no entries on the map, LookupSrc is the new source. 828 if (!Res.isValid()) 829 return LookupSrc; 830 831 // There's only one source for this definition, keep searching... 832 unsigned NumSrcs = Res.getNumSources(); 833 if (NumSrcs == 1) { 834 LookupSrc.Reg = Res.getSrcReg(0); 835 LookupSrc.SubReg = Res.getSrcSubReg(0); 836 continue; 837 } 838 839 // TODO: Remove once multiple srcs w/ coalescable copies are supported. 840 if (!HandleMultipleSources) 841 break; 842 843 // Multiple sources, recurse into each source to find a new source 844 // for it. Then, rewrite the PHI accordingly to its new edges. 845 SmallVector<TargetInstrInfo::RegSubRegPair, 4> NewPHISrcs; 846 for (unsigned i = 0; i < NumSrcs; ++i) { 847 TargetInstrInfo::RegSubRegPair PHISrc(Res.getSrcReg(i), 848 Res.getSrcSubReg(i)); 849 NewPHISrcs.push_back( 850 getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources)); 851 } 852 853 // Build the new PHI node and return its def register as the new source. 854 MachineInstr *OrigPHI = const_cast<MachineInstr *>(Res.getInst()); 855 MachineInstr *NewPHI = insertPHI(MRI, TII, NewPHISrcs, OrigPHI); 856 DEBUG(dbgs() << "-- getNewSource\n"); 857 DEBUG(dbgs() << " Replacing: " << *OrigPHI); 858 DEBUG(dbgs() << " With: " << *NewPHI); 859 const MachineOperand &MODef = NewPHI->getOperand(0); 860 return TargetInstrInfo::RegSubRegPair(MODef.getReg(), MODef.getSubReg()); 861 862 } while (1); 863 864 return TargetInstrInfo::RegSubRegPair(0, 0); 865 } 866 867 /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap 868 /// and create a new COPY instruction. More info about RewriteMap in 869 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle 870 /// Uncoalescable copies, since they are copy like instructions that aren't 871 /// recognized by the register allocator. 872 virtual MachineInstr * 873 RewriteSource(TargetInstrInfo::RegSubRegPair Def, 874 PeepholeOptimizer::RewriteMapTy &RewriteMap) { 875 return nullptr; 876 } 877 }; 878 879 /// \brief Helper class to rewrite uncoalescable copy like instructions 880 /// into new COPY (coalescable friendly) instructions. 881 class UncoalescableRewriter : public CopyRewriter { 882 protected: 883 const TargetInstrInfo &TII; 884 MachineRegisterInfo &MRI; 885 /// The number of defs in the bitcast 886 unsigned NumDefs; 887 888 public: 889 UncoalescableRewriter(MachineInstr &MI, const TargetInstrInfo &TII, 890 MachineRegisterInfo &MRI) 891 : CopyRewriter(MI), TII(TII), MRI(MRI) { 892 NumDefs = MI.getDesc().getNumDefs(); 893 } 894 895 /// \brief Get the next rewritable def source (TrackReg, TrackSubReg) 896 /// All such sources need to be considered rewritable in order to 897 /// rewrite a uncoalescable copy-like instruction. This method return 898 /// each definition that must be checked if rewritable. 899 /// 900 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 901 unsigned &TrackReg, 902 unsigned &TrackSubReg) override { 903 // Find the next non-dead definition and continue from there. 904 if (CurrentSrcIdx == NumDefs) 905 return false; 906 907 while (CopyLike.getOperand(CurrentSrcIdx).isDead()) { 908 ++CurrentSrcIdx; 909 if (CurrentSrcIdx == NumDefs) 910 return false; 911 } 912 913 // What we track are the alternative sources of the definition. 914 const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx); 915 TrackReg = MODef.getReg(); 916 TrackSubReg = MODef.getSubReg(); 917 918 CurrentSrcIdx++; 919 return true; 920 } 921 922 /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap 923 /// and create a new COPY instruction. More info about RewriteMap in 924 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle 925 /// Uncoalescable copies, since they are copy like instructions that aren't 926 /// recognized by the register allocator. 927 MachineInstr * 928 RewriteSource(TargetInstrInfo::RegSubRegPair Def, 929 PeepholeOptimizer::RewriteMapTy &RewriteMap) override { 930 assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) && 931 "We do not rewrite physical registers"); 932 933 // Find the new source to use in the COPY rewrite. 934 TargetInstrInfo::RegSubRegPair NewSrc = 935 getNewSource(&MRI, &TII, Def, RewriteMap); 936 937 // Insert the COPY. 938 const TargetRegisterClass *DefRC = MRI.getRegClass(Def.Reg); 939 unsigned NewVR = MRI.createVirtualRegister(DefRC); 940 941 MachineInstr *NewCopy = 942 BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(), 943 TII.get(TargetOpcode::COPY), NewVR) 944 .addReg(NewSrc.Reg, 0, NewSrc.SubReg); 945 946 NewCopy->getOperand(0).setSubReg(Def.SubReg); 947 if (Def.SubReg) 948 NewCopy->getOperand(0).setIsUndef(); 949 950 DEBUG(dbgs() << "-- RewriteSource\n"); 951 DEBUG(dbgs() << " Replacing: " << CopyLike); 952 DEBUG(dbgs() << " With: " << *NewCopy); 953 MRI.replaceRegWith(Def.Reg, NewVR); 954 MRI.clearKillFlags(NewVR); 955 956 // We extended the lifetime of NewSrc.Reg, clear the kill flags to 957 // account for that. 958 MRI.clearKillFlags(NewSrc.Reg); 959 960 return NewCopy; 961 } 962 }; 963 964 /// \brief Specialized rewriter for INSERT_SUBREG instruction. 965 class InsertSubregRewriter : public CopyRewriter { 966 public: 967 InsertSubregRewriter(MachineInstr &MI) : CopyRewriter(MI) { 968 assert(MI.isInsertSubreg() && "Invalid instruction"); 969 } 970 971 /// \brief See CopyRewriter::getNextRewritableSource. 