Home | History | Annotate | Download | only in x86
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "calling_convention_x86.h"
     18 
     19 #include "base/logging.h"
     20 #include "handle_scope-inl.h"
     21 #include "utils/x86/managed_register_x86.h"
     22 
     23 namespace art {
     24 namespace x86 {
     25 
     26 static_assert(kX86PointerSize == PointerSize::k32, "Unexpected x86 pointer size");
     27 static_assert(kStackAlignment >= 16u, "IA-32 cdecl requires at least 16 byte stack alignment");
     28 
     29 static constexpr ManagedRegister kCalleeSaveRegisters[] = {
     30     // Core registers.
     31     X86ManagedRegister::FromCpuRegister(EBP),
     32     X86ManagedRegister::FromCpuRegister(ESI),
     33     X86ManagedRegister::FromCpuRegister(EDI),
     34     // No hard float callee saves.
     35 };
     36 
     37 static constexpr uint32_t CalculateCoreCalleeSpillMask() {
     38   // The spilled PC gets a special marker.
     39   uint32_t result = 1 << kNumberOfCpuRegisters;
     40   for (auto&& r : kCalleeSaveRegisters) {
     41     if (r.AsX86().IsCpuRegister()) {
     42       result |= (1 << r.AsX86().AsCpuRegister());
     43     }
     44   }
     45   return result;
     46 }
     47 
     48 static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask();
     49 static constexpr uint32_t kFpCalleeSpillMask = 0u;
     50 
     51 // Calling convention
     52 
     53 ManagedRegister X86ManagedRuntimeCallingConvention::InterproceduralScratchRegister() {
     54   return X86ManagedRegister::FromCpuRegister(ECX);
     55 }
     56 
     57 ManagedRegister X86JniCallingConvention::InterproceduralScratchRegister() {
     58   return X86ManagedRegister::FromCpuRegister(ECX);
     59 }
     60 
     61 ManagedRegister X86JniCallingConvention::ReturnScratchRegister() const {
     62   return ManagedRegister::NoRegister();  // No free regs, so assembler uses push/pop
     63 }
     64 
     65 static ManagedRegister ReturnRegisterForShorty(const char* shorty, bool jni) {
     66   if (shorty[0] == 'F' || shorty[0] == 'D') {
     67     if (jni) {
     68       return X86ManagedRegister::FromX87Register(ST0);
     69     } else {
     70       return X86ManagedRegister::FromXmmRegister(XMM0);
     71     }
     72   } else if (shorty[0] == 'J') {
     73     return X86ManagedRegister::FromRegisterPair(EAX_EDX);
     74   } else if (shorty[0] == 'V') {
     75     return ManagedRegister::NoRegister();
     76   } else {
     77     return X86ManagedRegister::FromCpuRegister(EAX);
     78   }
     79 }
     80 
     81 ManagedRegister X86ManagedRuntimeCallingConvention::ReturnRegister() {
     82   return ReturnRegisterForShorty(GetShorty(), false);
     83 }
     84 
     85 ManagedRegister X86JniCallingConvention::ReturnRegister() {
     86   return ReturnRegisterForShorty(GetShorty(), true);
     87 }
     88 
     89 ManagedRegister X86JniCallingConvention::IntReturnRegister() {
     90   return X86ManagedRegister::FromCpuRegister(EAX);
     91 }
     92 
     93 // Managed runtime calling convention
     94 
     95 ManagedRegister X86ManagedRuntimeCallingConvention::MethodRegister() {
     96   return X86ManagedRegister::FromCpuRegister(EAX);
     97 }
     98 
     99 bool X86ManagedRuntimeCallingConvention::IsCurrentParamInRegister() {
    100   return false;  // Everything is passed by stack
    101 }
    102 
    103 bool X86ManagedRuntimeCallingConvention::IsCurrentParamOnStack() {
    104   // We assume all parameters are on stack, args coming via registers are spilled as entry_spills.
