Home | History | Annotate | Download | only in ath5k
      1 /*
      2  * Copyright (c) 2004-2008 Reyk Floeter <reyk (at) openbsd.org>
      3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm (at) gmail.com>
      4  * Copyright (c) 2008-2009 Felix Fietkau <nbd (at) openwrt.org>
      5  *
      6  * Lightly modified for gPXE, July 2009, by Joshua Oreman <oremanj (at) rwcr.net>.
      7  *
      8  * Permission to use, copy, modify, and distribute this software for any
      9  * purpose with or without fee is hereby granted, provided that the above
     10  * copyright notice and this permission notice appear in all copies.
     11  *
     12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     19  *
     20  */
     21 
     22 FILE_LICENCE ( MIT );
     23 
     24 /*************************************\
     25 * EEPROM access functions and helpers *
     26 \*************************************/
     27 
     28 #include <unistd.h>
     29 #include <stdlib.h>
     30 
     31 #include "ath5k.h"
     32 #include "reg.h"
     33 #include "base.h"
     34 
     35 /*
     36  * Read from eeprom
     37  */
     38 static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
     39 {
     40 	u32 status, timeout;
     41 
     42 	/*
     43 	 * Initialize EEPROM access
     44 	 */
     45 	if (ah->ah_version == AR5K_AR5210) {
     46 		AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
     47 		(void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
     48 	} else {
     49 		ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
     50 		AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
     51 				AR5K_EEPROM_CMD_READ);
     52 	}
     53 
     54 	for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
     55 		status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
     56 		if (status & AR5K_EEPROM_STAT_RDDONE) {
     57 			if (status & AR5K_EEPROM_STAT_RDERR)
     58 				return -EIO;
     59 			*data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
     60 					0xffff);
     61 			return 0;
     62 		}
     63 		udelay(15);
     64 	}
     65 
     66 	return -ETIMEDOUT;
     67 }
     68 
     69 /*
     70  * Translate binary channel representation in EEPROM to frequency
     71  */
     72 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
     73                                  unsigned int mode)
     74 {
     75 	u16 val;
     76 
     77 	if (bin == AR5K_EEPROM_CHANNEL_DIS)
     78 		return bin;
     79 
     80 	if (mode == AR5K_EEPROM_MODE_11A) {
     81 		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
     82 			val = (5 * bin) + 4800;
     83 		else
     84 			val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
     85 				(bin * 10) + 5100;
     86 	} else {
     87 		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
     88 			val = bin + 2300;
     89 		else
     90 			val = bin + 2400;
     91 	}
     92 
     93 	return val;
     94 }
     95 
     96 /*
     97  * Initialize eeprom & capabilities structs
     98  */
     99 static int
    100 ath5k_eeprom_init_header(struct ath5k_hw *ah)
    101 {
    102 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
    103 	int ret;
    104 	u16 val;
    105 
    106 	/*
    107 	 * Read values from EEPROM and store them in the capability structure
    108 	 */
    109 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
    110 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
    111 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
    112 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
    113 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
    114 
    115 	/* Return if we have an old EEPROM */
    116 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
    117 		return 0;
    118 
    119 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
    120 	    ee_ant_gain);
    121 
    122 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
    123 		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
    124 		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
    125 
    126 		/* XXX: Don't know which versions include these two */
    127 		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
    128 
    129 		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
    130 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
    131 
    132 		if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
    133 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
    134 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
    135 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
    136 		}
    137 	}
    138 
    139 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
    140 		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
    141 		ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
    142 		ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
    143 
    144 		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
    145 		ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
    146 		ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
    147 	}
    148 
    149 	AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
    150 
    151 	if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
    152 		ee->ee_is_hb63 = 1;
    153 	else
    154 		ee->ee_is_hb63 = 0;
    155 
    156 	AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
    157 	ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
    158 	ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? 1 : 0;
    159 
    160 	return 0;
    161 }
    162 
    163 
    164 /*
    165  * Read antenna infos from eeprom
    166  */
    167 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
    168 		unsigned int mode)
    169 {
    170 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
    171 	u32 o = *offset;
    172 	u16 val;
    173 	int ret, i = 0;
    174 
    175 	AR5K_EEPROM_READ(o++, val);
    176 	ee->ee_switch_settling[mode]	= (val >> 8) & 0x7f;
    177 	ee->ee_atn_tx_rx[mode]		= (val >> 2) & 0x3f;
    178 	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;
    179 
    180 	AR5K_EEPROM_READ(o++, val);
    181 	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
    182 	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
    183 	ee->ee_ant_control[mode][i++]	= val & 0x3f;
    184 
    185 	AR5K_EEPROM_READ(o++, val);
    186 	ee->ee_ant_control[mode][i++]	= (val >> 10) & 0x3f;
    187 	ee->ee_ant_control[mode][i++]	= (val >> 4) & 0x3f;
    188 	ee->ee_ant_control[mode][i]	= (val << 2) & 0x3f;
    189 
    190 	AR5K_EEPROM_READ(o++, val);
    191 	ee->ee_ant_control[mode][i++]	|= (val >> 14) & 0x3;
    192 	ee->ee_ant_control[mode][i++]	= (val >> 8) & 0x3f;
    193 	ee->ee_ant_control[mode][i++]	= (val >> 2) & 0x3f;
    194 	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;
    195 
    196 	AR5K_EEPROM_READ(o++, val);
    197 	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
    198 	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
    199 	ee->ee_ant_control[mode][i++]	= val & 0x3f;
    200 
    201 	/* Get antenna modes */
    202 	ah->ah_antenna[mode][0] =
    203 	    (ee->ee_ant_control[mode][0] << 4);
    204 	ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
    205 	     ee->ee_ant_control[mode][1] 	|
    206 	    (ee->ee_ant_control[mode][2] << 6) 	|
    207 	    (ee->ee_ant_control[mode][3] << 12) |
    208 	    (ee->ee_ant_control[mode][4] << 18) |
    209 	    (ee->ee_ant_control[mode][5] << 24);
    210 	ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
    211 	     ee->ee_ant_control[mode][6] 	|
    212 	    (ee->ee_ant_control[mode][7] << 6) 	|
    213 	    (ee->ee_ant_control[mode][8] << 12) |
    214 	    (ee->ee_ant_control[mode][9] << 18) |
    215 	    (ee->ee_ant_control[mode][10] << 24);
    216 
    217 	/* return new offset */
    218 	*offset = o;
    219 
    220 	return 0;
    221 }
    222 
    223 /*
    224  * Read supported modes and some mode-specific calibration data
    225  * from eeprom
    226  */
    227 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
    228 		unsigned int mode)
    229 {
    230 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
