Home | History | Annotate | Download | only in private
      1 
      2 /*
      3  * Copyright 2006 The Android Open Source Project
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #ifndef SkTemplates_DEFINED
     11 #define SkTemplates_DEFINED
     12 
     13 #include "SkMath.h"
     14 #include "SkMalloc.h"
     15 #include "SkTLogic.h"
     16 #include "SkTypes.h"
     17 #include <limits.h>
     18 #include <memory>
     19 #include <new>
     20 
     21 /** \file SkTemplates.h
     22 
     23     This file contains light-weight template classes for type-safe and exception-safe
     24     resource management.
     25 */
     26 
     27 /**
     28  *  Marks a local variable as known to be unused (to avoid warnings).
     29  *  Note that this does *not* prevent the local variable from being optimized away.
     30  */
     31 template<typename T> inline void sk_ignore_unused_variable(const T&) { }
     32 
     33 /**
     34  *  Returns a pointer to a D which comes immediately after S[count].
     35  */
     36 template <typename D, typename S> static D* SkTAfter(S* ptr, size_t count = 1) {
     37     return reinterpret_cast<D*>(ptr + count);
     38 }
     39 
     40 /**
     41  *  Returns a pointer to a D which comes byteOffset bytes after S.
     42  */
     43 template <typename D, typename S> static D* SkTAddOffset(S* ptr, size_t byteOffset) {
     44     // The intermediate char* has the same cv-ness as D as this produces better error messages.
     45     // This relies on the fact that reinterpret_cast can add constness, but cannot remove it.
     46     return reinterpret_cast<D*>(reinterpret_cast<sknonstd::same_cv_t<char, D>*>(ptr) + byteOffset);
     47 }
     48 
     49 template <typename R, typename T, R (*P)(T*)> struct SkFunctionWrapper {
     50     R operator()(T* t) { return P(t); }
     51 };
     52 
     53 /** \class SkAutoTCallVProc
     54 
     55     Call a function when this goes out of scope. The template uses two
     56     parameters, the object, and a function that is to be called in the destructor.
     57     If release() is called, the object reference is set to null. If the object
     58     reference is null when the destructor is called, we do not call the
     59     function.
     60 */
     61 template <typename T, void (*P)(T*)> class SkAutoTCallVProc
     62     : public std::unique_ptr<T, SkFunctionWrapper<void, T, P>> {
     63 public:
     64     SkAutoTCallVProc(T* obj): std::unique_ptr<T, SkFunctionWrapper<void, T, P>>(obj) {}
     65 
     66     operator T*() const { return this->get(); }
     67 };
     68 
     69 /** \class SkAutoTCallIProc
     70 
     71 Call a function when this goes out of scope. The template uses two
     72 parameters, the object, and a function that is to be called in the destructor.
     73 If release() is called, the object reference is set to null. If the object
     74 reference is null when the destructor is called, we do not call the
     75 function.
     76 */
     77 template <typename T, int (*P)(T*)> class SkAutoTCallIProc
     78     : public std::unique_ptr<T, SkFunctionWrapper<int, T, P>> {
     79 public:
     80     SkAutoTCallIProc(T* obj): std::unique_ptr<T, SkFunctionWrapper<int, T, P>>(obj) {}
     81 
     82     operator T*() const { return this->get(); }
     83 };
     84 
     85 /** Allocate an array of T elements, and free the array in the destructor
     86  */
     87 template <typename T> class SkAutoTArray : SkNoncopyable {
     88 public:
     89     SkAutoTArray() {
     90         fArray = NULL;
     91         SkDEBUGCODE(fCount = 0;)
     92     }
     93     /** Allocate count number of T elements
     94      */
     95     explicit SkAutoTArray(int count) {
     96         SkASSERT(count >= 0);
     97         fArray = NULL;
     98         if (count) {
     99             fArray = new T[count];
    100         }
    101         SkDEBUGCODE(fCount = count;)
    102     }
    103 
    104     /** Reallocates given a new count. Reallocation occurs even if new count equals old count.