972 /// Here CopyLike has the following form: 973 /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx. 974 /// Src1 has the same register class has dst, hence, there is 975 /// nothing to rewrite. 976 /// Src2.src2SubIdx, may not be register coalescer friendly. 977 /// Therefore, the first call to this method returns: 978 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 979 /// (TrackReg, TrackSubReg) = (dst, subIdx). 980 /// 981 /// Subsequence calls will return false. 982 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 983 unsigned &TrackReg, 984 unsigned &TrackSubReg) override { 985 // If we already get the only source we can rewrite, return false. 986 if (CurrentSrcIdx == 2) 987 return false; 988 // We are looking at v2 = INSERT_SUBREG v0, v1, sub0. 989 CurrentSrcIdx = 2; 990 const MachineOperand &MOInsertedReg = CopyLike.getOperand(2); 991 SrcReg = MOInsertedReg.getReg(); 992 SrcSubReg = MOInsertedReg.getSubReg(); 993 const MachineOperand &MODef = CopyLike.getOperand(0); 994 995 // We want to track something that is compatible with the 996 // partial definition. 997 TrackReg = MODef.getReg(); 998 if (MODef.getSubReg()) 999 // Bail if we have to compose sub-register indices. 1000 return false; 1001 TrackSubReg = (unsigned)CopyLike.getOperand(3).getImm(); 1002 return true; 1003 } 1004 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1005 if (CurrentSrcIdx != 2) 1006 return false; 1007 // We are rewriting the inserted reg. 1008 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 1009 MO.setReg(NewReg); 1010 MO.setSubReg(NewSubReg); 1011 return true; 1012 } 1013 }; 1014 1015 /// \brief Specialized rewriter for EXTRACT_SUBREG instruction. 1016 class ExtractSubregRewriter : public CopyRewriter { 1017 const TargetInstrInfo &TII; 1018 1019 public: 1020 ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII) 1021 : CopyRewriter(MI), TII(TII) { 1022 assert(MI.isExtractSubreg() && "Invalid instruction"); 1023 } 1024 1025 /// \brief See CopyRewriter::getNextRewritableSource. 1026 /// Here CopyLike has the following form: 1027 /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx. 1028 /// There is only one rewritable source: Src.subIdx, 1029 /// which defines dst.dstSubIdx. 1030 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 1031 unsigned &TrackReg, 1032 unsigned &TrackSubReg) override { 1033 // If we already get the only source we can rewrite, return false. 1034 if (CurrentSrcIdx == 1) 1035 return false; 1036 // We are looking at v1 = EXTRACT_SUBREG v0, sub0. 1037 CurrentSrcIdx = 1; 1038 const MachineOperand &MOExtractedReg = CopyLike.getOperand(1); 1039 SrcReg = MOExtractedReg.getReg(); 1040 // If we have to compose sub-register indices, bail out. 1041 if (MOExtractedReg.getSubReg()) 1042 return false; 1043 1044 SrcSubReg = CopyLike.getOperand(2).getImm(); 1045 1046 // We want to track something that is compatible with the definition. 1047 const MachineOperand &MODef = CopyLike.getOperand(0); 1048 TrackReg = MODef.getReg(); 1049 TrackSubReg = MODef.getSubReg(); 1050 return true; 1051 } 1052 1053 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1054 // The only source we can rewrite is the input register. 1055 if (CurrentSrcIdx != 1) 1056 return false; 1057 1058 CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg); 1059 1060 // If we find a source that does not require to extract something, 1061 // rewrite the operation with a copy. 1062 if (!NewSubReg) { 1063 // Move the current index to an invalid position. 1064 // We do not want another call to this method to be able 1065 // to do any change. 1066 CurrentSrcIdx = -1; 1067 // Rewrite the operation as a COPY. 1068 // Get rid of the sub-register index. 1069 CopyLike.RemoveOperand(2); 1070 // Morph the operation into a COPY. 1071 CopyLike.setDesc(TII.get(TargetOpcode::COPY)); 1072 return true; 1073 } 1074 CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg); 1075 return true; 1076 } 1077 }; 1078 1079 /// \brief Specialized rewriter for REG_SEQUENCE instruction. 1080 class RegSequenceRewriter : public CopyRewriter { 1081 public: 1082 RegSequenceRewriter(MachineInstr &MI) : CopyRewriter(MI) { 1083 assert(MI.isRegSequence() && "Invalid instruction"); 1084 } 1085 1086 /// \brief See CopyRewriter::getNextRewritableSource. 1087 /// Here CopyLike has the following form: 1088 /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2. 1089 /// Each call will return a different source, walking all the available 1090 /// source. 1091 /// 1092 /// The first call returns: 1093 /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx). 1094 /// (TrackReg, TrackSubReg) = (dst, subIdx1). 1095 /// 1096 /// The second call returns: 1097 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 1098 /// (TrackReg, TrackSubReg) = (dst, subIdx2). 1099 /// 1100 /// And so on, until all the sources have been traversed, then 1101 /// it returns false. 1102 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 1103 unsigned &TrackReg, 1104 unsigned &TrackSubReg) override { 1105 // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc. 1106 1107 // If this is the first call, move to the first argument. 1108 if (CurrentSrcIdx == 0) { 1109 CurrentSrcIdx = 1; 1110 } else { 1111 // Otherwise, move to the next argument and check that it is valid. 