Home | History | Annotate | Download | only in CodeGen
      1 //===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Perform peephole optimizations on the machine code:
     11 //
     12 // - Optimize Extensions
     13 //
     14 //     Optimization of sign / zero extension instructions. It may be extended to
     15 //     handle other instructions with similar properties.
     16 //
     17 //     On some targets, some instructions, e.g. X86 sign / zero extension, may
     18 //     leave the source value in the lower part of the result. This optimization
     19 //     will replace some uses of the pre-extension value with uses of the
     20 //     sub-register of the results.
     21 //
     22 // - Optimize Comparisons
     23 //
     24 //     Optimization of comparison instructions. For instance, in this code:
     25 //
     26 //       sub r1, 1
     27 //       cmp r1, 0
     28 //       bz  L1
     29 //
     30 //     If the "sub" instruction all ready sets (or could be modified to set) the
     31 //     same flag that the "cmp" instruction sets and that "bz" uses, then we can
     32 //     eliminate the "cmp" instruction.
     33 //
     34 //     Another instance, in this code:
     35 //
     36 //       sub r1, r3 | sub r1, imm
     37 //       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
     38 //       bge L1
     39 //
     40 //     If the branch instruction can use flag from "sub", then we can replace
     41 //     "sub" with "subs" and eliminate the "cmp" instruction.
     42 //
     43 // - Optimize Loads:
     44 //
     45 //     Loads that can be folded into a later instruction. A load is foldable
     46 //     if it loads to virtual registers and the virtual register defined has
     47 //     a single use.
     48 //
     49 // - Optimize Copies and Bitcast (more generally, target specific copies):
     50 //
     51 //     Rewrite copies and bitcasts to avoid cross register bank copies
     52 //     when possible.
     53 //     E.g., Consider the following example, where capital and lower
     54 //     letters denote different register file:
     55 //     b = copy A <-- cross-bank copy
     56 //     C = copy b <-- cross-bank copy
     57 //   =>
     58 //     b = copy A <-- cross-bank copy
     59 //     C = copy A <-- same-bank copy
     60 //
     61 //     E.g., for bitcast:
     62 //     b = bitcast A <-- cross-bank copy
     63 //     C = bitcast b <-- cross-bank copy
     64 //   =>
     65 //     b = bitcast A <-- cross-bank copy
     66 //     C = copy A    <-- same-bank copy
     67 //===----------------------------------------------------------------------===//
     68 
     69 #include "llvm/CodeGen/Passes.h"
     70 #include "llvm/ADT/DenseMap.h"
     71 #include "llvm/ADT/SmallPtrSet.h"
     72 #include "llvm/ADT/SmallSet.h"
     73 #include "llvm/ADT/Statistic.h"
     74 #include "llvm/CodeGen/MachineDominators.h"
     75 #include "llvm/CodeGen/MachineInstrBuilder.h"
     76 #include "llvm/CodeGen/MachineRegisterInfo.h"
     77 #include "llvm/Support/CommandLine.h"
     78 #include "llvm/Support/Debug.h"
     79 #include "llvm/Support/raw_ostream.h"
     80 #include "llvm/Target/TargetInstrInfo.h"
     81 #include "llvm/Target/TargetRegisterInfo.h"
     82 #include "llvm/Target/TargetSubtargetInfo.h"
     83 #include <utility>
     84 using namespace llvm;
     85 
     86 #define DEBUG_TYPE "peephole-opt"
     87 
     88 // Optimize Extensions
     89 static cl::opt<bool>
     90 Aggressive("aggressive-ext-opt", cl::Hidden,
     91            cl::desc("Aggressive extension optimization"));
     92 
     93 static cl::opt<bool>
     94 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
     95                 cl::desc("Disable the peephole optimizer"));
     96 
     97 static cl::opt<bool>
     98 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
     99                   cl::desc("Disable advanced copy optimization"));
    100 
    101 static cl::opt<bool> DisableNAPhysCopyOpt(
    102     "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
    103     cl::desc("Disable non-allocatable physical register copy optimization"));
    104 
    105 // Limit the number of PHI instructions to process
    106 // in PeepholeOptimizer::getNextSource.
    107 static cl::opt<unsigned> RewritePHILimit(
    108     "rewrite-phi-limit", cl::Hidden, cl::init(10),
    109     cl::desc("Limit the length of PHI chains to lookup"));
    110 
    111 STATISTIC(NumReuse,      "Number of extension results reused");
    112 STATISTIC(NumCmps,       "Number of compares eliminated");
    113 STATISTIC(NumImmFold,    "Number of move immediate folded");
    114 STATISTIC(NumLoadFold,   "Number of loads folded");
    115 STATISTIC(NumSelects,    "Number of selects optimized");
    116 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
    117 STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
    118 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
    119 
    120 namespace {
    121   class ValueTrackerResult;
    122 
    123   class PeepholeOptimizer : public MachineFunctionPass {
    124     const TargetInstrInfo *TII;
    125     const TargetRegisterInfo *TRI;
    126     MachineRegisterInfo   *MRI;
    127     MachineDominatorTree  *DT;  // Machine dominator tree
    128 
    129   public:
    130     static char ID; // Pass identification
    131     PeepholeOptimizer() : MachineFunctionPass(ID) {
    132       initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
    133     }
    134 
    135     bool runOnMachineFunction(MachineFunction &MF) override;
    136 
    137     void getAnalysisUsage(AnalysisUsage &AU) const override {
    138       AU.setPreservesCFG();
    139       MachineFunctionPass::getAnalysisUsage(AU);
    140       if (Aggressive) {
    141         AU.addRequired<MachineDominatorTree>();
    142         AU.addPreserved<MachineDominatorTree>();
    143       }
    144     }
    145 
    146     /// \brief Track Def -> Use info used for rewriting copies.
    147     typedef SmallDenseMap<TargetInstrInfo::RegSubRegPair, ValueTrackerResult>
    148         RewriteMapTy;
    149 
    150   private:
    151     bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
    152     bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
    153                           SmallPtrSetImpl<MachineInstr*> &LocalMIs);
    154     bool optimizeSelect(MachineInstr *MI,
    155                         SmallPtrSetImpl<MachineInstr *> &LocalMIs);
    156     bool optimizeCondBranch(MachineInstr *MI);
    157     bool optimizeCoalescableCopy(MachineInstr *MI);
    158     bool optimizeUncoalescableCopy(MachineInstr *MI,
    159                                    SmallPtrSetImpl<MachineInstr *> &LocalMIs);
    160     bool findNextSource(unsigned Reg, unsigned SubReg,
    161                         RewriteMapTy &RewriteMap);
    162     bool isMoveImmediate(MachineInstr *MI,
    163                          SmallSet<unsigned, 4> &ImmDefRegs,
    164                          DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
    165     bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
    166                        SmallSet<unsigned, 4> &ImmDefRegs,
    167                        DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
    168 
    169     /// \brief If copy instruction \p MI is a virtual register copy, track it in
    170     /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was
    171     /// previously seen as a copy, replace the uses of this copy with the
    172     /// previously seen copy's destination register.
    173     bool foldRedundantCopy(MachineInstr *MI,
    174                            SmallSet<unsigned, 4> &CopySrcRegs,
    175                            DenseMap<unsigned, MachineInstr *> &CopyMIs);
    176 
    177     /// \brief Is the register \p Reg a non-allocatable physical register?
    178     bool isNAPhysCopy(unsigned Reg);
    179 
    180     /// \brief If copy instruction \p MI is a non-allocatable virtual<->physical
    181     /// register copy, track it in the \p NAPhysToVirtMIs map. If this
    182     /// non-allocatable physical register was previously copied to a virtual
    183     /// registered and hasn't been clobbered, the virt->phys copy can be
    184     /// deleted.
    185     bool foldRedundantNAPhysCopy(
    186         MachineInstr *MI,
    187         DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs);
    188 
    189     bool isLoadFoldable(MachineInstr *MI,
    190                         SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
    191 
    192     /// \brief Check whether \p MI is understood by the register coalescer
    193     /// but may require some rewriting.
    194     bool isCoalescableCopy(const MachineInstr &MI) {
    195       // SubregToRegs are not interesting, because they are already register
    196       // coalescer friendly.
    197       return MI.isCopy() || (!DisableAdvCopyOpt &&
    198                              (MI.isRegSequence() || MI.isInsertSubreg() ||
    199                               MI.isExtractSubreg()));
    200     }
    201 
    202     /// \brief Check whether \p MI is a copy like instruction that is
    203     /// not recognized by the register coalescer.
    204     bool isUncoalescableCopy(const MachineInstr &MI) {
    205       return MI.isBitcast() ||
    206              (!DisableAdvCopyOpt &&
    207               (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
    208                MI.isExtractSubregLike()));
    209     }
    210   };
    211 
    212   /// \brief Helper class to hold a reply for ValueTracker queries. Contains the
    213   /// returned sources for a given search and the instructions where the sources
    214   /// were tracked from.
    215   class ValueTrackerResult {
    216   private:
    217     /// Track all sources found by one ValueTracker query.
    218     SmallVector<TargetInstrInfo::RegSubRegPair, 2> RegSrcs;
    219 
    220     /// Instruction using the sources in 'RegSrcs'.