    231 	u32 o = *offset;
    232 	u16 val;
    233 	int ret;
    234 
    235 	ee->ee_n_piers[mode] = 0;
    236 	AR5K_EEPROM_READ(o++, val);
    237 	ee->ee_adc_desired_size[mode]	= (s8)((val >> 8) & 0xff);
    238 	switch(mode) {
    239 	case AR5K_EEPROM_MODE_11A:
    240 		ee->ee_ob[mode][3]	= (val >> 5) & 0x7;
    241 		ee->ee_db[mode][3]	= (val >> 2) & 0x7;
    242 		ee->ee_ob[mode][2]	= (val << 1) & 0x7;
    243 
    244 		AR5K_EEPROM_READ(o++, val);
    245 		ee->ee_ob[mode][2]	|= (val >> 15) & 0x1;
    246 		ee->ee_db[mode][2]	= (val >> 12) & 0x7;
    247 		ee->ee_ob[mode][1]	= (val >> 9) & 0x7;
    248 		ee->ee_db[mode][1]	= (val >> 6) & 0x7;
    249 		ee->ee_ob[mode][0]	= (val >> 3) & 0x7;
    250 		ee->ee_db[mode][0]	= val & 0x7;
    251 		break;
    252 	case AR5K_EEPROM_MODE_11G:
    253 	case AR5K_EEPROM_MODE_11B:
    254 		ee->ee_ob[mode][1]	= (val >> 4) & 0x7;
    255 		ee->ee_db[mode][1]	= val & 0x7;
    256 		break;
    257 	}
    258 
    259 	AR5K_EEPROM_READ(o++, val);
    260 	ee->ee_tx_end2xlna_enable[mode]	= (val >> 8) & 0xff;
    261 	ee->ee_thr_62[mode]		= val & 0xff;
    262 
    263 	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
    264 		ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
    265 
    266 	AR5K_EEPROM_READ(o++, val);
    267 	ee->ee_tx_end2xpa_disable[mode]	= (val >> 8) & 0xff;
    268 	ee->ee_tx_frm2xpa_enable[mode]	= val & 0xff;
    269 
    270 	AR5K_EEPROM_READ(o++, val);
    271 	ee->ee_pga_desired_size[mode]	= (val >> 8) & 0xff;
    272 
    273 	if ((val & 0xff) & 0x80)
    274 		ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
    275 	else
    276 		ee->ee_noise_floor_thr[mode] = val & 0xff;
    277 
    278 	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
    279 		ee->ee_noise_floor_thr[mode] =
    280 		    mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
    281 
    282 	AR5K_EEPROM_READ(o++, val);
    283 	ee->ee_xlna_gain[mode]		= (val >> 5) & 0xff;
    284 	ee->ee_x_gain[mode]		= (val >> 1) & 0xf;
    285 	ee->ee_xpd[mode]		= val & 0x1;
    286 
    287 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
    288 		ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
    289 
    290 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
    291 		AR5K_EEPROM_READ(o++, val);
    292 		ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
    293 
    294 		if (mode == AR5K_EEPROM_MODE_11A)
    295 			ee->ee_xr_power[mode] = val & 0x3f;
    296 		else {
    297 			ee->ee_ob[mode][0] = val & 0x7;
    298 			ee->ee_db[mode][0] = (val >> 3) & 0x7;
    299 		}
    300 	}
    301 
    302 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
    303 		ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
    304 		ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
    305 	} else {
    306 		ee->ee_i_gain[mode] = (val >> 13) & 0x7;
    307 
    308 		AR5K_EEPROM_READ(o++, val);
    309 		ee->ee_i_gain[mode] |= (val << 3) & 0x38;
    310 
    311 		if (mode == AR5K_EEPROM_MODE_11G) {
    312 			ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
    313 			if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
    314 				ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
    315 		}
    316 	}
    317 
    318 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
    319 			mode == AR5K_EEPROM_MODE_11A) {
    320 		ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
    321 		ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
    322 	}
    323 
    324 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
    325 		goto done;
    326 
    327 	/* Note: >= v5 have bg freq piers on another location
    328 	 * so these freq piers are ignored for >= v5 (should be 0xff
    329 	 * anyway) */
    330 	switch(mode) {
    331 	case AR5K_EEPROM_MODE_11A:
    332 		if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
    333 			break;
    334 
    335 		AR5K_EEPROM_READ(o++, val);
    336 		ee->ee_margin_tx_rx[mode] = val & 0x3f;
    337 		break;
    338 	case AR5K_EEPROM_MODE_11B:
    339 		AR5K_EEPROM_READ(o++, val);
    340 
    341 		ee->ee_pwr_cal_b[0].freq =
    342 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
    343 		if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
    344 			ee->ee_n_piers[mode]++;
    345 
    346 		ee->ee_pwr_cal_b[1].freq =
    347 			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
    348 		if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
    349 			ee->ee_n_piers[mode]++;
    350 
    351 		AR5K_EEPROM_READ(o++, val);
    352 		ee->ee_pwr_cal_b[2].freq =
    353 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
    354 		if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
    355 			ee->ee_n_piers[mode]++;
    356 
    357 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
    358 			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
    359 		break;
    360 	case AR5K_EEPROM_MODE_11G:
    361 		AR5K_EEPROM_READ(o++, val);
    362 
    363 		ee->ee_pwr_cal_g[0].freq =
    364 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
    365 		if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
    366 			ee->ee_n_piers[mode]++;
    367 
    368 		ee->ee_pwr_cal_g[1].freq =
    369 			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
    370 		if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
    371 			ee->ee_n_piers[mode]++;
    372 
    373 		AR5K_EEPROM_READ(o++, val);
    374 		ee->ee_turbo_max_power[mode] = val & 0x7f;
    375 		ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
    376 
    377 		AR5K_EEPROM_READ(o++, val);
    378 		ee->ee_pwr_cal_g[2].freq =
    379 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
    380 		if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
    381 			ee->ee_n_piers[mode]++;
    382 
    383 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
    384 			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
    385 
    386 		AR5K_EEPROM_READ(o++, val);
    387 		ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
    388 		ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
    389 
    390 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
    391 			AR5K_EEPROM_READ(o++, val);
    392 			ee->ee_cck_ofdm_gain_delta = val & 0xff;
    393 		}
    394 		break;
    395 	}
    396 
    397 done:
    398 	/* return new offset */
    399 	*offset = o;
    400 
    401 	return 0;
    402 }
    403 
    404 /*
    405  * Read turbo mode information on newer EEPROM versions
    406  */
    407 static int
    408 ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah,
    409 			      u32 *offset, unsigned int mode)
    410 {
    411 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
    412 	u32 o = *offset;
    413 	u16 val;
    414 	int ret;
    415 
    416 	if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
    417 		return 0;
    418 
    419 	switch (mode){
    420 	case AR5K_EEPROM_MODE_11A:
    421 		ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
    422 
    423 		ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
    424 		AR5K_EEPROM_READ(o++, val);
    425 		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
    426 		ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
    427 
    428 		ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
    429 		AR5K_EEPROM_READ(o++, val);
    430 		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
    431 		ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
    432 
    433 		if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
    434 			ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
    435 		break;
    436 	case AR5K_EEPROM_MODE_11G:
    437 		ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
    438 
    439 		ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
    440 		AR5K_EEPROM_READ(o++, val);
    441 		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
    442 		ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
    443 
    444 		ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
    445 		AR5K_EEPROM_READ(o++, val);
    446 		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