1112 CurrentSrcIdx += 2; 1113 if (CurrentSrcIdx >= CopyLike.getNumOperands()) 1114 return false; 1115 } 1116 const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx); 1117 SrcReg = MOInsertedReg.getReg(); 1118 // If we have to compose sub-register indices, bail out. 1119 if ((SrcSubReg = MOInsertedReg.getSubReg())) 1120 return false; 1121 1122 // We want to track something that is compatible with the related 1123 // partial definition. 1124 TrackSubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm(); 1125 1126 const MachineOperand &MODef = CopyLike.getOperand(0); 1127 TrackReg = MODef.getReg(); 1128 // If we have to compose sub-registers, bail. 1129 return MODef.getSubReg() == 0; 1130 } 1131 1132 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1133 // We cannot rewrite out of bound operands. 1134 // Moreover, rewritable sources are at odd positions. 1135 if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands()) 1136 return false; 1137 1138 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 1139 MO.setReg(NewReg); 1140 MO.setSubReg(NewSubReg); 1141 return true; 1142 } 1143 }; 1144 } // End namespace. 1145 1146 /// \brief Get the appropriated CopyRewriter for \p MI. 1147 /// \return A pointer to a dynamically allocated CopyRewriter or nullptr 1148 /// if no rewriter works for \p MI. 1149 static CopyRewriter *getCopyRewriter(MachineInstr &MI, 1150 const TargetInstrInfo &TII, 1151 MachineRegisterInfo &MRI) { 1152 // Handle uncoalescable copy-like instructions. 1153 if (MI.isBitcast() || (MI.isRegSequenceLike() || MI.isInsertSubregLike() || 1154 MI.isExtractSubregLike())) 1155 return new UncoalescableRewriter(MI, TII, MRI); 1156 1157 switch (MI.getOpcode()) { 1158 default: 1159 return nullptr; 1160 case TargetOpcode::COPY: 1161 return new CopyRewriter(MI); 1162 case TargetOpcode::INSERT_SUBREG: 1163 return new InsertSubregRewriter(MI); 1164 case TargetOpcode::EXTRACT_SUBREG: 1165 return new ExtractSubregRewriter(MI, TII); 1166 case TargetOpcode::REG_SEQUENCE: 1167 return new RegSequenceRewriter(MI); 1168 } 1169 llvm_unreachable(nullptr); 1170 } 1171 1172 /// \brief Optimize generic copy instructions to avoid cross 1173 /// register bank copy. The optimization looks through a chain of 1174 /// copies and tries to find a source that has a compatible register 1175 /// class. 1176 /// Two register classes are considered to be compatible if they share 1177 /// the same register bank. 1178 /// New copies issued by this optimization are register allocator 1179 /// friendly. This optimization does not remove any copy as it may 1180 /// overconstrain the register allocator, but replaces some operands 1181 /// when possible. 1182 /// \pre isCoalescableCopy(*MI) is true. 1183 /// \return True, when \p MI has been rewritten. False otherwise. 1184 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr *MI) { 1185 assert(MI && isCoalescableCopy(*MI) && "Invalid argument"); 1186 assert(MI->getDesc().getNumDefs() == 1 && 1187 "Coalescer can understand multiple defs?!"); 1188 const MachineOperand &MODef = MI->getOperand(0); 1189 // Do not rewrite physical definitions. 1190 if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg())) 1191 return false; 1192 1193 bool Changed = false; 1194 // Get the right rewriter for the current copy. 1195 std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI)); 1196 // If none exists, bail out. 1197 if (!CpyRewriter) 1198 return false; 1199 // Rewrite each rewritable source. 1200 unsigned SrcReg, SrcSubReg, TrackReg, TrackSubReg; 1201 while (CpyRewriter->getNextRewritableSource(SrcReg, SrcSubReg, TrackReg, 1202 TrackSubReg)) { 1203 // Keep track of PHI nodes and its incoming edges when looking for sources. 1204 RewriteMapTy RewriteMap; 1205 // Try to find a more suitable source. If we failed to do so, or get the 1206 // actual source, move to the next source. 1207 if (!findNextSource(TrackReg, TrackSubReg, RewriteMap)) 1208 continue; 1209 1210 // Get the new source to rewrite. TODO: Only enable handling of multiple 1211 // sources (PHIs) once we have a motivating example and testcases for it. 1212 TargetInstrInfo::RegSubRegPair TrackPair(TrackReg, TrackSubReg); 1213 TargetInstrInfo::RegSubRegPair NewSrc = CpyRewriter->getNewSource( 1214 MRI, TII, TrackPair, RewriteMap, false /* multiple sources */); 1215 if (SrcReg == NewSrc.Reg || NewSrc.Reg == 0) 1216 continue; 1217 1218 // Rewrite source. 1219 if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) { 1220 // We may have extended the live-range of NewSrc, account for that. 1221 MRI->clearKillFlags(NewSrc.Reg); 1222 Changed = true; 1223 } 1224 } 1225 // TODO: We could have a clean-up method to tidy the instruction. 1226 // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0 1227 // => v0 = COPY v1 1228 // Currently we haven't seen motivating example for that and we 1229 // want to avoid untested code. 1230 NumRewrittenCopies += Changed; 1231 return Changed; 1232 } 1233 1234 /// \brief Optimize copy-like instructions to create 1235 /// register coalescer friendly instruction. 1236 /// The optimization tries to kill-off the \p MI by looking 1237 /// through a chain of copies to find a source that has a compatible 1238 /// register class. 1239 /// If such a source is found, it replace \p MI by a generic COPY 1240 /// operation. 