Home | History | Annotate | Download | only in base
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "mutex.h"
     18 
     19 #include <errno.h>
     20 #include <sys/time.h>
     21 
     22 #include "android-base/stringprintf.h"
     23 
     24 #include "atomic.h"
     25 #include "base/logging.h"
     26 #include "base/time_utils.h"
     27 #include "base/systrace.h"
     28 #include "base/value_object.h"
     29 #include "mutex-inl.h"
     30 #include "scoped_thread_state_change-inl.h"
     31 #include "thread-inl.h"
     32 
     33 namespace art {
     34 
     35 using android::base::StringPrintf;
     36 
     37 static Atomic<Locks::ClientCallback*> safe_to_call_abort_callback(nullptr);
     38 
     39 Mutex* Locks::abort_lock_ = nullptr;
     40 Mutex* Locks::alloc_tracker_lock_ = nullptr;
     41 Mutex* Locks::allocated_monitor_ids_lock_ = nullptr;
     42 Mutex* Locks::allocated_thread_ids_lock_ = nullptr;
     43 ReaderWriterMutex* Locks::breakpoint_lock_ = nullptr;
     44 ReaderWriterMutex* Locks::classlinker_classes_lock_ = nullptr;
     45 Mutex* Locks::deoptimization_lock_ = nullptr;
     46 ReaderWriterMutex* Locks::heap_bitmap_lock_ = nullptr;
     47 Mutex* Locks::instrument_entrypoints_lock_ = nullptr;
     48 Mutex* Locks::intern_table_lock_ = nullptr;
     49 Mutex* Locks::jni_function_table_lock_ = nullptr;
     50 Mutex* Locks::jni_libraries_lock_ = nullptr;
     51 Mutex* Locks::logging_lock_ = nullptr;
     52 Mutex* Locks::modify_ldt_lock_ = nullptr;
     53 MutatorMutex* Locks::mutator_lock_ = nullptr;
     54 Mutex* Locks::profiler_lock_ = nullptr;
     55 ReaderWriterMutex* Locks::verifier_deps_lock_ = nullptr;
     56 ReaderWriterMutex* Locks::oat_file_manager_lock_ = nullptr;
     57 Mutex* Locks::host_dlopen_handles_lock_ = nullptr;
     58 Mutex* Locks::reference_processor_lock_ = nullptr;
     59 Mutex* Locks::reference_queue_cleared_references_lock_ = nullptr;
     60 Mutex* Locks::reference_queue_finalizer_references_lock_ = nullptr;
     61 Mutex* Locks::reference_queue_phantom_references_lock_ = nullptr;
     62 Mutex* Locks::reference_queue_soft_references_lock_ = nullptr;
     63 Mutex* Locks::reference_queue_weak_references_lock_ = nullptr;
     64 Mutex* Locks::runtime_shutdown_lock_ = nullptr;
     65 Mutex* Locks::cha_lock_ = nullptr;
     66 Mutex* Locks::thread_list_lock_ = nullptr;
     67 ConditionVariable* Locks::thread_exit_cond_ = nullptr;
     68 Mutex* Locks::thread_suspend_count_lock_ = nullptr;
     69 Mutex* Locks::trace_lock_ = nullptr;
     70 Mutex* Locks::unexpected_signal_lock_ = nullptr;
     71 Mutex* Locks::user_code_suspension_lock_ = nullptr;
     72 Uninterruptible Roles::uninterruptible_;
     73 ReaderWriterMutex* Locks::jni_globals_lock_ = nullptr;
     74 Mutex* Locks::jni_weak_globals_lock_ = nullptr;
     75 ReaderWriterMutex* Locks::dex_lock_ = nullptr;
     76 std::vector<BaseMutex*> Locks::expected_mutexes_on_weak_ref_access_;
     77 Atomic<const BaseMutex*> Locks::expected_mutexes_on_weak_ref_access_guard_;
     78 
     79 struct AllMutexData {
     80   // A guard for all_mutexes_ that's not a mutex (Mutexes must CAS to acquire and busy wait).
     81   Atomic<const BaseMutex*> all_mutexes_guard;
     82   // All created mutexes guarded by all_mutexes_guard_.
     83   std::set<BaseMutex*>* all_mutexes;
     84   AllMutexData() : all_mutexes(nullptr) {}
     85 };
     86 static struct AllMutexData gAllMutexData[kAllMutexDataSize];
     87 
     88 #if ART_USE_FUTEXES
     89 static bool ComputeRelativeTimeSpec(timespec* result_ts, const timespec& lhs, const timespec& rhs) {
     90   const int32_t one_sec = 1000 * 1000 * 1000;  // one second in nanoseconds.
     91   result_ts->tv_sec = lhs.tv_sec - rhs.tv_sec;
     92   result_ts->tv_nsec = lhs.tv_nsec - rhs.tv_nsec;
     93   if (result_ts->tv_nsec < 0) {
     94     result_ts->tv_sec--;
     95     result_ts->tv_nsec += one_sec;
     96   } else if (result_ts->tv_nsec > one_sec) {
     97     result_ts->tv_sec++;
     98     result_ts->tv_nsec -= one_sec;
     99   }
    100   return result_ts->tv_sec < 0;
    101 }
    102 #endif
    103 
    104 class ScopedAllMutexesLock FINAL {
    105  public:
    106   explicit ScopedAllMutexesLock(const BaseMutex* mutex) : mutex_(mutex) {
    107     while (!gAllMutexData->all_mutexes_guard.CompareExchangeWeakAcquire(0, mutex)) {
    108       NanoSleep(100);
    109     }
    110   }
    111 
    112   ~ScopedAllMutexesLock() {
    113     while (!gAllMutexData->all_mutexes_guard.CompareExchangeWeakRelease(mutex_, 0)) {
    114       NanoSleep(100);
    115     }
    116   }
    117 
    118  private:
    119   const BaseMutex* const mutex_;
    120 };
    121 
    122 class Locks::ScopedExpectedMutexesOnWeakRefAccessLock FINAL {
    123  public:
    124   explicit ScopedExpectedMutexesOnWeakRefAccessLock(const BaseMutex* mutex) : mutex_(mutex) {
    125     while (!Locks::expected_mutexes_on_weak_ref_access_guard_.CompareExchangeWeakAcquire(0,
    126                                                                                          mutex)) {
    127       NanoSleep(100);
    128     }
    129   }
    130 
    131   ~ScopedExpectedMutexesOnWeakRefAccessLock() {
    132     while (!Locks::expected_mutexes_on_weak_ref_access_guard_.CompareExchangeWeakRelease(mutex_,
    133                                                                                          0)) {
    134       NanoSleep(100);
    135     }
    136   }
    137 
    138  private:
    139   const BaseMutex* const mutex_;
    140 };
    141 
    142 // Scoped class that generates events at the beginning and end of lock contention.