    447 		ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
    448 		break;
    449 	}
    450 
    451 	/* return new offset */
    452 	*offset = o;
    453 
    454 	return 0;
    455 }
    456 
    457 /* Read mode-specific data (except power calibration data) */
    458 static int
    459 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
    460 {
    461 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
    462 	u32 mode_offset[3];
    463 	unsigned int mode;
    464 	u32 offset;
    465 	int ret;
    466 
    467 	/*
    468 	 * Get values for all modes
    469 	 */
    470 	mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
    471 	mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
    472 	mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
    473 
    474 	ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
    475 		AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
    476 
    477 	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
    478 		offset = mode_offset[mode];
    479 
    480 		ret = ath5k_eeprom_read_ants(ah, &offset, mode);
    481 		if (ret)
    482 			return ret;
    483 
    484 		ret = ath5k_eeprom_read_modes(ah, &offset, mode);
    485 		if (ret)
    486 			return ret;
    487 
    488 		ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode);
    489 		if (ret)
    490 			return ret;
    491 	}
    492 
    493 	/* override for older eeprom versions for better performance */
    494 	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
    495 		ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
    496 		ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
    497 		ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
    498 	}
    499 
    500 	return 0;
    501 }
    502 
    503 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
    504  * frequency mask) */
    505 static inline int
    506 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
    507 			struct ath5k_chan_pcal_info *pc, unsigned int mode)
    508 {
    509 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
    510 	int o = *offset;
    511 	int i = 0;
    512 	u8 freq1, freq2;
    513 	int ret;
    514 	u16 val;
    515 
    516 	ee->ee_n_piers[mode] = 0;
    517 	while(i < max) {
    518 		AR5K_EEPROM_READ(o++, val);
    519 
    520 		freq1 = val & 0xff;
    521 		if (!freq1)
    522 			break;
    523 
    524 		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
    525 				freq1, mode);
    526 		ee->ee_n_piers[mode]++;
    527 
    528 		freq2 = (val >> 8) & 0xff;
    529 		if (!freq2)
    530 			break;
    531 
    532 		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
    533 				freq2, mode);
    534 		ee->ee_n_piers[mode]++;
    535 	}
    536 
    537 	/* return new offset */
    538 	*offset = o;
    539 
    540 	return 0;
    541 }
    542 
    543 /* Read frequency piers for 802.11a */
    544 static int
    545 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
    546 {
    547 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
    548 	struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
    549 	int i, ret;
    550 	u16 val;
    551 	u8 mask;
    552 
    553 	if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
    554 		ath5k_eeprom_read_freq_list(ah, &offset,
    555 			AR5K_EEPROM_N_5GHZ_CHAN, pcal,
    556 			AR5K_EEPROM_MODE_11A);
    557 	} else {
    558 		mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
    559 
    560 		AR5K_EEPROM_READ(offset++, val);
    561 		pcal[0].freq  = (val >> 9) & mask;
    562 		pcal[1].freq  = (val >> 2) & mask;
    563 		pcal[2].freq  = (val << 5) & mask;
    564 
    565 		AR5K_EEPROM_READ(offset++, val);
    566 		pcal[2].freq |= (val >> 11) & 0x1f;
    567 		pcal[3].freq  = (val >> 4) & mask;
    568 		pcal[4].freq  = (val << 3) & mask;
    569 
    570 		AR5K_EEPROM_READ(offset++, val);
    571 		pcal[4].freq |= (val >> 13) & 0x7;
    572 		pcal[5].freq  = (val >> 6) & mask;
    573 		pcal[6].freq  = (val << 1) & mask;
    574 
    575 		AR5K_EEPROM_READ(offset++, val);
    576 		pcal[6].freq |= (val >> 15) & 0x1;
    577 		pcal[7].freq  = (val >> 8) & mask;
    578 		pcal[8].freq  = (val >> 1) & mask;
    579 		pcal[9].freq  = (val << 6) & mask;
    580 
    581 		AR5K_EEPROM_READ(offset++, val);
    582 		pcal[9].freq |= (val >> 10) & 0x3f;
    583 
    584 		/* Fixed number of piers */
    585 		ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
    586 
    587 		for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
    588 			pcal[i].freq = ath5k_eeprom_bin2freq(ee,
    589 				pcal[i].freq, AR5K_EEPROM_MODE_11A);
    590 		}
    591 	}
    592 
    593 	return 0;
    594 }
    595 
    596 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
    597 static inline int
    598 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
    599 {
    600 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
    601 	struct ath5k_chan_pcal_info *pcal;
    602 
    603 	switch(mode) {
    604 	case AR5K_EEPROM_MODE_11B:
    605 		pcal = ee->ee_pwr_cal_b;
    606 		break;
    607 	case AR5K_EEPROM_MODE_11G:
    608 		pcal = ee->ee_pwr_cal_g;
    609 		break;
    610 	default:
    611 		return -EINVAL;
    612 	}
    613 
    614 	ath5k_eeprom_read_freq_list(ah, &offset,
    615 		AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
    616 		mode);
    617 
    618 	return 0;
    619 }
    620 
    621 /*
    622  * Read power calibration for RF5111 chips
    623  *
    624  * For RF5111 we have an XPD -eXternal Power Detector- curve
    625  * for each calibrated channel. Each curve has 0,5dB Power steps
    626  * on x axis and PCDAC steps (offsets) on y axis and looks like an
    627  * exponential function. To recreate the curve we read 11 points
    628  * here and interpolate later.
    629  */
    630 
    631 /* Used to match PCDAC steps with power values on RF5111 chips
    632  * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
    633  * steps that match with the power values we read from eeprom. On
    634  * older eeprom versions (< 3.2) these steps are equaly spaced at
    635  * 10% of the pcdac curve -until the curve reaches it's maximum-
    636  * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
    637  * these 11 steps are spaced in a different way. This function returns
    638  * the pcdac steps based on eeprom version and curve min/max so that we
    639  * can have pcdac/pwr points.
    640  */
    641 static inline void
    642 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
    643 {
    644 	static const u16 intercepts3[] =
    645 		{ 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
    646 	static const u16 intercepts3_2[] =
    647 		{ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
    648 	const u16 *ip;
    649 	unsigned i;
    650 
    651 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
    652 		ip = intercepts3_2;
    653 	else
    654 		ip = intercepts3;
    655 
    656 	for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
    657 		vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
    658 }
    659 
    660 /* Convert RF5111 specific data to generic raw data
    661  * used by interpolation code */
    662 static int
    663 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
    664 				struct ath5k_chan_pcal_info *chinfo)
    665 {
    666 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
    667 	struct ath5k_chan_pcal_info_rf5111 *pcinfo;
    668 	struct ath5k_pdgain_info *pd;
    669 	u8 pier, point, idx;
    670 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
    671 
    672 	/* Fill raw data for each calibration pier */
    673 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
    674 
    675 		pcinfo = &chinfo[pier].rf5111_info;
    676 
    677 		/* Allocate pd_curves for this cal pier */
    678 		chinfo[pier].pd_curves =
    679 			calloc(AR5K_EEPROM_N_PD_CURVES,
    680 			       sizeof(struct ath5k_pdgain_info));
    681 
    682 		if (!chinfo[pier].pd_curves)
    683 			return -ENOMEM;
    684 
    685 		/* Only one curve for RF5111
    686 		 * find out which one and place
    687 		 * in in pd_curves.