1241 /// \pre isUncoalescableCopy(*MI) is true. 1242 /// \return True, when \p MI has been optimized. In that case, \p MI has 1243 /// been removed from its parent. 1244 /// All COPY instructions created, are inserted in \p LocalMIs. 1245 bool PeepholeOptimizer::optimizeUncoalescableCopy( 1246 MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 1247 assert(MI && isUncoalescableCopy(*MI) && "Invalid argument"); 1248 1249 // Check if we can rewrite all the values defined by this instruction. 1250 SmallVector<TargetInstrInfo::RegSubRegPair, 4> RewritePairs; 1251 // Get the right rewriter for the current copy. 1252 std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI)); 1253 // If none exists, bail out. 1254 if (!CpyRewriter) 1255 return false; 1256 1257 // Rewrite each rewritable source by generating new COPYs. This works 1258 // differently from optimizeCoalescableCopy since it first makes sure that all 1259 // definitions can be rewritten. 1260 RewriteMapTy RewriteMap; 1261 unsigned Reg, SubReg, CopyDefReg, CopyDefSubReg; 1262 while (CpyRewriter->getNextRewritableSource(Reg, SubReg, CopyDefReg, 1263 CopyDefSubReg)) { 1264 // If a physical register is here, this is probably for a good reason. 1265 // Do not rewrite that. 1266 if (TargetRegisterInfo::isPhysicalRegister(CopyDefReg)) 1267 return false; 1268 1269 // If we do not know how to rewrite this definition, there is no point 1270 // in trying to kill this instruction. 1271 TargetInstrInfo::RegSubRegPair Def(CopyDefReg, CopyDefSubReg); 1272 if (!findNextSource(Def.Reg, Def.SubReg, RewriteMap)) 1273 return false; 1274 1275 RewritePairs.push_back(Def); 1276 } 1277 1278 // The change is possible for all defs, do it. 1279 for (const auto &Def : RewritePairs) { 1280 // Rewrite the "copy" in a way the register coalescer understands. 1281 MachineInstr *NewCopy = CpyRewriter->RewriteSource(Def, RewriteMap); 1282 assert(NewCopy && "Should be able to always generate a new copy"); 1283 LocalMIs.insert(NewCopy); 1284 } 1285 1286 // MI is now dead. 1287 MI->eraseFromParent(); 1288 ++NumUncoalescableCopies; 1289 return true; 1290 } 1291 1292 /// Check whether MI is a candidate for folding into a later instruction. 1293 /// We only fold loads to virtual registers and the virtual register defined 1294 /// has a single use. 1295 bool PeepholeOptimizer::isLoadFoldable( 1296 MachineInstr *MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) { 1297 if (!MI->canFoldAsLoad() || !MI->mayLoad()) 1298 return false; 1299 const MCInstrDesc &MCID = MI->getDesc(); 1300 if (MCID.getNumDefs() != 1) 1301 return false; 1302 1303 unsigned Reg = MI->getOperand(0).getReg(); 1304 // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting 1305 // loads. It should be checked when processing uses of the load, since 1306 // uses can be removed during peephole. 1307 if (!MI->getOperand(0).getSubReg() && 1308 TargetRegisterInfo::isVirtualRegister(Reg) && 1309 MRI->hasOneNonDBGUse(Reg)) { 1310 FoldAsLoadDefCandidates.insert(Reg); 1311 return true; 1312 } 1313 return false; 1314 } 1315 1316 bool PeepholeOptimizer::isMoveImmediate( 1317 MachineInstr *MI, SmallSet<unsigned, 4> &ImmDefRegs, 1318 DenseMap<unsigned, MachineInstr *> &ImmDefMIs) { 1319 const MCInstrDesc &MCID = MI->getDesc(); 1320 if (!MI->isMoveImmediate()) 1321 return false; 1322 if (MCID.getNumDefs() != 1) 1323 return false; 1324 unsigned Reg = MI->getOperand(0).getReg(); 1325 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1326 ImmDefMIs.insert(std::make_pair(Reg, MI)); 1327 ImmDefRegs.insert(Reg); 1328 return true; 1329 } 1330 1331 return false; 1332 } 1333 1334 /// Try folding register operands that are defined by move immediate 1335 /// instructions, i.e. a trivial constant folding optimization, if 1336 /// and only if the def and use are in the same BB. 1337 bool PeepholeOptimizer::foldImmediate( 1338 MachineInstr *MI, MachineBasicBlock *MBB, SmallSet<unsigned, 4> &ImmDefRegs, 1339 DenseMap<unsigned, MachineInstr *> &ImmDefMIs) { 1340 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 1341 MachineOperand &MO = MI->getOperand(i); 1342 if (!MO.isReg() || MO.isDef()) 1343 continue; 1344 // Ignore dead implicit defs. 1345 if (MO.isImplicit() && MO.isDead()) 1346 continue; 1347 unsigned Reg = MO.getReg(); 1348 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1349 continue; 1350 if (ImmDefRegs.count(Reg) == 0) 1351 continue; 1352 DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg); 1353 assert(II != ImmDefMIs.end() && "couldn't find immediate definition"); 1354 if (TII->FoldImmediate(*MI, *II->second, Reg, MRI)) { 1355 ++NumImmFold; 1356 return true; 1357 } 1358 } 1359 return false; 1360 } 1361 1362 // FIXME: This is very simple and misses some cases which should be handled when 1363 // motivating examples are found. 1364 // 1365 // The copy rewriting logic should look at uses as well as defs and be able to 1366 // eliminate copies across blocks. 1367 // 1368 // Later copies that are subregister extracts will also not be eliminated since 1369 // only the first copy is considered. 