    143 class ScopedContentionRecorder FINAL : public ValueObject {
    144  public:
    145   ScopedContentionRecorder(BaseMutex* mutex, uint64_t blocked_tid, uint64_t owner_tid)
    146       : mutex_(kLogLockContentions ? mutex : nullptr),
    147         blocked_tid_(kLogLockContentions ? blocked_tid : 0),
    148         owner_tid_(kLogLockContentions ? owner_tid : 0),
    149         start_nano_time_(kLogLockContentions ? NanoTime() : 0) {
    150     if (ATRACE_ENABLED()) {
    151       std::string msg = StringPrintf("Lock contention on %s (owner tid: %" PRIu64 ")",
    152                                      mutex->GetName(), owner_tid);
    153       ATRACE_BEGIN(msg.c_str());
    154     }
    155   }
    156 
    157   ~ScopedContentionRecorder() {
    158     ATRACE_END();
    159     if (kLogLockContentions) {
    160       uint64_t end_nano_time = NanoTime();
    161       mutex_->RecordContention(blocked_tid_, owner_tid_, end_nano_time - start_nano_time_);
    162     }
    163   }
    164 
    165  private:
    166   BaseMutex* const mutex_;
    167   const uint64_t blocked_tid_;
    168   const uint64_t owner_tid_;
    169   const uint64_t start_nano_time_;
    170 };
    171 
    172 BaseMutex::BaseMutex(const char* name, LockLevel level)
    173     : level_(level),
    174       name_(name),
    175       should_respond_to_empty_checkpoint_request_(false) {
    176   if (kLogLockContentions) {
    177     ScopedAllMutexesLock mu(this);
    178     std::set<BaseMutex*>** all_mutexes_ptr = &gAllMutexData->all_mutexes;
    179     if (*all_mutexes_ptr == nullptr) {
    180       // We leak the global set of all mutexes to avoid ordering issues in global variable
    181       // construction/destruction.
    182       *all_mutexes_ptr = new std::set<BaseMutex*>();
    183     }
    184     (*all_mutexes_ptr)->insert(this);
    185   }
    186 }
    187 
    188 BaseMutex::~BaseMutex() {
    189   if (kLogLockContentions) {
    190     ScopedAllMutexesLock mu(this);
    191     gAllMutexData->all_mutexes->erase(this);
    192   }
    193 }
    194 
    195 void BaseMutex::DumpAll(std::ostream& os) {
    196   if (kLogLockContentions) {
    197     os << "Mutex logging:\n";
    198     ScopedAllMutexesLock mu(reinterpret_cast<const BaseMutex*>(-1));
    199     std::set<BaseMutex*>* all_mutexes = gAllMutexData->all_mutexes;
    200     if (all_mutexes == nullptr) {
    201       // No mutexes have been created yet during at startup.
    202       return;
    203     }
    204     typedef std::set<BaseMutex*>::const_iterator It;
    205     os << "(Contended)\n";
    206     for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
    207       BaseMutex* mutex = *it;
    208       if (mutex->HasEverContended()) {
    209         mutex->Dump(os);
    210         os << "\n";
    211       }
    212     }
    213     os << "(Never contented)\n";
    214     for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
    215       BaseMutex* mutex = *it;
    216       if (!mutex->HasEverContended()) {
    217         mutex->Dump(os);
    218         os << "\n";
    219       }
    220     }
    221   }
    222 }
    223 
    224 void BaseMutex::CheckSafeToWait(Thread* self) {
    225   if (self == nullptr) {
    226     CheckUnattachedThread(level_);
    227     return;
    228   }
    229   if (kDebugLocking) {
    230     CHECK(self->GetHeldMutex(level_) == this || level_ == kMonitorLock)
    231         << "Waiting on unacquired mutex: " << name_;
    232     bool bad_mutexes_held = false;
    233     for (int i = kLockLevelCount - 1; i >= 0; --i) {
    234       if (i != level_) {
    235         BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
    236         // We allow the thread to wait even if the user_code_suspension_lock_ is held so long as we
    237         // are some thread's resume_cond_ (level_ == kThreadSuspendCountLock). This just means that
    238         // gc or some other internal process is suspending the thread while it is trying to suspend
    239         // some other thread. So long as the current thread is not being suspended by a
    240         // SuspendReason::kForUserCode (which needs the user_code_suspension_lock_ to clear) this is
    241         // fine.
    242         if (held_mutex == Locks::user_code_suspension_lock_ && level_ == kThreadSuspendCountLock) {
    243           // No thread safety analysis is fine since we have both the user_code_suspension_lock_
    244           // from the line above and the ThreadSuspendCountLock since it is our level_. We use this
    245           // lambda to avoid having to annotate the whole function as NO_THREAD_SAFETY_ANALYSIS.
    246           auto is_suspending_for_user_code = [self]() NO_THREAD_SAFETY_ANALYSIS {
    247             return self->GetUserCodeSuspendCount() != 0;
    248           };
    249           if (is_suspending_for_user_code()) {
    250             LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
    251                       << "(level " << LockLevel(i) << ") while performing wait on "
    252                       << "\"" << name_ << "\" (level " << level_ << ") "
    253                       << "with SuspendReason::kForUserCode pending suspensions";
    254             bad_mutexes_held = true;
    255           }
    256         } else if (held_mutex != nullptr) {
    257           LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
    258                      << "(level " << LockLevel(i) << ") while performing wait on "
    259                      << "\"" << name_ << "\" (level " << level_ << ")";
    260           bad_mutexes_held = true;
    261         }
    262       }
    263     }
    264     if (gAborting == 0) {  // Avoid recursive aborts.
    265       CHECK(!bad_mutexes_held) << this;
    266     }
    267   }
    268 }
    269 
    270 void BaseMutex::ContentionLogData::AddToWaitTime(uint64_t value) {
    271   if (kLogLockContentions) {
    272     // Atomically add value to wait_time.
    273     wait_time.FetchAndAddSequentiallyConsistent(value);
    274   }
    275 }
    276 
    277 void BaseMutex::RecordContention(uint64_t blocked_tid,
    278                                  uint64_t owner_tid,
    279                                  uint64_t nano_time_blocked) {
    280   if (kLogLockContentions) {
    281     ContentionLogData* data = contention_log_data_;
    282     ++(data->contention_count);
    283     data->AddToWaitTime(nano_time_blocked);
    284     ContentionLogEntry* log = data->contention_log;
    285     // This code is intentionally racy as it is only used for diagnostics.