    221     const MachineInstr *Inst;
    222 
    223   public:
    224     ValueTrackerResult() : Inst(nullptr) {}
    225     ValueTrackerResult(unsigned Reg, unsigned SubReg) : Inst(nullptr) {
    226       addSource(Reg, SubReg);
    227     }
    228 
    229     bool isValid() const { return getNumSources() > 0; }
    230 
    231     void setInst(const MachineInstr *I) { Inst = I; }
    232     const MachineInstr *getInst() const { return Inst; }
    233 
    234     void clear() {
    235       RegSrcs.clear();
    236       Inst = nullptr;
    237     }
    238 
    239     void addSource(unsigned SrcReg, unsigned SrcSubReg) {
    240       RegSrcs.push_back(TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg));
    241     }
    242 
    243     void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) {
    244       assert(Idx < getNumSources() && "Reg pair source out of index");
    245       RegSrcs[Idx] = TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg);
    246     }
    247 
    248     int getNumSources() const { return RegSrcs.size(); }
    249 
    250     unsigned getSrcReg(int Idx) const {
    251       assert(Idx < getNumSources() && "Reg source out of index");
    252       return RegSrcs[Idx].Reg;
    253     }
    254 
    255     unsigned getSrcSubReg(int Idx) const {
    256       assert(Idx < getNumSources() && "SubReg source out of index");
    257       return RegSrcs[Idx].SubReg;
    258     }
    259 
    260     bool operator==(const ValueTrackerResult &Other) {
    261       if (Other.getInst() != getInst())
    262         return false;
    263 
    264       if (Other.getNumSources() != getNumSources())
    265         return false;
    266 
    267       for (int i = 0, e = Other.getNumSources(); i != e; ++i)
    268         if (Other.getSrcReg(i) != getSrcReg(i) ||
    269             Other.getSrcSubReg(i) != getSrcSubReg(i))
    270           return false;
    271       return true;
    272     }
    273   };
    274 
    275   /// \brief Helper class to track the possible sources of a value defined by
    276   /// a (chain of) copy related instructions.
    277   /// Given a definition (instruction and definition index), this class
    278   /// follows the use-def chain to find successive suitable sources.
    279   /// The given source can be used to rewrite the definition into
    280   /// def = COPY src.
    281   ///
    282   /// For instance, let us consider the following snippet:
    283   /// v0 =
    284   /// v2 = INSERT_SUBREG v1, v0, sub0
    285   /// def = COPY v2.sub0
    286   ///
    287   /// Using a ValueTracker for def = COPY v2.sub0 will give the following
    288   /// suitable sources:
    289   /// v2.sub0 and v0.
    290   /// Then, def can be rewritten into def = COPY v0.
    291   class ValueTracker {
    292   private:
    293     /// The current point into the use-def chain.
    294     const MachineInstr *Def;
    295     /// The index of the definition in Def.
    296     unsigned DefIdx;
    297     /// The sub register index of the definition.
    298     unsigned DefSubReg;
    299     /// The register where the value can be found.
    300     unsigned Reg;
    301     /// Specifiy whether or not the value tracking looks through
    302     /// complex instructions. When this is false, the value tracker
    303     /// bails on everything that is not a copy or a bitcast.
    304     ///
    305     /// Note: This could have been implemented as a specialized version of
    306     /// the ValueTracker class but that would have complicated the code of
    307     /// the users of this class.
    308     bool UseAdvancedTracking;
    309     /// MachineRegisterInfo used to perform tracking.
    310     const MachineRegisterInfo &MRI;
    311     /// Optional TargetInstrInfo used to perform some complex
    312     /// tracking.
    313     const TargetInstrInfo *TII;
    314 
    315     /// \brief Dispatcher to the right underlying implementation of
    316     /// getNextSource.
    317     ValueTrackerResult getNextSourceImpl();
    318     /// \brief Specialized version of getNextSource for Copy instructions.
    319     ValueTrackerResult getNextSourceFromCopy();
    320     /// \brief Specialized version of getNextSource for Bitcast instructions.
    321     ValueTrackerResult getNextSourceFromBitcast();
    322     /// \brief Specialized version of getNextSource for RegSequence
    323     /// instructions.
    324     ValueTrackerResult getNextSourceFromRegSequence();
    325     /// \brief Specialized version of getNextSource for InsertSubreg
    326     /// instructions.
    327     ValueTrackerResult getNextSourceFromInsertSubreg();
    328     /// \brief Specialized version of getNextSource for ExtractSubreg
    329     /// instructions.
    330     ValueTrackerResult getNextSourceFromExtractSubreg();
    331     /// \brief Specialized version of getNextSource for SubregToReg
    332     /// instructions.
    333     ValueTrackerResult getNextSourceFromSubregToReg();
    334     /// \brief Specialized version of getNextSource for PHI instructions.
    335     ValueTrackerResult getNextSourceFromPHI();
    336 
    337   public:
    338     /// \brief Create a ValueTracker instance for the value defined by \p Reg.
    339     /// \p DefSubReg represents the sub register index the value tracker will
    340     /// track. It does not need to match the sub register index used in the
    341     /// definition of \p Reg.
    342     /// \p UseAdvancedTracking specifies whether or not the value tracker looks
    343     /// through complex instructions. By default (false), it handles only copy
    344     /// and bitcast instructions.
    345     /// If \p Reg is a physical register, a value tracker constructed with
    346     /// this constructor will not find any alternative source.
    347     /// Indeed, when \p Reg is a physical register that constructor does not
    348     /// know which definition of \p Reg it should track.
    349     /// Use the next constructor to track a physical register.
    350     ValueTracker(unsigned Reg, unsigned DefSubReg,
    351                  const MachineRegisterInfo &MRI,
    352                  bool UseAdvancedTracking = false,
    353                  const TargetInstrInfo *TII = nullptr)
    354         : Def(nullptr), DefIdx(0), DefSubReg(DefSubReg), Reg(Reg),
    355           UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
    356       if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
    357         Def = MRI.getVRegDef(Reg);
    358         DefIdx = MRI.def_begin(Reg).getOperandNo();
    359       }
    360     }
    361 
    362     /// \brief Create a ValueTracker instance for the value defined by
    363     /// the pair \p MI, \p DefIdx.
    364     /// Unlike the other constructor, the value tracker produced by this one
    365     /// may be able to find a new source when the definition is a physical
    366     /// register.
    367     /// This could be useful to rewrite target specific instructions into
    368     /// generic copy instructions.
    369     ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg,
    370                  const MachineRegisterInfo &MRI,
    371                  bool UseAdvancedTracking = false,
    372                  const TargetInstrInfo *TII = nullptr)
    373         : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg),
    374           UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
    375       assert(DefIdx < Def->getDesc().getNumDefs() &&
    376              Def->getOperand(DefIdx).isReg() && "Invalid definition");
    377       Reg = Def->getOperand(DefIdx).getReg();
    378     }
    379 
    380     /// \brief Following the use-def chain, get the next available source
    381     /// for the tracked value.
    382     /// \return A ValueTrackerResult containing a set of registers
    383     /// and sub registers with tracked values. A ValueTrackerResult with
    384     /// an empty set of registers means no source was found.
    385     ValueTrackerResult getNextSource();
    386 
    387     /// \brief Get the last register where the initial value can be found.
    388     /// Initially this is the register of the definition.
    389     /// Then, after each successful call to getNextSource, this is the
    390     /// register of the last source.
    391     unsigned getReg() const { return Reg; }
    392   };
    393 }
    394 
    395 char PeepholeOptimizer::ID = 0;
    396 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
    397 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
    398                 "Peephole Optimizations", false, false)
    399 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    400 INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,
    401                 "Peephole Optimizations", false, false)
    402 
    403 /// If instruction is a copy-like instruction, i.e. it reads a single register
    404 /// and writes a single register and it does not modify the source, and if the
    405 /// source value is preserved as a sub-register of the result, then replace all
    406 /// reachable uses of the source with the subreg of the result.
    407 ///
    408 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
    409 /// the code. Since this code does not currently share EXTRACTs, just ignore all
    410 /// debug uses.
    411 bool PeepholeOptimizer::
    412 optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
    413                  SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
    414   unsigned SrcReg, DstReg, SubIdx;
    415   if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
    416     return false;
    417 
    418   if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
    419       TargetRegisterInfo::isPhysicalRegister(SrcReg))
    420     return false;
    421 
    422   if (MRI->hasOneNonDBGUse(SrcReg))
    423     // No other uses.
    424     return false;
    425 
    426   // Ensure DstReg can get a register class that actually supports
    427   // sub-registers. Don't change the class until we commit.
    428   const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
    429   DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
    430   if (!DstRC)
    431     return false;
    432 
    433   // The ext instr may be operating on a sub-register of SrcReg as well.
    434   // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
    435   // register.
    436   // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
    437   // SrcReg:SubIdx should be replaced.
    438   bool UseSrcSubIdx =
    439       TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
    440 
    441   // The source has other uses. See if we can replace the other uses with use of
    442   // the result of the extension.
    443   SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
    444   for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
    445     ReachedBBs.insert(UI.getParent());
    446 
    447   // Uses that are in the same BB of uses of the result of the instruction.
    448   SmallVector<MachineOperand*, 8> Uses;
    449 
    450   // Uses that the result of the instruction can reach.
    451   SmallVector<MachineOperand*, 8> ExtendedUses;
    452 
    453   bool ExtendLife = true;
    454   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
    455     MachineInstr *UseMI = UseMO.getParent();
    456     if (UseMI == MI)
    457       continue;
    458 
    459     if (UseMI->isPHI()) {
    460       ExtendLife = false;
    461       continue;
    462     }
    463 
    464     // Only accept uses of SrcReg:SubIdx.
    465     if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
    466       continue;
    467 
    468     // It's an error to translate this:
    469     //
    470     //    %reg1025 = <sext> %reg1024
    471     //     ...
    472     //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
    473     //
    474     // into this:
    475     //
    476     //    %reg1025 = <sext> %reg1024
    477     //     ...
    478     //    %reg1027 = COPY %reg1025:4
    479     //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
    480     //
    481     // The problem here is that SUBREG_TO_REG is there to assert that an
    482     // implicit zext occurs. It doesn't insert a zext instruction. If we allow
    483     // the COPY here, it will give us the value after the <sext>, not the
    484     // original value of %reg1024 before <sext>.
    485     if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
    486       continue;
    487 
    488     MachineBasicBlock *UseMBB = UseMI->getParent();
    489     if (UseMBB == MBB) {
    490       // Local uses that come after the extension.
    491       if (!LocalMIs.count(UseMI))
    492         Uses.push_back(&UseMO);
    493     } else if (ReachedBBs.count(UseMBB)) {
    494       // Non-local uses where the result of the extension is used. Always
    495       // replace these unless it's a PHI.
    496       Uses.push_back(&UseMO);
    497     } else if (Aggressive && DT->dominates(MBB, UseMBB)) {
    498       // We may want to extend the live range of the extension result in order
    499       // to replace these uses.