1370 // 1371 // e.g. 1372 // %vreg1 = COPY %vreg0 1373 // %vreg2 = COPY %vreg0:sub1 1374 // 1375 // Should replace %vreg2 uses with %vreg1:sub1 1376 bool PeepholeOptimizer::foldRedundantCopy( 1377 MachineInstr *MI, SmallSet<unsigned, 4> &CopySrcRegs, 1378 DenseMap<unsigned, MachineInstr *> &CopyMIs) { 1379 assert(MI->isCopy() && "expected a COPY machine instruction"); 1380 1381 unsigned SrcReg = MI->getOperand(1).getReg(); 1382 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1383 return false; 1384 1385 unsigned DstReg = MI->getOperand(0).getReg(); 1386 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1387 return false; 1388 1389 if (CopySrcRegs.insert(SrcReg).second) { 1390 // First copy of this reg seen. 1391 CopyMIs.insert(std::make_pair(SrcReg, MI)); 1392 return false; 1393 } 1394 1395 MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second; 1396 1397 unsigned SrcSubReg = MI->getOperand(1).getSubReg(); 1398 unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg(); 1399 1400 // Can't replace different subregister extracts. 1401 if (SrcSubReg != PrevSrcSubReg) 1402 return false; 1403 1404 unsigned PrevDstReg = PrevCopy->getOperand(0).getReg(); 1405 1406 // Only replace if the copy register class is the same. 1407 // 1408 // TODO: If we have multiple copies to different register classes, we may want 1409 // to track multiple copies of the same source register. 1410 if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg)) 1411 return false; 1412 1413 MRI->replaceRegWith(DstReg, PrevDstReg); 1414 1415 // Lifetime of the previous copy has been extended. 1416 MRI->clearKillFlags(PrevDstReg); 1417 return true; 1418 } 1419 1420 bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) { 1421 return TargetRegisterInfo::isPhysicalRegister(Reg) && 1422 !MRI->isAllocatable(Reg); 1423 } 1424 1425 bool PeepholeOptimizer::foldRedundantNAPhysCopy( 1426 MachineInstr *MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) { 1427 assert(MI->isCopy() && "expected a COPY machine instruction"); 1428 1429 if (DisableNAPhysCopyOpt) 1430 return false; 1431 1432 unsigned DstReg = MI->getOperand(0).getReg(); 1433 unsigned SrcReg = MI->getOperand(1).getReg(); 1434 if (isNAPhysCopy(SrcReg) && TargetRegisterInfo::isVirtualRegister(DstReg)) { 1435 // %vreg = COPY %PHYSREG 1436 // Avoid using a datastructure which can track multiple live non-allocatable 1437 // phys->virt copies since LLVM doesn't seem to do this. 1438 NAPhysToVirtMIs.insert({SrcReg, MI}); 1439 return false; 1440 } 1441 1442 if (!(TargetRegisterInfo::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg))) 1443 return false; 1444 1445 // %PHYSREG = COPY %vreg 1446 auto PrevCopy = NAPhysToVirtMIs.find(DstReg); 1447 if (PrevCopy == NAPhysToVirtMIs.end()) { 1448 // We can't remove the copy: there was an intervening clobber of the 1449 // non-allocatable physical register after the copy to virtual. 1450 DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing " << *MI 1451 << '\n'); 1452 return false; 1453 } 1454 1455 unsigned PrevDstReg = PrevCopy->second->getOperand(0).getReg(); 1456 if (PrevDstReg == SrcReg) { 1457 // Remove the virt->phys copy: we saw the virtual register definition, and 1458 // the non-allocatable physical register's state hasn't changed since then. 1459 DEBUG(dbgs() << "NAPhysCopy: erasing " << *MI << '\n'); 1460 ++NumNAPhysCopies; 1461 return true; 1462 } 1463 1464 // Potential missed optimization opportunity: we saw a different virtual 1465 // register get a copy of the non-allocatable physical register, and we only 1466 // track one such copy. Avoid getting confused by this new non-allocatable 1467 // physical register definition, and remove it from the tracked copies. 1468 DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << *MI << '\n'); 1469 NAPhysToVirtMIs.erase(PrevCopy); 1470 return false; 1471 } 1472 1473 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) { 1474 if (skipFunction(*MF.getFunction())) 1475 return false; 1476 1477 DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n"); 1478 DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n'); 1479 1480 if (DisablePeephole) 1481 return false; 1482 1483 TII = MF.getSubtarget().getInstrInfo(); 1484 TRI = MF.getSubtarget().getRegisterInfo(); 1485 MRI = &MF.getRegInfo(); 1486 DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr; 1487 1488 bool Changed = false; 1489 1490 for (MachineBasicBlock &MBB : MF) { 1491 bool SeenMoveImm = false; 1492 1493 // During this forward scan, at some point it needs to answer the question 1494 // "given a pointer to an MI in the current BB, is it located before or 1495 // after the current instruction". 1496 // To perform this, the following set keeps track of the MIs already seen 1497 // during the scan, if a MI is not in the set, it is assumed to be located 1498 // after. Newly created MIs have to be inserted in the set as well. 1499 SmallPtrSet<MachineInstr*, 16> LocalMIs; 1500 SmallSet<unsigned, 4> ImmDefRegs; 1501 DenseMap<unsigned, MachineInstr*> ImmDefMIs; 1502 SmallSet<unsigned, 16> FoldAsLoadDefCandidates; 1503 1504 // Track when a non-allocatable physical register is copied to a virtual 1505 // register so that useless moves can be removed. 1506 // 1507 // %PHYSREG is the map index; MI is the last valid `%vreg = COPY %PHYSREG` 1508 // without any intervening re-definition of %PHYSREG. 1509 DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs; 1510 1511 // Set of virtual registers that are copied from. 1512 SmallSet<unsigned, 4> CopySrcRegs; 1513 DenseMap<unsigned, MachineInstr *> CopySrcMIs; 1514 1515 for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end(); 1516 MII != MIE; ) { 1517 MachineInstr *MI = &*MII; 1518 // We may be erasing MI below, increment MII now. 1519 ++MII; 1520 LocalMIs.insert(MI); 1521 1522 // Skip debug values. They should not affect this peephole optimization. 