    688 		 * Note: ee_x_gain is reversed here */
    689 		for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
    690 
    691 			if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
    692 				pdgain_idx[0] = idx;
    693 				break;
    694 			}
    695 		}
    696 
    697 		ee->ee_pd_gains[mode] = 1;
    698 
    699 		pd = &chinfo[pier].pd_curves[idx];
    700 
    701 		pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
    702 
    703 		/* Allocate pd points for this curve */
    704 		pd->pd_step = calloc(AR5K_EEPROM_N_PWR_POINTS_5111, sizeof(u8));
    705 		if (!pd->pd_step)
    706 			return -ENOMEM;
    707 
    708 		pd->pd_pwr = calloc(AR5K_EEPROM_N_PWR_POINTS_5111, sizeof(s16));
    709 		if (!pd->pd_pwr)
    710 			return -ENOMEM;
    711 
    712 		/* Fill raw dataset
    713 		 * (convert power to 0.25dB units
    714 		 * for RF5112 combatibility) */
    715 		for (point = 0; point < pd->pd_points; point++) {
    716 
    717 			/* Absolute values */
    718 			pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
    719 
    720 			/* Already sorted */
    721 			pd->pd_step[point] = pcinfo->pcdac[point];
    722 		}
    723 
    724 		/* Set min/max pwr */
    725 		chinfo[pier].min_pwr = pd->pd_pwr[0];
    726 		chinfo[pier].max_pwr = pd->pd_pwr[10];
    727 
    728 	}
    729 
    730 	return 0;
    731 }
    732 
    733 /* Parse EEPROM data */
    734 static int
    735 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
    736 {
    737 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
    738 	struct ath5k_chan_pcal_info *pcal;
    739 	int offset, ret;
    740 	int i;
    741 	u16 val;
    742 
    743 	offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
    744 	switch(mode) {
    745 	case AR5K_EEPROM_MODE_11A:
    746 		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
    747 			return 0;
    748 
    749 		ret = ath5k_eeprom_init_11a_pcal_freq(ah,
    750 			offset + AR5K_EEPROM_GROUP1_OFFSET);
    751 		if (ret < 0)
    752 			return ret;
    753 
    754 		offset += AR5K_EEPROM_GROUP2_OFFSET;
    755 		pcal = ee->ee_pwr_cal_a;
    756 		break;
    757 	case AR5K_EEPROM_MODE_11B:
    758 		if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
    759 		    !AR5K_EEPROM_HDR_11G(ee->ee_header))
    760 			return 0;
    761 
    762 		pcal = ee->ee_pwr_cal_b;
    763 		offset += AR5K_EEPROM_GROUP3_OFFSET;
    764 
    765 		/* fixed piers */
    766 		pcal[0].freq = 2412;
    767 		pcal[1].freq = 2447;
    768 		pcal[2].freq = 2484;
    769 		ee->ee_n_piers[mode] = 3;
    770 		break;
    771 	case AR5K_EEPROM_MODE_11G:
    772 		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
    773 			return 0;
    774 
    775 		pcal = ee->ee_pwr_cal_g;
    776 		offset += AR5K_EEPROM_GROUP4_OFFSET;
    777 
    778 		/* fixed piers */
    779 		pcal[0].freq = 2312;
    780 		pcal[1].freq = 2412;
    781 		pcal[2].freq = 2484;
    782 		ee->ee_n_piers[mode] = 3;
    783 		break;
    784 	default:
    785 		return -EINVAL;
    786 	}
    787 
    788 	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
    789 		struct ath5k_chan_pcal_info_rf5111 *cdata =
    790 			&pcal[i].rf5111_info;
    791 
    792 		AR5K_EEPROM_READ(offset++, val);
    793 		cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
    794 		cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
    795 		cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
    796 
    797 		AR5K_EEPROM_READ(offset++, val);
    798 		cdata->pwr[0] |= ((val >> 14) & 0x3);
    799 		cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
    800 		cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
    801 		cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
    802 
    803 		AR5K_EEPROM_READ(offset++, val);
    804 		cdata->pwr[3] |= ((val >> 12) & 0xf);
    805 		cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
    806 		cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
    807 
    808 		AR5K_EEPROM_READ(offset++, val);
    809 		cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
    810 		cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
    811 		cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
    812 
    813 		AR5K_EEPROM_READ(offset++, val);
    814 		cdata->pwr[8] |= ((val >> 14) & 0x3);
    815 		cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
    816 		cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
    817 
    818 		ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
    819 			cdata->pcdac_max, cdata->pcdac);
    820 	}
    821 
    822 	return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
    823 }
    824 
    825 
    826 /*
    827  * Read power calibration for RF5112 chips
    828  *
    829  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
    830  * for each calibrated channel on 0, -6, -12 and -18dbm but we only
    831  * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
    832  * power steps on x axis and PCDAC steps on y axis and looks like a
    833  * linear function. To recreate the curve and pass the power values
    834  * on hw, we read 4 points for xpd 0 (lower gain -> max power)
    835  * and 3 points for xpd 3 (higher gain -> lower power) here and
    836  * interpolate later.
    837  *
    838  * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
    839  */
    840 
    841 /* Convert RF5112 specific data to generic raw data
    842  * used by interpolation code */
    843 static int
    844 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
    845 				struct ath5k_chan_pcal_info *chinfo)
    846 {
    847 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
    848 	struct ath5k_chan_pcal_info_rf5112 *pcinfo;
    849 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
    850 	unsigned int pier, pdg, point;
    851 
    852 	/* Fill raw data for each calibration pier */
    853 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
    854 
    855 		pcinfo = &chinfo[pier].rf5112_info;
    856 
    857 		/* Allocate pd_curves for this cal pier */
    858 		chinfo[pier].pd_curves =
    859 				calloc(AR5K_EEPROM_N_PD_CURVES,
    860 				       sizeof(struct ath5k_pdgain_info));
    861 
    862 		if (!chinfo[pier].pd_curves)
    863 			return -ENOMEM;
    864 
    865 		/* Fill pd_curves */
    866 		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
    867 
    868 			u8 idx = pdgain_idx[pdg];
    869 			struct ath5k_pdgain_info *pd =
    870 					&chinfo[pier].pd_curves[idx];
    871 
    872 			/* Lowest gain curve (max power) */
    873 			if (pdg == 0) {
    874 				/* One more point for better accuracy */
    875 				pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
    876 
    877 				/* Allocate pd points for this curve */
    878 				pd->pd_step = calloc(pd->pd_points, sizeof(u8));
    879 
    880 				if (!pd->pd_step)
    881 					return -ENOMEM;
    882 
    883 				pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
    884 
    885 				if (!pd->pd_pwr)
    886 					return -ENOMEM;
    887 
    888 
    889 				/* Fill raw dataset
    890 				 * (all power levels are in 0.25dB units) */
    891 				pd->pd_step[0] = pcinfo->pcdac_x0[0];
    892 				pd->pd_pwr[0] = pcinfo->pwr_x0[0];
    893 
    894 				for (point = 1; point < pd->pd_points;
    895 				point++) {
    896 					/* Absolute values */
    897 					pd->pd_pwr[point] =
    898 						pcinfo->pwr_x0[point];
    899 
    900 					/* Deltas */
    901 					pd->pd_step[point] =
    902 						pd->pd_step[point - 1] +
    903 						pcinfo->pcdac_x0[point];
    904 				}
    905 
    906 				/* Set min power for this frequency */
    907 				chinfo[pier].min_pwr = pd->pd_pwr[0];
    908 
    909 			/* Highest gain curve (min power) */
    910 			} else if (pdg == 1) {
    911 
    912 				pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
    913 
    914 				/* Allocate pd points for this curve */
    915 				pd->pd_step = calloc(pd->pd_points, sizeof(u8));
    916 
    917 				if (!pd->pd_step)
    918 					return -ENOMEM;
    919 
    920 				pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
    921 
    922 				if (!pd->pd_pwr)
    923 					return -ENOMEM;
    924 
    925 				/* Fill raw dataset
    926 				 * (all power levels are in 0.25dB units) */
    927 				for (point = 0; point < pd->pd_points;
    928 				point++) {
    929 					/* Absolute values */
    930 					pd->pd_pwr[point] =
    931 						pcinfo->pwr_x3[point];
    932 
    933 					/* Fixed points */
    934 					pd->pd_step[point] =
    935 						pcinfo->pcdac_x3[point];
    936 				}
    937 
    938 				/* Since we have a higher gain curve
    939 				 * override min power */
    940 				chinfo[pier].min_pwr = pd->pd_pwr[0];
    941 			}
    942 		}
    943 	}
    944 
    945 	return 0;
    946 }
    947 
    948 /* Parse EEPROM data */
    949 static int
    950 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
    951 {
    952 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
    953 	struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
    954 	struct ath5k_chan_pcal_info *gen_chan_info;
    955 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
    956 	u32 offset;
    957 	u8 i, c;
    958 	u16 val;
    959 	int ret;
    960 	u8 pd_gains = 0;
    961 
    962 	/* Count how many curves we have and
    963 	 * identify them (which one of the 4
    964 	 * available curves we have on each count).