    286     uint32_t slot = data->cur_content_log_entry.LoadRelaxed();
    287     if (log[slot].blocked_tid == blocked_tid &&
    288         log[slot].owner_tid == blocked_tid) {
    289       ++log[slot].count;
    290     } else {
    291       uint32_t new_slot;
    292       do {
    293         slot = data->cur_content_log_entry.LoadRelaxed();
    294         new_slot = (slot + 1) % kContentionLogSize;
    295       } while (!data->cur_content_log_entry.CompareExchangeWeakRelaxed(slot, new_slot));
    296       log[new_slot].blocked_tid = blocked_tid;
    297       log[new_slot].owner_tid = owner_tid;
    298       log[new_slot].count.StoreRelaxed(1);
    299     }
    300   }
    301 }
    302 
    303 void BaseMutex::DumpContention(std::ostream& os) const {
    304   if (kLogLockContentions) {
    305     const ContentionLogData* data = contention_log_data_;
    306     const ContentionLogEntry* log = data->contention_log;
    307     uint64_t wait_time = data->wait_time.LoadRelaxed();
    308     uint32_t contention_count = data->contention_count.LoadRelaxed();
    309     if (contention_count == 0) {
    310       os << "never contended";
    311     } else {
    312       os << "contended " << contention_count
    313          << " total wait of contender " << PrettyDuration(wait_time)
    314          << " average " << PrettyDuration(wait_time / contention_count);
    315       SafeMap<uint64_t, size_t> most_common_blocker;
    316       SafeMap<uint64_t, size_t> most_common_blocked;
    317       for (size_t i = 0; i < kContentionLogSize; ++i) {
    318         uint64_t blocked_tid = log[i].blocked_tid;
    319         uint64_t owner_tid = log[i].owner_tid;
    320         uint32_t count = log[i].count.LoadRelaxed();
    321         if (count > 0) {
    322           auto it = most_common_blocked.find(blocked_tid);
    323           if (it != most_common_blocked.end()) {
    324             most_common_blocked.Overwrite(blocked_tid, it->second + count);
    325           } else {
    326             most_common_blocked.Put(blocked_tid, count);
    327           }
    328           it = most_common_blocker.find(owner_tid);
    329           if (it != most_common_blocker.end()) {
    330             most_common_blocker.Overwrite(owner_tid, it->second + count);
    331           } else {
    332             most_common_blocker.Put(owner_tid, count);
    333           }
    334         }
    335       }
    336       uint64_t max_tid = 0;
    337       size_t max_tid_count = 0;
    338       for (const auto& pair : most_common_blocked) {
    339         if (pair.second > max_tid_count) {
    340           max_tid = pair.first;
    341           max_tid_count = pair.second;
    342         }
    343       }
    344       if (max_tid != 0) {
    345         os << " sample shows most blocked tid=" << max_tid;
    346       }
    347       max_tid = 0;
    348       max_tid_count = 0;
    349       for (const auto& pair : most_common_blocker) {
    350         if (pair.second > max_tid_count) {
    351           max_tid = pair.first;
    352           max_tid_count = pair.second;
    353         }
    354       }
    355       if (max_tid != 0) {
    356         os << " sample shows tid=" << max_tid << " owning during this time";
    357       }
    358     }
    359   }
    360 }
    361 
    362 
    363 Mutex::Mutex(const char* name, LockLevel level, bool recursive)
    364     : BaseMutex(name, level), recursive_(recursive), recursion_count_(0) {
    365 #if ART_USE_FUTEXES
    366   DCHECK_EQ(0, state_.LoadRelaxed());
    367   DCHECK_EQ(0, num_contenders_.LoadRelaxed());
    368 #else
    369   CHECK_MUTEX_CALL(pthread_mutex_init, (&mutex_, nullptr));
    370 #endif
    371   exclusive_owner_ = 0;
    372 }
    373 
    374 // Helper to allow checking shutdown while locking for thread safety.
    375 static bool IsSafeToCallAbortSafe() {
    376   MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
    377   return Locks::IsSafeToCallAbortRacy();
    378 }
    379 
    380 Mutex::~Mutex() {
    381   bool safe_to_call_abort = Locks::IsSafeToCallAbortRacy();
    382 #if ART_USE_FUTEXES
    383   if (state_.LoadRelaxed() != 0) {
    384     LOG(safe_to_call_abort ? FATAL : WARNING)
    385         << "destroying mutex with owner: " << exclusive_owner_;
    386   } else {
    387     if (exclusive_owner_ != 0) {
    388       LOG(safe_to_call_abort ? FATAL : WARNING)
    389           << "unexpectedly found an owner on unlocked mutex " << name_;
    390     }
    391     if (num_contenders_.LoadSequentiallyConsistent() != 0) {
    392       LOG(safe_to_call_abort ? FATAL : WARNING)
    393           << "unexpectedly found a contender on mutex " << name_;
    394     }
    395   }
    396 #else
    397   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
    398   // may still be using locks.
    399   int rc = pthread_mutex_destroy(&mutex_);
    400   if (rc != 0) {
    401     errno = rc;
    402     PLOG(safe_to_call_abort ? FATAL : WARNING)
    403         << "pthread_mutex_destroy failed for " << name_;
    404   }
    405 #endif
    406 }
    407 
    408 void Mutex::ExclusiveLock(Thread* self) {
    409   DCHECK(self == nullptr || self == Thread::Current());
    410   if (kDebugLocking && !recursive_) {
    411     AssertNotHeld(self);
    412   }
    413   if (!recursive_ || !IsExclusiveHeld(self)) {
    414 #if ART_USE_FUTEXES
    415     bool done = false;
    416     do {
    417       int32_t cur_state = state_.LoadRelaxed();
    418       if (LIKELY(cur_state == 0)) {
    419         // Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
    420         done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, 1 /* new state */);
    421       } else {
    422         // Failed to acquire, hang up.
    423         ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
    424         num_contenders_++;
    425         if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
    426           self->CheckEmptyCheckpointFromMutex();
    427         }
    428         if (futex(state_.Address(), FUTEX_WAIT, 1, nullptr, nullptr, 0) != 0) {
    429           // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
    430           // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
    431           if ((errno != EAGAIN) && (errno != EINTR)) {
    432             PLOG(FATAL) << "futex wait failed for " << name_;
    433           }
    434         }
    435         num_contenders_--;
    436       }
    437     } while (!done);
    438     DCHECK_EQ(state_.LoadRelaxed(), 1);
    439 #else
    440     CHECK_MUTEX_CALL(pthread_mutex_lock, (&mutex_));
    441 #endif
    442     DCHECK_EQ(exclusive_owner_, 0U);
    443     exclusive_owner_ = SafeGetTid(self);
    444     RegisterAsLocked(self);
    445   }
    446   recursion_count_++;
    447   if (kDebugLocking) {
    448     CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
    449         << name_ << " " << recursion_count_;
    450     AssertHeld(self);
    451   }
    452 }
    453 
    454 bool Mutex::ExclusiveTryLock(Thread* self) {
    455   DCHECK(self == nullptr || self == Thread::Current());
    456   if (kDebugLocking && !recursive_) {
    457     AssertNotHeld(self);
    458   }
    459   if (!recursive_ || !IsExclusiveHeld(self)) {
    460 #if ART_USE_FUTEXES
    461     bool done = false;
    462     do {
    463       int32_t cur_state = state_.LoadRelaxed();
    464       if (cur_state == 0) {
    465         // Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
    466         done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, 1 /* new state */);
    467       } else {
    468         return false;
    469       }
    470     } while (!done);
    471     DCHECK_EQ(state_.LoadRelaxed(), 1);
    472 #else
    473     int result = pthread_mutex_trylock(&mutex_);
    474     if (result == EBUSY) {
    475       return false;
    476     }
    477     if (result != 0) {
    478       errno = result;
    479       PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
    480     }
    481 #endif
    482     DCHECK_EQ(exclusive_owner_, 0U);
    483     exclusive_owner_ = SafeGetTid(self);
    484     RegisterAsLocked(self);
    485   }
    486   recursion_count_++;
    487   if (kDebugLocking) {
    488     CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
    489         << name_ << " " << recursion_count_;
    490     AssertHeld(self);
    491   }
    492   return true;
    493 }
    494 
    495 void Mutex::ExclusiveUnlock(Thread* self) {
    496   if (kIsDebugBuild && self != nullptr && self != Thread::Current()) {
    497     std::string name1 = "<null>";
    498     std::string name2 = "<null>";
    499     if (self != nullptr) {
    500       self->GetThreadName(name1);
    501     }
    502     if (Thread::Current() != nullptr) {
    503       Thread::Current()->GetThreadName(name2);
    504     }
    505     LOG(FATAL) << GetName() << " level=" << level_ << " self=" << name1
    506                << " Thread::Current()=" << name2;
    507   }
    508   AssertHeld(self);
    509   DCHECK_NE(exclusive_owner_, 0U);
    510   recursion_count_--;
    511   if (!recursive_ || recursion_count_ == 0) {
    512     if (kDebugLocking) {
    513       CHECK(recursion_count_ == 0 || recursive_) << "Unexpected recursion count on mutex: "
    514           << name_ << " " << recursion_count_;
    515     }
    516     RegisterAsUnlocked(self);
    517 #if ART_USE_FUTEXES
    518     bool done = false;
    519     do {
    520       int32_t cur_state = state_.LoadRelaxed();
    521       if (LIKELY(cur_state == 1)) {
    522         // We're no longer the owner.
