Home | History | Annotate | Download | only in interpreter
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_INTERPRETER_SHADOW_FRAME_H_
     18 #define ART_RUNTIME_INTERPRETER_SHADOW_FRAME_H_
     19 
     20 #include <cstring>
     21 #include <stdint.h>
     22 #include <string>
     23 
     24 #include "base/macros.h"
     25 #include "base/mutex.h"
     26 #include "dex_file.h"
     27 #include "lock_count_data.h"
     28 #include "read_barrier.h"
     29 #include "stack_reference.h"
     30 #include "verify_object.h"
     31 
     32 namespace art {
     33 
     34 namespace mirror {
     35   class Object;
     36 }  // namespace mirror
     37 
     38 class ArtMethod;
     39 class ShadowFrame;
     40 class Thread;
     41 union JValue;
     42 
     43 // Forward declaration. Just calls the destructor.
     44 struct ShadowFrameDeleter;
     45 using ShadowFrameAllocaUniquePtr = std::unique_ptr<ShadowFrame, ShadowFrameDeleter>;
     46 
     47 // ShadowFrame has 2 possible layouts:
     48 //  - interpreter - separate VRegs and reference arrays. References are in the reference array.
     49 //  - JNI - just VRegs, but where every VReg holds a reference.
     50 class ShadowFrame {
     51  public:
     52   // Compute size of ShadowFrame in bytes assuming it has a reference array.
     53   static size_t ComputeSize(uint32_t num_vregs) {
     54     return sizeof(ShadowFrame) + (sizeof(uint32_t) * num_vregs) +
     55            (sizeof(StackReference<mirror::Object>) * num_vregs);
     56   }
     57 
     58   // Create ShadowFrame in heap for deoptimization.
     59   static ShadowFrame* CreateDeoptimizedFrame(uint32_t num_vregs, ShadowFrame* link,
     60                                              ArtMethod* method, uint32_t dex_pc) {
     61     uint8_t* memory = new uint8_t[ComputeSize(num_vregs)];
     62     return CreateShadowFrameImpl(num_vregs, link, method, dex_pc, memory);
     63   }
     64 
     65   // Delete a ShadowFrame allocated on the heap for deoptimization.
     66   static void DeleteDeoptimizedFrame(ShadowFrame* sf) {
     67     sf->~ShadowFrame();  // Explicitly destruct.
     68     uint8_t* memory = reinterpret_cast<uint8_t*>(sf);
     69     delete[] memory;
     70   }
     71 
     72   // Create a shadow frame in a fresh alloca. This needs to be in the context of the caller.
     73   // Inlining doesn't work, the compiler will still undo the alloca. So this needs to be a macro.
     74 #define CREATE_SHADOW_FRAME(num_vregs, link, method, dex_pc) ({                              \
     75     size_t frame_size = ShadowFrame::ComputeSize(num_vregs);                                 \
     76     void* alloca_mem = alloca(frame_size);                                                   \
     77     ShadowFrameAllocaUniquePtr(                                                              \
     78         ShadowFrame::CreateShadowFrameImpl((num_vregs), (link), (method), (dex_pc),          \
     79                                            (alloca_mem)));                                   \
     80     })
     81 
     82   ~ShadowFrame() {}
     83 
     84   // TODO(iam): Clean references array up since they're always there,
     85   // we don't need to do conditionals.
     86   bool HasReferenceArray() const {
     87     return true;
     88   }
     89 
     90   uint32_t NumberOfVRegs() const {
     91     return number_of_vregs_;
     92   }
     93 
     94   uint32_t GetDexPC() const {
     95     return (dex_pc_ptr_ == nullptr) ? dex_pc_ : dex_pc_ptr_ - code_item_->insns_;
     96   }
     97 
     98   int16_t GetCachedHotnessCountdown() const {
     99     return cached_hotness_countdown_;
    100   }
    101 
    102   void SetCachedHotnessCountdown(int16_t cached_hotness_countdown) {
    103     cached_hotness_countdown_ = cached_hotness_countdown;
    104   }
    105 
    106   int16_t GetHotnessCountdown() const {
    107     return hotness_countdown_;
    108   }
    109 
    110   void SetHotnessCountdown(int16_t hotness_countdown) {
    111     hotness_countdown_ = hotness_countdown;
    112   }
    113 
    114   void SetDexPC(uint32_t dex_pc) {
    115     dex_pc_ = dex_pc;
    116     dex_pc_ptr_ = nullptr;
    117   }
    118 
    119   ShadowFrame* GetLink() const {
    120     return link_;
    121   }
    122 
    123   void SetLink(ShadowFrame* frame) {
    124     DCHECK_NE(this, frame);
    125     link_ = frame;
    126   }
    127 
    128   int32_t GetVReg(size_t i) const {
    129     DCHECK_LT(i, NumberOfVRegs());
    130     const uint32_t* vreg = &vregs_[i];
    131     return *reinterpret_cast<const int32_t*>(vreg);
    132   }
    133 
    134   // Shorts are extended to Ints in VRegs.  Interpreter intrinsics needs them as shorts.