    965 	 * Curves are stored from lower (x0) to
    966 	 * higher (x3) gain */
    967 	for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
    968 		/* ee_x_gain[mode] is x gain mask */
    969 		if ((ee->ee_x_gain[mode] >> i) & 0x1)
    970 			pdgain_idx[pd_gains++] = i;
    971 	}
    972 	ee->ee_pd_gains[mode] = pd_gains;
    973 
    974 	if (pd_gains == 0 || pd_gains > 2)
    975 		return -EINVAL;
    976 
    977 	switch (mode) {
    978 	case AR5K_EEPROM_MODE_11A:
    979 		/*
    980 		 * Read 5GHz EEPROM channels
    981 		 */
    982 		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
    983 		ath5k_eeprom_init_11a_pcal_freq(ah, offset);
    984 
    985 		offset += AR5K_EEPROM_GROUP2_OFFSET;
    986 		gen_chan_info = ee->ee_pwr_cal_a;
    987 		break;
    988 	case AR5K_EEPROM_MODE_11B:
    989 		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
    990 		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
    991 			offset += AR5K_EEPROM_GROUP3_OFFSET;
    992 
    993 		/* NB: frequency piers parsed during mode init */
    994 		gen_chan_info = ee->ee_pwr_cal_b;
    995 		break;
    996 	case AR5K_EEPROM_MODE_11G:
    997 		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
    998 		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
    999 			offset += AR5K_EEPROM_GROUP4_OFFSET;
   1000 		else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
   1001 			offset += AR5K_EEPROM_GROUP2_OFFSET;
   1002 
   1003 		/* NB: frequency piers parsed during mode init */
   1004 		gen_chan_info = ee->ee_pwr_cal_g;
   1005 		break;
   1006 	default:
   1007 		return -EINVAL;
   1008 	}
   1009 
   1010 	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
   1011 		chan_pcal_info = &gen_chan_info[i].rf5112_info;
   1012 
   1013 		/* Power values in quarter dB
   1014 		 * for the lower xpd gain curve
   1015 		 * (0 dBm -> higher output power) */
   1016 		for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
   1017 			AR5K_EEPROM_READ(offset++, val);
   1018 			chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
   1019 			chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
   1020 		}
   1021 
   1022 		/* PCDAC steps
   1023 		 * corresponding to the above power
   1024 		 * measurements */
   1025 		AR5K_EEPROM_READ(offset++, val);
   1026 		chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
   1027 		chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
   1028 		chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
   1029 
   1030 		/* Power values in quarter dB
   1031 		 * for the higher xpd gain curve
   1032 		 * (18 dBm -> lower output power) */
   1033 		AR5K_EEPROM_READ(offset++, val);
   1034 		chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
   1035 		chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
   1036 
   1037 		AR5K_EEPROM_READ(offset++, val);
   1038 		chan_pcal_info->pwr_x3[2] = (val & 0xff);
   1039 
   1040 		/* PCDAC steps
   1041 		 * corresponding to the above power
   1042 		 * measurements (fixed) */
   1043 		chan_pcal_info->pcdac_x3[0] = 20;
   1044 		chan_pcal_info->pcdac_x3[1] = 35;
   1045 		chan_pcal_info->pcdac_x3[2] = 63;
   1046 
   1047 		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
   1048 			chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
   1049 
   1050 			/* Last xpd0 power level is also channel maximum */
   1051 			gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
   1052 		} else {
   1053 			chan_pcal_info->pcdac_x0[0] = 1;
   1054 			gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
   1055 		}
   1056 
   1057 	}
   1058 
   1059 	return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
   1060 }
   1061 
   1062 
   1063 /*
   1064  * Read power calibration for RF2413 chips
   1065  *
   1066  * For RF2413 we have a Power to PDDAC table (Power Detector)
   1067  * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
   1068  * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
   1069  * axis and looks like an exponential function like the RF5111 curve.
   1070  *
   1071  * To recreate the curves we read here the points and interpolate
   1072  * later. Note that in most cases only 2 (higher and lower) curves are
   1073  * used (like RF5112) but vendors have the oportunity to include all
   1074  * 4 curves on eeprom. The final curve (higher power) has an extra
   1075  * point for better accuracy like RF5112.
   1076  */
   1077 
   1078 /* For RF2413 power calibration data doesn't start on a fixed location and
   1079  * if a mode is not supported, it's section is missing -not zeroed-.
   1080  * So we need to calculate the starting offset for each section by using
   1081  * these two functions */
   1082 
   1083 /* Return the size of each section based on the mode and the number of pd
   1084  * gains available (maximum 4). */
   1085 static inline unsigned int
   1086 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
   1087 {
   1088 	static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
   1089 	unsigned int sz;
   1090 
   1091 	sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
   1092 	sz *= ee->ee_n_piers[mode];
   1093 
   1094 	return sz;
   1095 }
   1096 
   1097 /* Return the starting offset for a section based on the modes supported
   1098  * and each section's size. */
   1099 static unsigned int
   1100 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
   1101 {
   1102 	u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
   1103 
   1104 	switch(mode) {
   1105 	case AR5K_EEPROM_MODE_11G:
   1106 		if (AR5K_EEPROM_HDR_11B(ee->ee_header))
   1107 			offset += ath5k_pdgains_size_2413(ee,
   1108 					AR5K_EEPROM_MODE_11B) +
   1109 					AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
   1110 		/* fall through */
   1111 	case AR5K_EEPROM_MODE_11B:
   1112 		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
   1113 			offset += ath5k_pdgains_size_2413(ee,
   1114 					AR5K_EEPROM_MODE_11A) +
   1115 					AR5K_EEPROM_N_5GHZ_CHAN / 2;
   1116 		/* fall through */
   1117 	case AR5K_EEPROM_MODE_11A:
   1118 		break;
   1119 	default:
   1120 		break;
   1121 	}
   1122 
   1123 	return offset;
   1124 }
   1125 
   1126 /* Convert RF2413 specific data to generic raw data
   1127  * used by interpolation code */
   1128 static int
   1129 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
   1130 				struct ath5k_chan_pcal_info *chinfo)
   1131 {
   1132 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
   1133 	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
   1134 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
   1135 	unsigned int pier, point;
   1136 	int pdg;