    523         exclusive_owner_ = 0;
    524         // Change state to 0 and impose load/store ordering appropriate for lock release.
    525         // Note, the relaxed loads below musn't reorder before the CompareExchange.
    526         // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
    527         // a status bit into the state on contention.
    528         done =  state_.CompareExchangeWeakSequentiallyConsistent(cur_state, 0 /* new state */);
    529         if (LIKELY(done)) {  // Spurious fail?
    530           // Wake a contender.
    531           if (UNLIKELY(num_contenders_.LoadRelaxed() > 0)) {
    532             futex(state_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
    533           }
    534         }
    535       } else {
    536         // Logging acquires the logging lock, avoid infinite recursion in that case.
    537         if (this != Locks::logging_lock_) {
    538           LOG(FATAL) << "Unexpected state_ in unlock " << cur_state << " for " << name_;
    539         } else {
    540           LogHelper::LogLineLowStack(__FILE__,
    541                                      __LINE__,
    542                                      ::android::base::FATAL_WITHOUT_ABORT,
    543                                      StringPrintf("Unexpected state_ %d in unlock for %s",
    544                                                   cur_state, name_).c_str());
    545           _exit(1);
    546         }
    547       }
    548     } while (!done);
    549 #else
    550     exclusive_owner_ = 0;
    551     CHECK_MUTEX_CALL(pthread_mutex_unlock, (&mutex_));
    552 #endif
    553   }
    554 }
    555 
    556 void Mutex::Dump(std::ostream& os) const {
    557   os << (recursive_ ? "recursive " : "non-recursive ")
    558       << name_
    559       << " level=" << static_cast<int>(level_)
    560       << " rec=" << recursion_count_
    561       << " owner=" << GetExclusiveOwnerTid() << " ";
    562   DumpContention(os);
    563 }
    564 
    565 std::ostream& operator<<(std::ostream& os, const Mutex& mu) {
    566   mu.Dump(os);
    567   return os;
    568 }
    569 
    570 void Mutex::WakeupToRespondToEmptyCheckpoint() {
    571 #if ART_USE_FUTEXES
    572   // Wake up all the waiters so they will respond to the emtpy checkpoint.
    573   DCHECK(should_respond_to_empty_checkpoint_request_);
    574   if (UNLIKELY(num_contenders_.LoadRelaxed() > 0)) {
    575     futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
    576   }
    577 #else
    578   LOG(FATAL) << "Non futex case isn't supported.";
    579 #endif
    580 }
    581 
    582 ReaderWriterMutex::ReaderWriterMutex(const char* name, LockLevel level)
    583     : BaseMutex(name, level)
    584 #if ART_USE_FUTEXES
    585     , state_(0), num_pending_readers_(0), num_pending_writers_(0)
    586 #endif
    587 {  // NOLINT(whitespace/braces)
    588 #if !ART_USE_FUTEXES
    589   CHECK_MUTEX_CALL(pthread_rwlock_init, (&rwlock_, nullptr));
    590 #endif
    591   exclusive_owner_ = 0;
    592 }
    593 
    594 ReaderWriterMutex::~ReaderWriterMutex() {
    595 #if ART_USE_FUTEXES
    596   CHECK_EQ(state_.LoadRelaxed(), 0);
    597   CHECK_EQ(exclusive_owner_, 0U);
    598   CHECK_EQ(num_pending_readers_.LoadRelaxed(), 0);
    599   CHECK_EQ(num_pending_writers_.LoadRelaxed(), 0);
    600 #else
    601   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
    602   // may still be using locks.
    603   int rc = pthread_rwlock_destroy(&rwlock_);
    604   if (rc != 0) {
    605     errno = rc;
    606     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
    607     PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_rwlock_destroy failed for " << name_;
    608   }
    609 #endif
    610 }
    611 
    612 void ReaderWriterMutex::ExclusiveLock(Thread* self) {
    613   DCHECK(self == nullptr || self == Thread::Current());
    614   AssertNotExclusiveHeld(self);
    615 #if ART_USE_FUTEXES
    616   bool done = false;
    617   do {
    618     int32_t cur_state = state_.LoadRelaxed();
    619     if (LIKELY(cur_state == 0)) {
    620       // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
    621       done =  state_.CompareExchangeWeakAcquire(0 /* cur_state*/, -1 /* new state */);
    622     } else {
    623       // Failed to acquire, hang up.
    624       ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
    625       ++num_pending_writers_;
    626       if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
    627         self->CheckEmptyCheckpointFromMutex();
    628       }
    629       if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
    630         // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
    631         // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
    632         if ((errno != EAGAIN) && (errno != EINTR)) {
    633           PLOG(FATAL) << "futex wait failed for " << name_;
    634         }
    635       }
    636       --num_pending_writers_;
    637     }
    638   } while (!done);
    639   DCHECK_EQ(state_.LoadRelaxed(), -1);
    640 #else
    641   CHECK_MUTEX_CALL(pthread_rwlock_wrlock, (&rwlock_));
    642 #endif
    643   DCHECK_EQ(exclusive_owner_, 0U);
    644   exclusive_owner_ = SafeGetTid(self);
    645   RegisterAsLocked(self);
    646   AssertExclusiveHeld(self);
    647 }
    648 
    649 void ReaderWriterMutex::ExclusiveUnlock(Thread* self) {
    650   DCHECK(self == nullptr || self == Thread::Current());
    651   AssertExclusiveHeld(self);
    652   RegisterAsUnlocked(self);
    653   DCHECK_NE(exclusive_owner_, 0U);
    654 #if ART_USE_FUTEXES
    655   bool done = false;
    656   do {
    657     int32_t cur_state = state_.LoadRelaxed();
    658     if (LIKELY(cur_state == -1)) {
    659       // We're no longer the owner.
    660       exclusive_owner_ = 0;
    661       // Change state from -1 to 0 and impose load/store ordering appropriate for lock release.
    662       // Note, the relaxed loads below musn't reorder before the CompareExchange.
    663       // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
    664       // a status bit into the state on contention.
    665       done =  state_.CompareExchangeWeakSequentiallyConsistent(-1 /* cur_state*/, 0 /* new state */);
    666       if (LIKELY(done)) {  // Weak CAS may fail spuriously.
    667         // Wake any waiters.
    668         if (UNLIKELY(num_pending_readers_.LoadRelaxed() > 0 ||
    669                      num_pending_writers_.LoadRelaxed() > 0)) {
    670           futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
    671         }
    672       }
    673     } else {
    674       LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_;
    675     }
    676   } while (!done);
    677 #else
    678   exclusive_owner_ = 0;
    679   CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_));
    680 #endif
    681 }
    682 
    683 #if HAVE_TIMED_RWLOCK
    684 bool ReaderWriterMutex::ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns) {
    685   DCHECK(self == nullptr || self == Thread::Current());
    686 #if ART_USE_FUTEXES
    687   bool done = false;
    688   timespec end_abs_ts;
    689   InitTimeSpec(true, CLOCK_MONOTONIC, ms, ns, &end_abs_ts);
    690   do {
    691     int32_t cur_state = state_.LoadRelaxed();
    692     if (cur_state == 0) {
    693       // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
    694       done =  state_.CompareExchangeWeakAcquire(0 /* cur_state */, -1 /* new state */);
    695     } else {
    696       // Failed to acquire, hang up.
