1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of ThreadSanitizer (TSan), a race detector. 11 // 12 // Main internal TSan header file. 13 // 14 // Ground rules: 15 // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static 16 // function-scope locals) 17 // - All functions/classes/etc reside in namespace __tsan, except for those 18 // declared in tsan_interface.h. 19 // - Platform-specific files should be used instead of ifdefs (*). 20 // - No system headers included in header files (*). 21 // - Platform specific headres included only into platform-specific files (*). 22 // 23 // (*) Except when inlining is critical for performance. 24 //===----------------------------------------------------------------------===// 25 26 #ifndef TSAN_RTL_H 27 #define TSAN_RTL_H 28 29 #include "sanitizer_common/sanitizer_allocator.h" 30 #include "sanitizer_common/sanitizer_allocator_internal.h" 31 #include "sanitizer_common/sanitizer_asm.h" 32 #include "sanitizer_common/sanitizer_common.h" 33 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h" 34 #include "sanitizer_common/sanitizer_libignore.h" 35 #include "sanitizer_common/sanitizer_suppressions.h" 36 #include "sanitizer_common/sanitizer_thread_registry.h" 37 #include "tsan_clock.h" 38 #include "tsan_defs.h" 39 #include "tsan_flags.h" 40 #include "tsan_sync.h" 41 #include "tsan_trace.h" 42 #include "tsan_vector.h" 43 #include "tsan_report.h" 44 #include "tsan_platform.h" 45 #include "tsan_mutexset.h" 46 #include "tsan_ignoreset.h" 47 #include "tsan_stack_trace.h" 48 49 #if SANITIZER_WORDSIZE != 64 50 # error "ThreadSanitizer is supported only on 64-bit platforms" 51 #endif 52 53 namespace __tsan { 54 55 #ifndef SANITIZER_GO 56 struct MapUnmapCallback; 57 #if defined(__mips64) || defined(__aarch64__) || defined(__powerpc__) 58 static const uptr kAllocatorSpace = 0; 59 static const uptr kAllocatorSize = SANITIZER_MMAP_RANGE_SIZE; 60 static const uptr kAllocatorRegionSizeLog = 20; 61 static const uptr kAllocatorNumRegions = 62 kAllocatorSize >> kAllocatorRegionSizeLog; 63 typedef TwoLevelByteMap<(kAllocatorNumRegions >> 12), 1 << 12, 64 MapUnmapCallback> ByteMap; 65 typedef SizeClassAllocator32<kAllocatorSpace, kAllocatorSize, 0, 66 CompactSizeClassMap, kAllocatorRegionSizeLog, ByteMap, 67 MapUnmapCallback> PrimaryAllocator; 68 #else 69 typedef SizeClassAllocator64<Mapping::kHeapMemBeg, 70 Mapping::kHeapMemEnd - Mapping::kHeapMemBeg, 0, 71 DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator; 72 #endif 73 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache; 74 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator; 75 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache, 76 SecondaryAllocator> Allocator; 77 Allocator *allocator(); 78 #endif 79 80 void TsanCheckFailed(const char *file, int line, const char *cond, 81 u64 v1, u64 v2); 82 83 const u64 kShadowRodata = (u64)-1; // .rodata shadow marker 84 85 // FastState (from most significant bit): 86 // ignore : 1 87 // tid : kTidBits 88 // unused : - 89 // history_size : 3 90 // epoch : kClkBits 91 class FastState { 92 public: 93 FastState(u64 tid, u64 epoch) { 94 x_ = tid << kTidShift; 95 x_ |= epoch; 96 DCHECK_EQ(tid, this->tid()); 97 DCHECK_EQ(epoch, this->epoch()); 98 DCHECK_EQ(GetIgnoreBit(), false); 99 } 100 101 explicit FastState(u64 x) 102 : x_(x) { 103 } 104 105 u64 raw() const { 106 return x_; 107 } 108 109 u64 tid() const { 110 u64 res = (x_ & ~kIgnoreBit) >> kTidShift; 111 return res; 112 } 113 114 u64 TidWithIgnore() const { 115 u64 res = x_ >> kTidShift; 116 return res; 117 } 118 119 u64 epoch() const { 120 u64 res = x_ & ((1ull << kClkBits) - 1); 121 return res; 122 } 123 124 void IncrementEpoch() { 125 u64 old_epoch = epoch(); 126 x_ += 1; 