1523 if (MI->isDebugValue()) 1524 continue; 1525 1526 // If we run into an instruction we can't fold across, discard 1527 // the load candidates. 1528 if (MI->isLoadFoldBarrier()) 1529 FoldAsLoadDefCandidates.clear(); 1530 1531 if (MI->isPosition() || MI->isPHI()) 1532 continue; 1533 1534 if (!MI->isCopy()) { 1535 for (const auto &Op : MI->operands()) { 1536 // Visit all operands: definitions can be implicit or explicit. 1537 if (Op.isReg()) { 1538 unsigned Reg = Op.getReg(); 1539 if (Op.isDef() && isNAPhysCopy(Reg)) { 1540 const auto &Def = NAPhysToVirtMIs.find(Reg); 1541 if (Def != NAPhysToVirtMIs.end()) { 1542 // A new definition of the non-allocatable physical register 1543 // invalidates previous copies. 1544 DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI 1545 << '\n'); 1546 NAPhysToVirtMIs.erase(Def); 1547 } 1548 } 1549 } else if (Op.isRegMask()) { 1550 const uint32_t *RegMask = Op.getRegMask(); 1551 for (auto &RegMI : NAPhysToVirtMIs) { 1552 unsigned Def = RegMI.first; 1553 if (MachineOperand::clobbersPhysReg(RegMask, Def)) { 1554 DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI 1555 << '\n'); 1556 NAPhysToVirtMIs.erase(Def); 1557 } 1558 } 1559 } 1560 } 1561 } 1562 1563 if (MI->isImplicitDef() || MI->isKill()) 1564 continue; 1565 1566 if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) { 1567 // Blow away all non-allocatable physical registers knowledge since we 1568 // don't know what's correct anymore. 1569 // 1570 // FIXME: handle explicit asm clobbers. 1571 DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " << *MI 1572 << '\n'); 1573 NAPhysToVirtMIs.clear(); 1574 continue; 1575 } 1576 1577 if ((isUncoalescableCopy(*MI) && 1578 optimizeUncoalescableCopy(MI, LocalMIs)) || 1579 (MI->isCompare() && optimizeCmpInstr(MI, &MBB)) || 1580 (MI->isSelect() && optimizeSelect(MI, LocalMIs))) { 1581 // MI is deleted. 1582 LocalMIs.erase(MI); 1583 Changed = true; 1584 continue; 1585 } 1586 1587 if (MI->isConditionalBranch() && optimizeCondBranch(MI)) { 1588 Changed = true; 1589 continue; 1590 } 1591 1592 if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(MI)) { 1593 // MI is just rewritten. 1594 Changed = true; 1595 continue; 1596 } 1597 1598 if (MI->isCopy() && 1599 (foldRedundantCopy(MI, CopySrcRegs, CopySrcMIs) || 1600 foldRedundantNAPhysCopy(MI, NAPhysToVirtMIs))) { 1601 LocalMIs.erase(MI); 1602 MI->eraseFromParent(); 1603 Changed = true; 1604 continue; 1605 } 1606 1607 if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) { 1608 SeenMoveImm = true; 1609 } else { 1610 Changed |= optimizeExtInstr(MI, &MBB, LocalMIs); 1611 // optimizeExtInstr might have created new instructions after MI 1612 // and before the already incremented MII. Adjust MII so that the 1613 // next iteration sees the new instructions. 1614 MII = MI; 1615 ++MII; 1616 if (SeenMoveImm) 1617 Changed |= foldImmediate(MI, &MBB, ImmDefRegs, ImmDefMIs); 1618 } 1619 1620 // Check whether MI is a load candidate for folding into a later 1621 // instruction. If MI is not a candidate, check whether we can fold an 1622 // earlier load into MI. 1623 if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) && 1624 !FoldAsLoadDefCandidates.empty()) { 1625 const MCInstrDesc &MIDesc = MI->getDesc(); 1626 for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands(); 1627 ++i) { 1628 const MachineOperand &MOp = MI->getOperand(i); 1629 if (!MOp.isReg()) 1630 continue; 1631 unsigned FoldAsLoadDefReg = MOp.getReg(); 1632 if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) { 1633 // We need to fold load after optimizeCmpInstr, since 1634 // optimizeCmpInstr can enable folding by converting SUB to CMP. 1635 // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and 1636 // we need it for markUsesInDebugValueAsUndef(). 1637 unsigned FoldedReg = FoldAsLoadDefReg; 1638 MachineInstr *DefMI = nullptr; 1639 if (MachineInstr *FoldMI = 1640 TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) { 1641 // Update LocalMIs since we replaced MI with FoldMI and deleted 1642 // DefMI. 1643 DEBUG(dbgs() << "Replacing: " << *MI); 1644 DEBUG(dbgs() << " With: " << *FoldMI); 1645 LocalMIs.erase(MI); 1646 LocalMIs.erase(DefMI); 1647 LocalMIs.insert(FoldMI); 1648 MI->eraseFromParent(); 1649 DefMI->eraseFromParent(); 1650 MRI->markUsesInDebugValueAsUndef(FoldedReg); 1651 FoldAsLoadDefCandidates.erase(FoldedReg); 1652 ++NumLoadFold; 1653 // MI is replaced with FoldMI. 1654 Changed = true; 1655 break; 1656 } 1657 } 1658 } 1659 } 1660 } 1661 } 1662 1663 return Changed; 1664 } 1665 1666 ValueTrackerResult ValueTracker::getNextSourceFromCopy() { 1667 assert(Def->isCopy() && "Invalid definition"); 1668 // Copy instruction are supposed to be: Def = Src. 1669 // If someone breaks this assumption, bad things will happen everywhere. 1670 assert(Def->getNumOperands() == 2 && "Invalid number of operands"); 1671 1672 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) 1673 // If we look for a different subreg, it means we want a subreg of src. 1674 // Bails as we do not support composing subregs yet. 1675 return ValueTrackerResult(); 1676 // Otherwise, we want the whole source. 