    697       timespec now_abs_ts;
    698       InitTimeSpec(true, CLOCK_MONOTONIC, 0, 0, &now_abs_ts);
    699       timespec rel_ts;
    700       if (ComputeRelativeTimeSpec(&rel_ts, end_abs_ts, now_abs_ts)) {
    701         return false;  // Timed out.
    702       }
    703       ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
    704       ++num_pending_writers_;
    705       if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
    706         self->CheckEmptyCheckpointFromMutex();
    707       }
    708       if (futex(state_.Address(), FUTEX_WAIT, cur_state, &rel_ts, nullptr, 0) != 0) {
    709         if (errno == ETIMEDOUT) {
    710           --num_pending_writers_;
    711           return false;  // Timed out.
    712         } else if ((errno != EAGAIN) && (errno != EINTR)) {
    713           // EAGAIN and EINTR both indicate a spurious failure,
    714           // recompute the relative time out from now and try again.
    715           // We don't use TEMP_FAILURE_RETRY so we can recompute rel_ts;
    716           PLOG(FATAL) << "timed futex wait failed for " << name_;
    717         }
    718       }
    719       --num_pending_writers_;
    720     }
    721   } while (!done);
    722 #else
    723   timespec ts;
    724   InitTimeSpec(true, CLOCK_REALTIME, ms, ns, &ts);
    725   int result = pthread_rwlock_timedwrlock(&rwlock_, &ts);
    726   if (result == ETIMEDOUT) {
    727     return false;
    728   }
    729   if (result != 0) {
    730     errno = result;
    731     PLOG(FATAL) << "pthread_rwlock_timedwrlock failed for " << name_;
    732   }
    733 #endif
    734   exclusive_owner_ = SafeGetTid(self);
    735   RegisterAsLocked(self);
    736   AssertSharedHeld(self);
    737   return true;
    738 }
    739 #endif
    740 
    741 #if ART_USE_FUTEXES
    742 void ReaderWriterMutex::HandleSharedLockContention(Thread* self, int32_t cur_state) {
    743   // Owner holds it exclusively, hang up.
    744   ScopedContentionRecorder scr(this, GetExclusiveOwnerTid(), SafeGetTid(self));
    745   ++num_pending_readers_;
    746   if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
    747     self->CheckEmptyCheckpointFromMutex();
    748   }
    749   if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
    750     if (errno != EAGAIN && errno != EINTR) {
    751       PLOG(FATAL) << "futex wait failed for " << name_;
    752     }
    753   }
    754   --num_pending_readers_;
    755 }
    756 #endif
    757 
    758 bool ReaderWriterMutex::SharedTryLock(Thread* self) {
    759   DCHECK(self == nullptr || self == Thread::Current());
    760 #if ART_USE_FUTEXES
    761   bool done = false;
    762   do {
    763     int32_t cur_state = state_.LoadRelaxed();
    764     if (cur_state >= 0) {
    765       // Add as an extra reader and impose load/store ordering appropriate for lock acquisition.
    766       done =  state_.CompareExchangeWeakAcquire(cur_state, cur_state + 1);
    767     } else {
    768       // Owner holds it exclusively.
    769       return false;
    770     }
    771   } while (!done);
    772 #else
    773   int result = pthread_rwlock_tryrdlock(&rwlock_);
    774   if (result == EBUSY) {
    775     return false;
    776   }
    777   if (result != 0) {
    778     errno = result;
    779     PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
    780   }
    781 #endif
    782   RegisterAsLocked(self);
    783   AssertSharedHeld(self);
    784   return true;
    785 }
    786 
    787 bool ReaderWriterMutex::IsSharedHeld(const Thread* self) const {
    788   DCHECK(self == nullptr || self == Thread::Current());
    789   bool result;
    790   if (UNLIKELY(self == nullptr)) {  // Handle unattached threads.
    791     result = IsExclusiveHeld(self);  // TODO: a better best effort here.
    792   } else {
    793     result = (self->GetHeldMutex(level_) == this);
    794   }
    795   return result;
    796 }
    797 
    798 void ReaderWriterMutex::Dump(std::ostream& os) const {
    799   os << name_
    800       << " level=" << static_cast<int>(level_)
    801       << " owner=" << GetExclusiveOwnerTid()
    802 #if ART_USE_FUTEXES
    803       << " state=" << state_.LoadSequentiallyConsistent()
    804       << " num_pending_writers=" << num_pending_writers_.LoadSequentiallyConsistent()
    805       << " num_pending_readers=" << num_pending_readers_.LoadSequentiallyConsistent()
    806 #endif
    807       << " ";
    808   DumpContention(os);
    809 }
    810 
    811 std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu) {
    812   mu.Dump(os);
    813   return os;
    814 }
    815 
    816 std::ostream& operator<<(std::ostream& os, const MutatorMutex& mu) {
    817   mu.Dump(os);
    818   return os;
    819 }
    820 
    821 void ReaderWriterMutex::WakeupToRespondToEmptyCheckpoint() {
    822 #if ART_USE_FUTEXES
    823   // Wake up all the waiters so they will respond to the emtpy checkpoint.
    824   DCHECK(should_respond_to_empty_checkpoint_request_);
    825   if (UNLIKELY(num_pending_readers_.LoadRelaxed() > 0 ||
    826                num_pending_writers_.LoadRelaxed() > 0)) {
    827     futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
    828   }
    829 #else
    830   LOG(FATAL) << "Non futex case isn't supported.";
    831 #endif
    832 }
    833 
    834 ConditionVariable::ConditionVariable(const char* name, Mutex& guard)
    835     : name_(name), guard_(guard) {
    836 #if ART_USE_FUTEXES
    837   DCHECK_EQ(0, sequence_.LoadRelaxed());
    838   num_waiters_ = 0;
    839 #else
    840   pthread_condattr_t cond_attrs;
    841   CHECK_MUTEX_CALL(pthread_condattr_init, (&cond_attrs));
    842 #if !defined(__APPLE__)
    843   // Apple doesn't have CLOCK_MONOTONIC or pthread_condattr_setclock.
    844   CHECK_MUTEX_CALL(pthread_condattr_setclock, (&cond_attrs, CLOCK_MONOTONIC));
    845 #endif
    846   CHECK_MUTEX_CALL(pthread_cond_init, (&cond_, &cond_attrs));
    847 #endif
    848 }
    849 
    850 ConditionVariable::~ConditionVariable() {
    851 #if ART_USE_FUTEXES
    852   if (num_waiters_!= 0) {
    853     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
    854     LOG(is_safe_to_call_abort ? FATAL : WARNING)
    855         << "ConditionVariable::~ConditionVariable for " << name_
    856         << " called with " << num_waiters_ << " waiters.";
    857   }
    858 #else
    859   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
    860   // may still be using condition variables.
    861   int rc = pthread_cond_destroy(&cond_);
    862   if (rc != 0) {
    863     errno = rc;
    864     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
    865     PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_cond_destroy failed for " << name_;
    866   }
    867 #endif
    868 }
    869 
    870 void ConditionVariable::Broadcast(Thread* self) {
    871   DCHECK(self == nullptr || self == Thread::Current());
    872   // TODO: enable below, there's a race in thread creation that causes false failures currently.