127 DCHECK_EQ(old_epoch + 1, epoch()); 128 (void)old_epoch; 129 } 130 131 void SetIgnoreBit() { x_ |= kIgnoreBit; } 132 void ClearIgnoreBit() { x_ &= ~kIgnoreBit; } 133 bool GetIgnoreBit() const { return (s64)x_ < 0; } 134 135 void SetHistorySize(int hs) { 136 CHECK_GE(hs, 0); 137 CHECK_LE(hs, 7); 138 x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift); 139 } 140 141 ALWAYS_INLINE 142 int GetHistorySize() const { 143 return (int)((x_ >> kHistoryShift) & kHistoryMask); 144 } 145 146 void ClearHistorySize() { 147 SetHistorySize(0); 148 } 149 150 ALWAYS_INLINE 151 u64 GetTracePos() const { 152 const int hs = GetHistorySize(); 153 // When hs == 0, the trace consists of 2 parts. 154 const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1; 155 return epoch() & mask; 156 } 157 158 private: 159 friend class Shadow; 160 static const int kTidShift = 64 - kTidBits - 1; 161 static const u64 kIgnoreBit = 1ull << 63; 162 static const u64 kFreedBit = 1ull << 63; 163 static const u64 kHistoryShift = kClkBits; 164 static const u64 kHistoryMask = 7; 165 u64 x_; 166 }; 167 168 // Shadow (from most significant bit): 169 // freed : 1 170 // tid : kTidBits 171 // is_atomic : 1 172 // is_read : 1 173 // size_log : 2 174 // addr0 : 3 175 // epoch : kClkBits 176 class Shadow : public FastState { 177 public: 178 explicit Shadow(u64 x) 179 : FastState(x) { 180 } 181 182 explicit Shadow(const FastState &s) 183 : FastState(s.x_) { 184 ClearHistorySize(); 185 } 186 187 void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) { 188 DCHECK_EQ((x_ >> kClkBits) & 31, 0); 189 DCHECK_LE(addr0, 7); 190 DCHECK_LE(kAccessSizeLog, 3); 191 x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits; 192 DCHECK_EQ(kAccessSizeLog, size_log()); 193 DCHECK_EQ(addr0, this->addr0()); 194 } 195 196 void SetWrite(unsigned kAccessIsWrite) { 197 DCHECK_EQ(x_ & kReadBit, 0); 198 if (!kAccessIsWrite) 199 x_ |= kReadBit; 200 DCHECK_EQ(kAccessIsWrite, IsWrite()); 201 } 202 203 void SetAtomic(bool kIsAtomic) { 204 DCHECK(!IsAtomic()); 205 if (kIsAtomic) 206 x_ |= kAtomicBit; 207 DCHECK_EQ(IsAtomic(), kIsAtomic); 208 } 209 210 bool IsAtomic() const { 211 return x_ & kAtomicBit; 212 } 213 214 bool IsZero() const { 215 return x_ == 0; 216 } 217 218 static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) { 219 u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift; 220 DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore()); 221 return shifted_xor == 0; 222 } 223 224 static ALWAYS_INLINE 225 bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) { 226 u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31; 227 return masked_xor == 0; 228 } 229 230 static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2, 231 unsigned kS2AccessSize) { 232 bool res = false; 233 u64 diff = s1.addr0() - s2.addr0(); 234 if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT 235 // if (s1.addr0() + size1) > s2.addr0()) return true; 236 if (s1.size() > -diff) 237 res = true; 238 } else { 239 // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true; 240 if (kS2AccessSize > diff) 241 res = true; 242 } 243 DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2)); 244 DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1)); 245 return res; 246 } 247 248 u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; } 249 u64 ALWAYS_INLINE size() const { return 1ull << size_log(); } 250 bool ALWAYS_INLINE IsWrite() const { return !IsRead(); } 251 bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; } 252 253 // The idea behind the freed bit is as follows. 