    500       ExtendedUses.push_back(&UseMO);
    501     } else {
    502       // Both will be live out of the def MBB anyway. Don't extend live range of
    503       // the extension result.
    504       ExtendLife = false;
    505       break;
    506     }
    507   }
    508 
    509   if (ExtendLife && !ExtendedUses.empty())
    510     // Extend the liveness of the extension result.
    511     Uses.append(ExtendedUses.begin(), ExtendedUses.end());
    512 
    513   // Now replace all uses.
    514   bool Changed = false;
    515   if (!Uses.empty()) {
    516     SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
    517 
    518     // Look for PHI uses of the extended result, we don't want to extend the
    519     // liveness of a PHI input. It breaks all kinds of assumptions down
    520     // stream. A PHI use is expected to be the kill of its source values.
    521     for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
    522       if (UI.isPHI())
    523         PHIBBs.insert(UI.getParent());
    524 
    525     const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
    526     for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
    527       MachineOperand *UseMO = Uses[i];
    528       MachineInstr *UseMI = UseMO->getParent();
    529       MachineBasicBlock *UseMBB = UseMI->getParent();
    530       if (PHIBBs.count(UseMBB))
    531         continue;
    532 
    533       // About to add uses of DstReg, clear DstReg's kill flags.
    534       if (!Changed) {
    535         MRI->clearKillFlags(DstReg);
    536         MRI->constrainRegClass(DstReg, DstRC);
    537       }
    538 
    539       unsigned NewVR = MRI->createVirtualRegister(RC);
    540       MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
    541                                    TII->get(TargetOpcode::COPY), NewVR)
    542         .addReg(DstReg, 0, SubIdx);
    543       // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
    544       if (UseSrcSubIdx) {
    545         Copy->getOperand(0).setSubReg(SubIdx);
    546         Copy->getOperand(0).setIsUndef();
    547       }
    548       UseMO->setReg(NewVR);
    549       ++NumReuse;
    550       Changed = true;
    551     }
    552   }
    553 
    554   return Changed;
    555 }
    556 
    557 /// If the instruction is a compare and the previous instruction it's comparing
    558 /// against already sets (or could be modified to set) the same flag as the
    559 /// compare, then we can remove the comparison and use the flag from the
    560 /// previous instruction.
    561 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI,
    562                                          MachineBasicBlock *MBB) {
    563   // If this instruction is a comparison against zero and isn't comparing a
    564   // physical register, we can try to optimize it.
    565   unsigned SrcReg, SrcReg2;
    566   int CmpMask, CmpValue;
    567   if (!TII->analyzeCompare(*MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
    568       TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
    569       (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
    570     return false;
    571 
    572   // Attempt to optimize the comparison instruction.
    573   if (TII->optimizeCompareInstr(*MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
    574     ++NumCmps;
    575     return true;
    576   }
    577 
    578   return false;
    579 }
    580 
    581 /// Optimize a select instruction.
    582 bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI,
    583                             SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
    584   unsigned TrueOp = 0;
    585   unsigned FalseOp = 0;
    586   bool Optimizable = false;
    587   SmallVector<MachineOperand, 4> Cond;
    588   if (TII->analyzeSelect(*MI, Cond, TrueOp, FalseOp, Optimizable))
    589     return false;
    590   if (!Optimizable)
    591     return false;
    592   if (!TII->optimizeSelect(*MI, LocalMIs))
    593     return false;
    594   MI->eraseFromParent();
    595   ++NumSelects;
    596   return true;
    597 }
    598 
    599 /// \brief Check if a simpler conditional branch can be
    600 // generated
    601 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr *MI) {
    602   return TII->optimizeCondBranch(*MI);
    603 }
    604 
    605 /// \brief Try to find the next source that share the same register file
    606 /// for the value defined by \p Reg and \p SubReg.
    607 /// When true is returned, the \p RewriteMap can be used by the client to
    608 /// retrieve all Def -> Use along the way up to the next source. Any found
    609 /// Use that is not itself a key for another entry, is the next source to
    610 /// use. During the search for the next source, multiple sources can be found
    611 /// given multiple incoming sources of a PHI instruction. In this case, we
    612 /// look in each PHI source for the next source; all found next sources must
    613 /// share the same register file as \p Reg and \p SubReg. The client should
    614 /// then be capable to rewrite all intermediate PHIs to get the next source.
    615 /// \return False if no alternative sources are available. True otherwise.
    616 bool PeepholeOptimizer::findNextSource(unsigned Reg, unsigned SubReg,
    617                                        RewriteMapTy &RewriteMap) {
    618   // Do not try to find a new source for a physical register.
    619   // So far we do not have any motivating example for doing that.
    620   // Thus, instead of maintaining untested code, we will revisit that if
    621   // that changes at some point.
    622   if (TargetRegisterInfo::isPhysicalRegister(Reg))
    623     return false;
    624   const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
    625 
    626   SmallVector<TargetInstrInfo::RegSubRegPair, 4> SrcToLook;
    627   TargetInstrInfo::RegSubRegPair CurSrcPair(Reg, SubReg);
    628   SrcToLook.push_back(CurSrcPair);
    629 
    630   unsigned PHICount = 0;
    631   while (!SrcToLook.empty() && PHICount < RewritePHILimit) {
    632     TargetInstrInfo::RegSubRegPair Pair = SrcToLook.pop_back_val();
    633     // As explained above, do not handle physical registers
    634     if (TargetRegisterInfo::isPhysicalRegister(Pair.Reg))
    635       return false;
    636 
    637     CurSrcPair = Pair;
    638     ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI,
    639                             !DisableAdvCopyOpt, TII);
    640     ValueTrackerResult Res;
    641     bool ShouldRewrite = false;
    642 
    643     do {
    644       // Follow the chain of copies until we reach the top of the use-def chain
    645       // or find a more suitable source.
    646       Res = ValTracker.getNextSource();
    647       if (!Res.isValid())
    648         break;
    649 
    650       // Insert the Def -> Use entry for the recently found source.
    651       ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
    652       if (CurSrcRes.isValid()) {
    653         assert(CurSrcRes == Res && "ValueTrackerResult found must match");
    654         // An existent entry with multiple sources is a PHI cycle we must avoid.
    655         // Otherwise it's an entry with a valid next source we already found.
    656         if (CurSrcRes.getNumSources() > 1) {
    657           DEBUG(dbgs() << "findNextSource: found PHI cycle, aborting...\n");
    658           return false;
    659         }
    660         break;
    661       }
    662       RewriteMap.insert(std::make_pair(CurSrcPair, Res));
    663 
    664       // ValueTrackerResult usually have one source unless it's the result from
    665       // a PHI instruction. Add the found PHI edges to be looked up further.
    666       unsigned NumSrcs = Res.getNumSources();
    667       if (NumSrcs > 1) {
    668         PHICount++;
    669         for (unsigned i = 0; i < NumSrcs; ++i)
    670           SrcToLook.push_back(TargetInstrInfo::RegSubRegPair(
    671               Res.getSrcReg(i), Res.getSrcSubReg(i)));
    672         break;
    673       }
    674 
    675       CurSrcPair.Reg = Res.getSrcReg(0);
    676       CurSrcPair.SubReg = Res.getSrcSubReg(0);
    677       // Do not extend the live-ranges of physical registers as they add
    678       // constraints to the register allocator. Moreover, if we want to extend
    679       // the live-range of a physical register, unlike SSA virtual register,
    680       // we will have to check that they aren't redefine before the related use.
    681       if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg))
    682         return false;
    683 
    684       const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
    685       ShouldRewrite = TRI->shouldRewriteCopySrc(DefRC, SubReg, SrcRC,
    686                                                 CurSrcPair.SubReg);
    687     } while (!ShouldRewrite);
    688 
    689     // Continue looking for new sources...
    690     if (Res.isValid())
    691       continue;
    692 
    693     // Do not continue searching for a new source if the there's at least
    694     // one use-def which cannot be rewritten.
    695     if (!ShouldRewrite)
    696       return false;
    697   }
    698 
    699   if (PHICount >= RewritePHILimit) {
    700     DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
    701     return false;
    702   }
    703 
    704   // If we did not find a more suitable source, there is nothing to optimize.
    705   return CurSrcPair.Reg != Reg;
    706 }
    707 
    708 /// \brief Insert a PHI instruction with incoming edges \p SrcRegs that are
    709 /// guaranteed to have the same register class. This is necessary whenever we
    710 /// successfully traverse a PHI instruction and find suitable sources coming
    711 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def
    712 /// suitable to be used in a new COPY instruction.
    713 static MachineInstr *
    714 insertPHI(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
    715           const SmallVectorImpl<TargetInstrInfo::RegSubRegPair> &SrcRegs,
    716           MachineInstr *OrigPHI) {
    717   assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
    718 
    719   const TargetRegisterClass *NewRC = MRI->getRegClass(SrcRegs[0].Reg);
    720   unsigned NewVR = MRI->createVirtualRegister(NewRC);
    721   MachineBasicBlock *MBB = OrigPHI->getParent();
    722   MachineInstrBuilder MIB = BuildMI(*MBB, OrigPHI, OrigPHI->getDebugLoc(),
    723                                     TII->get(TargetOpcode::PHI), NewVR);
    724 
    725   unsigned MBBOpIdx = 2;
    726   for (auto RegPair : SrcRegs) {
    727     MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
    728     MIB.addMBB(OrigPHI->getOperand(MBBOpIdx).getMBB());
    729     // Since we're extended the lifetime of RegPair.Reg, clear the
    730     // kill flags to account for that and make RegPair.Reg reaches
    731     // the new PHI.
    732     MRI->clearKillFlags(RegPair.Reg);
    733     MBBOpIdx += 2;
    734   }
    735 
    736   return MIB;
    737 }
    738 
    739 namespace {
    740 /// \brief Helper class to rewrite the arguments of a copy-like instruction.
    741 class CopyRewriter {
    742 protected:
    743   /// The copy-like instruction.
    744   MachineInstr &CopyLike;
    745   /// The index of the source being rewritten.