    873   // guard_.AssertExclusiveHeld(self);
    874   DCHECK_EQ(guard_.GetExclusiveOwnerTid(), SafeGetTid(self));
    875 #if ART_USE_FUTEXES
    876   if (num_waiters_ > 0) {
    877     sequence_++;  // Indicate the broadcast occurred.
    878     bool done = false;
    879     do {
    880       int32_t cur_sequence = sequence_.LoadRelaxed();
    881       // Requeue waiters onto mutex. The waiter holds the contender count on the mutex high ensuring
    882       // mutex unlocks will awaken the requeued waiter thread.
    883       done = futex(sequence_.Address(), FUTEX_CMP_REQUEUE, 0,
    884                    reinterpret_cast<const timespec*>(std::numeric_limits<int32_t>::max()),
    885                    guard_.state_.Address(), cur_sequence) != -1;
    886       if (!done) {
    887         if (errno != EAGAIN && errno != EINTR) {
    888           PLOG(FATAL) << "futex cmp requeue failed for " << name_;
    889         }
    890       }
    891     } while (!done);
    892   }
    893 #else
    894   CHECK_MUTEX_CALL(pthread_cond_broadcast, (&cond_));
    895 #endif
    896 }
    897 
    898 void ConditionVariable::Signal(Thread* self) {
    899   DCHECK(self == nullptr || self == Thread::Current());
    900   guard_.AssertExclusiveHeld(self);
    901 #if ART_USE_FUTEXES
    902   if (num_waiters_ > 0) {
    903     sequence_++;  // Indicate a signal occurred.
    904     // Futex wake 1 waiter who will then come and in contend on mutex. It'd be nice to requeue them
    905     // to avoid this, however, requeueing can only move all waiters.
    906     int num_woken = futex(sequence_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
    907     // Check something was woken or else we changed sequence_ before they had chance to wait.
    908     CHECK((num_woken == 0) || (num_woken == 1));
    909   }
    910 #else
    911   CHECK_MUTEX_CALL(pthread_cond_signal, (&cond_));
    912 #endif
    913 }
    914 
    915 void ConditionVariable::Wait(Thread* self) {
    916   guard_.CheckSafeToWait(self);
    917   WaitHoldingLocks(self);
    918 }
    919 
    920 void ConditionVariable::WaitHoldingLocks(Thread* self) {
    921   DCHECK(self == nullptr || self == Thread::Current());
    922   guard_.AssertExclusiveHeld(self);
    923   unsigned int old_recursion_count = guard_.recursion_count_;
    924 #if ART_USE_FUTEXES
    925   num_waiters_++;
    926   // Ensure the Mutex is contended so that requeued threads are awoken.
    927   guard_.num_contenders_++;
    928   guard_.recursion_count_ = 1;
    929   int32_t cur_sequence = sequence_.LoadRelaxed();
    930   guard_.ExclusiveUnlock(self);
    931   if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, nullptr, nullptr, 0) != 0) {
    932     // Futex failed, check it is an expected error.
    933     // EAGAIN == EWOULDBLK, so we let the caller try again.
    934     // EINTR implies a signal was sent to this thread.
    935     if ((errno != EINTR) && (errno != EAGAIN)) {
    936       PLOG(FATAL) << "futex wait failed for " << name_;
    937     }
    938   }
    939   if (self != nullptr) {
    940     JNIEnvExt* const env = self->GetJniEnv();
    941     if (UNLIKELY(env != nullptr && env->runtime_deleted)) {
    942       CHECK(self->IsDaemon());
    943       // If the runtime has been deleted, then we cannot proceed. Just sleep forever. This may
    944       // occur for user daemon threads that get a spurious wakeup. This occurs for test 132 with
    945       // --host and --gdb.
    946       // After we wake up, the runtime may have been shutdown, which means that this condition may
    947       // have been deleted. It is not safe to retry the wait.
    948       SleepForever();
    949     }
    950   }
    951   guard_.ExclusiveLock(self);
    952   CHECK_GE(num_waiters_, 0);
    953   num_waiters_--;
    954   // We awoke and so no longer require awakes from the guard_'s unlock.
    955   CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
    956   guard_.num_contenders_--;
    957 #else
    958   uint64_t old_owner = guard_.exclusive_owner_;
    959   guard_.exclusive_owner_ = 0;
    960   guard_.recursion_count_ = 0;
    961   CHECK_MUTEX_CALL(pthread_cond_wait, (&cond_, &guard_.mutex_));
    962   guard_.exclusive_owner_ = old_owner;
    963 #endif
    964   guard_.recursion_count_ = old_recursion_count;
    965 }
    966 
    967 bool ConditionVariable::TimedWait(Thread* self, int64_t ms, int32_t ns) {
    968   DCHECK(self == nullptr || self == Thread::Current());
    969   bool timed_out = false;
    970   guard_.AssertExclusiveHeld(self);
    971   guard_.CheckSafeToWait(self);
    972   unsigned int old_recursion_count = guard_.recursion_count_;
    973 #if ART_USE_FUTEXES
    974   timespec rel_ts;
    975   InitTimeSpec(false, CLOCK_REALTIME, ms, ns, &rel_ts);
    976   num_waiters_++;
    977   // Ensure the Mutex is contended so that requeued threads are awoken.
    978   guard_.num_contenders_++;
    979   guard_.recursion_count_ = 1;
    980   int32_t cur_sequence = sequence_.LoadRelaxed();
    981   guard_.ExclusiveUnlock(self);
    982   if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, &rel_ts, nullptr, 0) != 0) {
    983     if (errno == ETIMEDOUT) {
    984       // Timed out we're done.
    985       timed_out = true;
    986     } else if ((errno == EAGAIN) || (errno == EINTR)) {
    987       // A signal or ConditionVariable::Signal/Broadcast has come in.
    988     } else {
    989       PLOG(FATAL) << "timed futex wait failed for " << name_;
    990     }
    991   }
    992   guard_.ExclusiveLock(self);
    993   CHECK_GE(num_waiters_, 0);
    994   num_waiters_--;
    995   // We awoke and so no longer require awakes from the guard_'s unlock.
    996   CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
    997   guard_.num_contenders_--;
    998 #else
    999 #if !defined(__APPLE__)
   1000   int clock = CLOCK_MONOTONIC;
   1001 #else
   1002   int clock = CLOCK_REALTIME;
   1003 #endif
   1004   uint64_t old_owner = guard_.exclusive_owner_;
   1005   guard_.exclusive_owner_ = 0;
   1006   guard_.recursion_count_ = 0;
   1007   timespec ts;
   1008   InitTimeSpec(true, clock, ms, ns, &ts);
   1009   int rc = TEMP_FAILURE_RETRY(pthread_cond_timedwait(&cond_, &guard_.mutex_, &ts));
   1010   if (rc == ETIMEDOUT) {
   1011     timed_out = true;
   1012   } else if (rc != 0) {
   1013     errno = rc;
   1014     PLOG(FATAL) << "TimedWait failed for " << name_;
   1015   }
   1016   guard_.exclusive_owner_ = old_owner;
   1017 #endif
   1018   guard_.recursion_count_ = old_recursion_count;
   1019   return timed_out;
   1020 }
   1021 
   1022 void Locks::Init() {
   1023   if (logging_lock_ != nullptr) {
   1024     // Already initialized.