   1137 
   1138 	/* Fill raw data for each calibration pier */
   1139 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
   1140 
   1141 		pcinfo = &chinfo[pier].rf2413_info;
   1142 
   1143 		/* Allocate pd_curves for this cal pier */
   1144 		chinfo[pier].pd_curves =
   1145 				calloc(AR5K_EEPROM_N_PD_CURVES,
   1146 				       sizeof(struct ath5k_pdgain_info));
   1147 
   1148 		if (!chinfo[pier].pd_curves)
   1149 			return -ENOMEM;
   1150 
   1151 		/* Fill pd_curves */
   1152 		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
   1153 
   1154 			u8 idx = pdgain_idx[pdg];
   1155 			struct ath5k_pdgain_info *pd =
   1156 					&chinfo[pier].pd_curves[idx];
   1157 
   1158 			/* One more point for the highest power
   1159 			 * curve (lowest gain) */
   1160 			if (pdg == ee->ee_pd_gains[mode] - 1)
   1161 				pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
   1162 			else
   1163 				pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
   1164 
   1165 			/* Allocate pd points for this curve */
   1166 			pd->pd_step = calloc(pd->pd_points, sizeof(u8));
   1167 
   1168 			if (!pd->pd_step)
   1169 				return -ENOMEM;
   1170 
   1171 			pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
   1172 
   1173 			if (!pd->pd_pwr)
   1174 				return -ENOMEM;
   1175 
   1176 			/* Fill raw dataset
   1177 			 * convert all pwr levels to
   1178 			 * quarter dB for RF5112 combatibility */
   1179 			pd->pd_step[0] = pcinfo->pddac_i[pdg];
   1180 			pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
   1181 
   1182 			for (point = 1; point < pd->pd_points; point++) {
   1183 
   1184 				pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
   1185 					2 * pcinfo->pwr[pdg][point - 1];
   1186 
   1187 				pd->pd_step[point] = pd->pd_step[point - 1] +
   1188 						pcinfo->pddac[pdg][point - 1];
   1189 
   1190 			}
   1191 
   1192 			/* Highest gain curve -> min power */
   1193 			if (pdg == 0)
   1194 				chinfo[pier].min_pwr = pd->pd_pwr[0];
   1195 
   1196 			/* Lowest gain curve -> max power */
   1197 			if (pdg == ee->ee_pd_gains[mode] - 1)
   1198 				chinfo[pier].max_pwr =
   1199 					pd->pd_pwr[pd->pd_points - 1];
   1200 		}
   1201 	}
   1202 
   1203 	return 0;
   1204 }
   1205 
   1206 /* Parse EEPROM data */
   1207 static int
   1208 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
   1209 {
   1210 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
   1211 	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
   1212 	struct ath5k_chan_pcal_info *chinfo;
   1213 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
   1214 	u32 offset;
   1215 	int idx, i, ret;
   1216 	u16 val;
   1217 	u8 pd_gains = 0;
   1218 
   1219 	/* Count how many curves we have and
   1220 	 * identify them (which one of the 4
   1221 	 * available curves we have on each count).
   1222 	 * Curves are stored from higher to
   1223 	 * lower gain so we go backwards */
   1224 	for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
   1225 		/* ee_x_gain[mode] is x gain mask */
   1226 		if ((ee->ee_x_gain[mode] >> idx) & 0x1)
   1227 			pdgain_idx[pd_gains++] = idx;
   1228 
   1229 	}
   1230 	ee->ee_pd_gains[mode] = pd_gains;
   1231 
   1232 	if (pd_gains == 0)
   1233 		return -EINVAL;
   1234 
   1235 	offset = ath5k_cal_data_offset_2413(ee, mode);
   1236 	switch (mode) {
   1237 	case AR5K_EEPROM_MODE_11A:
   1238 		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
   1239 			return 0;
   1240 
   1241 		ath5k_eeprom_init_11a_pcal_freq(ah, offset);
   1242 		offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
   1243 		chinfo = ee->ee_pwr_cal_a;
   1244 		break;
   1245 	case AR5K_EEPROM_MODE_11B:
   1246 		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
   1247 			return 0;
   1248 
   1249 		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
   1250 		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
   1251 		chinfo = ee->ee_pwr_cal_b;
   1252 		break;
   1253 	case AR5K_EEPROM_MODE_11G:
   1254 		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
   1255 			return 0;
   1256 
   1257 		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
   1258 		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
   1259 		chinfo = ee->ee_pwr_cal_g;
   1260 		break;
   1261 	default:
   1262 		return -EINVAL;
   1263 	}
   1264 
   1265 	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
   1266 		pcinfo = &chinfo[i].rf2413_info;
   1267 
   1268 		/*
   1269 		 * Read pwr_i, pddac_i and the first
   1270 		 * 2 pd points (pwr, pddac)
   1271 		 */
   1272 		AR5K_EEPROM_READ(offset++, val);
   1273 		pcinfo->pwr_i[0] = val & 0x1f;
   1274 		pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
   1275 		pcinfo->pwr[0][0] = (val >> 12) & 0xf;
   1276 
   1277 		AR5K_EEPROM_READ(offset++, val);
   1278 		pcinfo->pddac[0][0] = val & 0x3f;
   1279 		pcinfo->pwr[0][1] = (val >> 6) & 0xf;
   1280 		pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
   1281 
   1282 		AR5K_EEPROM_READ(offset++, val);
   1283 		pcinfo->pwr[0][2] = val & 0xf;
   1284 		pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
   1285 
   1286 		pcinfo->pwr[0][3] = 0;
   1287 		pcinfo->pddac[0][3] = 0;
   1288 
   1289 		if (pd_gains > 1) {
   1290 			/*
   1291 			 * Pd gain 0 is not the last pd gain
   1292 			 * so it only has 2 pd points.
   1293 			 * Continue wih pd gain 1.
   1294 			 */
   1295 			pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
   1296 
   1297 			pcinfo->pddac_i[1] = (val >> 15) & 0x1;
   1298 			AR5K_EEPROM_READ(offset++, val);
   1299 			pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
   1300 
   1301 			pcinfo->pwr[1][0] = (val >> 6) & 0xf;
   1302 			pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
   1303 
   1304 			AR5K_EEPROM_READ(offset++, val);
   1305 			pcinfo->pwr[1][1] = val & 0xf;
   1306 			pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
   1307 			pcinfo->pwr[1][2] = (val >> 10) & 0xf;
   1308 
   1309 			pcinfo->pddac[1][2] = (val >> 14) & 0x3;
   1310 			AR5K_EEPROM_READ(offset++, val);
   1311 			pcinfo->pddac[1][2] |= (val & 0xF) << 2;
   1312 
   1313 			pcinfo->pwr[1][3] = 0;
   1314 			pcinfo->pddac[1][3] = 0;
   1315 		} else if (pd_gains == 1) {
   1316 			/*
   1317 			 * Pd gain 0 is the last one so
   1318 			 * read the extra point.
   1319 			 */
   1320 			pcinfo->pwr[0][3] = (val >> 10) & 0xf;
   1321 
   1322 			pcinfo->pddac[0][3] = (val >> 14) & 0x3;
   1323 			AR5K_EEPROM_READ(offset++, val);
   1324 			pcinfo->pddac[0][3] |= (val & 0xF) << 2;
   1325 		}
   1326 
   1327 		/*
   1328 		 * Proceed with the other pd_gains
   1329 		 * as above.
