Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "thread_pool.h"
     18 
     19 #include <pthread.h>
     20 
     21 #include <sys/mman.h>
     22 #include <sys/time.h>
     23 #include <sys/resource.h>
     24 
     25 #include "android-base/stringprintf.h"
     26 
     27 #include "base/bit_utils.h"
     28 #include "base/casts.h"
     29 #include "base/logging.h"
     30 #include "base/stl_util.h"
     31 #include "base/time_utils.h"
     32 #include "runtime.h"
     33 #include "thread-current-inl.h"
     34 
     35 namespace art {
     36 
     37 using android::base::StringPrintf;
     38 
     39 static constexpr bool kMeasureWaitTime = false;
     40 
     41 ThreadPoolWorker::ThreadPoolWorker(ThreadPool* thread_pool, const std::string& name,
     42                                    size_t stack_size)
     43     : thread_pool_(thread_pool),
     44       name_(name) {
     45   // Add an inaccessible page to catch stack overflow.
     46   stack_size += kPageSize;
     47   std::string error_msg;
     48   stack_.reset(MemMap::MapAnonymous(name.c_str(), nullptr, stack_size, PROT_READ | PROT_WRITE,
     49                                     false, false, &error_msg));
     50   CHECK(stack_.get() != nullptr) << error_msg;
     51   CHECK_ALIGNED(stack_->Begin(), kPageSize);
     52   int mprotect_result = mprotect(stack_->Begin(), kPageSize, PROT_NONE);
     53   CHECK_EQ(mprotect_result, 0) << "Failed to mprotect() bottom page of thread pool worker stack.";
     54   const char* reason = "new thread pool worker thread";
     55   pthread_attr_t attr;
     56   CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), reason);
     57   CHECK_PTHREAD_CALL(pthread_attr_setstack, (&attr, stack_->Begin(), stack_->Size()), reason);
     58   CHECK_PTHREAD_CALL(pthread_create, (&pthread_, &attr, &Callback, this), reason);
     59   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), reason);
     60 }
     61 
     62 ThreadPoolWorker::~ThreadPoolWorker() {
     63   CHECK_PTHREAD_CALL(pthread_join, (pthread_, nullptr), "thread pool worker shutdown");
     64 }
     65 
     66 void ThreadPoolWorker::SetPthreadPriority(int priority) {
     67   CHECK_GE(priority, PRIO_MIN);
     68   CHECK_LE(priority, PRIO_MAX);
     69 #if defined(ART_TARGET_ANDROID)
     70   int result = setpriority(PRIO_PROCESS, pthread_gettid_np(pthread_), priority);
     71   if (result != 0) {
     72     PLOG(ERROR) << "Failed to setpriority to :" << priority;
     73   }
     74 #else
     75   UNUSED(priority);
     76 #endif
     77 }
     78 
     79 void ThreadPoolWorker::Run() {
     80   Thread* self = Thread::Current();
     81   Task* task = nullptr;
     82   thread_pool_->creation_barier_.Wait(self);
     83   while ((task = thread_pool_->GetTask(self)) != nullptr) {
     84     task->Run(self);
     85     task->Finalize();
     86   }
     87 }
     88 
     89 void* ThreadPoolWorker::Callback(void* arg) {
     90   ThreadPoolWorker* worker = reinterpret_cast<ThreadPoolWorker*>(arg);
     91   Runtime* runtime = Runtime::Current();
     92   CHECK(runtime->AttachCurrentThread(worker->name_.c_str(),
     93                                      true,
     94                                      nullptr,
     95                                      worker->thread_pool_->create_peers_));
     96   worker->thread_ = Thread::Current();
     97   // Thread pool workers cannot call into java.
     98   worker->thread_->SetCanCallIntoJava(false);
     99   // Do work until its time to shut down.
    100   worker->Run();
    101   runtime->DetachCurrentThread();
    102   return nullptr;
    103 }
    104 
    105 void ThreadPool::AddTask(Thread* self, Task* task) {
    106   MutexLock mu(self, task_queue_lock_);
    107   tasks_.push_back(task);
    108   // If we have any waiters, signal one.
    109   if (started_ && waiting_count_ != 0) {
    110     task_queue_condition_.Signal(self);
    111   }
    112 }
    113 
    114 void ThreadPool::RemoveAllTasks(Thread* self) {
    115   MutexLock mu(self, task_queue_lock_);
    116   tasks_.clear();
    117 }
    118 
    119 ThreadPool::ThreadPool(const char* name, size_t num_threads, bool create_peers)
    120   : name_(name),
    121     task_queue_lock_("task queue lock"),
    122     task_queue_condition_("task queue condition", task_queue_lock_),
    123     completion_condition_("task completion condition", task_queue_lock_),
    124     started_(false),
    125     shutting_down_(false),
    126     waiting_count_(0),
    127     start_time_(0),
    128     total_wait_time_(0),
    129     // Add one since the caller of constructor waits on the barrier too.