    105      */
    106     void reset(int count) {
    107         delete[] fArray;
    108         SkASSERT(count >= 0);
    109         fArray = NULL;
    110         if (count) {
    111             fArray = new T[count];
    112         }
    113         SkDEBUGCODE(fCount = count;)
    114     }
    115 
    116     ~SkAutoTArray() { delete[] fArray; }
    117 
    118     /** Return the array of T elements. Will be NULL if count == 0
    119      */
    120     T* get() const { return fArray; }
    121 
    122     /** Return the nth element in the array
    123      */
    124     T&  operator[](int index) const {
    125         SkASSERT((unsigned)index < (unsigned)fCount);
    126         return fArray[index];
    127     }
    128 
    129     void swap(SkAutoTArray& other) {
    130         SkTSwap(fArray, other.fArray);
    131         SkDEBUGCODE(SkTSwap(fCount, other.fCount));
    132     }
    133 
    134 private:
    135     T*  fArray;
    136     SkDEBUGCODE(int fCount;)
    137 };
    138 
    139 /** Wraps SkAutoTArray, with room for kCountRequested elements preallocated.
    140  */
    141 template <int kCountRequested, typename T> class SkAutoSTArray : SkNoncopyable {
    142 public:
    143     /** Initialize with no objects */
    144     SkAutoSTArray() {
    145         fArray = NULL;
    146         fCount = 0;
    147     }
    148 
    149     /** Allocate count number of T elements
    150      */
    151     SkAutoSTArray(int count) {
    152         fArray = NULL;
    153         fCount = 0;
    154         this->reset(count);
    155     }
    156 
    157     ~SkAutoSTArray() {
    158         this->reset(0);
    159     }
    160 
    161     /** Destroys previous objects in the array and default constructs count number of objects */
    162     void reset(int count) {
    163         T* start = fArray;
    164         T* iter = start + fCount;
    165         while (iter > start) {
    166             (--iter)->~T();
    167         }
    168 
    169         SkASSERT(count >= 0);
    170         if (fCount != count) {
    171             if (fCount > kCount) {
    172                 // 'fArray' was allocated last time so free it now
    173                 SkASSERT((T*) fStorage != fArray);
    174                 sk_free(fArray);
    175             }
    176 
    177             if (count > kCount) {
    178                 const uint64_t size64 = sk_64_mul(count, sizeof(T));
    179                 const size_t size = static_cast<size_t>(size64);
    180                 if (size != size64) {
    181                     sk_out_of_memory();
    182                 }
    183                 fArray = (T*) sk_malloc_throw(size);
    184             } else if (count > 0) {
    185                 fArray = (T*) fStorage;
    186             } else {
    187                 fArray = NULL;
    188             }
    189 
    190             fCount = count;
    191         }
    192 
    193         iter = fArray;
    194         T* stop = fArray + count;
    195         while (iter < stop) {
    196             new (iter++) T;
    197         }
    198     }
    199 
    200     /** Return the number of T elements in the array
    201      */
    202     int count() const { return fCount; }
    203 
    204     /** Return the array of T elements. Will be NULL if count == 0
    205      */
    206     T* get() const { return fArray; }
    207 
    208     T* begin() { return fArray; }
    209 
    210     const T* begin() const { return fArray; }
    211 
    212     T* end() { return fArray + fCount; }
    213 
    214     const T* end() const { return fArray + fCount; }
    215 
    216     /** Return the nth element in the array
    217      */
    218     T&  operator[](int index) const {
    219         SkASSERT(index < fCount);
    220         return fArray[index];
    221     }
    222 
    223 private:
    224 #if defined(GOOGLE3)
    225     // Stack frame size is limited for GOOGLE3. 4k is less than the actual max, but some functions
    226     // have multiple large stack allocations.
    227     static const int kMaxBytes = 4 * 1024;
    228     static const int kCount = kCountRequested * sizeof(T) > kMaxBytes
    229         ? kMaxBytes / sizeof(T)
    230         : kCountRequested;
    231 #else
    232     static const int kCount = kCountRequested;
    233 #endif
    234 
    235     int     fCount;
    236     T*      fArray;
    237     // since we come right after fArray, fStorage should be properly aligned
    238     char    fStorage[kCount * sizeof(T)];
    239 };
    240 
    241 /** Manages an array of T elements, freeing the array in the destructor.
    242  *  Does NOT call any constructors/destructors on T (T must be POD).