    135   int16_t GetVRegShort(size_t i) const {
    136     return static_cast<int16_t>(GetVReg(i));
    137   }
    138 
    139   uint32_t* GetVRegAddr(size_t i) {
    140     return &vregs_[i];
    141   }
    142 
    143   uint32_t* GetShadowRefAddr(size_t i) {
    144     DCHECK(HasReferenceArray());
    145     DCHECK_LT(i, NumberOfVRegs());
    146     return &vregs_[i + NumberOfVRegs()];
    147   }
    148 
    149   void SetCodeItem(const DexFile::CodeItem* code_item) {
    150     code_item_ = code_item;
    151   }
    152 
    153   const DexFile::CodeItem* GetCodeItem() const {
    154     return code_item_;
    155   }
    156 
    157   float GetVRegFloat(size_t i) const {
    158     DCHECK_LT(i, NumberOfVRegs());
    159     // NOTE: Strict-aliasing?
    160     const uint32_t* vreg = &vregs_[i];
    161     return *reinterpret_cast<const float*>(vreg);
    162   }
    163 
    164   int64_t GetVRegLong(size_t i) const {
    165     DCHECK_LT(i, NumberOfVRegs());
    166     const uint32_t* vreg = &vregs_[i];
    167     typedef const int64_t unaligned_int64 __attribute__ ((aligned (4)));
    168     return *reinterpret_cast<unaligned_int64*>(vreg);
    169   }
    170 
    171   double GetVRegDouble(size_t i) const {
    172     DCHECK_LT(i, NumberOfVRegs());
    173     const uint32_t* vreg = &vregs_[i];
    174     typedef const double unaligned_double __attribute__ ((aligned (4)));
    175     return *reinterpret_cast<unaligned_double*>(vreg);
    176   }
    177 
    178   // Look up the reference given its virtual register number.
    179   // If this returns non-null then this does not mean the vreg is currently a reference
    180   // on non-moving collectors. Check that the raw reg with GetVReg is equal to this if not certain.
    181   template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
    182   mirror::Object* GetVRegReference(size_t i) const REQUIRES_SHARED(Locks::mutator_lock_) {
    183     DCHECK_LT(i, NumberOfVRegs());
    184     mirror::Object* ref;
    185     if (HasReferenceArray()) {
    186       ref = References()[i].AsMirrorPtr();
    187     } else {
    188       const uint32_t* vreg_ptr = &vregs_[i];
    189       ref = reinterpret_cast<const StackReference<mirror::Object>*>(vreg_ptr)->AsMirrorPtr();
    190     }
    191     if (kUseReadBarrier) {
    192       ReadBarrier::AssertToSpaceInvariant(ref);
    193     }
    194     if (kVerifyFlags & kVerifyReads) {
    195       VerifyObject(ref);
    196     }
    197     return ref;
    198   }
    199 
    200   // Get view of vregs as range of consecutive arguments starting at i.
    201   uint32_t* GetVRegArgs(size_t i) {
    202     return &vregs_[i];
    203   }
    204 
    205   void SetVReg(size_t i, int32_t val) {
    206     DCHECK_LT(i, NumberOfVRegs());
    207     uint32_t* vreg = &vregs_[i];
    208     *reinterpret_cast<int32_t*>(vreg) = val;
    209     // This is needed for moving collectors since these can update the vreg references if they
    210     // happen to agree with references in the reference array.
    211     if (kMovingCollector && HasReferenceArray()) {
    212       References()[i].Clear();
    213     }
    214   }
    215 
    216   void SetVRegFloat(size_t i, float val) {
    217     DCHECK_LT(i, NumberOfVRegs());
    218     uint32_t* vreg = &vregs_[i];
    219     *reinterpret_cast<float*>(vreg) = val;
    220     // This is needed for moving collectors since these can update the vreg references if they
    221     // happen to agree with references in the reference array.