   1025     if (kRuntimeISA == kX86 || kRuntimeISA == kX86_64) {
   1026       DCHECK(modify_ldt_lock_ != nullptr);
   1027     } else {
   1028       DCHECK(modify_ldt_lock_ == nullptr);
   1029     }
   1030     DCHECK(abort_lock_ != nullptr);
   1031     DCHECK(alloc_tracker_lock_ != nullptr);
   1032     DCHECK(allocated_monitor_ids_lock_ != nullptr);
   1033     DCHECK(allocated_thread_ids_lock_ != nullptr);
   1034     DCHECK(breakpoint_lock_ != nullptr);
   1035     DCHECK(classlinker_classes_lock_ != nullptr);
   1036     DCHECK(deoptimization_lock_ != nullptr);
   1037     DCHECK(heap_bitmap_lock_ != nullptr);
   1038     DCHECK(oat_file_manager_lock_ != nullptr);
   1039     DCHECK(verifier_deps_lock_ != nullptr);
   1040     DCHECK(host_dlopen_handles_lock_ != nullptr);
   1041     DCHECK(intern_table_lock_ != nullptr);
   1042     DCHECK(jni_function_table_lock_ != nullptr);
   1043     DCHECK(jni_libraries_lock_ != nullptr);
   1044     DCHECK(logging_lock_ != nullptr);
   1045     DCHECK(mutator_lock_ != nullptr);
   1046     DCHECK(profiler_lock_ != nullptr);
   1047     DCHECK(cha_lock_ != nullptr);
   1048     DCHECK(thread_list_lock_ != nullptr);
   1049     DCHECK(thread_suspend_count_lock_ != nullptr);
   1050     DCHECK(trace_lock_ != nullptr);
   1051     DCHECK(unexpected_signal_lock_ != nullptr);
   1052     DCHECK(user_code_suspension_lock_ != nullptr);
   1053     DCHECK(dex_lock_ != nullptr);
   1054   } else {
   1055     // Create global locks in level order from highest lock level to lowest.
   1056     LockLevel current_lock_level = kInstrumentEntrypointsLock;
   1057     DCHECK(instrument_entrypoints_lock_ == nullptr);
   1058     instrument_entrypoints_lock_ = new Mutex("instrument entrypoint lock", current_lock_level);
   1059 
   1060     #define UPDATE_CURRENT_LOCK_LEVEL(new_level) \
   1061       if ((new_level) >= current_lock_level) { \
   1062         /* Do not use CHECKs or FATAL here, abort_lock_ is not setup yet. */ \
   1063         fprintf(stderr, "New local level %d is not less than current level %d\n", \
   1064                 new_level, current_lock_level); \
   1065         exit(1); \
   1066       } \
   1067       current_lock_level = new_level;
   1068 
   1069     UPDATE_CURRENT_LOCK_LEVEL(kUserCodeSuspensionLock);
   1070     DCHECK(user_code_suspension_lock_ == nullptr);
   1071     user_code_suspension_lock_ = new Mutex("user code suspension lock", current_lock_level);
   1072 
   1073     UPDATE_CURRENT_LOCK_LEVEL(kMutatorLock);
   1074     DCHECK(mutator_lock_ == nullptr);
   1075     mutator_lock_ = new MutatorMutex("mutator lock", current_lock_level);
   1076 
   1077     UPDATE_CURRENT_LOCK_LEVEL(kHeapBitmapLock);
   1078     DCHECK(heap_bitmap_lock_ == nullptr);
   1079     heap_bitmap_lock_ = new ReaderWriterMutex("heap bitmap lock", current_lock_level);
   1080 
   1081     UPDATE_CURRENT_LOCK_LEVEL(kTraceLock);
   1082     DCHECK(trace_lock_ == nullptr);
   1083     trace_lock_ = new Mutex("trace lock", current_lock_level);
   1084 
   1085     UPDATE_CURRENT_LOCK_LEVEL(kRuntimeShutdownLock);
   1086     DCHECK(runtime_shutdown_lock_ == nullptr);
   1087     runtime_shutdown_lock_ = new Mutex("runtime shutdown lock", current_lock_level);
   1088 
   1089     UPDATE_CURRENT_LOCK_LEVEL(kProfilerLock);
   1090     DCHECK(profiler_lock_ == nullptr);
   1091     profiler_lock_ = new Mutex("profiler lock", current_lock_level);
   1092 
   1093     UPDATE_CURRENT_LOCK_LEVEL(kDeoptimizationLock);
   1094     DCHECK(deoptimization_lock_ == nullptr);
   1095     deoptimization_lock_ = new Mutex("Deoptimization lock", current_lock_level);
   1096 
   1097     UPDATE_CURRENT_LOCK_LEVEL(kAllocTrackerLock);
   1098     DCHECK(alloc_tracker_lock_ == nullptr);
   1099     alloc_tracker_lock_ = new Mutex("AllocTracker lock", current_lock_level);
   1100 
   1101     UPDATE_CURRENT_LOCK_LEVEL(kThreadListLock);
   1102     DCHECK(thread_list_lock_ == nullptr);
   1103     thread_list_lock_ = new Mutex("thread list lock", current_lock_level);
   1104 
   1105     UPDATE_CURRENT_LOCK_LEVEL(kJniLoadLibraryLock);
   1106     DCHECK(jni_libraries_lock_ == nullptr);
   1107     jni_libraries_lock_ = new Mutex("JNI shared libraries map lock", current_lock_level);
   1108 
   1109     UPDATE_CURRENT_LOCK_LEVEL(kBreakpointLock);
   1110     DCHECK(breakpoint_lock_ == nullptr);
   1111     breakpoint_lock_ = new ReaderWriterMutex("breakpoint lock", current_lock_level);
   1112 
   1113     UPDATE_CURRENT_LOCK_LEVEL(kCHALock);
   1114     DCHECK(cha_lock_ == nullptr);
   1115     cha_lock_ = new Mutex("CHA lock", current_lock_level);
   1116 
   1117     UPDATE_CURRENT_LOCK_LEVEL(kClassLinkerClassesLock);
   1118     DCHECK(classlinker_classes_lock_ == nullptr);
   1119     classlinker_classes_lock_ = new ReaderWriterMutex("ClassLinker classes lock",
   1120                                                       current_lock_level);
   1121 
   1122     UPDATE_CURRENT_LOCK_LEVEL(kMonitorPoolLock);
   1123     DCHECK(allocated_monitor_ids_lock_ == nullptr);
   1124     allocated_monitor_ids_lock_ =  new Mutex("allocated monitor ids lock", current_lock_level);
   1125 
   1126     UPDATE_CURRENT_LOCK_LEVEL(kAllocatedThreadIdsLock);
   1127     DCHECK(allocated_thread_ids_lock_ == nullptr);
   1128     allocated_thread_ids_lock_ =  new Mutex("allocated thread ids lock", current_lock_level);
   1129 
   1130     if (kRuntimeISA == kX86 || kRuntimeISA == kX86_64) {
   1131       UPDATE_CURRENT_LOCK_LEVEL(kModifyLdtLock);
   1132       DCHECK(modify_ldt_lock_ == nullptr);
   1133       modify_ldt_lock_ = new Mutex("modify_ldt lock", current_lock_level);
   1134     }
   1135 
   1136     UPDATE_CURRENT_LOCK_LEVEL(kDexLock);
   1137     DCHECK(dex_lock_ == nullptr);
   1138     dex_lock_ = new ReaderWriterMutex("ClassLinker dex lock", current_lock_level);
   1139 
   1140     UPDATE_CURRENT_LOCK_LEVEL(kOatFileManagerLock);
   1141     DCHECK(oat_file_manager_lock_ == nullptr);
   1142     oat_file_manager_lock_ = new ReaderWriterMutex("OatFile manager lock", current_lock_level);
   1143 
   1144     UPDATE_CURRENT_LOCK_LEVEL(kVerifierDepsLock);
   1145     DCHECK(verifier_deps_lock_ == nullptr);
   1146     verifier_deps_lock_ = new ReaderWriterMutex("verifier deps lock", current_lock_level);
   1147 