254 // When the memory is freed (or otherwise unaccessible) we write to the shadow 255 // values with tid/epoch related to the free and the freed bit set. 256 // During memory accesses processing the freed bit is considered 257 // as msb of tid. So any access races with shadow with freed bit set 258 // (it is as if write from a thread with which we never synchronized before). 259 // This allows us to detect accesses to freed memory w/o additional 260 // overheads in memory access processing and at the same time restore 261 // tid/epoch of free. 262 void MarkAsFreed() { 263 x_ |= kFreedBit; 264 } 265 266 bool IsFreed() const { 267 return x_ & kFreedBit; 268 } 269 270 bool GetFreedAndReset() { 271 bool res = x_ & kFreedBit; 272 x_ &= ~kFreedBit; 273 return res; 274 } 275 276 bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const { 277 bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift) 278 | (u64(kIsAtomic) << kAtomicShift)); 279 DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic)); 280 return v; 281 } 282 283 bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const { 284 bool v = ((x_ >> kReadShift) & 3) 285 <= u64((kIsWrite ^ 1) | (kIsAtomic << 1)); 286 DCHECK_EQ(v, (IsAtomic() < kIsAtomic) || 287 (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite)); 288 return v; 289 } 290 291 bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const { 292 bool v = ((x_ >> kReadShift) & 3) 293 >= u64((kIsWrite ^ 1) | (kIsAtomic << 1)); 294 DCHECK_EQ(v, (IsAtomic() > kIsAtomic) || 295 (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite)); 296 return v; 297 } 298 299 private: 300 static const u64 kReadShift = 5 + kClkBits; 301 static const u64 kReadBit = 1ull << kReadShift; 302 static const u64 kAtomicShift = 6 + kClkBits; 303 static const u64 kAtomicBit = 1ull << kAtomicShift; 304 305 u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; } 306 307 static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) { 308 if (s1.addr0() == s2.addr0()) return true; 309 if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0()) 310 return true; 311 if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0()) 312 return true; 313 return false; 314 } 315 }; 316 317 struct ThreadSignalContext; 318 319 struct JmpBuf { 320 uptr sp; 321 uptr mangled_sp; 322 int int_signal_send; 323 bool in_blocking_func; 324 uptr in_signal_handler; 325 uptr *shadow_stack_pos; 326 }; 327 328 // A Processor represents a physical thread, or a P for Go. 329 // It is used to store internal resources like allocate cache, and does not 330 // participate in race-detection logic (invisible to end user). 331 // In C++ it is tied to an OS thread just like ThreadState, however ideally 332 // it should be tied to a CPU (this way we will have fewer allocator caches). 333 // In Go it is tied to a P, so there are significantly fewer Processor's than 334 // ThreadState's (which are tied to Gs). 335 // A ThreadState must be wired with a Processor to handle events. 336 struct Processor { 337 ThreadState *thr; // currently wired thread, or nullptr 338 #ifndef SANITIZER_GO 339 AllocatorCache alloc_cache; 340 InternalAllocatorCache internal_alloc_cache; 341 #endif 342 DenseSlabAllocCache block_cache; 343 DenseSlabAllocCache sync_cache; 344 DenseSlabAllocCache clock_cache; 345 DDPhysicalThread *dd_pt; 346 }; 347 348 #ifndef SANITIZER_GO 349 // ScopedGlobalProcessor temporary setups a global processor for the current 350 // thread, if it does not have one. Intended for interceptors that can run 351 // at the very thread end, when we already destroyed the thread processor. 352 struct ScopedGlobalProcessor { 353 ScopedGlobalProcessor(); 354 ~ScopedGlobalProcessor(); 355 }; 356 #endif 357 358 // This struct is stored in TLS. 359 struct ThreadState { 360 FastState fast_state; 361 // Synch epoch represents the threads's epoch before the last synchronization 362 // action. It allows to reduce number of shadow state updates. 