    222     if (kMovingCollector && HasReferenceArray()) {
    223       References()[i].Clear();
    224     }
    225   }
    226 
    227   void SetVRegLong(size_t i, int64_t val) {
    228     DCHECK_LT(i, NumberOfVRegs());
    229     uint32_t* vreg = &vregs_[i];
    230     typedef int64_t unaligned_int64 __attribute__ ((aligned (4)));
    231     *reinterpret_cast<unaligned_int64*>(vreg) = val;
    232     // This is needed for moving collectors since these can update the vreg references if they
    233     // happen to agree with references in the reference array.
    234     if (kMovingCollector && HasReferenceArray()) {
    235       References()[i].Clear();
    236       References()[i + 1].Clear();
    237     }
    238   }
    239 
    240   void SetVRegDouble(size_t i, double val) {
    241     DCHECK_LT(i, NumberOfVRegs());
    242     uint32_t* vreg = &vregs_[i];
    243     typedef double unaligned_double __attribute__ ((aligned (4)));
    244     *reinterpret_cast<unaligned_double*>(vreg) = val;
    245     // This is needed for moving collectors since these can update the vreg references if they
    246     // happen to agree with references in the reference array.
    247     if (kMovingCollector && HasReferenceArray()) {
    248       References()[i].Clear();
    249       References()[i + 1].Clear();
    250     }
    251   }
    252 
    253   template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
    254   void SetVRegReference(size_t i, mirror::Object* val) REQUIRES_SHARED(Locks::mutator_lock_) {
    255     DCHECK_LT(i, NumberOfVRegs());
    256     if (kVerifyFlags & kVerifyWrites) {
    257       VerifyObject(val);
    258     }
    259     if (kUseReadBarrier) {
    260       ReadBarrier::AssertToSpaceInvariant(val);
    261     }
    262     uint32_t* vreg = &vregs_[i];
    263     reinterpret_cast<StackReference<mirror::Object>*>(vreg)->Assign(val);
    264     if (HasReferenceArray()) {
    265       References()[i].Assign(val);
    266     }
    267   }
    268 
    269   void SetMethod(ArtMethod* method) REQUIRES(Locks::mutator_lock_) {
    270     DCHECK(method != nullptr);
    271     DCHECK(method_ != nullptr);
    272     method_ = method;
    273   }
    274 
    275   ArtMethod* GetMethod() const REQUIRES_SHARED(Locks::mutator_lock_) {
    276     DCHECK(method_ != nullptr);
    277     return method_;
    278   }
    279 
    280   mirror::Object* GetThisObject() const REQUIRES_SHARED(Locks::mutator_lock_);
    281 
    282   mirror::Object* GetThisObject(uint16_t num_ins) const REQUIRES_SHARED(Locks::mutator_lock_);
    283 
    284   bool Contains(StackReference<mirror::Object>* shadow_frame_entry_obj) const {
    285     if (HasReferenceArray()) {
    286       return ((&References()[0] <= shadow_frame_entry_obj) &&
    287               (shadow_frame_entry_obj <= (&References()[NumberOfVRegs() - 1])));
    288     } else {
    289       uint32_t* shadow_frame_entry = reinterpret_cast<uint32_t*>(shadow_frame_entry_obj);
    290       return ((&vregs_[0] <= shadow_frame_entry) &&
    291               (shadow_frame_entry <= (&vregs_[NumberOfVRegs() - 1])));
    292     }
    293   }
    294 
    295   LockCountData& GetLockCountData() {
    296     return lock_count_data_;
    297   }
    298 
    299   static size_t LockCountDataOffset() {
    300     return OFFSETOF_MEMBER(ShadowFrame, lock_count_data_);
    301   }
    302 
    303   static size_t LinkOffset() {
    304     return OFFSETOF_MEMBER(ShadowFrame, link_);
    305   }
    306 
    307   static size_t MethodOffset() {
    308     return OFFSETOF_MEMBER(ShadowFrame, method_);
    309   }
    310 
    311   static size_t DexPCOffset() {
    312     return OFFSETOF_MEMBER(ShadowFrame, dex_pc_);
    313   }
    314 
    315   static size_t NumberOfVRegsOffset() {
    316     return OFFSETOF_MEMBER(ShadowFrame, number_of_vregs_);
    317   }
    318 
    319   static size_t VRegsOffset() {
    320     return OFFSETOF_MEMBER(ShadowFrame, vregs_);
    321   }
    322 
    323   static size_t ResultRegisterOffset() {
    324     return OFFSETOF_MEMBER(ShadowFrame, result_register_);
    325   }
    326 
    327   static size_t DexPCPtrOffset() {
    328     return OFFSETOF_MEMBER(ShadowFrame, dex_pc_ptr_);
    329   }
    330 
    331   static size_t CodeItemOffset() {
    332     return OFFSETOF_MEMBER(ShadowFrame, code_item_);
    333   }
    334 
    335   static size_t CachedHotnessCountdownOffset() {
    336     return OFFSETOF_MEMBER(ShadowFrame, cached_hotness_countdown_);
    337   }
    338 
    339   static size_t HotnessCountdownOffset() {
    340     return OFFSETOF_MEMBER(ShadowFrame, hotness_countdown_);
    341   }
    342 
    343   // Create ShadowFrame for interpreter using provided memory.