    243  */
    244 template <typename T> class SkAutoTMalloc : SkNoncopyable {
    245 public:
    246     /** Takes ownership of the ptr. The ptr must be a value which can be passed to sk_free. */
    247     explicit SkAutoTMalloc(T* ptr = NULL) {
    248         fPtr = ptr;
    249     }
    250 
    251     /** Allocates space for 'count' Ts. */
    252     explicit SkAutoTMalloc(size_t count) {
    253         fPtr = count ? (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW) : nullptr;
    254     }
    255 
    256     SkAutoTMalloc(SkAutoTMalloc<T>&& that) : fPtr(that.release()) {}
    257 
    258     ~SkAutoTMalloc() {
    259         sk_free(fPtr);
    260     }
    261 
    262     /** Resize the memory area pointed to by the current ptr preserving contents. */
    263     void realloc(size_t count) {
    264         if (count) {
    265             fPtr = reinterpret_cast<T*>(sk_realloc_throw(fPtr, count * sizeof(T)));
    266         } else {
    267             this->reset(0);
    268         }
    269     }
    270 
    271     /** Resize the memory area pointed to by the current ptr without preserving contents. */
    272     T* reset(size_t count = 0) {
    273         sk_free(fPtr);
    274         fPtr = count ? (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW) : nullptr;
    275         return fPtr;
    276     }
    277 
    278     T* get() const { return fPtr; }
    279 
    280     operator T*() {
    281         return fPtr;
    282     }
    283 
    284     operator const T*() const {
    285         return fPtr;
    286     }
    287 
    288     T& operator[](int index) {
    289         return fPtr[index];
    290     }
    291 
    292     const T& operator[](int index) const {
    293         return fPtr[index];
    294     }
    295 
    296     SkAutoTMalloc& operator=(SkAutoTMalloc<T>&& that) {
    297         if (this != &that) {
    298             sk_free(fPtr);
    299             fPtr = that.release();
    300         }
    301         return *this;
    302     }
    303 
    304     /**
    305      *  Transfer ownership of the ptr to the caller, setting the internal
    306      *  pointer to NULL. Note that this differs from get(), which also returns
    307      *  the pointer, but it does not transfer ownership.
    308      */
    309     T* release() {
    310         T* ptr = fPtr;
    311         fPtr = NULL;
    312         return ptr;
    313     }
    314 
    315 private:
    316     T* fPtr;
    317 };
    318 
    319 template <size_t kCountRequested, typename T> class SkAutoSTMalloc : SkNoncopyable {
    320 public:
    321     SkAutoSTMalloc() : fPtr(fTStorage) {}
    322 
    323     SkAutoSTMalloc(size_t count) {
    324         if (count > kCount) {
    325             fPtr = (T*)sk_malloc_flags(count * sizeof(T), SK_MALLOC_THROW | SK_MALLOC_TEMP);
    326         } else if (count) {
    327             fPtr = fTStorage;
    328         } else {
    329             fPtr = nullptr;
    330         }
    331     }
    332 
    333     ~SkAutoSTMalloc() {
    334         if (fPtr != fTStorage) {
    335             sk_free(fPtr);
    336         }
    337     }
    338 
    339     // doesn't preserve contents
    340     T* reset(size_t count) {
    341         if (fPtr != fTStorage) {
    342             sk_free(fPtr);
    343         }
    344         if (count > kCount) {
    345             fPtr = (T*)sk_malloc_throw(count * sizeof(T));
    346         } else if (count) {
    347             fPtr = fTStorage;
    348         } else {
    349             fPtr = nullptr;
    350         }
    351         return fPtr;
    352     }
    353 
    354     T* get() const { return fPtr; }
    355 
    356     operator T*() {
    357         return fPtr;
    358     }
    359 
    360     operator const T*() const {
    361         return fPtr;
    362     }
    363 
    364     T& operator[](int index) {
    365         return fPtr[index];
    366     }
    367 
    368     const T& operator[](int index) const {
    369         return fPtr[index];
    370     }
    371 
    372     // Reallocs the array, can be used to shrink the allocation.  Makes no attempt to be intelligent
    373     void realloc(size_t count) {
    374         if (count > kCount) {
    375             if (fPtr == fTStorage) {
    376                 fPtr = (T*)sk_malloc_throw(count * sizeof(T));
    377                 memcpy(fPtr, fTStorage, kCount * sizeof(T));
    378             } else {
    379                 fPtr = (T*)sk_realloc_throw(fPtr, count * sizeof(T));
    380             }
    381         } else if (count) {
    382             if (fPtr != fTStorage) {
    383                 fPtr = (T*)sk_realloc_throw(fPtr, count * sizeof(T));
    384             }
    385         } else {
    386             this->reset(0);
    387         }
    388     }
    389 
    390 private:
    391     // Since we use uint32_t storage, we might be able to get more elements for free.