    746   unsigned CurrentSrcIdx;
    747 
    748 public:
    749   CopyRewriter(MachineInstr &MI) : CopyLike(MI), CurrentSrcIdx(0) {}
    750 
    751   virtual ~CopyRewriter() {}
    752 
    753   /// \brief Get the next rewritable source (SrcReg, SrcSubReg) and
    754   /// the related value that it affects (TrackReg, TrackSubReg).
    755   /// A source is considered rewritable if its register class and the
    756   /// register class of the related TrackReg may not be register
    757   /// coalescer friendly. In other words, given a copy-like instruction
    758   /// not all the arguments may be returned at rewritable source, since
    759   /// some arguments are none to be register coalescer friendly.
    760   ///
    761   /// Each call of this method moves the current source to the next
    762   /// rewritable source.
    763   /// For instance, let CopyLike be the instruction to rewrite.
    764   /// CopyLike has one definition and one source:
    765   /// dst.dstSubIdx = CopyLike src.srcSubIdx.
    766   ///
    767   /// The first call will give the first rewritable source, i.e.,
    768   /// the only source this instruction has:
    769   /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
    770   /// This source defines the whole definition, i.e.,
    771   /// (TrackReg, TrackSubReg) = (dst, dstSubIdx).
    772   ///
    773   /// The second and subsequent calls will return false, as there is only one
    774   /// rewritable source.
    775   ///
    776   /// \return True if a rewritable source has been found, false otherwise.
    777   /// The output arguments are valid if and only if true is returned.
    778   virtual bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
    779                                        unsigned &TrackReg,
    780                                        unsigned &TrackSubReg) {
    781     // If CurrentSrcIdx == 1, this means this function has already been called
    782     // once. CopyLike has one definition and one argument, thus, there is
    783     // nothing else to rewrite.
    784     if (!CopyLike.isCopy() || CurrentSrcIdx == 1)
    785       return false;
    786     // This is the first call to getNextRewritableSource.
    787     // Move the CurrentSrcIdx to remember that we made that call.
    788     CurrentSrcIdx = 1;
    789     // The rewritable source is the argument.
    790     const MachineOperand &MOSrc = CopyLike.getOperand(1);
    791     SrcReg = MOSrc.getReg();
    792     SrcSubReg = MOSrc.getSubReg();
    793     // What we track are the alternative sources of the definition.
    794     const MachineOperand &MODef = CopyLike.getOperand(0);
    795     TrackReg = MODef.getReg();
    796     TrackSubReg = MODef.getSubReg();
    797     return true;
    798   }
    799 
    800   /// \brief Rewrite the current source with \p NewReg and \p NewSubReg
    801   /// if possible.
    802   /// \return True if the rewriting was possible, false otherwise.
    803   virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) {
    804     if (!CopyLike.isCopy() || CurrentSrcIdx != 1)
    805       return false;
    806     MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
    807     MOSrc.setReg(NewReg);
    808     MOSrc.setSubReg(NewSubReg);
    809     return true;
    810   }
    811 
    812   /// \brief Given a \p Def.Reg and Def.SubReg  pair, use \p RewriteMap to find
    813   /// the new source to use for rewrite. If \p HandleMultipleSources is true and
    814   /// multiple sources for a given \p Def are found along the way, we found a
    815   /// PHI instructions that needs to be rewritten.
    816   /// TODO: HandleMultipleSources should be removed once we test PHI handling
    817   /// with coalescable copies.
    818   TargetInstrInfo::RegSubRegPair
    819   getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
    820                TargetInstrInfo::RegSubRegPair Def,
    821                PeepholeOptimizer::RewriteMapTy &RewriteMap,
    822                bool HandleMultipleSources = true) {
    823 
    824     TargetInstrInfo::RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
    825     do {
    826       ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
    827       // If there are no entries on the map, LookupSrc is the new source.
    828       if (!Res.isValid())
    829         return LookupSrc;
    830 
    831       // There's only one source for this definition, keep searching...
    832       unsigned NumSrcs = Res.getNumSources();
    833       if (NumSrcs == 1) {
    834         LookupSrc.Reg = Res.getSrcReg(0);
    835         LookupSrc.SubReg = Res.getSrcSubReg(0);
    836         continue;
    837       }
    838 
    839       // TODO: Remove once multiple srcs w/ coalescable copies are supported.
    840       if (!HandleMultipleSources)
    841         break;
    842 
    843       // Multiple sources, recurse into each source to find a new source
    844       // for it. Then, rewrite the PHI accordingly to its new edges.
    845       SmallVector<TargetInstrInfo::RegSubRegPair, 4> NewPHISrcs;
    846       for (unsigned i = 0; i < NumSrcs; ++i) {
    847         TargetInstrInfo::RegSubRegPair PHISrc(Res.getSrcReg(i),
    848                                               Res.getSrcSubReg(i));
    849         NewPHISrcs.push_back(
    850             getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
    851       }
    852 
    853       // Build the new PHI node and return its def register as the new source.
    854       MachineInstr *OrigPHI = const_cast<MachineInstr *>(Res.getInst());
    855       MachineInstr *NewPHI = insertPHI(MRI, TII, NewPHISrcs, OrigPHI);
    856       DEBUG(dbgs() << "-- getNewSource\n");
    857       DEBUG(dbgs() << "   Replacing: " << *OrigPHI);
    858       DEBUG(dbgs() << "        With: " << *NewPHI);
    859       const MachineOperand &MODef = NewPHI->getOperand(0);
    860       return TargetInstrInfo::RegSubRegPair(MODef.getReg(), MODef.getSubReg());
    861 
    862     } while (1);
    863 
    864     return TargetInstrInfo::RegSubRegPair(0, 0);
    865   }
    866 
    867   /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap
    868   /// and create a new COPY instruction. More info about RewriteMap in
    869   /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
    870   /// Uncoalescable copies, since they are copy like instructions that aren't
    871   /// recognized by the register allocator.
    872   virtual MachineInstr *
    873   RewriteSource(TargetInstrInfo::RegSubRegPair Def,
    874                 PeepholeOptimizer::RewriteMapTy &RewriteMap) {
    875     return nullptr;
    876   }
    877 };
    878 
    879 /// \brief Helper class to rewrite uncoalescable copy like instructions
    880 /// into new COPY (coalescable friendly) instructions.
    881 class UncoalescableRewriter : public CopyRewriter {
    882 protected:
    883   const TargetInstrInfo &TII;
    884   MachineRegisterInfo   &MRI;
    885   /// The number of defs in the bitcast
    886   unsigned NumDefs;
    887 
    888 public:
    889   UncoalescableRewriter(MachineInstr &MI, const TargetInstrInfo &TII,
    890                          MachineRegisterInfo &MRI)
    891       : CopyRewriter(MI), TII(TII), MRI(MRI) {
    892     NumDefs = MI.getDesc().getNumDefs();
    893   }
    894 
    895   /// \brief Get the next rewritable def source (TrackReg, TrackSubReg)
    896   /// All such sources need to be considered rewritable in order to
    897   /// rewrite a uncoalescable copy-like instruction. This method return
    898   /// each definition that must be checked if rewritable.
    899   ///
    900   bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
    901                                unsigned &TrackReg,
    902                                unsigned &TrackSubReg) override {
    903     // Find the next non-dead definition and continue from there.
    904     if (CurrentSrcIdx == NumDefs)
    905       return false;
    906 
    907     while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
    908       ++CurrentSrcIdx;
    909       if (CurrentSrcIdx == NumDefs)
    910         return false;
    911     }
    912 
    913     // What we track are the alternative sources of the definition.
    914     const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
    915     TrackReg = MODef.getReg();
    916     TrackSubReg = MODef.getSubReg();
    917 
    918     CurrentSrcIdx++;
    919     return true;
    920   }
    921 
    922   /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap
    923   /// and create a new COPY instruction. More info about RewriteMap in
    924   /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
    925   /// Uncoalescable copies, since they are copy like instructions that aren't
    926   /// recognized by the register allocator.
    927   MachineInstr *
    928   RewriteSource(TargetInstrInfo::RegSubRegPair Def,
    929                 PeepholeOptimizer::RewriteMapTy &RewriteMap) override {
    930     assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) &&
    931            "We do not rewrite physical registers");
    932 
    933     // Find the new source to use in the COPY rewrite.
    934     TargetInstrInfo::RegSubRegPair NewSrc =
    935         getNewSource(&MRI, &TII, Def, RewriteMap);
    936 
    937     // Insert the COPY.
    938     const TargetRegisterClass *DefRC = MRI.getRegClass(Def.Reg);
    939     unsigned NewVR = MRI.createVirtualRegister(DefRC);
    940 
    941     MachineInstr *NewCopy =
    942         BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
    943                 TII.get(TargetOpcode::COPY), NewVR)
    944             .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
    945 
    946     NewCopy->getOperand(0).setSubReg(Def.SubReg);
    947     if (Def.SubReg)
    948       NewCopy->getOperand(0).setIsUndef();
    949 
    950     DEBUG(dbgs() << "-- RewriteSource\n");
    951     DEBUG(dbgs() << "   Replacing: " << CopyLike);
    952     DEBUG(dbgs() << "        With: " << *NewCopy);
    953     MRI.replaceRegWith(Def.Reg, NewVR);
    954     MRI.clearKillFlags(NewVR);
    955 
    956     // We extended the lifetime of NewSrc.Reg, clear the kill flags to
    957     // account for that.
    958     MRI.clearKillFlags(NewSrc.Reg);
    959 
    960     return NewCopy;
    961   }
    962 };
    963 
    964 /// \brief Specialized rewriter for INSERT_SUBREG instruction.
    965 class InsertSubregRewriter : public CopyRewriter {
    966 public:
    967   InsertSubregRewriter(MachineInstr &MI) : CopyRewriter(MI) {
    968     assert(MI.isInsertSubreg() && "Invalid instruction");
    969   }
    970 
    971   /// \brief See CopyRewriter::getNextRewritableSource.
    972   /// Here CopyLike has the following form:
    973   /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
    974   /// Src1 has the same register class has dst, hence, there is
    975   /// nothing to rewrite.
    976   /// Src2.src2SubIdx, may not be register coalescer friendly.