    344   static ShadowFrame* CreateShadowFrameImpl(uint32_t num_vregs,
    345                                             ShadowFrame* link,
    346                                             ArtMethod* method,
    347                                             uint32_t dex_pc,
    348                                             void* memory) {
    349     return new (memory) ShadowFrame(num_vregs, link, method, dex_pc, true);
    350   }
    351 
    352   const uint16_t* GetDexPCPtr() {
    353     return dex_pc_ptr_;
    354   }
    355 
    356   void SetDexPCPtr(uint16_t* dex_pc_ptr) {
    357     dex_pc_ptr_ = dex_pc_ptr;
    358   }
    359 
    360   JValue* GetResultRegister() {
    361     return result_register_;
    362   }
    363 
    364  private:
    365   ShadowFrame(uint32_t num_vregs, ShadowFrame* link, ArtMethod* method,
    366               uint32_t dex_pc, bool has_reference_array)
    367       : link_(link),
    368         method_(method),
    369         result_register_(nullptr),
    370         dex_pc_ptr_(nullptr),
    371         code_item_(nullptr),
    372         number_of_vregs_(num_vregs),
    373         dex_pc_(dex_pc),
    374         cached_hotness_countdown_(0),
    375         hotness_countdown_(0) {
    376     // TODO(iam): Remove this parameter, it's an an artifact of portable removal
    377     DCHECK(has_reference_array);
    378     if (has_reference_array) {
    379       memset(vregs_, 0, num_vregs * (sizeof(uint32_t) + sizeof(StackReference<mirror::Object>)));
    380     } else {
    381       memset(vregs_, 0, num_vregs * sizeof(uint32_t));
    382     }
    383   }
    384 
    385   const StackReference<mirror::Object>* References() const {
    386     DCHECK(HasReferenceArray());
    387     const uint32_t* vreg_end = &vregs_[NumberOfVRegs()];
    388     return reinterpret_cast<const StackReference<mirror::Object>*>(vreg_end);
    389   }
    390 
    391   StackReference<mirror::Object>* References() {
    392     return const_cast<StackReference<mirror::Object>*>(
    393         const_cast<const ShadowFrame*>(this)->References());
    394   }
    395 
    396   // Link to previous shadow frame or null.
    397   ShadowFrame* link_;
    398   ArtMethod* method_;
    399   JValue* result_register_;
    400   const uint16_t* dex_pc_ptr_;
    401   const DexFile::CodeItem* code_item_;
    402   LockCountData lock_count_data_;  // This may contain GC roots when lock counting is active.
    403   const uint32_t number_of_vregs_;
    404   uint32_t dex_pc_;
    405   int16_t cached_hotness_countdown_;
    406   int16_t hotness_countdown_;
    407 
    408   // This is a two-part array:
    409   //  - [0..number_of_vregs) holds the raw virtual registers, and each element here is always 4
    410   //    bytes.
    411   //  - [number_of_vregs..number_of_vregs*2) holds only reference registers. Each element here is
    412   //    ptr-sized.
    413   // In other words when a primitive is stored in vX, the second (reference) part of the array will
    414   // be null. When a reference is stored in vX, the second (reference) part of the array will be a
    415   // copy of vX.
    416   uint32_t vregs_[0];
    417 
    418   DISALLOW_IMPLICIT_CONSTRUCTORS(ShadowFrame);
    419 };
    420 
    421 struct ShadowFrameDeleter {
    422   inline void operator()(ShadowFrame* frame) {
    423     if (frame != nullptr) {
    424       frame->~ShadowFrame();
    425     }
    426   }
    427 };
    428 
    429 }  // namespace art
    430 
    431 #endif  // ART_RUNTIME_INTERPRETER_SHADOW_FRAME_H_
    432