Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2006 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef SkGeometry_DEFINED
      9 #define SkGeometry_DEFINED
     10 
     11 #include "SkMatrix.h"
     12 #include "SkNx.h"
     13 
     14 static inline Sk2s from_point(const SkPoint& point) {
     15     return Sk2s::Load(&point);
     16 }
     17 
     18 static inline SkPoint to_point(const Sk2s& x) {
     19     SkPoint point;
     20     x.store(&point);
     21     return point;
     22 }
     23 
     24 static Sk2s times_2(const Sk2s& value) {
     25     return value + value;
     26 }
     27 
     28 /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
     29     equation.
     30 */
     31 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
     32 
     33 ///////////////////////////////////////////////////////////////////////////////
     34 
     35 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t);
     36 SkPoint SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t);
     37 
     38 /** Set pt to the point on the src quadratic specified by t. t must be
     39     0 <= t <= 1.0
     40 */
     41 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = nullptr);
     42 
     43 /** Given a src quadratic bezier, chop it at the specified t value,
     44     where 0 < t < 1, and return the two new quadratics in dst:
     45     dst[0..2] and dst[2..4]
     46 */
     47 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
     48 
     49 /** Given a src quadratic bezier, chop it at the specified t == 1/2,
     50     The new quads are returned in dst[0..2] and dst[2..4]
     51 */
     52 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
     53 
     54 /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
     55     for extrema, and return the number of t-values that are found that represent
     56     these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
     57     function returns 0.
     58     Returned count      tValues[]
     59     0                   ignored
     60     1                   0 < tValues[0] < 1
     61 */
     62 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
     63 
     64 /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
     65     the resulting beziers are monotonic in Y. This is called by the scan converter.
     66     Depending on what is returned, dst[] is treated as follows
     67     0   dst[0..2] is the original quad
     68     1   dst[0..2] and dst[2..4] are the two new quads
     69 */
     70 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
     71 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]);
     72 
     73 /** Given 3 points on a quadratic bezier, if the point of maximum
     74     curvature exists on the segment, returns the t value for this
     75     point along the curve. Otherwise it will return a value of 0.
     76 */
     77 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]);
     78 
     79 /** Given 3 points on a quadratic bezier, divide it into 2 quadratics
     80     if the point of maximum curvature exists on the quad segment.
     81     Depending on what is returned, dst[] is treated as follows
     82     1   dst[0..2] is the original quad
     83     2   dst[0..2] and dst[2..4] are the two new quads
     84     If dst == null, it is ignored and only the count is returned.
     85 */
     86 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
     87 
     88 /** Given 3 points on a quadratic bezier, use degree elevation to
     89     convert it into the cubic fitting the same curve. The new cubic
     90     curve is returned in dst[0..3].
     91 */
     92 SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]);
     93 
     94 ///////////////////////////////////////////////////////////////////////////////
     95 
     96 /** Set pt to the point on the src cubic specified by t. t must be
     97     0 <= t <= 1.0
     98 */
     99 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull,
    100                    SkVector* tangentOrNull, SkVector* curvatureOrNull);
    101 
    102 /** Given a src cubic bezier, chop it at the specified t value,
    103     where 0 < t < 1, and return the two new cubics in dst:
    104     dst[0..3] and dst[3..6]
    105 */
    106 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
    107 
    108 /** Given a src cubic bezier, chop it at the specified t values,
    109     where 0 < t < 1, and return the new cubics in dst:
    110     dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)]
    111 */
    112 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[],
    113                    int t_count);
    114 
    115 /** Given a src cubic bezier, chop it at the specified t == 1/2,
    116     The new cubics are returned in dst[0..3] and dst[3..6]
    117 */
    118 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
    119 
    120 /** Given the 4 coefficients for a cubic bezier (either X or Y values), look
    121     for extrema, and return the number of t-values that are found that represent
    122     these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
    123     function returns 0.
    124     Returned count      tValues[]
    125     0                   ignored
    126     1                   0 < tValues[0] < 1
    127     2                   0 < tValues[0] < tValues[1] < 1
    128 */
    129 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
    130                        SkScalar tValues[2]);
    131 
    132 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
    133     the resulting beziers are monotonic in Y. This is called by the scan converter.
    134     Depending on what is returned, dst[] is treated as follows
    135     0   dst[0..3] is the original cubic
    136     1   dst[0..3] and dst[3..6] are the two new cubics
    137     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
    138     If dst == null, it is ignored and only the count is returned.
    139 */
    140 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
    141 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]);
    142 
    143 /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
    144     inflection points.
    145 */
    146 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
    147 
    148 /** Return 1 for no chop, 2 for having chopped the cubic at a single
    149     inflection point, 3 for having chopped at 2 inflection points.
    150     dst will hold the resulting 1, 2, or 3 cubics.
    151 */
    152 int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
    153 
    154 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
    155 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
    156                               SkScalar tValues[3] = nullptr);
    157 
    158 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar y, SkPoint dst[7]);
    159 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar x, SkPoint dst[7]);
    160 
    161 enum class SkCubicType {
    162     kSerpentine,
    163     kLoop,
    164     kLocalCusp,       // Cusp at a non-infinite parameter value with an inflection at t=infinity.