    977   /// Therefore, the first call to this method returns:
    978   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
    979   /// (TrackReg, TrackSubReg) = (dst, subIdx).
    980   ///
    981   /// Subsequence calls will return false.
    982   bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
    983                                unsigned &TrackReg,
    984                                unsigned &TrackSubReg) override {
    985     // If we already get the only source we can rewrite, return false.
    986     if (CurrentSrcIdx == 2)
    987       return false;
    988     // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
    989     CurrentSrcIdx = 2;
    990     const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
    991     SrcReg = MOInsertedReg.getReg();
    992     SrcSubReg = MOInsertedReg.getSubReg();
    993     const MachineOperand &MODef = CopyLike.getOperand(0);
    994 
    995     // We want to track something that is compatible with the
    996     // partial definition.
    997     TrackReg = MODef.getReg();
    998     if (MODef.getSubReg())
    999       // Bail if we have to compose sub-register indices.
   1000       return false;
   1001     TrackSubReg = (unsigned)CopyLike.getOperand(3).getImm();
   1002     return true;
   1003   }
   1004   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
   1005     if (CurrentSrcIdx != 2)
   1006       return false;
   1007     // We are rewriting the inserted reg.
   1008     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
   1009     MO.setReg(NewReg);
   1010     MO.setSubReg(NewSubReg);
   1011     return true;
   1012   }
   1013 };
   1014 
   1015 /// \brief Specialized rewriter for EXTRACT_SUBREG instruction.
   1016 class ExtractSubregRewriter : public CopyRewriter {
   1017   const TargetInstrInfo &TII;
   1018 
   1019 public:
   1020   ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
   1021       : CopyRewriter(MI), TII(TII) {
   1022     assert(MI.isExtractSubreg() && "Invalid instruction");
   1023   }
   1024 
   1025   /// \brief See CopyRewriter::getNextRewritableSource.
   1026   /// Here CopyLike has the following form:
   1027   /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
   1028   /// There is only one rewritable source: Src.subIdx,
   1029   /// which defines dst.dstSubIdx.
   1030   bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
   1031                                unsigned &TrackReg,
   1032                                unsigned &TrackSubReg) override {
   1033     // If we already get the only source we can rewrite, return false.
   1034     if (CurrentSrcIdx == 1)
   1035       return false;
   1036     // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
   1037     CurrentSrcIdx = 1;
   1038     const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
   1039     SrcReg = MOExtractedReg.getReg();
   1040     // If we have to compose sub-register indices, bail out.
   1041     if (MOExtractedReg.getSubReg())
   1042       return false;
   1043 
   1044     SrcSubReg = CopyLike.getOperand(2).getImm();
   1045 
   1046     // We want to track something that is compatible with the definition.
   1047     const MachineOperand &MODef = CopyLike.getOperand(0);
   1048     TrackReg = MODef.getReg();
   1049     TrackSubReg = MODef.getSubReg();
   1050     return true;
   1051   }
   1052 
   1053   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
   1054     // The only source we can rewrite is the input register.
   1055     if (CurrentSrcIdx != 1)
   1056       return false;
   1057 
   1058     CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
   1059 
   1060     // If we find a source that does not require to extract something,
   1061     // rewrite the operation with a copy.
   1062     if (!NewSubReg) {
   1063       // Move the current index to an invalid position.
   1064       // We do not want another call to this method to be able
   1065       // to do any change.
   1066       CurrentSrcIdx = -1;
   1067       // Rewrite the operation as a COPY.
   1068       // Get rid of the sub-register index.
   1069       CopyLike.RemoveOperand(2);
   1070       // Morph the operation into a COPY.
   1071       CopyLike.setDesc(TII.get(TargetOpcode::COPY));
   1072       return true;
   1073     }
   1074     CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
   1075     return true;
   1076   }
   1077 };
   1078 
   1079 /// \brief Specialized rewriter for REG_SEQUENCE instruction.
   1080 class RegSequenceRewriter : public CopyRewriter {
   1081 public:
   1082   RegSequenceRewriter(MachineInstr &MI) : CopyRewriter(MI) {
   1083     assert(MI.isRegSequence() && "Invalid instruction");
   1084   }
   1085 
   1086   /// \brief See CopyRewriter::getNextRewritableSource.
   1087   /// Here CopyLike has the following form:
   1088   /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
   1089   /// Each call will return a different source, walking all the available
   1090   /// source.
   1091   ///
   1092   /// The first call returns:
   1093   /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
   1094   /// (TrackReg, TrackSubReg) = (dst, subIdx1).
   1095   ///
   1096   /// The second call returns:
   1097   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
   1098   /// (TrackReg, TrackSubReg) = (dst, subIdx2).
   1099   ///
   1100   /// And so on, until all the sources have been traversed, then
   1101   /// it returns false.
   1102   bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
   1103                                unsigned &TrackReg,
   1104                                unsigned &TrackSubReg) override {
   1105     // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
   1106 
   1107     // If this is the first call, move to the first argument.
   1108     if (CurrentSrcIdx == 0) {
   1109       CurrentSrcIdx = 1;
   1110     } else {
   1111       // Otherwise, move to the next argument and check that it is valid.
   1112       CurrentSrcIdx += 2;
   1113       if (CurrentSrcIdx >= CopyLike.getNumOperands())
   1114         return false;
   1115     }
   1116     const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
   1117     SrcReg = MOInsertedReg.getReg();
   1118     // If we have to compose sub-register indices, bail out.
   1119     if ((SrcSubReg = MOInsertedReg.getSubReg()))
   1120       return false;
   1121 
   1122     // We want to track something that is compatible with the related
   1123     // partial definition.
   1124     TrackSubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
   1125 
   1126     const MachineOperand &MODef = CopyLike.getOperand(0);
   1127     TrackReg = MODef.getReg();
   1128     // If we have to compose sub-registers, bail.
   1129     return MODef.getSubReg() == 0;
   1130   }
   1131 
   1132   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
   1133     // We cannot rewrite out of bound operands.
   1134     // Moreover, rewritable sources are at odd positions.
   1135     if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
   1136       return false;
   1137 
   1138     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
   1139     MO.setReg(NewReg);
   1140     MO.setSubReg(NewSubReg);
   1141     return true;
   1142   }
   1143 };
   1144 } // End namespace.
   1145 
   1146 /// \brief Get the appropriated CopyRewriter for \p MI.
   1147 /// \return A pointer to a dynamically allocated CopyRewriter or nullptr
   1148 /// if no rewriter works for \p MI.
   1149 static CopyRewriter *getCopyRewriter(MachineInstr &MI,
   1150                                      const TargetInstrInfo &TII,
   1151                                      MachineRegisterInfo &MRI) {
   1152   // Handle uncoalescable copy-like instructions.
   1153   if (MI.isBitcast() || (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
   1154                          MI.isExtractSubregLike()))
   1155     return new UncoalescableRewriter(MI, TII, MRI);
   1156 
   1157   switch (MI.getOpcode()) {
   1158   default:
   1159     return nullptr;
   1160   case TargetOpcode::COPY:
   1161     return new CopyRewriter(MI);
   1162   case TargetOpcode::INSERT_SUBREG:
   1163     return new InsertSubregRewriter(MI);
   1164   case TargetOpcode::EXTRACT_SUBREG:
   1165     return new ExtractSubregRewriter(MI, TII);
   1166   case TargetOpcode::REG_SEQUENCE:
   1167     return new RegSequenceRewriter(MI);
   1168   }
   1169   llvm_unreachable(nullptr);
   1170 }
   1171 
   1172 /// \brief Optimize generic copy instructions to avoid cross
   1173 /// register bank copy. The optimization looks through a chain of
   1174 /// copies and tries to find a source that has a compatible register
   1175 /// class.
   1176 /// Two register classes are considered to be compatible if they share
   1177 /// the same register bank.
   1178 /// New copies issued by this optimization are register allocator
   1179 /// friendly. This optimization does not remove any copy as it may
   1180 /// overconstrain the register allocator, but replaces some operands
   1181 /// when possible.
   1182 /// \pre isCoalescableCopy(*MI) is true.
   1183 /// \return True, when \p MI has been rewritten. False otherwise.
   1184 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr *MI) {
   1185   assert(MI && isCoalescableCopy(*MI) && "Invalid argument");
   1186   assert(MI->getDesc().getNumDefs() == 1 &&
   1187          "Coalescer can understand multiple defs?!");
   1188   const MachineOperand &MODef = MI->getOperand(0);
   1189   // Do not rewrite physical definitions.
   1190   if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
   1191     return false;
   1192 
   1193   bool Changed = false;
   1194   // Get the right rewriter for the current copy.
   1195   std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI));
   1196   // If none exists, bail out.
   1197   if (!CpyRewriter)
   1198     return false;
   1199   // Rewrite each rewritable source.
   1200   unsigned SrcReg, SrcSubReg, TrackReg, TrackSubReg;
   1201   while (CpyRewriter->getNextRewritableSource(SrcReg, SrcSubReg, TrackReg,
   1202                                               TrackSubReg)) {
   1203     // Keep track of PHI nodes and its incoming edges when looking for sources.
   1204     RewriteMapTy RewriteMap;
   1205     // Try to find a more suitable source. If we failed to do so, or get the
   1206     // actual source, move to the next source.
   1207     if (!findNextSource(TrackReg, TrackSubReg, RewriteMap))
   1208       continue;
   1209 
   1210     // Get the new source to rewrite. TODO: Only enable handling of multiple
   1211     // sources (PHIs) once we have a motivating example and testcases for it.
   1212     TargetInstrInfo::RegSubRegPair TrackPair(TrackReg, TrackSubReg);
   1213     TargetInstrInfo::RegSubRegPair NewSrc = CpyRewriter->getNewSource(
   1214         MRI, TII, TrackPair, RewriteMap, false /* multiple sources */);
   1215     if (SrcReg == NewSrc.Reg || NewSrc.Reg == 0)
   1216       continue;
   1217 
   1218     // Rewrite source.
   1219     if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
   1220       // We may have extended the live-range of NewSrc, account for that.
   1221       MRI->clearKillFlags(NewSrc.Reg);
   1222       Changed = true;
   1223     }
   1224   }
   1225   // TODO: We could have a clean-up method to tidy the instruction.