   1330 		 */
   1331 		if (pd_gains > 2) {
   1332 			pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
   1333 			pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
   1334 
   1335 			AR5K_EEPROM_READ(offset++, val);
   1336 			pcinfo->pwr[2][0] = (val >> 0) & 0xf;
   1337 			pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
   1338 			pcinfo->pwr[2][1] = (val >> 10) & 0xf;
   1339 
   1340 			pcinfo->pddac[2][1] = (val >> 14) & 0x3;
   1341 			AR5K_EEPROM_READ(offset++, val);
   1342 			pcinfo->pddac[2][1] |= (val & 0xF) << 2;
   1343 
   1344 			pcinfo->pwr[2][2] = (val >> 4) & 0xf;
   1345 			pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
   1346 
   1347 			pcinfo->pwr[2][3] = 0;
   1348 			pcinfo->pddac[2][3] = 0;
   1349 		} else if (pd_gains == 2) {
   1350 			pcinfo->pwr[1][3] = (val >> 4) & 0xf;
   1351 			pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
   1352 		}
   1353 
   1354 		if (pd_gains > 3) {
   1355 			pcinfo->pwr_i[3] = (val >> 14) & 0x3;
   1356 			AR5K_EEPROM_READ(offset++, val);
   1357 			pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
   1358 
   1359 			pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
   1360 			pcinfo->pwr[3][0] = (val >> 10) & 0xf;
   1361 			pcinfo->pddac[3][0] = (val >> 14) & 0x3;
   1362 
   1363 			AR5K_EEPROM_READ(offset++, val);
   1364 			pcinfo->pddac[3][0] |= (val & 0xF) << 2;
   1365 			pcinfo->pwr[3][1] = (val >> 4) & 0xf;
   1366 			pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
   1367 
   1368 			pcinfo->pwr[3][2] = (val >> 14) & 0x3;
   1369 			AR5K_EEPROM_READ(offset++, val);
   1370 			pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
   1371 
   1372 			pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
   1373 			pcinfo->pwr[3][3] = (val >> 8) & 0xf;
   1374 
   1375 			pcinfo->pddac[3][3] = (val >> 12) & 0xF;
   1376 			AR5K_EEPROM_READ(offset++, val);
   1377 			pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
   1378 		} else if (pd_gains == 3) {
   1379 			pcinfo->pwr[2][3] = (val >> 14) & 0x3;
   1380 			AR5K_EEPROM_READ(offset++, val);
   1381 			pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
   1382 
   1383 			pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
   1384 		}
   1385 	}
   1386 
   1387 	return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
   1388 }
   1389 
   1390 
   1391 /*
   1392  * Read per rate target power (this is the maximum tx power
   1393  * supported by the card). This info is used when setting
   1394  * tx power, no matter the channel.
   1395  *
   1396  * This also works for v5 EEPROMs.
   1397  */
   1398 static int
   1399 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
   1400 {
   1401 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
   1402 	struct ath5k_rate_pcal_info *rate_pcal_info;
   1403 	u8 *rate_target_pwr_num;
   1404 	u32 offset;
   1405 	u16 val;
   1406 	int ret, i;
   1407 
   1408 	offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
   1409 	rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
   1410 	switch (mode) {
   1411 	case AR5K_EEPROM_MODE_11A:
   1412 		offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
   1413 		rate_pcal_info = ee->ee_rate_tpwr_a;
   1414 		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
   1415 		break;
   1416 	case AR5K_EEPROM_MODE_11B:
   1417 		offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
   1418 		rate_pcal_info = ee->ee_rate_tpwr_b;
   1419 		ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
   1420 		break;
   1421 	case AR5K_EEPROM_MODE_11G:
   1422 		offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
   1423 		rate_pcal_info = ee->ee_rate_tpwr_g;
   1424 		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
   1425 		break;
   1426 	default:
   1427 		return -EINVAL;
   1428 	}
   1429 
   1430 	/* Different freq mask for older eeproms (<= v3.2) */
   1431 	if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
   1432 		for (i = 0; i < (*rate_target_pwr_num); i++) {
   1433 			AR5K_EEPROM_READ(offset++, val);
   1434 			rate_pcal_info[i].freq =
   1435 			    ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
   1436 
   1437 			rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
   1438 			rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
   1439 
   1440 			AR5K_EEPROM_READ(offset++, val);
   1441 
   1442 			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
   1443 			    val == 0) {
   1444 				(*rate_target_pwr_num) = i;
   1445 				break;
   1446 			}
   1447 
   1448 			rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
   1449 			rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
   1450 			rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
   1451 		}
   1452 	} else {
   1453 		for (i = 0; i < (*rate_target_pwr_num); i++) {
   1454 			AR5K_EEPROM_READ(offset++, val);
   1455 			rate_pcal_info[i].freq =
   1456 			    ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
   1457 
   1458 			rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
   1459 			rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
   1460 
   1461 			AR5K_EEPROM_READ(offset++, val);
   1462 
   1463 			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
   1464 			    val == 0) {
   1465 				(*rate_target_pwr_num) = i;
   1466 				break;
   1467 			}
   1468 
   1469 			rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
   1470 			rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
   1471 			rate_pcal_info[i].target_power_54 = (val & 0x3f);
   1472 		}
   1473 	}
   1474 
   1475 	return 0;
   1476 }
   1477 
   1478 /*
   1479  * Read per channel calibration info from EEPROM
   1480  *
   1481  * This info is used to calibrate the baseband power table. Imagine
   1482  * that for each channel there is a power curve that's hw specific
   1483  * (depends on amplifier etc) and we try to "correct" this curve using
   1484  * offests we pass on to phy chip (baseband -> before amplifier) so that
   1485  * it can use accurate power values when setting tx power (takes amplifier's
   1486  * performance on each channel into account).
   1487  *
   1488  * EEPROM provides us with the offsets for some pre-calibrated channels
   1489  * and we have to interpolate to create the full table for these channels and
   1490  * also the table for any channel.