363 // For example, fast_synch_epoch=100, last write to addr X was at epoch=150, 364 // if we are processing write to X from the same thread at epoch=200, 365 // we do nothing, because both writes happen in the same 'synch epoch'. 366 // That is, if another memory access does not race with the former write, 367 // it does not race with the latter as well. 368 // QUESTION: can we can squeeze this into ThreadState::Fast? 369 // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are 370 // taken by epoch between synchs. 371 // This way we can save one load from tls. 372 u64 fast_synch_epoch; 373 // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read. 374 // We do not distinguish beteween ignoring reads and writes 375 // for better performance. 376 int ignore_reads_and_writes; 377 int ignore_sync; 378 // Go does not support ignores. 379 #ifndef SANITIZER_GO 380 IgnoreSet mop_ignore_set; 381 IgnoreSet sync_ignore_set; 382 #endif 383 // C/C++ uses fixed size shadow stack embed into Trace. 384 // Go uses malloc-allocated shadow stack with dynamic size. 385 uptr *shadow_stack; 386 uptr *shadow_stack_end; 387 uptr *shadow_stack_pos; 388 u64 *racy_shadow_addr; 389 u64 racy_state[2]; 390 MutexSet mset; 391 ThreadClock clock; 392 #ifndef SANITIZER_GO 393 Vector<JmpBuf> jmp_bufs; 394 int ignore_interceptors; 395 #endif 396 #if TSAN_COLLECT_STATS 397 u64 stat[StatCnt]; 398 #endif 399 const int tid; 400 const int unique_id; 401 bool in_symbolizer; 402 bool in_ignored_lib; 403 bool is_inited; 404 bool is_dead; 405 bool is_freeing; 406 bool is_vptr_access; 407 const uptr stk_addr; 408 const uptr stk_size; 409 const uptr tls_addr; 410 const uptr tls_size; 411 ThreadContext *tctx; 412 413 #if SANITIZER_DEBUG && !SANITIZER_GO 414 InternalDeadlockDetector internal_deadlock_detector; 415 #endif 416 DDLogicalThread *dd_lt; 417 418 // Current wired Processor, or nullptr. Required to handle any events. 419 Processor *proc1; 420 #ifndef SANITIZER_GO 421 Processor *proc() { return proc1; } 422 #else 423 Processor *proc(); 424 #endif 425 426 atomic_uintptr_t in_signal_handler; 427 ThreadSignalContext *signal_ctx; 428 429 #ifndef SANITIZER_GO 430 u32 last_sleep_stack_id; 431 ThreadClock last_sleep_clock; 432 #endif 433 434 // Set in regions of runtime that must be signal-safe and fork-safe. 435 // If set, malloc must not be called. 436 int nomalloc; 437 438 const ReportDesc *current_report; 439 440 explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch, 441 unsigned reuse_count, 442 uptr stk_addr, uptr stk_size, 443 uptr tls_addr, uptr tls_size); 444 }; 445 446 #ifndef SANITIZER_GO 447 #if SANITIZER_MAC || SANITIZER_ANDROID 448 ThreadState *cur_thread(); 449 void cur_thread_finalize(); 450 #else 451 __attribute__((tls_model("initial-exec"))) 452 extern THREADLOCAL char cur_thread_placeholder[]; 453 INLINE ThreadState *cur_thread() { 454 return reinterpret_cast<ThreadState *>(&cur_thread_placeholder); 455 } 456 INLINE void cur_thread_finalize() { } 457 #endif // SANITIZER_MAC || SANITIZER_ANDROID 458 #endif // SANITIZER_GO 459 460 class ThreadContext : public ThreadContextBase { 461 public: 462 explicit ThreadContext(int tid); 463 ~ThreadContext(); 464 ThreadState *thr; 465 u32 creation_stack_id; 466 SyncClock sync; 467 // Epoch at which the thread had started. 468 // If we see an event from the thread stamped by an older epoch, 469 // the event is from a dead thread that shared tid with this thread. 470 u64 epoch0; 471 u64 epoch1; 472 473 // Override superclass callbacks. 