   1226   // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
   1227   // => v0 = COPY v1
   1228   // Currently we haven't seen motivating example for that and we
   1229   // want to avoid untested code.
   1230   NumRewrittenCopies += Changed;
   1231   return Changed;
   1232 }
   1233 
   1234 /// \brief Optimize copy-like instructions to create
   1235 /// register coalescer friendly instruction.
   1236 /// The optimization tries to kill-off the \p MI by looking
   1237 /// through a chain of copies to find a source that has a compatible
   1238 /// register class.
   1239 /// If such a source is found, it replace \p MI by a generic COPY
   1240 /// operation.
   1241 /// \pre isUncoalescableCopy(*MI) is true.
   1242 /// \return True, when \p MI has been optimized. In that case, \p MI has
   1243 /// been removed from its parent.
   1244 /// All COPY instructions created, are inserted in \p LocalMIs.
   1245 bool PeepholeOptimizer::optimizeUncoalescableCopy(
   1246     MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
   1247   assert(MI && isUncoalescableCopy(*MI) && "Invalid argument");
   1248 
   1249   // Check if we can rewrite all the values defined by this instruction.
   1250   SmallVector<TargetInstrInfo::RegSubRegPair, 4> RewritePairs;
   1251   // Get the right rewriter for the current copy.
   1252   std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI));
   1253   // If none exists, bail out.
   1254   if (!CpyRewriter)
   1255     return false;
   1256 
   1257   // Rewrite each rewritable source by generating new COPYs. This works
   1258   // differently from optimizeCoalescableCopy since it first makes sure that all
   1259   // definitions can be rewritten.
   1260   RewriteMapTy RewriteMap;
   1261   unsigned Reg, SubReg, CopyDefReg, CopyDefSubReg;
   1262   while (CpyRewriter->getNextRewritableSource(Reg, SubReg, CopyDefReg,
   1263                                               CopyDefSubReg)) {
   1264     // If a physical register is here, this is probably for a good reason.
   1265     // Do not rewrite that.
   1266     if (TargetRegisterInfo::isPhysicalRegister(CopyDefReg))
   1267       return false;
   1268 
   1269     // If we do not know how to rewrite this definition, there is no point
   1270     // in trying to kill this instruction.
   1271     TargetInstrInfo::RegSubRegPair Def(CopyDefReg, CopyDefSubReg);
   1272     if (!findNextSource(Def.Reg, Def.SubReg, RewriteMap))
   1273       return false;
   1274 
   1275     RewritePairs.push_back(Def);
   1276   }
   1277 
   1278   // The change is possible for all defs, do it.
   1279   for (const auto &Def : RewritePairs) {
   1280     // Rewrite the "copy" in a way the register coalescer understands.
   1281     MachineInstr *NewCopy = CpyRewriter->RewriteSource(Def, RewriteMap);
   1282     assert(NewCopy && "Should be able to always generate a new copy");
   1283     LocalMIs.insert(NewCopy);
   1284   }
   1285 
   1286   // MI is now dead.
   1287   MI->eraseFromParent();
   1288   ++NumUncoalescableCopies;
   1289   return true;
   1290 }
   1291 
   1292 /// Check whether MI is a candidate for folding into a later instruction.
   1293 /// We only fold loads to virtual registers and the virtual register defined
   1294 /// has a single use.
   1295 bool PeepholeOptimizer::isLoadFoldable(
   1296     MachineInstr *MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
   1297   if (!MI->canFoldAsLoad() || !MI->mayLoad())
   1298     return false;
   1299   const MCInstrDesc &MCID = MI->getDesc();
   1300   if (MCID.getNumDefs() != 1)
   1301     return false;
   1302 
   1303   unsigned Reg = MI->getOperand(0).getReg();
   1304   // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting
   1305   // loads. It should be checked when processing uses of the load, since
   1306   // uses can be removed during peephole.
   1307   if (!MI->getOperand(0).getSubReg() &&
   1308       TargetRegisterInfo::isVirtualRegister(Reg) &&
   1309       MRI->hasOneNonDBGUse(Reg)) {
   1310     FoldAsLoadDefCandidates.insert(Reg);
   1311     return true;
   1312   }
   1313   return false;
   1314 }
   1315 
   1316 bool PeepholeOptimizer::isMoveImmediate(
   1317     MachineInstr *MI, SmallSet<unsigned, 4> &ImmDefRegs,
   1318     DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
   1319   const MCInstrDesc &MCID = MI->getDesc();
   1320   if (!MI->isMoveImmediate())
   1321     return false;
   1322   if (MCID.getNumDefs() != 1)
   1323     return false;
   1324   unsigned Reg = MI->getOperand(0).getReg();
   1325   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
   1326     ImmDefMIs.insert(std::make_pair(Reg, MI));
   1327     ImmDefRegs.insert(Reg);
   1328     return true;
   1329   }
   1330 
   1331   return false;
   1332 }
   1333 
   1334 /// Try folding register operands that are defined by move immediate
   1335 /// instructions, i.e. a trivial constant folding optimization, if
   1336 /// and only if the def and use are in the same BB.
   1337 bool PeepholeOptimizer::foldImmediate(
   1338     MachineInstr *MI, MachineBasicBlock *MBB, SmallSet<unsigned, 4> &ImmDefRegs,
   1339     DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
   1340   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
   1341     MachineOperand &MO = MI->getOperand(i);
   1342     if (!MO.isReg() || MO.isDef())
   1343       continue;
   1344     // Ignore dead implicit defs.
   1345     if (MO.isImplicit() && MO.isDead())
   1346       continue;
   1347     unsigned Reg = MO.getReg();
   1348     if (!TargetRegisterInfo::isVirtualRegister(Reg))
   1349       continue;
   1350     if (ImmDefRegs.count(Reg) == 0)
   1351       continue;
   1352     DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
   1353     assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
   1354     if (TII->FoldImmediate(*MI, *II->second, Reg, MRI)) {
   1355       ++NumImmFold;
   1356       return true;
   1357     }
   1358   }
   1359   return false;
   1360 }
   1361 
   1362 // FIXME: This is very simple and misses some cases which should be handled when
   1363 // motivating examples are found.
   1364 //
   1365 // The copy rewriting logic should look at uses as well as defs and be able to
   1366 // eliminate copies across blocks.
   1367 //
   1368 // Later copies that are subregister extracts will also not be eliminated since
   1369 // only the first copy is considered.
   1370 //
   1371 // e.g.
   1372 // %vreg1 = COPY %vreg0
   1373 // %vreg2 = COPY %vreg0:sub1
   1374 //
   1375 // Should replace %vreg2 uses with %vreg1:sub1
   1376 bool PeepholeOptimizer::foldRedundantCopy(
   1377     MachineInstr *MI, SmallSet<unsigned, 4> &CopySrcRegs,
   1378     DenseMap<unsigned, MachineInstr *> &CopyMIs) {
   1379   assert(MI->isCopy() && "expected a COPY machine instruction");
   1380 
   1381   unsigned SrcReg = MI->getOperand(1).getReg();
   1382   if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
   1383     return false;
   1384 
   1385   unsigned DstReg = MI->getOperand(0).getReg();
   1386   if (!TargetRegisterInfo::isVirtualRegister(DstReg))
   1387     return false;
   1388 
   1389   if (CopySrcRegs.insert(SrcReg).second) {
   1390     // First copy of this reg seen.
   1391     CopyMIs.insert(std::make_pair(SrcReg, MI));
   1392     return false;
   1393   }
   1394 
   1395   MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second;
   1396 
   1397   unsigned SrcSubReg = MI->getOperand(1).getSubReg();
   1398   unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg();
   1399 
   1400   // Can't replace different subregister extracts.
   1401   if (SrcSubReg != PrevSrcSubReg)
   1402     return false;
   1403 
   1404   unsigned PrevDstReg = PrevCopy->getOperand(0).getReg();
   1405 
   1406   // Only replace if the copy register class is the same.
   1407   //
   1408   // TODO: If we have multiple copies to different register classes, we may want
   1409   // to track multiple copies of the same source register.
   1410   if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
   1411     return false;
   1412 
   1413   MRI->replaceRegWith(DstReg, PrevDstReg);
   1414 
   1415   // Lifetime of the previous copy has been extended.
   1416   MRI->clearKillFlags(PrevDstReg);
   1417   return true;
   1418 }
   1419 
   1420 bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) {
   1421   return TargetRegisterInfo::isPhysicalRegister(Reg) &&
   1422          !MRI->isAllocatable(Reg);
   1423 }
   1424 
   1425 bool PeepholeOptimizer::foldRedundantNAPhysCopy(
   1426     MachineInstr *MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) {
   1427   assert(MI->isCopy() && "expected a COPY machine instruction");
   1428 
   1429   if (DisableNAPhysCopyOpt)
   1430     return false;
   1431 
   1432   unsigned DstReg = MI->getOperand(0).getReg();
   1433   unsigned SrcReg = MI->getOperand(1).getReg();
   1434   if (isNAPhysCopy(SrcReg) && TargetRegisterInfo::isVirtualRegister(DstReg)) {
   1435     // %vreg = COPY %PHYSREG
   1436     // Avoid using a datastructure which can track multiple live non-allocatable
   1437     // phys->virt copies since LLVM doesn't seem to do this.
   1438     NAPhysToVirtMIs.insert({SrcReg, MI});
   1439     return false;
   1440   }
   1441 
   1442   if (!(TargetRegisterInfo::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg)))
   1443     return false;
   1444 
   1445   // %PHYSREG = COPY %vreg
   1446   auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
   1447   if (PrevCopy == NAPhysToVirtMIs.end()) {
   1448     // We can't remove the copy: there was an intervening clobber of the
   1449     // non-allocatable physical register after the copy to virtual.
   1450     DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing " << *MI
   1451                  << '\n');
   1452     return false;
   1453   }
   1454 
   1455   unsigned PrevDstReg = PrevCopy->second->getOperand(0).getReg();
   1456   if (PrevDstReg == SrcReg) {
   1457     // Remove the virt->phys copy: we saw the virtual register definition, and
   1458     // the non-allocatable physical register's state hasn't changed since then.