    105   return true;
    106 }
    107 
    108 ManagedRegister X86ManagedRuntimeCallingConvention::CurrentParamRegister() {
    109   ManagedRegister res = ManagedRegister::NoRegister();
    110   if (!IsCurrentParamAFloatOrDouble()) {
    111     switch (gpr_arg_count_) {
    112       case 0:
    113         res = X86ManagedRegister::FromCpuRegister(ECX);
    114         break;
    115       case 1:
    116         res = X86ManagedRegister::FromCpuRegister(EDX);
    117         break;
    118       case 2:
    119         // Don't split a long between the last register and the stack.
    120         if (IsCurrentParamALong()) {
    121           return ManagedRegister::NoRegister();
    122         }
    123         res = X86ManagedRegister::FromCpuRegister(EBX);
    124         break;
    125     }
    126   } else if (itr_float_and_doubles_ < 4) {
    127     // First four float parameters are passed via XMM0..XMM3
    128     res = X86ManagedRegister::FromXmmRegister(
    129                                  static_cast<XmmRegister>(XMM0 + itr_float_and_doubles_));
    130   }
    131   return res;
    132 }
    133 
    134 ManagedRegister X86ManagedRuntimeCallingConvention::CurrentParamHighLongRegister() {
    135   ManagedRegister res = ManagedRegister::NoRegister();
    136   DCHECK(IsCurrentParamALong());
    137   switch (gpr_arg_count_) {
    138     case 0: res = X86ManagedRegister::FromCpuRegister(EDX); break;
    139     case 1: res = X86ManagedRegister::FromCpuRegister(EBX); break;
    140   }
    141   return res;
    142 }
    143 
    144 FrameOffset X86ManagedRuntimeCallingConvention::CurrentParamStackOffset() {
    145   return FrameOffset(displacement_.Int32Value() +   // displacement
    146                      kFramePointerSize +                 // Method*
    147                      (itr_slots_ * kFramePointerSize));  // offset into in args
    148 }
    149 
    150 const ManagedRegisterEntrySpills& X86ManagedRuntimeCallingConvention::EntrySpills() {
    151   // We spill the argument registers on X86 to free them up for scratch use, we then assume
    152   // all arguments are on the stack.
    153   if (entry_spills_.size() == 0) {
    154     ResetIterator(FrameOffset(0));
    155     while (HasNext()) {
    156       ManagedRegister in_reg = CurrentParamRegister();
    157       bool is_long = IsCurrentParamALong();
    158       if (!in_reg.IsNoRegister()) {
    159         int32_t size = IsParamADouble(itr_args_) ? 8 : 4;
    160         int32_t spill_offset = CurrentParamStackOffset().Uint32Value();
    161         ManagedRegisterSpill spill(in_reg, size, spill_offset);
    162         entry_spills_.push_back(spill);
    163         if (is_long) {
    164           // special case, as we need a second register here.
    165           in_reg = CurrentParamHighLongRegister();
    166           DCHECK(!in_reg.IsNoRegister());
    167           // We have to spill the second half of the long.
    168           ManagedRegisterSpill spill2(in_reg, size, spill_offset + 4);
    169           entry_spills_.push_back(spill2);
    170         }
    171 
    172         // Keep track of the number of GPRs allocated.
    173         if (!IsCurrentParamAFloatOrDouble()) {
    174           if (is_long) {
    175             // Long was allocated in 2 registers.
    176             gpr_arg_count_ += 2;
    177           } else {
    178             gpr_arg_count_++;
    179           }
    180         }
    181       } else if (is_long) {
    182         // We need to skip the unused last register, which is empty.
    183         // If we are already out of registers, this is harmless.