474 void OnDead() override; 475 void OnJoined(void *arg) override; 476 void OnFinished() override; 477 void OnStarted(void *arg) override; 478 void OnCreated(void *arg) override; 479 void OnReset() override; 480 void OnDetached(void *arg) override; 481 }; 482 483 struct RacyStacks { 484 MD5Hash hash[2]; 485 bool operator==(const RacyStacks &other) const { 486 if (hash[0] == other.hash[0] && hash[1] == other.hash[1]) 487 return true; 488 if (hash[0] == other.hash[1] && hash[1] == other.hash[0]) 489 return true; 490 return false; 491 } 492 }; 493 494 struct RacyAddress { 495 uptr addr_min; 496 uptr addr_max; 497 }; 498 499 struct FiredSuppression { 500 ReportType type; 501 uptr pc_or_addr; 502 Suppression *supp; 503 }; 504 505 struct Context { 506 Context(); 507 508 bool initialized; 509 bool after_multithreaded_fork; 510 511 MetaMap metamap; 512 513 Mutex report_mtx; 514 int nreported; 515 int nmissed_expected; 516 atomic_uint64_t last_symbolize_time_ns; 517 518 void *background_thread; 519 atomic_uint32_t stop_background_thread; 520 521 ThreadRegistry *thread_registry; 522 523 Mutex racy_mtx; 524 Vector<RacyStacks> racy_stacks; 525 Vector<RacyAddress> racy_addresses; 526 // Number of fired suppressions may be large enough. 527 Mutex fired_suppressions_mtx; 528 InternalMmapVector<FiredSuppression> fired_suppressions; 529 DDetector *dd; 530 531 ClockAlloc clock_alloc; 532 533 Flags flags; 534 535 u64 stat[StatCnt]; 536 u64 int_alloc_cnt[MBlockTypeCount]; 537 u64 int_alloc_siz[MBlockTypeCount]; 538 }; 539 540 extern Context *ctx; // The one and the only global runtime context. 541 542 struct ScopedIgnoreInterceptors { 543 ScopedIgnoreInterceptors() { 544 #ifndef SANITIZER_GO 545 cur_thread()->ignore_interceptors++; 546 #endif 547 } 548 549 ~ScopedIgnoreInterceptors() { 550 #ifndef SANITIZER_GO 551 cur_thread()->ignore_interceptors--; 552 #endif 553 } 554 }; 555 556 class ScopedReport { 557 public: 558 explicit ScopedReport(ReportType typ); 559 ~ScopedReport(); 560 561 void AddMemoryAccess(uptr addr, Shadow s, StackTrace stack, 562 const MutexSet *mset); 563 void AddStack(StackTrace stack, bool suppressable = false); 564 void AddThread(const ThreadContext *tctx, bool suppressable = false); 565 void AddThread(int unique_tid, bool suppressable = false); 566 void AddUniqueTid(int unique_tid); 567 void AddMutex(const SyncVar *s); 568 u64 AddMutex(u64 id); 569 void AddLocation(uptr addr, uptr size); 570 void AddSleep(u32 stack_id); 571 void SetCount(int count); 572 573 const ReportDesc *GetReport() const; 574 575 private: 576 ReportDesc *rep_; 577 // Symbolizer makes lots of intercepted calls. If we try to process them, 578 // at best it will cause deadlocks on internal mutexes. 579 ScopedIgnoreInterceptors ignore_interceptors_; 580 581 void AddDeadMutex(u64 id); 582 583 ScopedReport(const ScopedReport&); 584 void operator = (const ScopedReport&); 585 }; 586 587 void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk, 588 MutexSet *mset); 589 590 template<typename StackTraceTy> 591 void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack) { 592 uptr size = thr->shadow_stack_pos - thr->shadow_stack; 593 uptr start = 0; 594 if (size + !!toppc > kStackTraceMax) { 595 start = size + !!toppc - kStackTraceMax; 596 size = kStackTraceMax - !!toppc; 597 } 598 stack->Init(&thr->shadow_stack[start], size, toppc); 599 } 600 601 602 #if TSAN_COLLECT_STATS 603 void StatAggregate(u64 *dst, u64 *src); 604 void StatOutput(u64 *stat); 605 #endif 606 607 void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) { 608 #if TSAN_COLLECT_STATS 609 thr->stat[typ] += n; 610 #endif 611 } 612 void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) { 613 #if TSAN_COLLECT_STATS 614 thr->stat[typ] = n; 615 #endif 616 } 617 618 void MapShadow(uptr addr, uptr size); 619 void MapThreadTrace(uptr addr, uptr size, const char *name); 620 void DontNeedShadowFor(uptr addr, uptr