Home | History | Annotate | Download | only in complex
      1 /* $NetBSD: cephes_subrl.c,v 1.2 2014/10/10 14:06:40 christos Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software written by Stephen L. Moshier.
      8  * It is redistributed by the NetBSD Foundation by permission of the author.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include "../src/namespace.h"
     33 #include <complex.h>
     34 #include <math.h>
     35 #include "cephes_subrl.h"
     36 
     37 /* calculate cosh and sinh */
     38 
     39 void
     40 _cchshl(long double x, long double *c, long double *s)
     41 {
     42 	long double e, ei;
     43 
     44 	if (fabsl(x) <= 0.5L) {
     45 		*c = coshl(x);
     46 		*s = sinhl(x);
     47 	} else {
     48 		e = expl(x);
     49 		ei = 0.5L / e;
     50 		e = 0.5L * e;
     51 		*s = e - ei;
     52 		*c = e + ei;
     53 	}
     54 }
     55 
     56 /* Program to subtract nearest integer multiple of PI */
     57 
     58 /* extended precision value of PI: */
     59 static const long double DP1 = 3.14159265358979323829596852490908531763125L;
     60 static const long double DP2 = 1.6667485837041756656403424829301998703007e-19L;
     61 #ifndef __vax__
     62 static const long double DP3 = 1.8830410776607851167459095484560349402753e-39L;
     63 #define MACHEPL 1.1e-38L
     64 #else
     65 static const long double DP3 = 0L;
     66 #define MACHEPL 1.1e-19L
     67 #endif
     68 
     69 long double
     70 _redupil(long double x)
     71 {
     72 	long double t;
     73 	long long i;
     74 
     75 	t = x / M_PIL;
     76 	if (t >= 0.0L)
     77 		t += 0.5L;
     78 	else
     79 		t -= 0.5L;
     80 
     81 	i = t;	/* the multiple */
     82 	t = i;
     83 	t = ((x - t * DP1) - t * DP2) - t * DP3;
     84 	return t;
     85 }
     86 
     87 /* Taylor series expansion for cosh(2y) - cos(2x) */
     88 
     89 long double
     90 _ctansl(long double complex z)
     91 {
     92 	long double f, x, x2, y, y2, rn, t;
     93 	long double d;
     94 
     95 	x = fabsl(2.0L * creall(z));
     96 	y = fabsl(2.0L * cimagl(z));
     97 
     98 	x = _redupil(x);
     99 
    100 	x = x * x;
    101 	y = y * y;
    102 	x2 = 1.0;
    103 	y2 = 1.0;
    104 	f = 1.0;
    105 	rn = 0.0;
    106 	d = 0.0;
    107 	do {
    108 		rn += 1.0L;
    109 		f *= rn;
    110 		rn += 1.0L;
    111 		f *= rn;
    112 		x2 *= x;
    113 		y2 *= y;
    114 		t = y2 + x2;
    115 		t /= f;
    116 		d += t;
    117 
    118 		rn += 1.0L;
    119 		f *= rn;
    120 		rn += 1.0L;
    121 		f *= rn;
    122 		x2 *= x;
    123 		y2 *= y;
    124 		t = y2 - x2;
    125 		t /= f;
    126 		d += t;
    127 	} while (fabsl(t/d) > MACHEPL);
    128 	return d;
    129 }
    130