   1459     DEBUG(dbgs() << "NAPhysCopy: erasing " << *MI << '\n');
   1460     ++NumNAPhysCopies;
   1461     return true;
   1462   }
   1463 
   1464   // Potential missed optimization opportunity: we saw a different virtual
   1465   // register get a copy of the non-allocatable physical register, and we only
   1466   // track one such copy. Avoid getting confused by this new non-allocatable
   1467   // physical register definition, and remove it from the tracked copies.
   1468   DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << *MI << '\n');
   1469   NAPhysToVirtMIs.erase(PrevCopy);
   1470   return false;
   1471 }
   1472 
   1473 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
   1474   if (skipFunction(*MF.getFunction()))
   1475     return false;
   1476 
   1477   DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
   1478   DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
   1479 
   1480   if (DisablePeephole)
   1481     return false;
   1482 
   1483   TII = MF.getSubtarget().getInstrInfo();
   1484   TRI = MF.getSubtarget().getRegisterInfo();
   1485   MRI = &MF.getRegInfo();
   1486   DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
   1487 
   1488   bool Changed = false;
   1489 
   1490   for (MachineBasicBlock &MBB : MF) {
   1491     bool SeenMoveImm = false;
   1492 
   1493     // During this forward scan, at some point it needs to answer the question
   1494     // "given a pointer to an MI in the current BB, is it located before or
   1495     // after the current instruction".
   1496     // To perform this, the following set keeps track of the MIs already seen
   1497     // during the scan, if a MI is not in the set, it is assumed to be located
   1498     // after. Newly created MIs have to be inserted in the set as well.
   1499     SmallPtrSet<MachineInstr*, 16> LocalMIs;
   1500     SmallSet<unsigned, 4> ImmDefRegs;
   1501     DenseMap<unsigned, MachineInstr*> ImmDefMIs;
   1502     SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
   1503 
   1504     // Track when a non-allocatable physical register is copied to a virtual
   1505     // register so that useless moves can be removed.
   1506     //
   1507     // %PHYSREG is the map index; MI is the last valid `%vreg = COPY %PHYSREG`
   1508     // without any intervening re-definition of %PHYSREG.
   1509     DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs;
   1510 
   1511     // Set of virtual registers that are copied from.
   1512     SmallSet<unsigned, 4> CopySrcRegs;
   1513     DenseMap<unsigned, MachineInstr *> CopySrcMIs;
   1514 
   1515     for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
   1516          MII != MIE; ) {
   1517       MachineInstr *MI = &*MII;
   1518       // We may be erasing MI below, increment MII now.
   1519       ++MII;
   1520       LocalMIs.insert(MI);
   1521 
   1522       // Skip debug values. They should not affect this peephole optimization.
   1523       if (MI->isDebugValue())
   1524           continue;
   1525 
   1526       // If we run into an instruction we can't fold across, discard
   1527       // the load candidates.
   1528       if (MI->isLoadFoldBarrier())
   1529         FoldAsLoadDefCandidates.clear();
   1530 
   1531       if (MI->isPosition() || MI->isPHI())
   1532         continue;
   1533 
   1534       if (!MI->isCopy()) {
   1535         for (const auto &Op : MI->operands()) {
   1536           // Visit all operands: definitions can be implicit or explicit.
   1537           if (Op.isReg()) {
   1538             unsigned Reg = Op.getReg();
   1539             if (Op.isDef() && isNAPhysCopy(Reg)) {
   1540               const auto &Def = NAPhysToVirtMIs.find(Reg);
   1541               if (Def != NAPhysToVirtMIs.end()) {
   1542                 // A new definition of the non-allocatable physical register
   1543                 // invalidates previous copies.
   1544                 DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI
   1545                              << '\n');
   1546                 NAPhysToVirtMIs.erase(Def);
   1547               }
   1548             }
   1549           } else if (Op.isRegMask()) {
   1550             const uint32_t *RegMask = Op.getRegMask();
   1551             for (auto &RegMI : NAPhysToVirtMIs) {
   1552               unsigned Def = RegMI.first;
   1553               if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
   1554                 DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI
   1555                              << '\n');
   1556                 NAPhysToVirtMIs.erase(Def);
   1557               }
   1558             }
   1559           }
   1560         }
   1561       }
   1562 
   1563       if (MI->isImplicitDef() || MI->isKill())
   1564         continue;
   1565 
   1566       if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
   1567         // Blow away all non-allocatable physical registers knowledge since we
   1568         // don't know what's correct anymore.
   1569         //
   1570         // FIXME: handle explicit asm clobbers.
   1571         DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " << *MI
   1572                      << '\n');
   1573         NAPhysToVirtMIs.clear();
   1574         continue;
   1575       }
   1576 
   1577       if ((isUncoalescableCopy(*MI) &&
   1578            optimizeUncoalescableCopy(MI, LocalMIs)) ||
   1579           (MI->isCompare() && optimizeCmpInstr(MI, &MBB)) ||
   1580           (MI->isSelect() && optimizeSelect(MI, LocalMIs))) {
   1581         // MI is deleted.
   1582         LocalMIs.erase(MI);
   1583         Changed = true;
   1584         continue;
   1585       }
   1586 
   1587       if (MI->isConditionalBranch() && optimizeCondBranch(MI)) {
   1588         Changed = true;
   1589         continue;
   1590       }
   1591 
   1592       if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(MI)) {
   1593         // MI is just rewritten.
   1594         Changed = true;
   1595         continue;
   1596       }
   1597 
   1598       if (MI->isCopy() &&
   1599           (foldRedundantCopy(MI, CopySrcRegs, CopySrcMIs) ||
   1600            foldRedundantNAPhysCopy(MI, NAPhysToVirtMIs))) {
   1601         LocalMIs.erase(MI);
   1602         MI->eraseFromParent();
   1603         Changed = true;
   1604         continue;
   1605       }
   1606 
   1607       if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
   1608         SeenMoveImm = true;
   1609       } else {
   1610         Changed |= optimizeExtInstr(MI, &MBB, LocalMIs);
   1611         // optimizeExtInstr might have created new instructions after MI
   1612         // and before the already incremented MII. Adjust MII so that the
   1613         // next iteration sees the new instructions.
   1614         MII = MI;
   1615         ++MII;
   1616         if (SeenMoveImm)
   1617           Changed |= foldImmediate(MI, &MBB, ImmDefRegs, ImmDefMIs);
   1618       }
   1619 
   1620       // Check whether MI is a load candidate for folding into a later
   1621       // instruction. If MI is not a candidate, check whether we can fold an
   1622       // earlier load into MI.
   1623       if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) &&
   1624           !FoldAsLoadDefCandidates.empty()) {
   1625         const MCInstrDesc &MIDesc = MI->getDesc();
   1626         for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands();
   1627              ++i) {
   1628           const MachineOperand &MOp = MI->getOperand(i);
   1629           if (!MOp.isReg())
   1630             continue;
   1631           unsigned FoldAsLoadDefReg = MOp.getReg();
   1632           if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
   1633             // We need to fold load after optimizeCmpInstr, since
   1634             // optimizeCmpInstr can enable folding by converting SUB to CMP.
   1635             // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
   1636             // we need it for markUsesInDebugValueAsUndef().
   1637             unsigned FoldedReg = FoldAsLoadDefReg;
   1638             MachineInstr *DefMI = nullptr;
   1639             if (MachineInstr *FoldMI =
   1640                     TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
   1641               // Update LocalMIs since we replaced MI with FoldMI and deleted
   1642               // DefMI.
   1643               DEBUG(dbgs() << "Replacing: " << *MI);
   1644               DEBUG(dbgs() << "     With: " << *FoldMI);
   1645               LocalMIs.erase(MI);
   1646               LocalMIs.erase(DefMI);
   1647               LocalMIs.insert(FoldMI);
   1648               MI->eraseFromParent();
   1649               DefMI->eraseFromParent();
   1650               MRI->markUsesInDebugValueAsUndef(FoldedReg);
   1651               FoldAsLoadDefCandidates.erase(FoldedReg);
   1652               ++NumLoadFold;
   1653               // MI is replaced with FoldMI.
   1654               Changed = true;
   1655               break;
   1656             }
   1657           }
   1658         }
   1659       }
   1660     }
   1661   }
   1662 
   1663   return Changed;
   1664 }
   1665 
   1666 ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
   1667   assert(Def->isCopy() && "Invalid definition");
   1668   // Copy instruction are supposed to be: Def = Src.
   1669   // If someone breaks this assumption, bad things will happen everywhere.
   1670   assert(Def->getNumOperands() == 2 && "Invalid number of operands");
   1671 
   1672   if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
   1673     // If we look for a different subreg, it means we want a subreg of src.
   1674     // Bails as we do not support composing subregs yet.
   1675     return ValueTrackerResult();
   1676   // Otherwise, we want the whole source.
   1677   const MachineOperand &Src = Def->getOperand(1);
   1678   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
   1679 }
   1680 
   1681 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
   1682   assert(Def->isBitcast() && "Invalid definition");
   1683 
   1684   // Bail if there are effects that a plain copy will not expose.
   1685   if (Def->hasUnmodeledSideEffects())
   1686     return ValueTrackerResult();
   1687 
   1688   // Bitcasts with more than one def are not supported.
   1689   if (Def->getDesc().getNumDefs() != 1)
   1690     return ValueTrackerResult();
   1691   if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
   1692     // If we look for a different subreg, it means we want a subreg of the src.
   1693     // Bails as we do not support composing subregs yet.
   1694     return ValueTrackerResult();
   1695 
   1696   unsigned SrcIdx = Def->getNumOperands();
   1697   for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
   1698        ++OpIdx) {
   1699     const MachineOperand &MO = Def->getOperand(OpIdx);
   1700     if (!MO.isReg() || !MO.getReg())
   1701       continue;
   1702     // Ignore dead implicit defs.
   1703     if (MO.isImplicit() && MO.isDead())
   1704       continue;
   1705     assert(!MO.isDef() && "We should have skipped all the definitions by now");
   1706     if (SrcIdx != EndOpIdx)
   1707       // Multiple sources?