size); 621 void InitializeShadowMemory(); 622 void InitializeInterceptors(); 623 void InitializeLibIgnore(); 624 void InitializeDynamicAnnotations(); 625 626 void ForkBefore(ThreadState *thr, uptr pc); 627 void ForkParentAfter(ThreadState *thr, uptr pc); 628 void ForkChildAfter(ThreadState *thr, uptr pc); 629 630 void ReportRace(ThreadState *thr); 631 bool OutputReport(ThreadState *thr, const ScopedReport &srep); 632 bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace); 633 bool IsExpectedReport(uptr addr, uptr size); 634 void PrintMatchedBenignRaces(); 635 636 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1 637 # define DPrintf Printf 638 #else 639 # define DPrintf(...) 640 #endif 641 642 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2 643 # define DPrintf2 Printf 644 #else 645 # define DPrintf2(...) 646 #endif 647 648 u32 CurrentStackId(ThreadState *thr, uptr pc); 649 ReportStack *SymbolizeStackId(u32 stack_id); 650 void PrintCurrentStack(ThreadState *thr, uptr pc); 651 void PrintCurrentStackSlow(uptr pc); // uses libunwind 652 653 void Initialize(ThreadState *thr); 654 int Finalize(ThreadState *thr); 655 656 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write); 657 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write); 658 659 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, 660 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic); 661 void MemoryAccessImpl(ThreadState *thr, uptr addr, 662 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, 663 u64 *shadow_mem, Shadow cur); 664 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, 665 uptr size, bool is_write); 666 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr, 667 uptr size, uptr step, bool is_write); 668 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, 669 int size, bool kAccessIsWrite, bool kIsAtomic); 670 671 const int kSizeLog1 = 0; 672 const int kSizeLog2 = 1; 673 const int kSizeLog4 = 2; 674 const int kSizeLog8 = 3; 675 676 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc, 677 uptr addr, int kAccessSizeLog) { 678 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false); 679 } 680 681 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc, 682 uptr addr, int kAccessSizeLog) { 683 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false); 684 } 685 686 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc, 687 uptr addr, int kAccessSizeLog) { 688 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true); 689 } 690 691 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc, 692 uptr addr, int kAccessSizeLog) { 693 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true); 694 } 695 696 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size); 697 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size); 698 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size); 699 700 void ThreadIgnoreBegin(ThreadState *thr, uptr pc); 701 void ThreadIgnoreEnd(ThreadState *thr, uptr pc); 702 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc); 703 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc); 704 705 void FuncEntry(ThreadState *thr, uptr pc); 706 void FuncExit(ThreadState *thr); 707 708 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached); 709 void ThreadStart(ThreadState *thr, int tid, uptr os_id); 710 void ThreadFinish(ThreadState *thr); 711 int ThreadTid(ThreadState *thr, uptr pc, uptr uid); 712 void ThreadJoin(ThreadState *thr, uptr pc, int tid); 713 void ThreadDetach(ThreadState *thr, uptr pc, int tid); 714 void ThreadFinalize(ThreadState *thr); 715 void ThreadSetName(ThreadState *thr, const char *name); 716 int ThreadCount(ThreadState *thr); 717 void ProcessPendingSignals(ThreadState *thr); 718 719 Processor *ProcCreate(); 720 void ProcDestroy(Processor *proc); 721 void ProcWire(Processor *proc, ThreadState *thr); 722 void ProcUnwire(Processor *proc, ThreadState *thr); 723 724 void MutexCreate(ThreadState *thr, uptr pc, uptr addr, 725 bool rw, bool recursive, bool linker_init); 726 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr); 727 void MutexLock(ThreadState *thr, uptr pc, uptr addr, int rec = 1, 728 bool try_lock = false); 729 int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, bool all = false); 730 void MutexReadLock(ThreadState *thr, uptr pc, uptr addr, bool try_lock = false); 731 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr); 732 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr); 733 void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD 734 void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr); 735 736 void Acquire(ThreadState *thr, uptr pc, uptr addr); 737 // AcquireGlobal synchronizes the current thread with all other threads. 738 // In terms of happens-before relation, it draws a HB edge from all threads 739 // (where they happen to execute right now) to the current thread. We use it to 740 // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal 741 // right before executing finalizers. This provides a coarse, but simple 742 // approximation of the actual required synchronization. 743 void AcquireGlobal(ThreadState *thr, uptr pc); 744 void Release(ThreadState *thr, uptr pc, uptr addr); 745 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr); 746 void AfterSleep(ThreadState *thr, uptr pc); 747 void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c); 748 void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c); 749 void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c); 750 void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c); 751 752 // The hacky call uses custom calling convention and an assembly thunk. 753 // It is considerably faster that a normal call for the caller 754 // if it is not executed (it is intended for slow paths from hot functions). 755 // The trick is that the call preserves all registers and the compiler 756 // does not treat it as a call. 757 // If it does not work for you, use normal call. 758 #if !SANITIZER_DEBUG && defined(__x86_64__) && !SANITIZER_MAC 759 // The caller may not create the stack frame for itself at all, 760 // so we create a reserve stack frame for it (1024b must be enough). 761 #define HACKY_CALL(f) \ 762 __asm__ __volatile__("sub $1024, %%rsp;" \ 763 CFI_INL_ADJUST_CFA_OFFSET(1024) \ 764 ".hidden " #f "_thunk;" \ 765 "call " #f "_thunk;" \ 766 "add $1024, %%rsp;" \ 767 CFI_INL_ADJUST_CFA_OFFSET(-1024) \ 768 ::: "memory", "cc"); 769 #else 770 #define HACKY_CALL(f) f() 771 #endif 772 773 void TraceSwitch(ThreadState *thr); 774 uptr TraceTopPC(ThreadState *thr); 775 uptr TraceSize(); 776 uptr TraceParts(); 777 Trace *ThreadTrace(int tid); 778 779 extern "C" void __tsan_trace_switch(); 780 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs, 781 EventType typ, u64 addr) { 782 if (!kCollectHistory) 783 return; 784 DCHECK_GE((int)typ, 0); 785 DCHECK_LE((int)typ, 7); 786 DCHECK_EQ(GetLsb(addr, 61), addr); 787 StatInc(thr, StatEvents); 788 u64 pos = fs.GetTracePos(); 789 if (UNLIKELY((pos % kTracePartSize) == 0)) { 790 #ifndef SANITIZER_GO 791 HACKY_CALL(__tsan_trace_switch); 792 #else 793 TraceSwitch(thr); 794 #endif 795 } 796 Event *trace = (Event*)GetThreadTrace(fs.tid()); 797 Event *evp = &trace[pos]; 798 Event ev = (u64)addr | ((u64)typ << 61); 799 *evp = ev; 800 } 801 802 #ifndef SANITIZER_GO 803 uptr ALWAYS_INLINE HeapEnd() { 804 return HeapMemEnd() + PrimaryAllocator::AdditionalSize(); 805 } 806 #endif 807 808 } // namespace __tsan 809 810 #endif // TSAN_RTL_H 811