1677 const MachineOperand &Src = Def->getOperand(1); 1678 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1679 } 1680 1681 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() { 1682 assert(Def->isBitcast() && "Invalid definition"); 1683 1684 // Bail if there are effects that a plain copy will not expose. 1685 if (Def->hasUnmodeledSideEffects()) 1686 return ValueTrackerResult(); 1687 1688 // Bitcasts with more than one def are not supported. 1689 if (Def->getDesc().getNumDefs() != 1) 1690 return ValueTrackerResult(); 1691 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) 1692 // If we look for a different subreg, it means we want a subreg of the src. 1693 // Bails as we do not support composing subregs yet. 1694 return ValueTrackerResult(); 1695 1696 unsigned SrcIdx = Def->getNumOperands(); 1697 for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; 1698 ++OpIdx) { 1699 const MachineOperand &MO = Def->getOperand(OpIdx); 1700 if (!MO.isReg() || !MO.getReg()) 1701 continue; 1702 // Ignore dead implicit defs. 1703 if (MO.isImplicit() && MO.isDead()) 1704 continue; 1705 assert(!MO.isDef() && "We should have skipped all the definitions by now"); 1706 if (SrcIdx != EndOpIdx) 1707 // Multiple sources? 1708 return ValueTrackerResult(); 1709 SrcIdx = OpIdx; 1710 } 1711 const MachineOperand &Src = Def->getOperand(SrcIdx); 1712 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1713 } 1714 1715 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() { 1716 assert((Def->isRegSequence() || Def->isRegSequenceLike()) && 1717 "Invalid definition"); 1718 1719 if (Def->getOperand(DefIdx).getSubReg()) 1720 // If we are composing subregs, bail out. 1721 // The case we are checking is Def.<subreg> = REG_SEQUENCE. 1722 // This should almost never happen as the SSA property is tracked at 1723 // the register level (as opposed to the subreg level). 1724 // I.e., 1725 // Def.sub0 = 1726 // Def.sub1 = 1727 // is a valid SSA representation for Def.sub0 and Def.sub1, but not for 1728 // Def. Thus, it must not be generated. 1729 // However, some code could theoretically generates a single 1730 // Def.sub0 (i.e, not defining the other subregs) and we would 1731 // have this case. 1732 // If we can ascertain (or force) that this never happens, we could 1733 // turn that into an assertion. 1734 return ValueTrackerResult(); 1735 1736 if (!TII) 1737 // We could handle the REG_SEQUENCE here, but we do not want to 1738 // duplicate the code from the generic TII. 1739 return ValueTrackerResult(); 1740 1741 SmallVector<TargetInstrInfo::RegSubRegPairAndIdx, 8> RegSeqInputRegs; 1742 if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs)) 1743 return ValueTrackerResult(); 1744 1745 // We are looking at: 1746 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1747 // Check if one of the operand defines the subreg we are interested in. 1748 for (auto &RegSeqInput : RegSeqInputRegs) { 1749 if (RegSeqInput.SubIdx == DefSubReg) { 1750 if (RegSeqInput.SubReg) 1751 // Bail if we have to compose sub registers. 1752 return ValueTrackerResult(); 1753 1754 return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg); 1755 } 1756 } 1757 1758 // If the subreg we are tracking is super-defined by another subreg, 1759 // we could follow this value. However, this would require to compose 1760 // the subreg and we do not do that for now. 1761 return ValueTrackerResult(); 1762 } 1763 1764 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() { 1765 assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) && 1766 "Invalid definition"); 1767 1768 if (Def->getOperand(DefIdx).getSubReg()) 1769 // If we are composing subreg, bail out. 1770 // Same remark as getNextSourceFromRegSequence. 1771 // I.e., this may be turned into an assert. 1772 return ValueTrackerResult(); 1773 1774 if (!TII) 1775 // We could handle the REG_SEQUENCE here, but we do not want to 1776 // duplicate the code from the generic TII. 1777 return ValueTrackerResult(); 1778 1779 TargetInstrInfo::RegSubRegPair BaseReg; 1780 TargetInstrInfo::RegSubRegPairAndIdx InsertedReg; 1781 if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg)) 1782 return ValueTrackerResult(); 1783 1784 // We are looking at: 1785 // Def = INSERT_SUBREG v0, v1, sub1 1786 // There are two cases: 1787 // 1. DefSubReg == sub1, get v1. 1788 // 2. DefSubReg != sub1, the value may be available through v0. 1789 1790 // #1 Check if the inserted register matches the required sub index. 1791 if (InsertedReg.SubIdx == DefSubReg) { 1792 return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg); 1793 } 1794 // #2 Otherwise, if the sub register we are looking for is not partial 1795 // defined by the inserted element, we can look through the main 1796 // register (v0). 1797 const MachineOperand &MODef = Def->getOperand(DefIdx); 1798 // If the result register (Def) and the base register (v0) do not 1799 // have the same register class or if we have to compose 1800 // subregisters, bail out. 1801 if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) || 1802 BaseReg.SubReg) 1803 return ValueTrackerResult(); 1804 1805 // Get the TRI and check if the inserted sub-register overlaps with the 1806 // sub-register we are tracking. 