   1148     UPDATE_CURRENT_LOCK_LEVEL(kHostDlOpenHandlesLock);
   1149     DCHECK(host_dlopen_handles_lock_ == nullptr);
   1150     host_dlopen_handles_lock_ = new Mutex("host dlopen handles lock", current_lock_level);
   1151 
   1152     UPDATE_CURRENT_LOCK_LEVEL(kInternTableLock);
   1153     DCHECK(intern_table_lock_ == nullptr);
   1154     intern_table_lock_ = new Mutex("InternTable lock", current_lock_level);
   1155 
   1156     UPDATE_CURRENT_LOCK_LEVEL(kReferenceProcessorLock);
   1157     DCHECK(reference_processor_lock_ == nullptr);
   1158     reference_processor_lock_ = new Mutex("ReferenceProcessor lock", current_lock_level);
   1159 
   1160     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueClearedReferencesLock);
   1161     DCHECK(reference_queue_cleared_references_lock_ == nullptr);
   1162     reference_queue_cleared_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
   1163 
   1164     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueWeakReferencesLock);
   1165     DCHECK(reference_queue_weak_references_lock_ == nullptr);
   1166     reference_queue_weak_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
   1167 
   1168     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueFinalizerReferencesLock);
   1169     DCHECK(reference_queue_finalizer_references_lock_ == nullptr);
   1170     reference_queue_finalizer_references_lock_ = new Mutex("ReferenceQueue finalizer references lock", current_lock_level);
   1171 
   1172     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueuePhantomReferencesLock);
   1173     DCHECK(reference_queue_phantom_references_lock_ == nullptr);
   1174     reference_queue_phantom_references_lock_ = new Mutex("ReferenceQueue phantom references lock", current_lock_level);
   1175 
   1176     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueSoftReferencesLock);
   1177     DCHECK(reference_queue_soft_references_lock_ == nullptr);
   1178     reference_queue_soft_references_lock_ = new Mutex("ReferenceQueue soft references lock", current_lock_level);
   1179 
   1180     UPDATE_CURRENT_LOCK_LEVEL(kJniGlobalsLock);
   1181     DCHECK(jni_globals_lock_ == nullptr);
   1182     jni_globals_lock_ =
   1183         new ReaderWriterMutex("JNI global reference table lock", current_lock_level);
   1184 
   1185     UPDATE_CURRENT_LOCK_LEVEL(kJniWeakGlobalsLock);
   1186     DCHECK(jni_weak_globals_lock_ == nullptr);
   1187     jni_weak_globals_lock_ = new Mutex("JNI weak global reference table lock", current_lock_level);
   1188 
   1189     UPDATE_CURRENT_LOCK_LEVEL(kJniFunctionTableLock);
   1190     DCHECK(jni_function_table_lock_ == nullptr);
   1191     jni_function_table_lock_ = new Mutex("JNI function table lock", current_lock_level);
   1192 
   1193     UPDATE_CURRENT_LOCK_LEVEL(kAbortLock);
   1194     DCHECK(abort_lock_ == nullptr);
   1195     abort_lock_ = new Mutex("abort lock", current_lock_level, true);
   1196 
   1197     UPDATE_CURRENT_LOCK_LEVEL(kThreadSuspendCountLock);
   1198     DCHECK(thread_suspend_count_lock_ == nullptr);
   1199     thread_suspend_count_lock_ = new Mutex("thread suspend count lock", current_lock_level);
   1200 
   1201     UPDATE_CURRENT_LOCK_LEVEL(kUnexpectedSignalLock);
   1202     DCHECK(unexpected_signal_lock_ == nullptr);
   1203     unexpected_signal_lock_ = new Mutex("unexpected signal lock", current_lock_level, true);
   1204 
   1205     UPDATE_CURRENT_LOCK_LEVEL(kLoggingLock);
   1206     DCHECK(logging_lock_ == nullptr);
   1207     logging_lock_ = new Mutex("logging lock", current_lock_level, true);
   1208 
   1209     #undef UPDATE_CURRENT_LOCK_LEVEL
   1210 
   1211     // List of mutexes that we may hold when accessing a weak ref.
   1212     AddToExpectedMutexesOnWeakRefAccess(dex_lock_, /*need_lock*/ false);
   1213     AddToExpectedMutexesOnWeakRefAccess(classlinker_classes_lock_, /*need_lock*/ false);
   1214     AddToExpectedMutexesOnWeakRefAccess(jni_libraries_lock_, /*need_lock*/ false);
   1215 
   1216     InitConditions();
   1217   }
   1218 }
   1219 
   1220 void Locks::InitConditions() {
   1221   thread_exit_cond_ = new ConditionVariable("thread exit condition variable", *thread_list_lock_);
   1222 }
   1223 
   1224 void Locks::SetClientCallback(ClientCallback* safe_to_call_abort_cb) {
   1225   safe_to_call_abort_callback.StoreRelease(safe_to_call_abort_cb);
   1226 }
   1227 
   1228 // Helper to allow checking shutdown while ignoring locking requirements.
   1229 bool Locks::IsSafeToCallAbortRacy() {
   1230   Locks::ClientCallback* safe_to_call_abort_cb = safe_to_call_abort_callback.LoadAcquire();
   1231   return safe_to_call_abort_cb != nullptr && safe_to_call_abort_cb();
   1232 }
   1233 
   1234 void Locks::AddToExpectedMutexesOnWeakRefAccess(BaseMutex* mutex, bool need_lock) {
   1235   if (need_lock) {
   1236     ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
   1237     mutex->SetShouldRespondToEmptyCheckpointRequest(true);
   1238     expected_mutexes_on_weak_ref_access_.push_back(mutex);
   1239   } else {
   1240     mutex->SetShouldRespondToEmptyCheckpointRequest(true);
   1241     expected_mutexes_on_weak_ref_access_.push_back(mutex);
   1242   }
   1243 }
   1244 
   1245 void Locks::RemoveFromExpectedMutexesOnWeakRefAccess(BaseMutex* mutex, bool need_lock) {
   1246   if (need_lock) {
   1247     ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
   1248     mutex->SetShouldRespondToEmptyCheckpointRequest(false);
   1249     std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
   1250     auto it = std::find(list.begin(), list.end(), mutex);
   1251     DCHECK(it != list.end());
   1252     list.erase(it);
   1253   } else {
   1254     mutex->SetShouldRespondToEmptyCheckpointRequest(false);
   1255     std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
   1256     auto it = std::find(list.begin(), list.end(), mutex);
   1257     DCHECK(it != list.end());
   1258     list.erase(it);
   1259   }
   1260 }
   1261 
   1262 bool Locks::IsExpectedOnWeakRefAccess(BaseMutex* mutex) {
   1263   ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
   1264   std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
   1265   return std::find(list.begin(), list.end(), mutex) != list.end();
   1266 }
   1267 
   1268 }  // namespace art
   1269