    165     kCuspAtInfinity,  // Cusp with a cusp at t=infinity and a local inflection.
    166     kQuadratic,
    167     kLineOrPoint
    168 };
    169 
    170 /** Returns the cubic classification.
    171 
    172     t[],s[] are set to the two homogeneous parameter values at which points the lines L & M
    173     intersect with K, sorted from smallest to largest and oriented so positive values of the
    174     implicit are on the "left" side. For a serpentine curve they are the inflection points. For a
    175     loop they are the double point. For a local cusp, they are both equal and denote the cusp point.
    176     For a cusp at an infinite parameter value, one will be the local inflection point and the other
    177     +inf (t,s = 1,0). If the curve is degenerate (i.e. quadratic or linear) they are both set to a
    178     parameter value of +inf (t,s = 1,0).
    179 
    180     d[] is filled with the cubic inflection function coefficients. See "Resolution Independent
    181     Curve Rendering using Programmable Graphics Hardware", 4.2 Curve Categorization:
    182 
    183     https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
    184 */
    185 SkCubicType SkClassifyCubic(const SkPoint p[4], double t[2] = nullptr, double s[2] = nullptr,
    186                             double d[4] = nullptr);
    187 
    188 ///////////////////////////////////////////////////////////////////////////////
    189 
    190 enum SkRotationDirection {
    191     kCW_SkRotationDirection,
    192     kCCW_SkRotationDirection
    193 };
    194 
    195 struct SkConic {
    196     SkConic() {}
    197     SkConic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
    198         fPts[0] = p0;
    199         fPts[1] = p1;
    200         fPts[2] = p2;
    201         fW = w;
    202     }
    203     SkConic(const SkPoint pts[3], SkScalar w) {
    204         memcpy(fPts, pts, sizeof(fPts));
    205         fW = w;
    206     }
    207 
    208     SkPoint  fPts[3];
    209     SkScalar fW;
    210 
    211     void set(const SkPoint pts[3], SkScalar w) {
    212         memcpy(fPts, pts, 3 * sizeof(SkPoint));
    213         fW = w;
    214     }
    215 
    216     void set(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
    217         fPts[0] = p0;
    218         fPts[1] = p1;
    219         fPts[2] = p2;
    220         fW = w;
    221     }
    222 
    223     /**
    224      *  Given a t-value [0...1] return its position and/or tangent.
    225      *  If pos is not null, return its position at the t-value.
    226      *  If tangent is not null, return its tangent at the t-value. NOTE the
    227      *  tangent value's length is arbitrary, and only its direction should
    228      *  be used.
    229      */
    230     void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = nullptr) const;
    231     bool SK_WARN_UNUSED_RESULT chopAt(SkScalar t, SkConic dst[2]) const;
    232     void chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const;
    233     void chop(SkConic dst[2]) const;
    234 
    235     SkPoint evalAt(SkScalar t) const;
    236     SkVector evalTangentAt(SkScalar t) const;
    237 
    238     void computeAsQuadError(SkVector* err) const;
    239     bool asQuadTol(SkScalar tol) const;
    240 
    241     /**
    242      *  return the power-of-2 number of quads needed to approximate this conic
    243      *  with a sequence of quads. Will be >= 0.
    244      */
    245     int computeQuadPOW2(SkScalar tol) const;
    246 
    247     /**
    248      *  Chop this conic into N quads, stored continguously in pts[], where
    249      *  N = 1 << pow2. The amount of storage needed is (1 + 2 * N)
    250      */
    251     int SK_WARN_UNUSED_RESULT chopIntoQuadsPOW2(SkPoint pts[], int pow2) const;
    252 
    253     bool findXExtrema(SkScalar* t) const;
    254     bool findYExtrema(SkScalar* t) const;
    255     bool chopAtXExtrema(SkConic dst[2]) const;
    256     bool chopAtYExtrema(SkConic dst[2]) const;
    257 
    258     void computeTightBounds(SkRect* bounds) const;
    259     void computeFastBounds(SkRect* bounds) const;
    260 
    261     /** Find the parameter value where the conic takes on its maximum curvature.
    262      *
    263      *  @param t   output scalar for max curvature.  Will be unchanged if
    264      *             max curvature outside 0..1 range.