    184         gpr_arg_count_ += 2;
    185       }
    186       Next();
    187     }
    188   }
    189   return entry_spills_;
    190 }
    191 
    192 // JNI calling convention
    193 
    194 X86JniCallingConvention::X86JniCallingConvention(bool is_static,
    195                                                  bool is_synchronized,
    196                                                  bool is_critical_native,
    197                                                  const char* shorty)
    198     : JniCallingConvention(is_static,
    199                            is_synchronized,
    200                            is_critical_native,
    201                            shorty,
    202                            kX86PointerSize) {
    203 }
    204 
    205 uint32_t X86JniCallingConvention::CoreSpillMask() const {
    206   return kCoreCalleeSpillMask;
    207 }
    208 
    209 uint32_t X86JniCallingConvention::FpSpillMask() const {
    210   return kFpCalleeSpillMask;
    211 }
    212 
    213 size_t X86JniCallingConvention::FrameSize() {
    214   // Method*, PC return address and callee save area size, local reference segment state
    215   const size_t method_ptr_size = static_cast<size_t>(kX86PointerSize);
    216   const size_t pc_return_addr_size = kFramePointerSize;
    217   const size_t callee_save_area_size = CalleeSaveRegisters().size() * kFramePointerSize;
    218   size_t frame_data_size = method_ptr_size + pc_return_addr_size + callee_save_area_size;
    219 
    220   if (LIKELY(HasLocalReferenceSegmentState())) {                     // local ref. segment state
    221     // Local reference segment state is sometimes excluded.
    222     frame_data_size += kFramePointerSize;
    223   }
    224 
    225   // References plus link_ (pointer) and number_of_references_ (uint32_t) for HandleScope header
    226   const size_t handle_scope_size = HandleScope::SizeOf(kX86PointerSize, ReferenceCount());
    227 
    228   size_t total_size = frame_data_size;
    229   if (LIKELY(HasHandleScope())) {
    230     // HandleScope is sometimes excluded.
    231     total_size += handle_scope_size;                                 // handle scope size
    232   }
    233 
    234   // Plus return value spill area size
    235   total_size += SizeOfReturnValue();
    236 
    237   return RoundUp(total_size, kStackAlignment);
    238   // TODO: Same thing as x64 except using different pointer size. Refactor?
    239 }
    240 
    241 size_t X86JniCallingConvention::OutArgSize() {
    242   return RoundUp(NumberOfOutgoingStackArgs() * kFramePointerSize, kStackAlignment);
    243 }
    244 
    245 ArrayRef<const ManagedRegister> X86JniCallingConvention::CalleeSaveRegisters() const {
    246   return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters);
    247 }
    248 
    249 bool X86JniCallingConvention::IsCurrentParamInRegister() {
    250   return false;  // Everything is passed by stack.
    251 }
    252 
    253 bool X86JniCallingConvention::IsCurrentParamOnStack() {
    254   return true;  // Everything is passed by stack.
    255 }
    256 
    257 ManagedRegister X86JniCallingConvention::CurrentParamRegister() {
    258   LOG(FATAL) << "Should not reach here";
    259   return ManagedRegister::NoRegister();
    260 }
    261 
    262 FrameOffset X86JniCallingConvention::CurrentParamStackOffset() {
    263   return FrameOffset(displacement_.Int32Value() - OutArgSize() + (itr_slots_ * kFramePointerSize));
    264 }
    265 
    266 size_t X86JniCallingConvention::NumberOfOutgoingStackArgs() {
    267   size_t static_args = HasSelfClass() ? 1 : 0;  // count jclass
    268   // regular argument parameters and this
    269   size_t param_args = NumArgs() + NumLongOrDoubleArgs();
    270   // count JNIEnv* and return pc (pushed after Method*)
    271   size_t internal_args = 1 /* return pc */ + (HasJniEnv() ? 1 : 0 /* jni env */);
    272   // No register args.
    273   size_t total_args = static_args + param_args + internal_args;
    274   return total_args;
    275 }
    276 
    277 }  // namespace x86
    278 }  // namespace art
    279