    392     static const size_t kCountWithPadding = SkAlign4(kCountRequested*sizeof(T)) / sizeof(T);
    393 #if defined(GOOGLE3)
    394     // Stack frame size is limited for GOOGLE3. 4k is less than the actual max, but some functions
    395     // have multiple large stack allocations.
    396     static const size_t kMaxBytes = 4 * 1024;
    397     static const size_t kCount = kCountRequested * sizeof(T) > kMaxBytes
    398         ? kMaxBytes / sizeof(T)
    399         : kCountWithPadding;
    400 #else
    401     static const size_t kCount = kCountWithPadding;
    402 #endif
    403 
    404     T*          fPtr;
    405     union {
    406         uint32_t    fStorage32[SkAlign4(kCount*sizeof(T)) >> 2];
    407         T           fTStorage[1];   // do NOT want to invoke T::T()
    408     };
    409 };
    410 
    411 //////////////////////////////////////////////////////////////////////////////////////////////////
    412 
    413 /**
    414  *  Pass the object and the storage that was offered during SkInPlaceNewCheck, and this will
    415  *  safely destroy (and free if it was dynamically allocated) the object.
    416  */
    417 template <typename T> void SkInPlaceDeleteCheck(T* obj, void* storage) {
    418     if (storage == obj) {
    419         obj->~T();
    420     } else {
    421         delete obj;
    422     }
    423 }
    424 
    425 /**
    426  *  Allocates T, using storage if it is large enough, and allocating on the heap (via new) if
    427  *  storage is not large enough.
    428  *
    429  *      obj = SkInPlaceNewCheck<Type>(storage, size);
    430  *      ...
    431  *      SkInPlaceDeleteCheck(obj, storage);
    432  */
    433 template <typename T> T* SkInPlaceNewCheck(void* storage, size_t size) {
    434     return (sizeof(T) <= size) ? new (storage) T : new T;
    435 }
    436 
    437 template <typename T, typename A1, typename A2, typename A3>
    438 T* SkInPlaceNewCheck(void* storage, size_t size, const A1& a1, const A2& a2, const A3& a3) {
    439     return (sizeof(T) <= size) ? new (storage) T(a1, a2, a3) : new T(a1, a2, a3);
    440 }
    441 
    442 template <typename T, typename A1, typename A2, typename A3, typename A4>
    443 T* SkInPlaceNewCheck(void* storage, size_t size,
    444                      const A1& a1, const A2& a2, const A3& a3, const A4& a4) {
    445     return (sizeof(T) <= size) ? new (storage) T(a1, a2, a3, a4) : new T(a1, a2, a3, a4);
    446 }
    447 
    448 /**
    449  * Reserves memory that is aligned on double and pointer boundaries.
    450  * Hopefully this is sufficient for all practical purposes.
    451  */
    452 template <size_t N> class SkAlignedSStorage : SkNoncopyable {
    453 public:
    454     size_t size() const { return N; }
    455     void* get() { return fData; }
    456     const void* get() const { return fData; }
    457 
    458 private:
    459     union {
    460         void*   fPtr;
    461         double  fDouble;
    462         char    fData[N];
    463     };
    464 };
    465 
    466 /**
    467  * Reserves memory that is aligned on double and pointer boundaries.
    468  * Hopefully this is sufficient for all practical purposes. Otherwise,
    469  * we have to do some arcane trickery to determine alignment of non-POD
    470  * types. Lifetime of the memory is the lifetime of the object.
    471  */
    472 template <int N, typename T> class SkAlignedSTStorage : SkNoncopyable {
    473 public:
    474     /**
    475      * Returns void* because this object does not initialize the
    476      * memory. Use placement new for types that require a cons.
    477      */
    478     void* get() { return fStorage.get(); }
    479     const void* get() const { return fStorage.get(); }
    480 private:
    481     SkAlignedSStorage<sizeof(T)*N> fStorage;
    482 };
    483 
    484 using SkAutoFree = std::unique_ptr<void, SkFunctionWrapper<void, void, sk_free>>;
    485 
    486 #endif
    487