    265      *
    266      *  @return  true if max curvature found inside 0..1 range, false otherwise
    267      */
    268 //    bool findMaxCurvature(SkScalar* t) const;  // unimplemented
    269 
    270     static SkScalar TransformW(const SkPoint[3], SkScalar w, const SkMatrix&);
    271 
    272     enum {
    273         kMaxConicsForArc = 5
    274     };
    275     static int BuildUnitArc(const SkVector& start, const SkVector& stop, SkRotationDirection,
    276                             const SkMatrix*, SkConic conics[kMaxConicsForArc]);
    277 };
    278 
    279 // inline helpers are contained in a namespace to avoid external leakage to fragile SkNx members
    280 namespace {
    281 
    282 /**
    283  *  use for : eval(t) == A * t^2 + B * t + C
    284  */
    285 struct SkQuadCoeff {
    286     SkQuadCoeff() {}
    287 
    288     SkQuadCoeff(const Sk2s& A, const Sk2s& B, const Sk2s& C)
    289         : fA(A)
    290         , fB(B)
    291         , fC(C)
    292     {
    293     }
    294 
    295     SkQuadCoeff(const SkPoint src[3]) {
    296         fC = from_point(src[0]);
    297         Sk2s P1 = from_point(src[1]);
    298         Sk2s P2 = from_point(src[2]);
    299         fB = times_2(P1 - fC);
    300         fA = P2 - times_2(P1) + fC;
    301     }
    302 
    303     Sk2s eval(SkScalar t) {
    304         Sk2s tt(t);
    305         return eval(tt);
    306     }
    307 
    308     Sk2s eval(const Sk2s& tt) {
    309         return (fA * tt + fB) * tt + fC;
    310     }
    311 
    312     Sk2s fA;
    313     Sk2s fB;
    314     Sk2s fC;
    315 };
    316 
    317 struct SkConicCoeff {
    318     SkConicCoeff(const SkConic& conic) {
    319         Sk2s p0 = from_point(conic.fPts[0]);
    320         Sk2s p1 = from_point(conic.fPts[1]);
    321         Sk2s p2 = from_point(conic.fPts[2]);
    322         Sk2s ww(conic.fW);
    323 
    324         Sk2s p1w = p1 * ww;
    325         fNumer.fC = p0;
    326         fNumer.fA = p2 - times_2(p1w) + p0;
    327         fNumer.fB = times_2(p1w - p0);
    328 
    329         fDenom.fC = Sk2s(1);
    330         fDenom.fB = times_2(ww - fDenom.fC);
    331         fDenom.fA = Sk2s(0) - fDenom.fB;
    332     }
    333 
    334     Sk2s eval(SkScalar t) {
    335         Sk2s tt(t);
    336         Sk2s numer = fNumer.eval(tt);
    337         Sk2s denom = fDenom.eval(tt);
    338         return numer / denom;
    339     }
    340 
    341     SkQuadCoeff fNumer;
    342     SkQuadCoeff fDenom;
    343 };
    344 
    345 struct SkCubicCoeff {
    346     SkCubicCoeff(const SkPoint src[4]) {
    347         Sk2s P0 = from_point(src[0]);
    348         Sk2s P1 = from_point(src[1]);
    349         Sk2s P2 = from_point(src[2]);
    350         Sk2s P3 = from_point(src[3]);
    351         Sk2s three(3);
    352         fA = P3 + three * (P1 - P2) - P0;
    353         fB = three * (P2 - times_2(P1) + P0);
    354         fC = three * (P1 - P0);
    355         fD = P0;
    356     }
    357 
    358     Sk2s eval(SkScalar t) {
    359         Sk2s tt(t);
    360         return eval(tt);
    361     }
    362 
    363     Sk2s eval(const Sk2s& t) {
    364         return ((fA * t + fB) * t + fC) * t + fD;
    365     }
    366 
    367     Sk2s fA;
    368     Sk2s fB;
    369     Sk2s fC;
    370     Sk2s fD;
    371 };
    372 
    373 }
    374 
    375 #include "SkTemplates.h"
    376 
    377 /**
    378  *  Help class to allocate storage for approximating a conic with N quads.
    379  */
    380 class SkAutoConicToQuads {
    381 public:
    382     SkAutoConicToQuads() : fQuadCount(0) {}
    383 
    384     /**
    385      *  Given a conic and a tolerance, return the array of points for the
    386      *  approximating quad(s). Call countQuads() to know the number of quads
    387      *  represented in these points.
    388      *
    389      *  The quads are allocated to share end-points. e.g. if there are 4 quads,
    390      *  there will be 9 points allocated as follows
    391      *      quad[0] == pts[0..2]
    392      *      quad[1] == pts[2..4]
    393      *      quad[2] == pts[4..6]
    394      *      quad[3] == pts[6..8]
    395      */
    396     const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) {
    397         int pow2 = conic.computeQuadPOW2(tol);
    398         fQuadCount = 1 << pow2;
    399         SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount);
    400         fQuadCount = conic.chopIntoQuadsPOW2(pts, pow2);
    401         return pts;
    402     }
    403 
    404     const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight,
    405                                 SkScalar tol) {
    406         SkConic conic;
    407         conic.set(pts, weight);
    408         return computeQuads(conic, tol);
    409     }
    410 
    411     int countQuads() const { return fQuadCount; }
    412 
    413 private:
    414     enum {
    415         kQuadCount = 8, // should handle most conics
    416         kPointCount = 1 + 2 * kQuadCount,
    417     };
    418     SkAutoSTMalloc<kPointCount, SkPoint> fStorage;
    419     int fQuadCount; // #quads for current usage
    420 };
    421 
    422 #endif
    423