1807 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 1808 if (!TRI || 1809 (TRI->getSubRegIndexLaneMask(DefSubReg) & 1810 TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)) != 0) 1811 return ValueTrackerResult(); 1812 // At this point, the value is available in v0 via the same subreg 1813 // we used for Def. 1814 return ValueTrackerResult(BaseReg.Reg, DefSubReg); 1815 } 1816 1817 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() { 1818 assert((Def->isExtractSubreg() || 1819 Def->isExtractSubregLike()) && "Invalid definition"); 1820 // We are looking at: 1821 // Def = EXTRACT_SUBREG v0, sub0 1822 1823 // Bail if we have to compose sub registers. 1824 // Indeed, if DefSubReg != 0, we would have to compose it with sub0. 1825 if (DefSubReg) 1826 return ValueTrackerResult(); 1827 1828 if (!TII) 1829 // We could handle the EXTRACT_SUBREG here, but we do not want to 1830 // duplicate the code from the generic TII. 1831 return ValueTrackerResult(); 1832 1833 TargetInstrInfo::RegSubRegPairAndIdx ExtractSubregInputReg; 1834 if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg)) 1835 return ValueTrackerResult(); 1836 1837 // Bail if we have to compose sub registers. 1838 // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. 1839 if (ExtractSubregInputReg.SubReg) 1840 return ValueTrackerResult(); 1841 // Otherwise, the value is available in the v0.sub0. 1842 return ValueTrackerResult(ExtractSubregInputReg.Reg, 1843 ExtractSubregInputReg.SubIdx); 1844 } 1845 1846 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() { 1847 assert(Def->isSubregToReg() && "Invalid definition"); 1848 // We are looking at: 1849 // Def = SUBREG_TO_REG Imm, v0, sub0 1850 1851 // Bail if we have to compose sub registers. 1852 // If DefSubReg != sub0, we would have to check that all the bits 1853 // we track are included in sub0 and if yes, we would have to 1854 // determine the right subreg in v0. 1855 if (DefSubReg != Def->getOperand(3).getImm()) 1856 return ValueTrackerResult(); 1857 // Bail if we have to compose sub registers. 1858 // Likewise, if v0.subreg != 0, we would have to compose it with sub0. 1859 if (Def->getOperand(2).getSubReg()) 1860 return ValueTrackerResult(); 1861 1862 return ValueTrackerResult(Def->getOperand(2).getReg(), 1863 Def->getOperand(3).getImm()); 1864 } 1865 1866 /// \brief Explore each PHI incoming operand and return its sources 1867 ValueTrackerResult ValueTracker::getNextSourceFromPHI() { 1868 assert(Def->isPHI() && "Invalid definition"); 1869 ValueTrackerResult Res; 1870 1871 // If we look for a different subreg, bail as we do not support composing 1872 // subregs yet. 1873 if (Def->getOperand(0).getSubReg() != DefSubReg) 1874 return ValueTrackerResult(); 1875 1876 // Return all register sources for PHI instructions. 1877 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) { 1878 auto &MO = Def->getOperand(i); 1879 assert(MO.isReg() && "Invalid PHI instruction"); 1880 Res.addSource(MO.getReg(), MO.getSubReg()); 1881 } 1882 1883 return Res; 1884 } 1885 1886 ValueTrackerResult ValueTracker::getNextSourceImpl() { 1887 assert(Def && "This method needs a valid definition"); 1888 1889 assert(((Def->getOperand(DefIdx).isDef() && 1890 (DefIdx < Def->getDesc().getNumDefs() || 1891 Def->getDesc().isVariadic())) || 1892 Def->getOperand(DefIdx).isImplicit()) && 1893 "Invalid DefIdx"); 1894 if (Def->isCopy()) 1895 return getNextSourceFromCopy(); 1896 if (Def->isBitcast()) 1897 return getNextSourceFromBitcast(); 1898 // All the remaining cases involve "complex" instructions. 1899 // Bail if we did not ask for the advanced tracking. 1900 if (!UseAdvancedTracking) 1901 return ValueTrackerResult(); 1902 if (Def->isRegSequence() || Def->isRegSequenceLike()) 1903 return getNextSourceFromRegSequence(); 1904 if (Def->isInsertSubreg() || Def->isInsertSubregLike()) 1905 return getNextSourceFromInsertSubreg(); 1906 if (Def->isExtractSubreg() || Def->isExtractSubregLike()) 1907 return getNextSourceFromExtractSubreg(); 1908 if (Def->isSubregToReg()) 1909 return getNextSourceFromSubregToReg(); 1910 if (Def->isPHI()) 1911 return getNextSourceFromPHI(); 1912 return ValueTrackerResult(); 1913 } 1914 1915 ValueTrackerResult ValueTracker::getNextSource() { 1916 // If we reach a point where we cannot move up in the use-def chain, 1917 // there is nothing we can get. 1918 if (!Def) 1919 return ValueTrackerResult(); 1920 1921 ValueTrackerResult Res = getNextSourceImpl(); 1922 if (Res.isValid()) { 1923 // Update definition, definition index, and subregister for the 1924 // next call of getNextSource. 1925 // Update the current register. 1926 bool OneRegSrc = Res.getNumSources() == 1; 1927 if (OneRegSrc) 1928 Reg = Res.getSrcReg(0); 1929 // Update the result before moving up in the use-def chain 1930 // with the instruction containing the last found sources. 1931 Res.setInst(Def); 1932 1933 // If we can still move up in the use-def chain, move to the next 1934 // definition. 1935 if (!TargetRegisterInfo::isPhysicalRegister(Reg) && OneRegSrc) { 1936 Def = MRI.getVRegDef(Reg); 1937 DefIdx = MRI.def_begin(Reg).getOperandNo(); 1938 DefSubReg = Res.getSrcSubReg(0); 1939 return Res; 1940 } 1941 } 1942 // If we end up here, this means we will not be able to find another source 1943 // for the next iteration. Make sure any new call to getNextSource bails out 1944 // early by cutting the use-def chain. 1945 Def = nullptr; 1946 return Res; 1947 } 1948