    130     creation_barier_(num_threads + 1),
    131     max_active_workers_(num_threads),
    132     create_peers_(create_peers) {
    133   Thread* self = Thread::Current();
    134   while (GetThreadCount() < num_threads) {
    135     const std::string worker_name = StringPrintf("%s worker thread %zu", name_.c_str(),
    136                                                  GetThreadCount());
    137     threads_.push_back(
    138         new ThreadPoolWorker(this, worker_name, ThreadPoolWorker::kDefaultStackSize));
    139   }
    140   // Wait for all of the threads to attach.
    141   creation_barier_.Wait(self);
    142 }
    143 
    144 void ThreadPool::SetMaxActiveWorkers(size_t threads) {
    145   MutexLock mu(Thread::Current(), task_queue_lock_);
    146   CHECK_LE(threads, GetThreadCount());
    147   max_active_workers_ = threads;
    148 }
    149 
    150 ThreadPool::~ThreadPool() {
    151   {
    152     Thread* self = Thread::Current();
    153     MutexLock mu(self, task_queue_lock_);
    154     // Tell any remaining workers to shut down.
    155     shutting_down_ = true;
    156     // Broadcast to everyone waiting.
    157     task_queue_condition_.Broadcast(self);
    158     completion_condition_.Broadcast(self);
    159   }
    160   // Wait for the threads to finish.
    161   STLDeleteElements(&threads_);
    162 }
    163 
    164 void ThreadPool::StartWorkers(Thread* self) {
    165   MutexLock mu(self, task_queue_lock_);
    166   started_ = true;
    167   task_queue_condition_.Broadcast(self);
    168   start_time_ = NanoTime();
    169   total_wait_time_ = 0;
    170 }
    171 
    172 void ThreadPool::StopWorkers(Thread* self) {
    173   MutexLock mu(self, task_queue_lock_);
    174   started_ = false;
    175 }
    176 
    177 Task* ThreadPool::GetTask(Thread* self) {
    178   MutexLock mu(self, task_queue_lock_);
    179   while (!IsShuttingDown()) {
    180     const size_t thread_count = GetThreadCount();
    181     // Ensure that we don't use more threads than the maximum active workers.
    182     const size_t active_threads = thread_count - waiting_count_;
    183     // <= since self is considered an active worker.
    184     if (active_threads <= max_active_workers_) {
    185       Task* task = TryGetTaskLocked();
    186       if (task != nullptr) {
    187         return task;
    188       }
    189     }
    190 
    191     ++waiting_count_;
    192     if (waiting_count_ == GetThreadCount() && !HasOutstandingTasks()) {
    193       // We may be done, lets broadcast to the completion condition.
    194       completion_condition_.Broadcast(self);
    195     }
    196     const uint64_t wait_start = kMeasureWaitTime ? NanoTime() : 0;
    197     task_queue_condition_.Wait(self);
    198     if (kMeasureWaitTime) {
    199       const uint64_t wait_end = NanoTime();
    200       total_wait_time_ += wait_end - std::max(wait_start, start_time_);
    201     }
    202     --waiting_count_;
    203   }
    204 
    205   // We are shutting down, return null to tell the worker thread to stop looping.
    206   return nullptr;
    207 }
    208 
    209 Task* ThreadPool::TryGetTask(Thread* self) {
    210   MutexLock mu(self, task_queue_lock_);
    211   return TryGetTaskLocked();
    212 }
    213 
    214 Task* ThreadPool::TryGetTaskLocked() {
    215   if (HasOutstandingTasks()) {
    216     Task* task = tasks_.front();
    217     tasks_.pop_front();
    218     return task;
    219   }
    220   return nullptr;
    221 }
    222 
    223 void ThreadPool::Wait(Thread* self, bool do_work, bool may_hold_locks) {
    224   if (do_work) {
    225     CHECK(!create_peers_);
    226     Task* task = nullptr;
    227     while ((task = TryGetTask(self)) != nullptr) {
    228       task->Run(self);
    229       task->Finalize();
    230     }
    231   }
    232   // Wait until each thread is waiting and the task list is empty.
    233   MutexLock mu(self, task_queue_lock_);
    234   while (!shutting_down_ && (waiting_count_ != GetThreadCount() || HasOutstandingTasks())) {
    235     if (!may_hold_locks) {
    236       completion_condition_.Wait(self);
    237     } else {
    238       completion_condition_.WaitHoldingLocks(self);
    239     }
    240   }
    241 }
    242 
    243 size_t ThreadPool::GetTaskCount(Thread* self) {
    244   MutexLock mu(self, task_queue_lock_);
    245   return tasks_.size();
    246 }
    247 
    248 void ThreadPool::SetPthreadPriority(int priority) {
    249   for (ThreadPoolWorker* worker : threads_) {
    250     worker->SetPthreadPriority(priority);
    251   }
    252 }
    253 
    254 }  // namespace art
    255