   1491  */
   1492 static int
   1493 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
   1494 {
   1495 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
   1496 	int (*read_pcal)(struct ath5k_hw *hw, int mode);
   1497 	int mode;
   1498 	int err;
   1499 
   1500 	if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
   1501 			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
   1502 		read_pcal = ath5k_eeprom_read_pcal_info_5112;
   1503 	else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
   1504 			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
   1505 		read_pcal = ath5k_eeprom_read_pcal_info_2413;
   1506 	else
   1507 		read_pcal = ath5k_eeprom_read_pcal_info_5111;
   1508 
   1509 
   1510 	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
   1511 	mode++) {
   1512 		err = read_pcal(ah, mode);
   1513 		if (err)
   1514 			return err;
   1515 
   1516 		err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
   1517 		if (err < 0)
   1518 			return err;
   1519 	}
   1520 
   1521 	return 0;
   1522 }
   1523 
   1524 static int
   1525 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
   1526 {
   1527 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
   1528 	struct ath5k_chan_pcal_info *chinfo;
   1529 	u8 pier, pdg;
   1530 
   1531 	switch (mode) {
   1532 	case AR5K_EEPROM_MODE_11A:
   1533 		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
   1534 			return 0;
   1535 		chinfo = ee->ee_pwr_cal_a;
   1536 		break;
   1537 	case AR5K_EEPROM_MODE_11B:
   1538 		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
   1539 			return 0;
   1540 		chinfo = ee->ee_pwr_cal_b;
   1541 		break;
   1542 	case AR5K_EEPROM_MODE_11G:
   1543 		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
   1544 			return 0;
   1545 		chinfo = ee->ee_pwr_cal_g;
   1546 		break;
   1547 	default:
   1548 		return -EINVAL;
   1549 	}
   1550 
   1551 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
   1552 		if (!chinfo[pier].pd_curves)
   1553 			continue;
   1554 
   1555 		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
   1556 			struct ath5k_pdgain_info *pd =
   1557 					&chinfo[pier].pd_curves[pdg];
   1558 
   1559 			if (pd != NULL) {
   1560 				free(pd->pd_step);
   1561 				free(pd->pd_pwr);
   1562 			}
   1563 		}
   1564 
   1565 		free(chinfo[pier].pd_curves);
   1566 	}
   1567 
   1568 	return 0;
   1569 }
   1570 
   1571 void
   1572 ath5k_eeprom_detach(struct ath5k_hw *ah)
   1573 {
   1574 	u8 mode;
   1575 
   1576 	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
   1577 		ath5k_eeprom_free_pcal_info(ah, mode);
   1578 }
   1579 
   1580 /* Read conformance test limits used for regulatory control */
   1581 static int
   1582 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
   1583 {
   1584 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
   1585 	struct ath5k_edge_power *rep;
   1586 	unsigned int fmask, pmask;
   1587 	unsigned int ctl_mode;
   1588 	int ret, i, j;
   1589 	u32 offset;
   1590 	u16 val;
   1591 
   1592 	pmask = AR5K_EEPROM_POWER_M;
   1593 	fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
   1594 	offset = AR5K_EEPROM_CTL(ee->ee_version);
   1595 	ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
   1596 	for (i = 0; i < ee->ee_ctls; i += 2) {
   1597 		AR5K_EEPROM_READ(offset++, val);
   1598 		ee->ee_ctl[i] = (val >> 8) & 0xff;
   1599 		ee->ee_ctl[i + 1] = val & 0xff;
   1600 	}
   1601 
   1602 	offset = AR5K_EEPROM_GROUP8_OFFSET;
   1603 	if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
   1604 		offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
   1605 			AR5K_EEPROM_GROUP5_OFFSET;
   1606 	else
   1607 		offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
   1608 
   1609 	rep = ee->ee_ctl_pwr;
   1610 	for(i = 0; i < ee->ee_ctls; i++) {
   1611 		switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
   1612 		case AR5K_CTL_11A:
   1613 		case AR5K_CTL_TURBO:
   1614 			ctl_mode = AR5K_EEPROM_MODE_11A;
   1615 			break;
   1616 		default:
   1617 			ctl_mode = AR5K_EEPROM_MODE_11G;
   1618 			break;
   1619 		}
   1620 		if (ee->ee_ctl[i] == 0) {
   1621 			if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
   1622 				offset += 8;
   1623 			else
   1624 				offset += 7;
   1625 			rep += AR5K_EEPROM_N_EDGES;
   1626 			continue;
   1627 		}
   1628 		if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
   1629 			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
   1630 				AR5K_EEPROM_READ(offset++, val);
   1631 				rep[j].freq = (val >> 8) & fmask;
   1632 				rep[j + 1].freq = val & fmask;
   1633 			}
   1634 			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
   1635 				AR5K_EEPROM_READ(offset++, val);
   1636 				rep[j].edge = (val >> 8) & pmask;
   1637 				rep[j].flag = (val >> 14) & 1;
   1638 				rep[j + 1].edge = val & pmask;
   1639 				rep[j + 1].flag = (val >> 6) & 1;
   1640 			}
   1641 		} else {
   1642 			AR5K_EEPROM_READ(offset++, val);
   1643 			rep[0].freq = (val >> 9) & fmask;
   1644 			rep[1].freq = (val >> 2) & fmask;
   1645 			rep[2].freq = (val << 5) & fmask;
   1646 
   1647 			AR5K_EEPROM_READ(offset++, val);
   1648 			rep[2].freq |= (val >> 11) & 0x1f;
   1649 			rep[3].freq = (val >> 4) & fmask;
   1650 			rep[4].freq = (val << 3) & fmask;
   1651 
   1652 			AR5K_EEPROM_READ(offset++, val);
   1653 			rep[4].freq |= (val >> 13) & 0x7;
   1654 			rep[5].freq = (val >> 6) & fmask;
   1655 			rep[6].freq = (val << 1) & fmask;
   1656 
   1657 			AR5K_EEPROM_READ(offset++, val);
   1658 			rep[6].freq |= (val >> 15) & 0x1;
   1659 			rep[7].freq = (val >> 8) & fmask;
   1660 
   1661 			rep[0].edge = (val >> 2) & pmask;
   1662 			rep[1].edge = (val << 4) & pmask;
   1663 
   1664 			AR5K_EEPROM_READ(offset++, val);
   1665 			rep[1].edge |= (val >> 12) & 0xf;
   1666 			rep[2].edge = (val >> 6) & pmask;
   1667 			rep[3].edge = val & pmask;
   1668 
   1669 			AR5K_EEPROM_READ(offset++, val);
   1670 			rep[4].edge = (val >> 10) & pmask;
   1671 			rep[5].edge = (val >> 4) & pmask;
   1672 			rep[6].edge = (val << 2) & pmask;
   1673 
   1674 			AR5K_EEPROM_READ(offset++, val);
   1675 			rep[6].edge |= (val >> 14) & 0x3;
   1676 			rep[7].edge = (val >> 8) & pmask;
   1677 		}
   1678 		for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
   1679 			rep[j].freq = ath5k_eeprom_bin2freq(ee,
   1680 				rep[j].freq, ctl_mode);
   1681 		}
   1682 		rep += AR5K_EEPROM_N_EDGES;
   1683 	}
   1684 
   1685 	return 0;
   1686 }
   1687 
   1688 
   1689 /*
   1690  * Initialize eeprom power tables
   1691  */
   1692 int
   1693 ath5k_eeprom_init(struct ath5k_hw *ah)
   1694 {
   1695 	int err;
   1696 
   1697 	err = ath5k_eeprom_init_header(ah);
   1698 	if (err < 0)
   1699 		return err;
   1700 
   1701 	err = ath5k_eeprom_init_modes(ah);
   1702 	if (err < 0)
   1703 		return err;
   1704 
   1705 	err = ath5k_eeprom_read_pcal_info(ah);
   1706 	if (err < 0)
   1707 		return err;
   1708 
   1709 	err = ath5k_eeprom_read_ctl_info(ah);
   1710 	if (err < 0)
   1711 		return err;
   1712 
   1713 	return 0;
   1714 }
   1715 
   1716 /*
   1717  * Read the MAC address from eeprom
   1718  */
   1719 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
   1720 {
   1721 	u8 mac_d[ETH_ALEN] = {};
   1722 	u32 total, offset;
   1723 	u16 data;
   1724 	int octet, ret;
   1725 
   1726 	ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
   1727 	if (ret)
   1728 		return ret;
   1729 
   1730 	for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
   1731 		ret = ath5k_hw_eeprom_read(ah, offset, &data);
   1732 		if (ret)
   1733 			return ret;
   1734 
   1735 		total += data;
   1736 		mac_d[octet + 1] = data & 0xff;
   1737 		mac_d[octet] = data >> 8;
   1738 		octet += 2;
   1739 	}
   1740 
   1741 	if (!total || total == 3 * 0xffff)
   1742 		return -EINVAL;
   1743 
   1744 	memcpy(mac, mac_d, ETH_ALEN);
   1745 
   1746 	return 0;
   1747 }
   1748 
   1749 int ath5k_eeprom_is_hb63(struct ath5k_hw *ah)
   1750 {
   1751 	u16 data;
   1752 
   1753 	ath5k_hw_eeprom_read(ah, AR5K_EEPROM_IS_HB63, &data);
   1754 
   1755 	if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && data)
   1756 		return 1;
   1757 	else
   1758 		return 0;
   1759 }
   1760 
   1761