   1708       return ValueTrackerResult();
   1709     SrcIdx = OpIdx;
   1710   }
   1711   const MachineOperand &Src = Def->getOperand(SrcIdx);
   1712   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
   1713 }
   1714 
   1715 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
   1716   assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
   1717          "Invalid definition");
   1718 
   1719   if (Def->getOperand(DefIdx).getSubReg())
   1720     // If we are composing subregs, bail out.
   1721     // The case we are checking is Def.<subreg> = REG_SEQUENCE.
   1722     // This should almost never happen as the SSA property is tracked at
   1723     // the register level (as opposed to the subreg level).
   1724     // I.e.,
   1725     // Def.sub0 =
   1726     // Def.sub1 =
   1727     // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
   1728     // Def. Thus, it must not be generated.
   1729     // However, some code could theoretically generates a single
   1730     // Def.sub0 (i.e, not defining the other subregs) and we would
   1731     // have this case.
   1732     // If we can ascertain (or force) that this never happens, we could
   1733     // turn that into an assertion.
   1734     return ValueTrackerResult();
   1735 
   1736   if (!TII)
   1737     // We could handle the REG_SEQUENCE here, but we do not want to
   1738     // duplicate the code from the generic TII.
   1739     return ValueTrackerResult();
   1740 
   1741   SmallVector<TargetInstrInfo::RegSubRegPairAndIdx, 8> RegSeqInputRegs;
   1742   if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
   1743     return ValueTrackerResult();
   1744 
   1745   // We are looking at:
   1746   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
   1747   // Check if one of the operand defines the subreg we are interested in.
   1748   for (auto &RegSeqInput : RegSeqInputRegs) {
   1749     if (RegSeqInput.SubIdx == DefSubReg) {
   1750       if (RegSeqInput.SubReg)
   1751         // Bail if we have to compose sub registers.
   1752         return ValueTrackerResult();
   1753 
   1754       return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
   1755     }
   1756   }
   1757 
   1758   // If the subreg we are tracking is super-defined by another subreg,
   1759   // we could follow this value. However, this would require to compose
   1760   // the subreg and we do not do that for now.
   1761   return ValueTrackerResult();
   1762 }
   1763 
   1764 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
   1765   assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
   1766          "Invalid definition");
   1767 
   1768   if (Def->getOperand(DefIdx).getSubReg())
   1769     // If we are composing subreg, bail out.
   1770     // Same remark as getNextSourceFromRegSequence.
   1771     // I.e., this may be turned into an assert.
   1772     return ValueTrackerResult();
   1773 
   1774   if (!TII)
   1775     // We could handle the REG_SEQUENCE here, but we do not want to
   1776     // duplicate the code from the generic TII.
   1777     return ValueTrackerResult();
   1778 
   1779   TargetInstrInfo::RegSubRegPair BaseReg;
   1780   TargetInstrInfo::RegSubRegPairAndIdx InsertedReg;
   1781   if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
   1782     return ValueTrackerResult();
   1783 
   1784   // We are looking at:
   1785   // Def = INSERT_SUBREG v0, v1, sub1
   1786   // There are two cases:
   1787   // 1. DefSubReg == sub1, get v1.
   1788   // 2. DefSubReg != sub1, the value may be available through v0.
   1789 
   1790   // #1 Check if the inserted register matches the required sub index.
   1791   if (InsertedReg.SubIdx == DefSubReg) {
   1792     return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
   1793   }
   1794   // #2 Otherwise, if the sub register we are looking for is not partial
   1795   // defined by the inserted element, we can look through the main
   1796   // register (v0).
   1797   const MachineOperand &MODef = Def->getOperand(DefIdx);
   1798   // If the result register (Def) and the base register (v0) do not
   1799   // have the same register class or if we have to compose
   1800   // subregisters, bail out.
   1801   if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
   1802       BaseReg.SubReg)
   1803     return ValueTrackerResult();
   1804 
   1805   // Get the TRI and check if the inserted sub-register overlaps with the
   1806   // sub-register we are tracking.
   1807   const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
   1808   if (!TRI ||
   1809       (TRI->getSubRegIndexLaneMask(DefSubReg) &
   1810        TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)) != 0)
   1811     return ValueTrackerResult();
   1812   // At this point, the value is available in v0 via the same subreg
   1813   // we used for Def.
   1814   return ValueTrackerResult(BaseReg.Reg, DefSubReg);
   1815 }
   1816 
   1817 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
   1818   assert((Def->isExtractSubreg() ||
   1819           Def->isExtractSubregLike()) && "Invalid definition");
   1820   // We are looking at:
   1821   // Def = EXTRACT_SUBREG v0, sub0
   1822 
   1823   // Bail if we have to compose sub registers.
   1824   // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
   1825   if (DefSubReg)
   1826     return ValueTrackerResult();
   1827 
   1828   if (!TII)
   1829     // We could handle the EXTRACT_SUBREG here, but we do not want to
   1830     // duplicate the code from the generic TII.
   1831     return ValueTrackerResult();
   1832 
   1833   TargetInstrInfo::RegSubRegPairAndIdx ExtractSubregInputReg;
   1834   if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
   1835     return ValueTrackerResult();
   1836 
   1837   // Bail if we have to compose sub registers.
   1838   // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
   1839   if (ExtractSubregInputReg.SubReg)
   1840     return ValueTrackerResult();
   1841   // Otherwise, the value is available in the v0.sub0.
   1842   return ValueTrackerResult(ExtractSubregInputReg.Reg,
   1843                             ExtractSubregInputReg.SubIdx);
   1844 }
   1845 
   1846 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
   1847   assert(Def->isSubregToReg() && "Invalid definition");
   1848   // We are looking at:
   1849   // Def = SUBREG_TO_REG Imm, v0, sub0
   1850 
   1851   // Bail if we have to compose sub registers.
   1852   // If DefSubReg != sub0, we would have to check that all the bits
   1853   // we track are included in sub0 and if yes, we would have to
   1854   // determine the right subreg in v0.
   1855   if (DefSubReg != Def->getOperand(3).getImm())
   1856     return ValueTrackerResult();
   1857   // Bail if we have to compose sub registers.
   1858   // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
   1859   if (Def->getOperand(2).getSubReg())
   1860     return ValueTrackerResult();
   1861 
   1862   return ValueTrackerResult(Def->getOperand(2).getReg(),
   1863                             Def->getOperand(3).getImm());
   1864 }
   1865 
   1866 /// \brief Explore each PHI incoming operand and return its sources
   1867 ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
   1868   assert(Def->isPHI() && "Invalid definition");
   1869   ValueTrackerResult Res;
   1870 
   1871   // If we look for a different subreg, bail as we do not support composing
   1872   // subregs yet.
   1873   if (Def->getOperand(0).getSubReg() != DefSubReg)
   1874     return ValueTrackerResult();
   1875 
   1876   // Return all register sources for PHI instructions.
   1877   for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
   1878     auto &MO = Def->getOperand(i);
   1879     assert(MO.isReg() && "Invalid PHI instruction");
   1880     Res.addSource(MO.getReg(), MO.getSubReg());
   1881   }
   1882 
   1883   return Res;
   1884 }
   1885 
   1886 ValueTrackerResult ValueTracker::getNextSourceImpl() {
   1887   assert(Def && "This method needs a valid definition");
   1888 
   1889   assert(((Def->getOperand(DefIdx).isDef() &&
   1890            (DefIdx < Def->getDesc().getNumDefs() ||
   1891             Def->getDesc().isVariadic())) ||
   1892           Def->getOperand(DefIdx).isImplicit()) &&
   1893          "Invalid DefIdx");
   1894   if (Def->isCopy())
   1895     return getNextSourceFromCopy();
   1896   if (Def->isBitcast())
   1897     return getNextSourceFromBitcast();
   1898   // All the remaining cases involve "complex" instructions.
   1899   // Bail if we did not ask for the advanced tracking.
   1900   if (!UseAdvancedTracking)
   1901     return ValueTrackerResult();
   1902   if (Def->isRegSequence() || Def->isRegSequenceLike())
   1903     return getNextSourceFromRegSequence();
   1904   if (Def->isInsertSubreg() || Def->isInsertSubregLike())
   1905     return getNextSourceFromInsertSubreg();
   1906   if (Def->isExtractSubreg() || Def->isExtractSubregLike())
   1907     return getNextSourceFromExtractSubreg();
   1908   if (Def->isSubregToReg())
   1909     return getNextSourceFromSubregToReg();
   1910   if (Def->isPHI())
   1911     return getNextSourceFromPHI();
   1912   return ValueTrackerResult();
   1913 }
   1914 
   1915 ValueTrackerResult ValueTracker::getNextSource() {
   1916   // If we reach a point where we cannot move up in the use-def chain,
   1917   // there is nothing we can get.
   1918   if (!Def)
   1919     return ValueTrackerResult();
   1920 
   1921   ValueTrackerResult Res = getNextSourceImpl();
   1922   if (Res.isValid()) {
   1923     // Update definition, definition index, and subregister for the
   1924     // next call of getNextSource.
   1925     // Update the current register.
   1926     bool OneRegSrc = Res.getNumSources() == 1;
   1927     if (OneRegSrc)
   1928       Reg = Res.getSrcReg(0);
   1929     // Update the result before moving up in the use-def chain
   1930     // with the instruction containing the last found sources.
   1931     Res.setInst(Def);
   1932 
   1933     // If we can still move up in the use-def chain, move to the next
   1934     // definition.
   1935     if (!TargetRegisterInfo::isPhysicalRegister(Reg) && OneRegSrc) {
   1936       Def = MRI.getVRegDef(Reg);
   1937       DefIdx = MRI.def_begin(Reg).getOperandNo();
   1938       DefSubReg = Res.getSrcSubReg(0);
   1939       return Res;
   1940     }
   1941   }
   1942   // If we end up here, this means we will not be able to find another source
   1943   // for the next iteration. Make sure any new call to getNextSource bails out
   1944   // early by cutting the use-def chain.
   1945   Def = nullptr;
   1946   return Res;
   1947 }
   1948